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Abstract—Polar codes are a class of codes that can achieve
the capacity of binary-input memoryless channels with cer-
tain symmetries. These codes have a recursive structure that
make it possible to encode and decode them within complexity
O(N log N) for a code of block length N . This paper presents
pipelined architectures with identical modules that are useful for
low-complexity implementation of polar codes both in hardware
and software. The uniform structure of the modules in the
design make it possible to trade complexity for time in hardware
implementations.

Index Terms—Polar codes, belief propagation decoding, error-
correcting codes, Reed-Muller codes, iterative decoding.

I. I NTRODUCTION

POLAR coding is a code construction method that can
achieve the capacity of symmetric binary-input discrete

memoryless channels such as the binary symmetric channel
(BSC) and binary erasure channel (BEC). This technique was
introduced and theoretically analyzed in [1]. Some experi-
mental results were presented in [2]. However, the details of
polar code construction and efficient methods for encoder and
decoder implementation have not been discussed in previous
work. The aim of this paper is to address these issues.
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For any N = 2n, n ≥ 1, and 1 ≤ K ≤ N , an (N, K)
polar code is a block code whose generator matrix is aK ×
N submatrix ofF⊗n constructed in accordance with certain
selection rules. Such rules were discussed in [2] and will be
discussed further here.

To gain a wider perspective on polar codes, it will be
beneficial to consider the class of all(N, K) codes with
generator matrices that are arbitrary(K, N) submatrices of
F⊗n. We will denote this class byF(N, K). This class
includes the well-known family of Reed-Muller (RM) codes,
as discussed in detail in [2]. A notable member of this class
is the extended Hamming code (EHC), which is a special
instance of RM codes. The class can be extended by taking
code products in the sense of Elias [3], and includes the
products of EHCs, which have been shown by Pyndiah [4] to

achieve excellent performance under turbo decoding and are
now part of several wireless standards, including the WiMAX
standard [5]. The idea of polar coding is to select the best
code in the classF(N, K) for a given channel, and thereby
achieve the best performance over all codes in the class
F(N, K). The effectiveness of this idea has been shown in [2]
where performance improvements over RM codes with block
lengthsN = 256 were documented. In this paper, we explore
implementation architectures for polar codes that can be used
for polar coding at significantly higher code block lengths.
We illustrate the proposed implementation for a block length
N = 4096 code, showing that polar codes may be a viable
alternative for practical applications.

II. GRAPH REPRESENTATION OF POLAR CODES

The codes in the familyF(N, K) for a fixedN and for all
1 ≤ K ≤ N can be represented using a graph that corresponds
to a computational circuit for the transformationF⊗n. For
N = 8, such a representation is shown in Fig. 1. This circuit
computes the transformx8

1 = u8
1F

⊗3 whereu8
1 = (u1, . . . , u8)

andx8
1 = (x1, . . . , x8). In general, we use the notationaN

1 to
denote a vector(a1, . . . , aN ).
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Fig. 1. The transformationF⊗3

2
. Each edge between two nodes carries a

value 0 or 1 from the left node to the right node. At each node, all values
arriving from the left are added modulo-2 and the result is forwarded on all
outgoing edges to the right.

The circuit in Fig. 1 can be used as a universal encoder for
all codes in the classF(8, K), 1 ≤ K ≤ 8. For example, for
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the (8,4) EHC, we set the inputsu1, u2, u3 andu5 equal to
zero (corresponding to rows ofF⊗3 with Hamming weights 2
or less). The remaining inputs are left free to carry user data
bits.

The sparseness of the graph representation for the trans-
formation F⊗n suggests that Gallager’s belief propagation
algorithm [6] may be an effective decoding method for codes
in the classF(N, K). Indeed, this point was noticed by Forney
[7] who suggested a BP decoder for RM codes usingfactor
graph representations. We will follow Forney and use factor
graphs here. The factor graph for the family of codesF(N, K)
is given in Fig. 2 forN = 8.
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Fig. 2. The factor graph representation for the transformation F
⊗3.

The nodes of the factor graph are labeled with pairs of
integers(i, j), 1 ≤ i ≤ n+1, 1 ≤ j ≤ N . From the decoder’s
perspective, the leftmost nodes,(1, j), are associated with the
source datauj that are to be estimated, while the rightmost
nodes(n+1, j) are associated with channel input variablesxj

that are observed through a noisy channel. Apart from these
source and channel nodes, each node(i, j) in the factor graph
has a 0-1 value which the decoder needs to estimate. The BP
decoder tackles this task by associating two messages with
each node(i, j): a right-propagating messageR(t)

i,j and a left-

propagating messageL(t)
i,j , wheret = 0, 1, . . . is a time index.

These message correspond to likelihood ratios at timet and
are initialized as

L
(0)
n+1,j =

P (xj = 0|yj)

P (xj = 1|yj)

R
(0)
n+1,j =

P (uj = 0)

P (uj = 1)

=

{

1 if j is an information coordinate

∞ if j is a frozen coordinate.

All other R
(0)
i,j and L

(0)
i,j are set equal to 1. Note that setting

R
(0)
1,j = ∞ for j a frozen coordinate makes sense since the

decoder knows that such coordinates are set equal to 0 at
the encoder. On the other hand, settingR

(0)
1,j = 1 for j an

information coordinate indicates that the a-priori 0 and 1 are
equally likely values for such coordinates.

=

+(i, j)

(i, j + 2n−i)

(i + 1, j)

(i + 1, j + 2n−i)

Fig. 3. The basic computational block of BP decoder for a polar code. The
node labels indicate the possible position of the block in the decoder factor
graph.

The basic computational element of BP decoding is a 4
terminal processing block as shown in Fig. 3. We observe
that in each stage of the example of Fig. 2, there are 4 such
computational blocks. In a general factor graph for decoding a
block lengthN polar code, there are a total of1

2N log N such
blocks. This computational block implements the mapping

L
(t+1)
i,j = f(L

(t)
i+1,j , L

(t)
i+1,j+Ni

R
(t)
i,j+Ni

)

L
(t+1)
i,j+Ni

= L
(t)
i+1,j+Ni

f(L
(t)
i+1,j, R

(t)
i,j )

R
(t+1)
i+1,j = f(R

(t)
i,j , L

(t)
i+1,j+Ni

R
(t)
i+1,j+Ni

)

R
(t+1)
i+1,j+Ni

= R
(t)
i,j+Ni

f(R
(t)
i,j , L

(t)
i+1,j)

whereNi = 2n−i andf(x, y) = (1+xy)/(x+y) for any two
realsx, y.

III. U NIFORM ENCODER-DECODER ARCHITECTURES

Although the factor graph representation in Fig. 2 defines
efficient encoder and decoder architectures for implementation
of encoders and decoders both in software and hardware, the
non-uniform structure of the graph from one stage to next
hinders re-usability of processing modules. A more uniform
architecture is desirable for flexible implementations where
circuit complexity can be traded off for time complexity.
For this we give alternative architecture given in Fig. 4.
Here R is the reverse-shuffleoperator that transforms an
input vectorvN

1 of length N for any even integerN into
(v1, v3, . . . , vN−1, v2, v4, . . . , vN ), and⊕ is the addition op-
eration that transforms any 0-1 vectorvN

1 of even length
into (v1 ⊕ v2, v2, v3 ⊕ v4, v4, . . . , vN−1 ⊕ vN , vN ) where⊕
is modulo 2 addition. We should note that although the circuit
in Fig. 4 is end-to-end equivalent to that in Fig. 2 in that
they implement the same transformationF⊗, they are not
equivalent stage-by-stage.

R ⊕ R ⊕ R ⊕
u8

1 x8
1

Fig. 4. The uniform factor graph representation for the transformationF
⊗3.

The uniform factor graph representation shown above for
the case of block lengthN = 8 holds forN any power of 2.
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For N = 2n, one only needs to usen copies of the tandemR
and⊕ operations suitable for vectors of lengthN .

Another uniform factor graph representation ofF⊗3 is
shown in Fig. 5, whereS is the shuffle operator that
transforms an input vectorvN

1 of even length N into
(v1, vN/2+1, v2, vN/2+2, . . . , vN/2, vN ). It is easy to see that
this circuit implements the inverse of the transform in circuit
Fig. 4. But since the inverse of the transformF⊗n is itself,
the claim follows. There are many other uniform factor graph
realizations of the transformF⊗n. The availability of such
uniform representations is important for hardware implemen-
tations where the same block may be re-used for reduced
complexity.

⊕ S ⊕ S ⊕ S
u8

1 x8
1

Fig. 5. Another uniform factor graph realization forF
⊗3.

IV. SUMMARY

We have given some implementation architectures for polar
codes that are suitable for hardware and software implementa-
tions. These architectures are based on a small set of re-usable
modules and allow pipelined implementations.
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