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Abstract—Polar codes are a recently introduced class of codes
that achieve the capacity of arbitrary symmetric binary-input e RN
channels. The goal of this paper is to explore a two-dimensial 0.9F <o S ) 1
(2D) code based on polar coding. Unlike step-wise rate allation ) '
in one-dimensional polar coding, the rate allocation in ths 2D
code is graded.

Index Terms—Error correcting codes, capacity-achieving
codes, polar codes, product codes.
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I. INTRODUCTION ' '
Polar coding is a recently introduced coding techniqt
that achieves the symmetric capacity of arbitrary binagut
discrete memoryless channels (B-DMCs) with encoding ai . _— ..
decoding complexity bounded (N log N) whereN is the o1r R S TP OC 1
code bloc_k-length [1]. The symmetric capac]_tw/) of a B- th S To24
DMC W is defined as the mutual information between th Channel index
channel input and output when the inputs are used with equal )
probability. The symmetric capacity equals the channel c89- 1. Plgt of (W) vs.i = 1,...,N = 210 for a BEC with erasure
pacity for certain channels such as the binary erasure eharfioeaility 3.
(BEC) and the binary symmetric channel (BSC).
Polar coding is based on a construction that recursively
transformsN independent copies of a B-DM@W to obtain a o _ )
second set ofV binary-input channeléWJ(\}') :1<i<N} We begin with a review of the polar code construction

such that the symmetric capacity terti@V\’) near 0 or 1 Method.
for all but a vanishingly small fraction a& tends to infinity.
The construction is applicable for any block-length= 2"
for n > 0. Il. POLAR CODE CONSTRUCTION

The concern in [1] was mainly theoretical and the focus
was mainly on asymptotic properties of polar codes. Fordfinit
block sizes, the polarization effect is not perfect and manyFor anyn > 0, N = 2", and0 < K < N, there exists
of the channels’./[/](\}) have symmetric Capacitidg{W](Vl)) that a polar code with block-lengtiV and dimensionk’, denoted
are far from being polarized as shown in Fig. 1 for th& (N, K). A polar codeP(N, K) is a linear code over GF(2)
case of a BEC with erasure probabili%y The polar coding With a generator matrix;» (N, K') constructed in accordance
method as presented in [1] has a step-wise rate allocatiith the rules described in [1]. First, aN-by-N matrix G
algorithm, which allocates a rate of 0 or 1 to each subchanriglformed by the formulaGy = ByF®" where By is
WJ(\})according asI(WJ(\})) is above a certain threshold orthe bit-reversalboperator and®’®" denotes theith Kronecker
not. For moderate length codes, where the asymptotic sffeepwer of . Then,Gp(N, K) is selected as a submatrix of
have not yet taken hold, it is conceivable that the coden according to a selection rule defined in [1]. Although
performance can be improved by a graded rate allocatiffif sameGy is used for all B-DMCs, the selection rule for
method so that each subchanhiél” is assigned a rate from aG'r(IV, K) is channel-specific. The selection rule for BECs
larger set of possible rates. One convenient method of grade Particularly simple. Since the goal of this paper is mgainl
rate allocation is to consider a 2D array code, a well-know#gmonstrative, we will restrict the discussion to a BEC with
technique in coding theory [2]. The goal of this paper is tBrasure probability, unless stated otherwise.
consider such a coding scheme based on polar codes. As an example, let us consider the construction &f(&, 4)
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code for this case. First, we form the generator matrix example, an admissible source array for this code is

100000 0 0] 000 10101
00010011
10001000 U=
00 01 01 0 O
L o1 00000 00 01 0 011
G |1 0101010
11100 00 00 This array is converted to a codeword arr&y = UGs
110 0 1 1 00 and transmitted over 32 independent copies of B?)C Let
11110 0 0O Y denote the 4-by-8 received array at the channel output.
111 111 1 1] Decoding is performed in interlaced row and column oper-

ations. The decoder knows that the first three column& of
Then the polar code selection rule in [1] selects the geaeragre fixed to zero. So, it sets the estimates of these columns
matrix of P(8,4) as to zero:4;; = 0 for 1 < 4,5 < 3. The real decoding

task begins with the fourth column @f, which is the first

10101010 column containing information. First, independent rowsbow
Gp(8,4) = 11001100 decoding operations are carried out to generate the esmat
’ 11110000 @;4, 1 < i < 4, for the elements of the fourth column; this
111 1 1111

decoding step ignores the constraints imposed by the {4,1,4
code checking on the 4th column, using only the constraints
This matrix is a submatrix of’s. The codeP(8,4) maps data jmposed by the polar code. A successive cancellation (SC)
words uf = (u1,...,us) to codewordsz} = (z1,...,%s) decoder is suitable for this task. Next; s, 1 < i < 4 are

via i = ufGs where the data WOVdE? are restricted to ysed by an ML decoder designed for thie1, 4) column code
vectors overGF'(2) such thatu; = ug = uz = us = 0. to generate the final decisioris 4, 1 < i < 4 for the fourth
This is equwalent to the usual viewpoint of encoding as thgumn. Next, the decoder moves on to the 5th column, which
mappingr} = (u4, ug, ur, us)G p(8,4). When considering the js a column frozen to zero. So, the decoder sets = 0 for

full vector u3, we refer to the subvect@ti, uz, us, us) asthe 1 < ; < 4 and moves over to column 6. Column 6 is not

frozenvec';or and to(us, ug, u7, ug) as theinformationvector. - 3 frozen column; so, a decoding operation similar to the one
A vector uj an admissiblesource vector for the codB(8,4) on column 4 is carried out. Similarly, columns 7 and 8 are

if its frozen part equals the zero vector. decoded, and the decoding task is finished.
TABLE Il
[1l. PRODUCT CODING ERASURE PROBABILITIES FOR THE4-BY-8 CODE
Code type

A 2D coding strategy with polar coding is to select an coumn index; @40 [ 432 | 414 [ (40)
information arrayU = (u; ;) such that each row oU is T.0E+000| 1.OE+000] 9.8E-001
admissible as an information vector for a particulyV, K) 8.8E-001 | 8.8E-001 | 6.0E-001
code and each column is a codeword in a certain set of bloch 2:;5_881 g:gg_ggi i:gg_gg;
codes. For example, consider the case whérés a 4-by- 6.8E.001 | 6.6E-001 | 2.2E-001
8 array with each row an admissible data vector R{8,5) 1.9E-001 | 9.0E-002 | 1.3E-003
and the columns ot/ selected as codewords in the length- 1.2E-001 | 3.9E-002 | 2.2E-004
4 codes as indicated in Table 1. An enfi, K,d) in the 3.9E-003 | 4.6E-005] 2.3E-010
table designates a code with block-length dimensionk,
and minimum distance. For example,(4,0,00) designates  The performance of this code on BEY) can be estimated
a trivial code consisting of only the all-zero codeword. Thgsing Table II. This table lists the erasure probabilities f
code(4,1,4) consists of two codeword$000 and1111. For various bits of the array code. The entries under the column
(4,4,1) relate to the case where effectively no column caede i
used; the entries in this column equal the channel parameter

/) obtained by the recursion

Ol O|O|O|O|O|O| O

0o N| O U1 B W[ N

TABLE |
COLUMN CODES FOR THE4-BY-8 CODE EXAMPLE.

Column | Code type
1 (4,0, 00) i Z. I\ 2
e 20 =220 (20)
3 (4,0, 00)
4 (4,1,4) 720 _ (Z(z))
5 (1,0, 00) 2k
6 4,3,2
v 54: 3, 2; for 1 < i < k, starting withZ") = 1. The parametez_’’
8 (4,41 can be interpreted as the erasure probability as seen by a SC

decoder in decoding thgth bit of a polar code P(8,8) on a
BEC(%), as explained in more detail in [1].



In general we will denote an entry of this table &y, ¢), o BLER
wherej indexes columns of the 2D codeword afddexes :
the type of candidate column codes that may be used. E 107}
Z(5,1) =6.8-10"t andZ(2,3) = 6-1072. The entryZ(j, £)
is interpreted as the erasure probability at the decodgrubut 107
for any designated bit of thé&h code. For example, we have Sl

Z(5,2) = Z(j, )1 = (1 = Z(j,1))%),

which is the probability that a designated bit of the (4,8@&)e
is erased (when used on coluninand at least one other bit
is also erased, so that the decoder cannot recover the era 10°}
in the designated bit.

If we denote the parameter of the actual column coc

—6— 1 x 256 code
—<— 4 x 256 code |. .4
—&— 1 x 1024 code

Bound on BLER
[
o

selected for use in thgth column by(Ne,, Ky, dy, ), then the 10° ‘ ‘ ‘ . ‘ ‘ ; ; .
block-error rate (BLER)P, for the overall code is bounded as 005 0L o 0 e 0 04 008
N
P, < Z K;Z(j,¢;). Fig. 2. Block error rates for various array codes on a BEXC(
j=1

The overall coding rate is given by BLER

For example, consider the case where the column codes
assigned as in Table lll. The rate of the array code is th

TABLE Il
AN ASSIGNMENT OF COLUMN CODES FOR THH#-BY-8 CASE

[J ] Ney, Keyidey) | Ko, /Ney | 205,45) ]
0

Bound on BLER
=
o

<.

—6— 1 x 256 code

1 (4,0, 00) 0 10} —&—8x256 code |::3
2 (4,0, 00) 0 0 —&— 1 x 2048 code

3 (4,0,00) 0 0 107k 3
4 (4,1,4 0.25 1.0E-2

5 (4,0, 00) 0 0 10 ‘ ‘ ‘ . / ‘ , ‘ .

6 (4,3,2) 0.75 9.0E-2 005 01 015 02 025 03 035 04 045 05
7 4,4,1) 1 1.2E-1 Rate (bits)

8 (4,4,1) 1 3.9E-3

Fig. 3. Block error rates for various array codes on a ng(

R =3/8 and the BLER is bounded roughly by 2.1E-1.

Figure 1 shows simulation results for three array codes. We
note that the 2D4 x 256 array code achieves significantly In conclusion, we have shown that 2D array coding with
better performance than the 1Dx 256 ordinary polar code. & graded rate allocation is an effective method for imprgvin
This proves that the effectiveness of the graded rate aitota the performance of polar coding.
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