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Abstract. When 3-D models of environments need to be transmitted
or stored, they should be compressed efficiently to increase the capac-
ity of the communication channel or the storage medium. We propose
a novel compression technique based on compressive sensing, applied to
sparse representations of 3-D range measurements. We develop a novel
algorithm to generate sparse innovations between consecutive range mea-
surements along the axis of the sensor’s motion, since the range measure-
ments do not have highly sparse representations in common domains.
Compared with the performances of widely used compression techniques,
the proposed method offers the smallest compression ratio and provides
a reasonable balance between reconstruction error and processing time.

1 Introduction

Many techniques have been developed for extracting 3-D models of environments,
which allow describing objects with undefined or arbitrary shapes or patterns [1].
One approach to constructing 3-D models is to use laser range finders that
measure the distance between the sensor and the objects within the field of
view. The model is acquired by using either a conventional 3-D laser scanner,
which is an expensive device, or a number of translating and/or rotating 2-D
laser scanners [2].

In this study, we consider an indoor environment scanned in 3-D with a single
2-D laser range finder, rotating around a horizontal axis above ground level. The
device used in this study is SICK LMS200 with its maximum range 80 m, field of
view 180◦, range resolution 1 mm, and angular resolution 0.5◦ [3]. Since the 3-D
model is composed of a considerable number of 2-D scans that are themselves
comprised of a large number of range measurements, the measurements need to
be compressed when they are transmitted or stored.

The compression ratio (CR), which is the ratio of the size of the compressed
output to the size of the original data, and the speed of compression are two
important criteria for measuring compression performance. The CR is between
zero and one (or zero and 100%), such that the closer the CR is to zero, the
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greater the amount of compression. In terms of the CR, a compression method
can be considered efficient when the size of the original data is reduced by more
than one half, so that the capacity of the communication channel or data storage
medium is at least doubled [4].

2 Review of Compressive Sensing

Compressive sensing is a technique that samples a signal in <N , where N is very
large, at a rate lower than the signal’s Nyquist rate, using a linear sampling
model with an optimization procedure for reconstructing the sampled signal [5].

The sampling model is composed of the sparsifying basis and the measure-
ment model that satisfy sparsity and incoherence properties, respectively. Spar-
sity requires the signals to have sparse projections onto the sparsifying basis
in which only a small number of the coefficients (K) will have large values,
whereas the majority (N −K) will be close to zero. The sparsifying basis is
an orthonormal basis denoted by Ψ = [ψ1, .., ψN ] which is spanned by {ψi}Ni=1.
Thus, the sampled signal can be represented as x =

∑N
i=1 siψi = Ψs, where

s = [s1, ..., sN ]T in which si =< x, ψi >. Notice that, x and s are different rep-
resentations of the same signal in time and Ψ domains, respectively. The mea-
surement model determines M measurements, where M � N , using a linear
operator Φ = [φT1 , ..., φ

T
M ]T composed of {φi}Mi=1, each of which is in <N . The

measurement model should be chosen so that {φi}Mi=1 cannot sparsely represent
{ψi}Ni=1, which is a requirement of the incoherence property. Baraniuk suggests
in [6] that the measurement model, in which each entry is chosen from a Gaussian
distribution with zero mean and 1

N variance, is incoherent with any sparsifying
basis with high probability. Given N and K, the lower bound on M is determined
by:

M ≥ cK ln
(
N

K

)
(1)

where c is a small positive constant [6]. Eventually, the measurement vector
denoted by y = [y1, ..., yM ]T , where yi =< x, φi >, is obtained such that y =
Φx = ΦΨs = Θs. The signal is then reconstructed by determining s, given y
and Θ. Since Θ is an M ×N matrix with M � N , there is no unique solution
to y = Θs. Therefore, the optimal solution is found by [7]:

ŝ = arg min ‖s‖1 such that y = Θs. (2)

Finally, the original signal is approximated from x̂ = Ψŝ with little distortion.

3 The Proposed Method

In compressive sensing, although determining the measurement model is straight-
forward, determining the sparsifying basis is not so simple. One of the main
objectives of this study is to obtain sufficiently sparse representations of the 2-D
scans that form the 3-D model.

The experimental data set [8] used in this study is composed of 29 3-D scans
from different indoor environments, each of which is acquired by taking 2-D
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scans as the sensor is rotated in 471 steps around a horizontal axis above ground
level. As a consequence, every 3-D scan in the data set constitutes 471 2-D scans,
sequentially acquired as vectors in <361 (i.e., N = 361).

(a) (b) (c) (d)

Fig. 1: (a) and (c): sample 3-D scans, (b) and (d): their reconstructions.

To apply the sampling model described in Sect. 2, we first consider the pro-
jections of a 3-D scan from the data set, illustrated in Fig. 1(a), onto some of
the well-known sparsifying bases. The 2-D scans forming the 3-D scan are pro-
jected one at a time onto N ×N sparsifying bases formed by using Fourier [9],
Gabor [9], and Haar [10] dictionaries. After lowering the small values to zero, the
average number of non-zero coefficients in these projections are around 270, 220,
and 320, respectively. The projections are not sufficiently sparse, so both the CR
and the distortion on the reconstruction would be high, if compressive sensing
were used with one of these sparsifying bases and the measurement model men-
tioned in Sect. 2 [7]. Therefore, we propose a novel technique to generate more
sparse innovations with approximately 40 non-zero coefficients on the average,
for the same scan data.

The proposed method involves sparsifying, measurement, and reconstruction
stages: The sparsifying model generates sparse innovations for each scan, and
then the measurement model samples the innovations with the minimum number
of samples. Finally, the reconstruction model rebuilds each scan from the samples
encoded by the measurement model. In the following subsections, these three
stages are described in more detail.

3.1 The Sparsifying Model

In the sparsifying model, we generate innovations between the currently ac-
quired scan x, and the previous scan x̃. First, x̃ is generated at the encoder by
employing the reconstruction procedure that the decoder follows, to adapt the
sparsifying parameters according to the reconstructions at the decoder. Then,
x̃ is approximated to x by shifting x̃ along the vertical and horizontal axes by
amplitude (ε) and phase (δ) shifts, respectively.

We define an error function E2 =
∑N
k=1 [x[k]− (x̃[k + δ] + ε)]2, where k is

the discrete-time index, and set its partial derivatives with respect to ε and δ to
zero, to find the optimal ε and δ. Ignoring the δ term in ∂E2

∂ε , we determine ε as:

ε =
1
N

N∑
k=1

(x[k]− x̃[k]) (3)
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which corresponds to the average amplitude difference between x and x̃. Since δ
is assumed to be very small compared to N , x̃[k+ δ] is expressed using the first
two terms of its Taylor series expansion around k. Then, we find δ as:

δ =
∑N
k=1 x̃

′[k] (x[k]− x̃[k]− ε)∑N
k=1 x̃

′[k]2
(4)

where x̃′[k] is the first-order difference of the sequence x̃ at k.
Shifting x̃ along the horizontal and vertical axes by ε and δ, respectively, we

obtain an approximation x̂ to x. Then, the innovation is defined as v = x− x̂
and is vertically shifted in either positive or negative direction by the offset ∆,
to bring its average value to the zero level. We eventually obtain a highly sparse
innovation v̂ after nulling very small variations around zero. Consequently, x
is represented with ε, δ, ∆, and v̂, respectively. When the mean square error
(MSE) between x and x̂ is very low, v̂ becomes very small, so x is represented
without v̂. When the MSE is greater than a preset threshold, v̂ becomes not as
sparse as we would like, so x is not encoded.

3.2 The Measurement Model
The measurement model gets the minimum number of samples from v̂ by using
either simple coding (SC) or compressive sensing (CS). Simple coding encodes
v̂ using the location and amplitude of the non-zero components. The measure-
ment size M is 2K, and the reconstruction error is zero. Compressive sensing
measures arbitrary linear combinations of the components in v̂. In this case, M
is determined using (1), and the reconstruction error increases with K.

When M required by SC is lower than M required by CS, using SC is advan-
tageous over using CS, in terms of the zero reconstruction error and lower M .
Therefore, we obtain the measurements m applying either SC when K ≤ K∗,
or CS, otherwise. Here, K∗ is the value of K that makes M for SC equal to
M for CS. We include a special character (i.e., π) at the beginning of m when
SC is applied to inform the decoder that we are using SC instead of CS. When
K > N

2 , v̂ cannot be considered sparse, since the reconstruction error would be
very high if v̂ were sampled using CS. In that case, x is not encoded.

At the output of the measurement model, x is represented with {ε, δ, ∆, m}
if it is encoded. Otherwise, x is left as is.

3.3 The Reconstruction Model
The reconstruction model rebuilds x from the output generated by the encoder.
When x is encoded, the output is {ε, δ,∆,m} with length (M + 3) less than N .
Otherwise, the output is x with length N . Therefore, the output is stored directly
as the reconstruction of x if its length is N . Otherwise, the reconstruction model
is applied to the output.

The reconstruction model first decomposes the output into ε, δ, ∆, and m.
After this step, to obtain x̂, x̃ is shifted along the vertical and horizontal axes
by ε and δ, respectively. Afterwards, v is rebuilt from m and ∆. In this step, if
the first value of m is π, then v̂ is rebuilt, decoding the rest of m with respect to
the SC scheme, which involves filling an empty signal in <N with the values of
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location and amplitude pairs given in the measurements. Otherwise, v̂ is rebuilt,
decoding m with respect to the CS scheme, which involves solving (2), where
Θ = Φ, by following the procedure in [7]. Then, v is acquired by shifting the
amplitude of v̂ by ∆. Eventually, x is reconstructed by adding v to x̂.

The reconstruction model is used at the decoder, as well as at the encoder,
to estimate the reconstructions generated by the decoder.

4 Comparing the Proposed Method with Some
Well-Known Compression Techniques

In this section, we compare the compression performance of the proposed method
with some well-known and widely used lossless and lossy compression techniques
that are applied to every 2-D scan independently in all of the 3-D scans in the
data set. Thus, for each technique in the comparison, we compare the CR, the
average of the root mean square error between the 2-D scans and their recon-
structions (E), and the time required for encoding (tenc) and decoding (tdec).
These values are found by averaging over the values obtained for the whole data
set, including 4, 930, 899 (= 29 3-D sets × 471 2-D scans × 361 measurements)
range measurements in total.

We first compress the scan data using four of the lossless techniques: Huff-
man [11], arithmetic [11], ZLIB [12], and GZIP [13]. Besides, we also apply two
of the lossy compression methods to the data set: JPEG [11] and 3-level wavelet
transform using the Haar dictionary [14]. The results are given in Table 1.

method CR (%) E (cm) tenc (s) tdec (s)

lo
ss

le
ss

Huffman coding 41.7 0 165.6 610.6
arithmetic coding 11.1 0 37.6 48.9
ZLIB 65.3 0 0.4 0.2
GZIP 76.7 0 0.5 0.3

lo
ss

y JPEG 25.4 184.2 0.8 0.2
wavelet transform 12.7 37.3 0.1 0.1
proposed 10.9 12.9 15.3 14.5

Table 1: Table of CR, E, tenc, and tdec for compression using different methods.

Finally, the data set is encoded using the proposed method. In this method,
since the measurement model in CS is determined arbitrarily in each trial, small
fluctuations in the compression performance are observed (±2% in CR). There-
fore, CR, E, tenc, and tdec are obtained as in Table 1, after the whole data set is
encoded 10 times, and the results are averaged. On the average, the data set is
compressed by 89% with about 13 cm distortion in the reconstructions. In this
case, 57% of the 2-D scans are encoded with ε, δ, and ∆; 24% are encoded with ε,
δ, ∆, and m obtained using SC; 16% are encoded with ε, δ, ∆, and m obtained
using CS. Only 3% are not encoded. When the 3-D scans illustrated in Fig. 1(a)
and (c) are compressed by 89% and 85%, the resulting average distortions are
12 and 16 cm, respectively. The reconstructed scans are shown in Fig. 1(b) and
(d) to allow comparison with their originals.

The proposed method compresses the experimental data more than all the
lossy and lossless techniques we have considered. In terms of speed, the proposed
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method is much faster than Huffman and arithmetic coding, but much slower
than ZLIB, GZIP, JPEG, and the wavelet transform. However, the proposed
method compresses more than the latter four. Moreover, the proposed method
provides much less reconstruction error than the latter two.

5 Conclusion

In this study, we consider 3-D modelling of indoor environments employing the
SICK LMS200 laser range finder. The 2-D range scans forming the 3-D model
are compressed so that they can be stored or transmitted efficiently. From this
perspective, we propose a novel compression technique based on compressive
sensing for sequentially acquired 2-D scans.

According to the criteria described in Sect. 1, the proposed method is fast
and efficient in terms of CR, and provides a reasonably good balance between
reconstruction accuracy and speed [11]. It is recommended for applications where
both CR and speed are crucial. However, a lossless compression technique can
be used in applications where the accuracy of the range measurements is more
important. Our future work involves improving the compression performance of
the proposed method, and extending its application to 3-D range measurements
of outdoor environments.
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