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Abstract: Polar codes are a recently introduced class of codes that achieve the
capacity of arbitrary symmetric binary-input channels. This capacity-achieving per-
formance is obtained by encoders and decoders of complexity O(N log N) where
N is the code block-length. The performance of polar coding under belief propa-
hation (BP) decoding has been studied before, using Reed-Muller (RM) codes as a
benchmark. This work studies the performance of polar coding under trellis-based
maximum-likelihood (ML) decoding, again using RM codes as a benchmark. One
finding is that RM codes perform better than polar codes under ML decoding for cer-
tain short codes. On the other hand, polar codes have a lower trellis complexity. A
second finding is that BP decoding offers performance comparable to ML decoding as
the block-length is increased.

Keywords: Error correcting codes, capacity-achieving codes, polar codes, Reed-
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1. Introduction
Polar codes are a class of capacity-achieving codes introduced recently in [1]. The
main motivation for the introduction of polar codes was theoretical, namely, to show
the existence of a family of codes that are provably capacity-achieving and have low-
complexity encoding and decoding algorithms. The well-established LDPC and turbo
codes fall short in this regard because we still do not have a fully rigorous proof that
they achieve channel capacity. Polar codes are the first familiy of codes to close this
theoretical gap.

Polar coding owes its analytical tractability to its recursive structure. This re-
cursive structure also leads to low-complexity encoding and decoding algorithms for
polar coding. It is shown in [1], [2] that asymptotically, as a function of code block-
length N , polar codes can be encoded in complexity O(N logN), decoded using a
successive-cancellation decoder in complexity O(N logN), while achieving an overall
block-decoding error probability that is bounded as O(2−Nβ

) for any fixed β < 1
2

and
fixed code rate below the channel capacity.

Encouraged by this asymptotic result, an initial study of practical merits of polar
coding was conducted in [3], where polar codes were compared with Reed-Muller (RM)
codes under belief-propagation (BP) decoding. The conclusion of that study was that
polar codes performed better than RM codes under BP decoding. The goal of the
present paper is to study the performance of polar codes under ML decoding. Specif-
ically, we consider trellis-based representations of polar codes and consider their bit
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error rate (BER) and frame error rate (FER) performance under BCJR and Viterbi
algorithms. RM codes will serve as a benchmark for performance comparisons, as in
the earlier study [3].

Unlike BP and SC decoders, the complexity of ML decoding increases exponentially
as the code block-length is increased for any fixed non-zero coding rate. So, BP decod-
ing of polar codes becomes infeasible after a certain block length. It is of interest to
determine the range of block-lengths where ML decoding is feasible for polar codes and
also compare ML and BP decoder performance to find out how much loss is incurred
by using the sub-optimal BP decoder. These questions are addressed in this paper.

The study of polar coding at small to moderate block-lengths (64 to 512) may be of
interest in applications where there is little tolerance for delay but the BER requirements
are not very stringent. In such cases, polar codes may be applied as stand-alone codes.
Polar codes under ML decoding may also be employed as component codes in iterative
coding schemes.

The paper is organized as follows. In Section 2, we define polar and RM code con-
structions in a common framework. In Section 3, we consider the trellis representation
of polar codes. Trellis complexities are given for comparable polar and RM codes. In
Section 4, we offer some simulation results on polar codes that demonstrate the relative
performance of polar and RM codes under ML decoding. Simulations are also given for
comparing the performance of polar codes under ML and BP decoding. In Section 5,
we summarize the results.

2. Code construction
We write RM(N,K) and P(N,K) to denote, respectively, polar and RM codes with
block-length N and dimension K. These codes have similar constructions. First, we

recall the well-known Plotkin construction for RM codes. Let F =

[
1 0
1 1

]
and F⊗n de-

note the nth Kronecker power of F . The generator matrix GRM(N,K) of an RM(N,K)
code can be taken as any submatrix of F⊗ log2 N consisting of K distinct rows whose
Hamming weights are as large as possible.

For example, to construct the RM(8, 5) code, we first compute

F⊗3 =



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1


(1)

and select 5 of its heaviest rows to obtain

GRM(8, 5) =


1 0 0 0 1 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

 (2)
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This is one of three possible choices for GRM(8, 5).
Polar code construction is similar to RM code construction in that the generator

matrix GP (N,K) of the P(N,K) code, with N = 2n, is also selected as a submatrix of
F⊗n, only by a different rule. The exact polar code construction rule is too complicated
to be presented here. Instead, we shall use a heuristic rule, which was also used in [3].
First, a ranking vector zN = (zN,1, . . . , zN,N) is computed through the recursion

z2k,j =

2 zk,j − z2
k,j, for 1 ≤ j ≤ k

z2
k,j−k, for k + 1 ≤ j ≤ 2k

(3)

for k = 2`, 0 ≤ ` ≤ n− 1, starting with z1,1 = 1/2. Next, one orders the elements of zN

to obtain a permutation πN = (i1, . . . , iN) of the indices (1, . . . , N) so that zN,ij ≤ zN,ik

holds for all 1 ≤ j < k ≤ N . The generator matrix GP (N,K) is selected as the
submatrix of F⊗n consisting of rows with indices i1, . . . , iK .

For (N,K) = (8, 5), the ranking vector is computed as z8 =(0.996, 0.684, 0.809,
0.121, 0.879, 0.191, 0.316, 0.004), which gives π8 = (8, 4, 6, 7, 2, 3, 5, 1), and the genera-
tor matrix is uniquely determined as

GP (8, 5) =


1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

 (4)

Thus, there is no essential difference between RM(8, 5) and P(8, 5) codes, since one
possible choice for GRM(8, 5) coincides with GP (8, 5). It turns out (N,K) = (32, 16) is
the smallest dimension when the two codes differ in an essential manner. The generator
matrix GP (32, 16) employs a weight-4 row of F⊗5 and leaves out a weight-8 row, unlike
GRM(32, 16) that employs no weight-4 row. RM codes and polar codes begin to differ
significantly as the block-length N increases.

3. Trellis representation of polar codes
In this section, we study the performance and complexity of polar coding under trellis-
based ML decoding. For terminology and details of trellis-based representation of block-
codes, we refer to [4] and [5].

We list in Table 1, the trellis complexity of the two families of codes for various
code dimensions (N,K). Listed in the table are the code minimum distance d, the
state complexity V , and the branch complexity E. The parameters V and E equal,
respectively, the total number of vertices and the total number of edges in the trellis
representation. There are two types of trellis representations listed in the table: bit-
level and parallelized . Both representations consist of N trellis sections; however, in the
parallellized representation, the trellis is split into a number of identical and disjoint
sub-trellises using the method described in [4, Sect. 9.7]. Although parallelization does
not reduce the total state complexity, it simplifies the decoder implementation both in
hardware and software. The complexity numbers in the table for the case of parallelized
trellises refer to the complexity of one component sub-trellis.

We note that the bit-level trellis complexity numbers in the table for the RM codes
agree with those in Table II of [6]. The table shows that for a given (N,K), polar codes
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Table 1: Trellis complexity of polar and RM codes.
Polar RM

bit-level parallelized bit-level parallelized
N K d V E V E d V E V E

32 16 4 1222 1628 232 292 8 4798 6396 434 540
32 26 4 638 1180 390 700 4 638 1180 390 700
64 57 2 818 1556 818 1556 4 2638 5084 1630 3100
128 120 2 3338 6516 3338 6516 4 10734 21084 6670 13020

tend to have significantly lower bit-level trellis complexity than RM codes when the
two codes differ. (For the parameter (32, 26), the two codes coincide.) The table also
shows that RM codes benefit from parallelization more than polar codes do; however,
polar codes still remain less complex.

To gain some insight into the trellis complexity issue, let us look at the RM(64, 57)
and P(64, 57) codes. The matrices GP (64, 57) and GRM(64, 57) happen to differ only in
one row. The RM generator matrix uses the row 1015101510151015, where 015 denotes
15 consecutive 0s; instead, the polar generator matrix uses the row 12062. This choice
reduces the minimum Hamming distance of the code from 4 to 2; however, it also reduces
the trellis complexity since the second row has a shorter span of 1s. The preference
of low-span rows by polar coding is also in evidence in the (8,5) code example whose
generator matrix was given above.

4. Simulations
We now give simulation results for the BER and FER performance of polar codes and
RM codes over a BPSK channel with additive Gaussian noise. Due to space limitations,
we will present only a limited number of simulation results. The conclusions that will
be drawn on the given examples are consistent with experimental results performed for
other code lengths and rates.
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Figure 1: Error rates for (64,57) polar and RM codes on a BSPK channel.

Figure 1 shows the performance for (64, 57) codes under Viterbi decoding. We
observe that polar codes have a slightly better BER performance at low EbN0, while
at high SNR, RM codes outperform polar codes. The FER performance of RM codes
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appears better than that of polar codes at all EbN0 values. The significantly better
performance of RM codes at high EbN0 is explained by their better minimum distance.
In return for their relatively poor performance, polar codes have a significantly lower
trellis complexity. In applications where complexity is important and a BER of 1E-4
may be tolerated, the P(64,57) code appears to be a viable alternative to the RM(64,57)
code.
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Figure 2: Error rates for the (64,57) polar code under various decoding algorithms.

Figure 2 shows the performance of the P(64,57) code under Viterbi, BCJR, and BP
decoders. We observe that the Viterbi and BCJR algorithms give roughly the same
performance throughout the EbN0 range. The BP algorithm on the other hand has a
slightly worse BER performance than the other two, while its FER performance is not
markedly different. Due to its O(N logN) complexity, the BP algorithm can be used
at much higher block-lengths N compared to the ML algorithms (Viterbi and BCJR)
for which the complexity is exponential in N .
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Figure 3: Error rates for polar and RM codes of sizes (64,57) and (256,228) under BP decod-
ing on a BSPK channel.

Figure 3 illustrates that, under BP decoding, a performance advantage emerges in
favor of polar codes as one increases the block-length. The figure shows results under
BP decoding for the codes RM(64,57), P(64,57), RM(256,228), and P(256,228), all of
which have the same rate. It is seen that while the high-EbN0 performance of the RM
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code is better than that of the polar code for a code size of (64,57), the situation is
reversed when the code size is increased. This result confirms earlier findings of [3].

5. Summary and conclusions
We have compared polar codes and RM codes under trellis-based ML decoding at short
block-lengths. One observation has been that, when the two codes differ for a given
code size (N,K), the polar code tends to have a significantly lower trellis complexity,
while the RM code has a larger minimum distance. The minimum-distance advantage
of RM codes translates into better performance at high SNR, although polar codes seem
to perform slightly better at low SNR.

A second issue addressed in the paper has been the performance comparison between
BP and ML decoding algoritms. BP decoders are suboptimal, however, they have
complexity O(N logN). On the other hand, ML decoders have exponential complexity
in N . So, for a given level of complexity, one may try to make up for the deficiency
of BP decoding relative to ML decoding by using a code with a larger block-length.
The experimental results suggest that the performance disadvantage of BP decoding
relative to ML decoding is not too large even at short block-lengths (the comparisons
for P(64,57) code). By increasing the block-length somewhat, BP decoding starts to
outperform the ML decoder (the comparison of codes of sizes (256,228) vs. (64,57)).
At large block-lengths, where ML decoding is no longer feasible, polar codes appear to
be better than RM codes when both are decoded by a BP decoder. It appears that the
minimum-distance advantage of RM codes over polar codes becomes a moot point as
the block-length is increased.
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