This is an explanation of the program from 1996. Some of the
Matlab commands may be old and need to be updated. Send
comments and questions to Hitay Ozbay: (hitay@bilkent.edu.tr)

A Matlab Based Program for
H>* Optimal /Suboptimal Controller Design

This brief paper is intended to be a user guide for the Matlab based program called
HINFCON, which implements the algorithm given in [5]. This program computes the
H> optimal performance and generates optimal and suboptimal controllers in the mixed
sensitivity minimization/reduction problems for SISO infinite dimensional systems. For
a copy of [5] send an e-mail to ozbay@ee.eng.ohio-state.edu or
tokero@ee.eng.ohio-state.edu).

1 Controller Formulae

In this section the controller formulae, which are originally given in [5], are presented.
In Sections 24, the reader will be assumed to be familiar with the below formulae.

1.1  H*™ optimal and suboptimal mixed sensitivity

The plant and the controller are represented by their transfer functions P(s) and C(s),
respectively. A system, whose transfer function is G(s), will be said to be stable if

G € H>(C,).

1.1.1 Assumptions on the plant

It is assumed that the plant does not have any poles on the imaginary axis. If this
assumption is not satisfied originally, one can replace H*°(C, ) by H*>°(C,) for some small
o > 0, in the definition of stability. Then the modified plant, P(s — o), satisfies this
assumption, provided P(s) has finitely many poles in C,, and no poles on Re(s) = —o.
With respect to the original stability definition, this situation corresponds to stability
with a margin of at least 0. For simplicity it will also be assumed that the poles of P(s)
in €, denoted by ay,...,q, are distinct. With this assumption, P(s) can be written
as N,(s)/mq(s), where

and N, € H>(C,). It is well known that #>°(C;) functions admit inner outer factor-
izations, [2]. Therefore, N, can be factored as N, = m,N,, where m, € H>®(C,) is
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inner (i.e. all-pass function, possibly infinite dimensional) and N, € H*>(C,) is outer
(i.e. minimum phase, possibly infinite dimensional). This factorization is unique up
to multiplication by —1. It will also be assumed that N, can further be factored as
N, = Ny1 N,y where Ny, N,i', Nyo € H®(C,), and N,y is rational. This factorization is
not unique. But it will only be necessary to conclude that the optimal/suboptimal H>
controller obtained here is proper. It is easy to see that if two plants P, and P, satisfy
the above assumptions, then so does their product P Ps.

It should be noted that inner outer factorization of an arbitrary function in H*(C,)
may require infinite dimensional spectral factorization, e.g. N, is the spectral factor
of N,(—=$)N,(s) = No(—s)N,(s). However, in several interesting cases it is possible to
obtain the inner outer factorization by inspection. A delay system example is given
below.

Example: ([3]) Following plant satisfies above assumptions:

e (s —0.05)
(s+1)(s+0.1 — e hs)’

P(s) = hy = 2ln(§), h > 0.

Note that the only point in €, where the term (s 4 0.1 — e~1%) becomes zero is s = 0.5.
So, the plant has only one pole in €. It is easy to verify that the multiplicity of this
pole is one. Therefore, in this example factors of P can be identified as follows:

s —0.05 ~s—105
mn(s) = e 0s mals) = S305
Noy (5 (s — 0.5)(s + 0.05) Nia(s) = 1
o (s+0.1—eMms)(s—+0.5) T ST

1.1.2 Problem statement

The problem dealt here is the standard mixed sensitivity minimization. Let Wi(s)
and Ws(s) be rational weighting functions. For properness of the optimal controller
it will be assumed that W(s) is non-constant and Wy, Wy ' € H>(C,), and that
(WoNy), (WaNy)™t € H®(C,), see [3] for a detailed discussion on these assumptions,
and relations to other types of two block H* control problems.

The optimal H* performance is defined by

= n
Yo = 4 iabilizes P

wir|
WoT |||



where S = (1 + PC)~ ! and T = PC(1+ PC)~! are the sensitivity and complementary
sensitivity functions. The condition “C' stabilizes P” means that closed loop transfer
functions S, C'S and PS must belong to H*(Cy). The optimal H* controller, denoted
by Cop, is the one which stabilizes the plant P, and yields

= Yo-

[e.e]

H[ Wi (1 + PClp)™! ]
WaPCop(1 + PCopy) ™

The suboptimal H* control problem is to parametrize the set

C, = {C’ . C stabilizes P, H[ ]H < p} (1)

for a given p > 7,.

1.2 Optimal and suboptimal 4> controllers

Let n1,...,7,, € €4, ny > 1, be the poles of Wi(—s); if 1; has multiplicity ¢; then it is
assumed to be repeated ¢; times in this list. The zeros of

E,(s) == (W _ 1) (2)
P
are denoted by f,..., (2,,, and they are assumed to be distinct. Then, (;’s can be
enumerated in such a way that 3,...,3,, are in €, and 3,,4; = —B;. Now define
TS~
F,(s) := G,(s 3
(5) = Golo) 11 )

where G, € H*°(C;) is minimum phase and determined from the spectral factorization

—s)Wi(s)
2

= 1)( (4)

Wa(=s)Wa(s) 1)) _1_

G616 (-s) = (1= (1 ;

Then (under certain genericity assumptions, see [5]) the optimal H* controller is given
by

No(s)"'F, (5)L(s)

Copt(s) = Ey, (s)ma(s) 1+ ma(s)Fy, (5)L(s)

()
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where L(s) = Lo(s)/L1(s) with Li(s) and Lo(s) being polynomials of degrees less than
or equal to (n; + [ — 1), satisfying interpolation conditions

0 Ly (Br) + mu(Bk) Fy, (B ) L2 (Bk) k=1,....m (6)
0 = Li(ag)+my(ag)F,, (ar)La(ag) kE=1,...,1 (7)
0 = Lo(=0k) +mn(Bk)Fy, (Be)Li(—Fk)  k=1,....,m (8)
0 = Lo(—ag) +mp(aw)F,, (o) Ly(—ax) k=1,...,1L 9)

Note that (6-7) corresponds to interpolation conditions that the denominator term
(1 + my(s)F,,(s)L(s)) must cancel the closed right half plane zeros of E, (s)mg(s).
This means, in particular, that my(s) term in the numerator of C,,(s) does not cancel
the unstable poles of the plant. Moreover, since (WyN,)~' € H*®(C,) and Wy, W, €
H>*(C,), the term F, N, ! is proper. It should also be noted that (6-9) constitute
2(n1 + 1) linear homogenous equations in 2(n; + 1) unknown coefficents of L(s) and
LQ(S)

If 7, is replaced by a variable, say 7, in equations (6-9), then a new set of linear
homogenous equations is obtained, in terms of 2(n; + [) unknown coefficients, for each
fixed . Under certain genericity assumptions, -, is the largest value of  for which there
is a non-trivial solution to these 2(n; + 1) linear homogenous equations. In other words,
v, can be found by plotting the smallest singular value of the matrix representation
of these equations, as < varies in an interval, see example given in the Appendix; the
largest value of v for which the plot shows a zero is ~,, If there is no such ~, then ~,
is equal to the essential norm of the associated infinite rank Hankel operator which can
be computed very easily (see [5]). This situation can be avoided by proper choice of the
weighting functions.

All suboptimal H* controllers are in the form

No(s) " Fy(3)Lu (5)
T+ ma(s) E,(5) Lo (s)

Csubopt(5) = Ep(s)ma(s) (10)

where

_ Ly(s) + Li(s)U(s) )
LU(S) - Ll(S) +L§(S)U(S) , UeH ((]:-f-) ) ||U||OO <1,

Lt (s) = (=1)mH L (=s), Li(s) = (=1)"*' Ly(—s), and L,(s), Lo(s) are polynomials of
degree < my + [ satisfying (6-9) with ~, replaced by p, and the following two conditions:
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0 = La(=a)+ (Ey(a) + 1)F,(a)mn(a) L1 (—a) (11)
1 = Ll(_a)7 (12)

for some arbitrary ¢ € R, and a > 0, (a is related to conformal map used in [5]).
For different values of a one can obtain different parametrizations of all suboptimal
controllers.

1.3 Example: Computation of the Optimal Performance

An explicit formula for the optimal H* controller is given above. In order to find C,,,
one needs to compute the optimal performance 7, and corresponding L(s). Now a delay
system example will be considered to illustrate the computation procedure.

For P(s) = e /(s—1), choose Wi (s) = 2(s+1)/(10s+1) and Wy(s) = 0.2(s+1.1).
The same H> optimal control problem has been studied in [1] with slightly different
weights. In this example m,(s) = e, mgy(s) = (s—ay)/(s+ay) and N,(s) = 1/(s+ay),
where a; = 1. Then, since n; = 1 and [ = 1, polynomials L;(s) and Ly(s) are both first
order. Therefore, there are four unknown coefficients, Lig, Log, L11, Lo;, where

L1 (S) = LHS + L10 and LQ(S) = L218 + LQ().

For h > 0, a lower bound for -, can be found as 1/5. An upper bound can also be found
(see e.g. [1, 4]). When h = 0.2, for slightly different weights, 7, has been computed
in [1] as 7, ~ 0.6667. So, for this example one expects that 7, is close to 0.67, and in
particular v, < 1.5. In the range 0.2 < v < 1.5,

(4 — %) + (1009* — 4)s?

EBls) = 5 n 1009

has two zeros on the imaginary axis. Only one of them, say 3, = j \/ﬁ&, is used in
the formulae (6-9). Note also that, in the above range of v, F, is given by

v2(1 — 10s)

Fls) = (s +p1) (s +p2)vV4y? = 0.16°
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Figure 1: 0, (M,) versus 7

where p; = \/b+ V0> — c and p; = /b— Vb?> — ¢, with

. 8.8872 — 0.3536 - . 4.0484~4% — 0.1936
T 892-0.32 - 442 —0.16

The set of equations (6-9) can be written as M, ¥ = 0, where

1 B mn(ﬂl)ny(ﬂl) ﬂ1mn(51)F7(51)

M. — 1 1431 mn(al)Fv(O‘l) almn(o‘l)Fv(al)
T mn(ﬁl)Fy(ﬁl) —ﬁlmn(ﬁ)Fy(ﬁl) 1 -5
mp(on)Fy(an) —aymy(oq)Fy (o) 1 —oy

and ¥ .= [Ll(), LH. LQO, L21]T.

The largest value of v which makes M, singular is 7, = 0.6819; it is obtained from
Figure 1, where the smallest singular value of M, is plotted. Once 7, is obtained from
this plot, a non-zero ¥,, which satisfies M, ¥, = 0, can be easily obtained. The entries
of W, give L(s) = Ls(s)/L1(s). For the above example L(s) can be computed as

s+ 0.2129

L(s) = 22222y
()= 02120

2 About the Matlab Program

It is assumed that the following matlab m-files are in one directory:
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No.m
Nol.m
No2.m
P.m

U.m
arrow.m
data.m
eps2.m
eps4.m
md.m
mn.m
opt.m
opt2.m
polyadd.m
pspec.m
spec.m
star.m
subopt.m

The user is not allowed to modify the m-files No.m, arrow.m, eps2.m, eps4.m,
opt.m, opt2.m, spec.m, star.m, subopt.m, polyadd.m, pspec.m, except the
value of EPS in polyadd.m, pspec.m (suggested value for EPS is 107%). The pro-
gram polyadd.m adds two polynomials and pspec.m performs spectral factorization
on polynomials.

3 How to enter P(s), Wi(s), W5(s) etc. ?

The user should enter functions by modifying the corresponding m-files in the obvious
way, i.e. by typing a legal Matlab expression for the function definition. The user should
enter P(s) to P.m, Nyi(s) to Nol.m, Ny (s) to No2.m, my(s) to md.m, and m,(s) to
mn.m. For the suboptimal controller design problem, the user should also write U(s)
to U.m for the program to generate the Bode plot of the controller and the Nyquist



plot of the system.



For example if the plant is P(s) = e %2¥/(s — 1), then P.m file must be:
function y=P(s)
y=exp(-0.2xs)/(s-1);

To enter W1 (s) and Wy (s), the file data.m should be edited appropriately. For example,
if Wi(s) =2(s+1)/(10s+ 1) and W5(s) = 0.2(s+ 1.1) then data.m must be as below:

function [nwl,dwl,nw2,dw2,alpha,Npoints,amp,lwl,lw2,Lpoints,epsnl=data(),
A

% Wi(s)=nwi(s)/dwi(s)

A
nwl
dwl
h
% W2(s)=nw2(s)/dw2(s)
h

2x[1 1];
[10 1];

0.2%x[1 1.1]1;

=]

=

N
[}

There are also other variables in data.m, that must be set before running the program:
alpha is the vector which contains the unstable poles of the plant P(s); Npoints is the
number of points in the min singular value versus v plot (suggested value for Npoints
is 100); amp is the conformal map parameter used in the bilinear map (required only
for the suboptimal case). The user should set amp to a random number, because some
amp values may violate the genericity conditions. The variables w1, w2, Lpoints are
used for Bode, Nyquist and performance plots, lw1l is log,,(wmin), W2 is log;o(Wmaz),
and Lpoints is the number of points in these plots. Finally, epsn is the epsilon value
used for null-space computations for the optimal control problem (suggested values for
epsn are 1072 or 1073).



4 How to run the program ?

First, the user should run m-files eps2.m and eps4.m which give a lower bound eps2
and an upper bound eps4 for v values to be used in opt.m. Then, the user should run
opt.m, where the program will ask gmin and gmax. At this point the user should
enter the values eps2 and eps4 for gmin and gmax respectively. Then, by looking at
the plot of min singular value versus -, the user may rerun opt.m and enter a smaller
interval for ~, search.

The program opt.m will give gamma_min, which is the max ~ value at which min
singular value is zero. Then, the user should run opt2.m, where the program will ask
GAMMA OPT. Here, the user should enter gamma_min value for GAMMA _OPT.
Then, opt2.m gives the polynomials nL, dL, nF, dF where L(s) = nL/dL and F(s) =
nF /dF. Following this, program will give the performance plot, which must be flat with
constant value equal to GAMMA _OPT. If this is not the case, then at that gamma
value, i.e. at yY=gamma_min, genericity conditions are violated. The user can check
whether the genericity conditions are violated at v =gamma_min as follows:

(1) If program gives a warning message.
(2) If the performance plot is not flat.

(3) After running opt2.m, if beta vector contains elements which are close to zero,
or contains two elements which are close to each other.

(4) If changing the plant parameters by a small amount, and keeping weighting
functions the same, does not change the value of gamma_min.

If any of the above situations occur, the user should suspect that genericity conditions
are violated and should rerun opt.m for gmin=eps2 and gmax=gamma_min - 0.01,
and search , in this interval.

To design a suboptimal controller subopt.m should be used. The program will ask a
value for rho, and then it will compute the polynomials L1, L2, nF, dF where F(s) =
nF /dF. The program also generates Bode, Nyquist and performance plots using U (s)
defined in U.m. If these plots are not required, the user may wish to stop the program
after L1, L2, nF, dF are computed.
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Appendix
A Delay System Example

In this appendix, a mixed sensitivity minimization problem is solved for a delay
system using the program HINFCON. Let the problem data be given as below,

P(s) = —, Wils) = o1 Wa(s) = 0.2(s + 1.1)
then
—0.2s s—1 1
n = Pl - 9 NO == ]_, 7NO =
ma(s) = e mq(s) st 1 1(s) 2(s) st 1

One should enter P(s), m,(s), mq(s), No1(s), No2(s), U(s) to the m-files P.m, mn.m,
md.m, Nol.m, No2.m, U.m respectively, as shown below.

% P.m
function y=P(s)
y=exp(-0.2*s)/(s-1);

% mn.m
function y=mn(s),

y=exp(-0.2%s) ;

% md.m
function y=md(s)

y=(s-1)/(s+1);

% Nol.m
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function y=Nol(s)

y=1;

% No2.m
function y=No2(s)
y=1/(s+1);

% U.m (Used only for the suboptimal design)

% U(s) can be any stable function whose infinity norm is < 1
function y=U(s);

y=0.7;

The data.m file must contain Wi(s) = nwl/dwl, W5(s) = nw2/dw2, alpha (the
vector which contains the unstable poles of the plant P(s)), Npoints, amp, lwl, w2,
Lpoints, epsn. The m-file data.m must be as below:

% data.m

function [nwl,dwl,nw2,dw2,alpha,Npoints,amp,lwl,lw2,Lpoints,epsnl=data(),
h

% Wi(s)=nwi(s)/dwi(s)

h

nwl

2x[1 1];
[10 11;

dwl
A
% W2(s)=nw2(s)/dw2(s)
yA
nw2

dw2

0.2%[1 1.17;
1;
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h

% alpha = Unstable poles

h

alpha = [1];

h

% Npoints = Number of points for 'gamma search"
b

Npoints = 100;

h

% amp = conformal map parameter

h

amp = 2.3456;

h

% for Bode plot, Nyquist plot and performance plots
h

% 1wl = log(wmin), 1lw2 = log(wmax), Lpoints = Number of points
b

1wl = -2;

lw2 = +5;

Lpoints = 100;

b

% epsn = epsilon value for null(M)

b

epsn=1le-2;

Now, eps2.m and eps4.m can be run. The program gives the following result after
running eps2.m:

eps2 =
0.2187

>>
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eps_2=max(lg_0l)
0.22 T -

0.218

0.216

0.214

0.212

0.206

0.204

0.202

0.2

log(w)

Figure 2: eps2 plot

The m-file eps2.m also gives the plot of |go(jw)| versus log,,(w), see Figure 2. This
program computes the maximum of |go(jw)]|.

The user obtains the following output by running eps4.m
epsd =
42.0820
>>

The program eps4.m also gives the plot of |go(jw)|+ |wo(jw) + |we(jw)| versus log,o(w),
see Figure 3. This program computes the maximum of |go(jw)| + |we(jw) + |we(jw)].

If the user runs opt.m with
Min gamma value = 0.2187
Max gamma value = 42.0820
then the plot will show no zero above v = 3.4.
Now the user should rerun opt.m to search for «, in the following interval:
0.2187
Max gamma value = 3.4064
Note that 3.4064 is chosen to be slightly larger than 3.4.

Min gamma value
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eps_4=max(IwOl+lwOhl+Ig0l)

45

IwOl+wOhl+Ig0!

log(w)

Figure 3: eps4 plot

The output of the program will be:

gamma_min =
0.6969
along with the plot shown in Figure 4.
The user should expect that v, = 2 and rerun opt.m for
Min gamma value = 1.9
Max gamma value = 2.1

Program output will be:

warning =

15



Optimal case

0.45

0.4}
035]
03}

S o025t

E

£ o2}

0.15F

0.1r

0.05}

gamma

Figure 4: Search for ~,

Non-generic case and/or illegal GAMMA value
message =
Press ENTER/RETURN to continue

If the user continues the program, output will be:

gamma_min =
2.0020
Then, the user should run opt2.m at which point the program asks
GAMMA_OPT =
If user enters 2.0020, after the end of the program beta will be
>> beta
beta =
0.0045

which is close to zero and user should suspect that genericity conditions are violated.
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Elements of beta must be distinct and nonzero.

This shows that at that point, genericity conditions are violated. In this case, user
should check the neighborhood of 0.7 for ~,.

On the other hand if the user reruns opt.m for
Min gamma value = 1.9
Max gamma value = 2.2

Program output will be:

gamma_min =
1.9990
Then, the user should run opt2.m at which point the program asks
GAMMA_OPT =
If user enters 1.9990, after the end of the program beta will be
>> beta
beta =
0 + 0.00321

which is close to zero and user should suspect that genericity conditions are violated.
Elements of beta must be distinct and nonzero.

From the above results, it can be deduced that at v = 2, at least one of the genericity
conditions are violated. In order to determine whether 2 = ~, or not, one can increase
the value of h slightly (for general plants replace m,(s) by e “m,(s), where € is a
“small” positive number), and obtain the new minimum singular value versus 7 plot: if
the new plots still shows gamma_min= 2 then one concludes that v, # 2, otherwise
v, = 2. This is true because a small increase in time delay should increase the optimal
performance.

For our example the reader should verify that 2 # ~,. Now, since the second largest
~ value for which the plot 4 shows a zero is near 0.7, the user should rerun opt.m with

Min gamma value = 0.6
Max gamma value = 0.8

The program will give:
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Optimal case
0.08

0.07

0.06

0.05

0.04

smin(M)

0.03

0.6 0.62 0.64 066 0.68 0.7 072 074 076  0.78 0.8

gamma

Figure 5: Search for ~,

gamma_min =
0.6820
and the plot shown in Figure 5.

Therefore, it can be concluded that v, = 0.6820. In order to generate the optimal
controller the user should now run opt2.m by entering

GAMMA_OPT = 0.6820
The program output will be
nl. =
0.6916 + 0.00031
0.1472 + 0.00001
dL

-0.6916 - 0.00041
0.1472 + 0.00011
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Optimal case
1.364 T

&
=
2 0682
z
H
0 i
2 1 0 1 P 3 4 5
log(w)
Figure 6: Performance plot
nF =
1.0000 -0.0000 -0.0100
dF =
0.2804 0.6036 0.3370 0.0279

These vectors determine the rational functions appearing in the optimal controller for-
mula. The performance plot for the closed loop system is shown in Figure 6. The
program will also generate the Bode plot for the controller, and the Nyquist plot of the
system, these are shown in Figure 7, and Figure 8, respectively.

To design a suboptimal controller, the user should run subopt.m at which point the
program asks

RHO =

the user should enter a value > ~,. Of course, if the value 2.0 is entered, the program
will give a warning and terminate. On the other hand, if the user enters a value close to
2.0 but not equal, than after the end of program, beta will contain an element which is
close to zero and it will be concluded that this point violates the genericity conditions.

For RHO = 0.7 program will work properly and the output will be:
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20log(IC(Gw)l)

phase of C(jw)

30 : Mavnittlde pl?t

25+
20+
15+
10 i i i i i i
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log(w)
40 : : Phase plot ! .

log(w)

Figure 7: Bode plot of the controller

Plot of 1+P(Gw)C(jw)
1 . - . T T T T

0.6

0.2F

Figure 8: Nyquist plot
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L1

4.2463 + 0.0000i
8.6808 + 0.00001
-2.0005 - 0.00001

L2 =
-4.0532 - 0.00001
-10.3603 - 0.00001
-2.0315 - 0.00001
nF =
1.0000 -0.0000 -0.0100
dF =
0.2738 0.5895 0.3293 0.0273

These polynomials determine Ly (s) and F,(s) which appear in the parametrization of
all suboptimal controllers.

For the function U(s), which is written in U.m, the program generates the following
plots: performance plot of the closed loop system shown in Figure 9, Bode plot of the
controller shown in Figure 10, and Nyquist plot of the system shown in Figure 11.
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norm([W1.S W2.T])

20log(IC(Gw)l)

phase of C(jw)

0.7

Suboptimal case

0.68

0.66

0.64

0.62

0.6

0.58

0.56

0.54
-2

log(w)

Figure 9: Performance plot

Mamitude plgt

log(w)

. Phase plot .

log(w)

Figure 10: Bode plot of the controller
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Plot of 1+P(Gw)C(jw)

0.8
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0.4}

0.2

0.2+

-0.4F

0.6

-0.8F
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Figure 11: Nyquist plot
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