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Abstract

This study investigates fractional Fourier transform pre-processing of input signals to neural networks. The fractional Fourier transform is
a generalization of the ordinary Fourier transform with an order parameter a. Judicious choice of this parameter can lead to overall
improvement of the neural network performance. As an illustrative example, we consider recognition and position estimation of different
types of objects based on their sonar returns. Raw amplitude and time-of-flight patterns acquired from a real sonar system are processed,
demonstrating reduced error in both recognition and position estimation of objects. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The fractional Fourier transform has received consider-
able interest in the past decade resulting in hundreds of
papers dealing with its fundamental properties and its appli-
cations to optics and wave propagation, and signal analysis
and processing. Its relationship to a wide range of concepts
has been established and it has been employed in conjunc-
tion with a variety of techniques. Although two papers (Lee
& Szu, 1994; Shin, Jin, Shin & Lee, 1998), one built upon
the other, claim to discuss the relationship between the frac-
tional Fourier transform and neural networks, it is debatable
whether the networks in these papers can be properly called
neural networks. In Lee and Szu (1994), an analogy is drawn
between a new optical architecture and neural networks.
The authors suggest that so-called fractional Fourier domain
filtering configurations (Ozaktas, Barshan, Mendlovic &
Onural, 1994b) can be interpreted as neural networks. In
Shin et al. (1998), the authors implement a similar structure,
and also consider reducing the mean-square error by log-
likelihood and the use of parallel networks. It is shown that
the ‘neural network’ using the fractional Fourier transform
and the mean-square error classifies patterns much better
than the one using the ordinary Fourier transform and the
mean-square error. To speed up the learning convergence
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and, thus, improve the classification performance of the
network, the mean-square error is replaced with the
log-likelihood, and parallelism is introduced. It is shown
that the combination of fractional Fourier transformation,
log-likelihood and parallelism improves the learning
convergence and recall rate of the network.

However, the network architectures employed in these
works are actually nothing more than fractional Fourier
domain filtering configurations. These static networks
have linear input—output relations with the exception of
point nonlinearities at the output; the weights are fixed
and learning takes place only by adjustment of the filter
coefficients, not the connection weights. In the present
paper, we combine, to the best of our knowledge for the
first time, fractional Fourier transforms and true neural
networks with adjustment of the weights with a learning
algorithm. We show how the use of fractional Fourier trans-
formation as a pre-processing stage for a neural network
classifier can result in increased performance and reduced
error in classification. The improvement in the error is
obtained by virtue of the order parameter a of this transform,
which can be optimized to yield the best performance.
Unlike neural networks, to the best of our knowledge, the
fractional Fourier transform has not been applied to sonar
signals and sensing before. While the illustrative application
explored in our laboratory and reported in this paper is the
differentiation and localization of targets using sonar, the
use of fractional Fourier transform pre-processing should be
of general applicability to a variety of problems where
neural networks are employed.
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Section 2.1 gives an overview of the fractional Fourier
transform. In Section 2.2, background information related to
object recognition with neural networks is presented. In
Section 3, the use of the fractional Fourier transform for
the pre-processing of inputs to neural networks is proposed
and the system is described. Experimental results are
presented in Section 5. In the final section, concluding
remarks are made and directions for future work are
discussed.

2. Background
2.1. The fractional Fourier transform

Fourier analysis is widely used in signal processing
as well as many other branches of science and engineering
(Bracewell, 1986). The a-th order fractional Fourier
transform is a generalization of the ordinary Fourier
transform such that the first order fractional Fourier trans-
form is the ordinary Fourier transform and the zeroth order
fractional Fourier transform corresponds to the function
itself (Ozaktas, Kutay & Mendlovic, 1999; Ozaktas,
Zalevsky & Kutay, 2001). Thus, the fractional Fourier
transform includes the Fourier transform as a special
case. Because of the additional parameter a, whose opti-
mal value will in general be other than a = 1, the fractional
transform is much more flexible and will in general offer
better performance except in the special case when the
optimal value of a coincidentally turns out to be precisely
equal to 1. The transform has been studied extensively
since the early 1990s with a view to applications in
wave propagation, optics and optical signal processing
(Mendlovic & Ozaktas, 1993; Ozaktas & Mendlovic,
1993a,b, 1995), time- and space-frequency analysis
(Almeida, 1994; Kutay, Erden, Ozaktas, Arikan, Giileryiiz
& Candan, 1998), pattern recognition (Mendlovic,
Zalevsky & Ozaktas, 1998), digital signal processing
(Kutay, Ozaktas, Arikan & Onural, 1997; Kutay, Ozaktag,
Ozaktas & Arikan, 1999; Ozaktas et al, 1994a,b), and
image processing (Barshan, Kutay & Ozaktas, 1997;
Kutay & Ozaktas, 1998; Yetik, Ozaktas, Barshan &
Onural, 2000) and other areas. Most applications are
based on replacing the ordinary Fourier transform with
the fractional Fourier transform. Since the latter has an
additional degree of freedom (the order parameter a), it
is often possible to generalize and improve upon previous
results.

The a-th order fractional Fourier transform f,(x) of the
function f(u) is defined for 0 < |a| < 2 as (McBride & Kerr,
1987; Ozaktas et al., 1994b)
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The kernel K,(u, u') approaches 8(u — u') and 8(u + u’)
as a approaches 0 and *2, respectively, and are defined as
such at these values. The fractional Fourier transform
reduces to the ordinary Fourier transform when a = 1. The
transform is linear and index additive; that is, the a;-th order
fractional Fourier transform of the a,-th fractional Fourier
transform of a function is equal to the (a; + a,)-th order
fractional Fourier transform. An important property of the
fractional Fourier transform relating it to time-frequency (or
space-frequency) concepts is its close relationship to the
Wigner distribution (Cohen, 1995). The a-th order
fractional Fourier transform of a function corresponds to a
rotation of the Wigner distribution of the function by an
angle am/2 in the time-frequency plane. Moreover, digital
implementation of the fractional Fourier transform is as
efficient as that of the ordinary Fourier transform in the
sense that it can also be computed in the order of Nlog N
time with a fast algorithm, where N is the number of sample
points or the signal length (Ozaktas, Arikan, Kutay &
Bozdagi, 1996). Therefore, the proposed technique does
not introduce substantial overload.

The ordinary (unitary) discrete Fourier transform (DFT)
of a signal f(n) is defined as:
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Here, the 1/N factor has been distributed between the
forward and inverse transform expressions so as to result
in a unitary definition of the DFT. The DFT can be repre-
sented in matrix notation as

f, = Ff 3)

where f is an NX 1 column vector, F is the NX N DFT
matrix, and f; is the DFT of f.

With a similar notation, the a-th order discrete fractional
Fourier transform (DFRT) of f, denoted f,, can be expressed
as

£, = F'f )

where F? is the N X N DFRT matrix which corresponds to
the a-th power of the ordinary DFT matrix F. However, it
should be noted that there are certain subtleties and ambi-
guities in defining the power function, for which we refer
the reader to Candan, Kutay and Ozaktas (2000).

The DFRT can be used to approximately compute the
continuous fractional Fourier transform. That is, it can be
used to approximately map the samples of the original func-
tion into the samples of its fractional Fourier transform. As
with the ordinary DFT, the value of N should be chosen at
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Fig. 1. The system block diagram.

least as large as the time- or space-bandwidth product of the
signals in question.

2.2. Neural networks for object recognition

Neural networks are non-parametric and make weaker
assumptions on the shape of the underlying distributions
of input data than traditional statistical classifiers. There-
fore, they can prove more robust when the underlying statis-
tics are unknown or the data are generated by a nonlinear
system. These networks are trained to compute the bound-
aries of decision regions in the form of connection weights
and biases by using training algorithms. The most
frequently used training algorithm for neural networks is
the back-propagation algorithm (Werbos, 1990) which is
also used to train the networks in this study. The stopping
criterion used is as follows: the training is stopped either
when the average error is reduced to 0.001 or if a maximum
of 10,000 epochs is reached, whichever occurs earlier. The
second case occurs very rarely.

The use of neural networks in sonar systems has been
reviewed in Ayrulu and Barshan (2001). The successful
use of neural networks for target differentiation and locali-
zation was first proposed in Barshan, Ayrulu and Utete
(2000) and further developed in Ayrulu and Barshan
(2001). There, it was shown that neural networks are super-
ior to other pattern classification methods such as evidential
reasoning, majority voting, and statistical differentiation
algorithms.

An important issue in target differentiation with neural
networks is the selection of input signals such that the
network can differentiate all target types. Input signals
resulting in a minimal network configuration (in terms of
the number of layers and the number of neurons in these
layers) with minimum classification error are preferable.
In the next section, we investigate the effect of DFRT
pre-processing of the input signals to the neural networks.

3. The proposed model

A simple block diagram of the system is given in Fig. 1.
The input to the system is fractional Fourier transformed
before being presented to the neural network for target
type recognition and position estimation. The order para-
meter a of the DFRT represents a degree of freedom
which we can optimize in order to transform the input

signals to a form in which the best -classification
performance is obtained. The spaces to which the signals
are transformed have been referred to as ‘fractional Fourier
domains’ (Ozaktas & Aytiir, 1995).

To determine the optimal value of a, the training
procedure is repeated for values of a varying from O to 1
with 0.05 increments. These networks are tested using three
different test data sets which are: test set I, test data obtained
at the training positions with the training targets; test set II,
test data obtained at positions not in the set of training
positions with the training targets; and test set III, test
data obtained at the training positions with modified targets.
Acquisition of these test data sets are described in more
detail later in Section 5. For each value of a, and for each
test set, error of classification, error of range and azimuth
estimation, averaged over all target types, are calculated.
The value of a to be employed is chosen as that which
results in the smallest error.

In the next section, we will demonstrate through a
concrete application example that by choosing a in this
manner, it is possible to obtain improved results.

4. Application

We will illustrate the proposed method with the
problem of differentiation and localization of targets
using sonar signals. More concretely, an ultrasonic
sensor pair transmitting and receiving ultrasonic pulses
will be used to collect data from an unknown target,
to be processed to reveal the type of target and its
position.

The basic target types to be differentiated in this
study are plane, corner, acute corner, edge and cylinder
(Fig. 2). In particular, we have employed a planar
target, a corner of 6,=90°, an acute corner of
0.=60°, an edge of 6,=90° and cylinders with radii
re=2.5, 5.0 and 7.5cm, all made of wood. Detailed
reflection models of these target primitives are provided
in Ayrulu and Barshan (1998).

The most common sonar ranging system is based on
time-of-flight (TOF) which is the time elapsed between
the transmission and the reception of a pulse. In the
commonly used TOF systems, an echo is produced
when the transmitted pulse encounters an object and a
range measurement r= ct,/2 is obtained (Fig. 3) by



134 B. Barshan, B. Ayrulu / Neural Networks 15 (2002) 131-140

.

ACUTE CORNER

PLANE CORNER

EDGE

CYLINDER

Fig. 2. Horizontal cross sections of the target primitives differentiated in this study. Reprinted from Barshan et al. (2000) with permission. © 2000 IEEE.

simple thresholding. Here, t, is the TOF and c¢ is the
speed of sound in air (at room temperature,
¢ =343.3 m/s). The transducers can function both as
transmitter and receiver. In simple thresholding systems,
a constant threshold value 7 is set according to the
noise level of the sonar signals and the instance at
which the signal amplitude exceeds this threshold
value for the first time is marked as the TOF.

The major limitation of ultrasonic transducers comes
from their large beamwidth. Although these devices
return accurate range data, they cannot provide direct
information on the angular position of the object from
which the reflection was obtained. Sensory information
from a single sonar sensor has poor angular resolution
and is usually not sufficient to differentiate more than a
small number of target primitives (Barshan & Kuc,
1990). Improved target classification can be achieved
by using multi-transducer pulse/echo systems and by
employing both amplitude and TOF information. In
the present paper, amplitude and TOF information
from a pair of identical ultrasonic transducers a and b
with center-to-center separation d =25 cm is employed
to improve the angular resolution of sonar sensors
(Barshan et al., 2000).

The transducers used in our experimental setup are
Panasonic transducers (Panasonic Corporation, 1989).
The aperture radius of the transducers is a = 0.65 cm,
their resonance frequency is f,=40kHz, and their

ultrasonic
transducer

planar
target

Fig. 3. Reflection of ultrasonic echoes from a planar target.

beamwidth angle is 54°. The entire sensing unit is
mounted on a small 6 V computer-controlled stepper
motor with step size 1.8°. Data acquisition from the
sonars is through a PC A/D card with 12-bit resolution
and 1 MHz sampling frequency. Starting at the transmit
time, 10,000 samples of each echo signal are collected
and thresholded to extract the TOF information. The
amplitude information is obtained by finding the
maximum value of the signal after the threshold value
is exceeded.

Amplitude and TOF patterns of the targets are
collected in this manner at 25 different locations (r,
0) for each target from 6 = —20 to 20° in 10° incre-
ments, and from r=35 to 55cm in 5cm increments
(Fig. 4). The target primitive located at range r and
azimuth 6 is scanned by the rotating sensing unit for
scan angles —52°=< @ =52° with 1.8° increments
(determined by the step size of the motor). The reason
for using a wider range for the scan angle is the possi-
bility that a target may still generate returns outside of
the range of 6. The angle o is always measured with
respect to 6 = 0° regardless of target location (r, 6), as

S N W WH s S
training <
position <

Fig. 4. Network training positions. Reprinted from Barshan et al. (2000)

with permission. © 2000 IEEE.
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line-of-sight

Fig. 5. The scan angle « and the target azimuth 6.

shown in Fig. 5. In other words, § =0° and o =0°
always coincide.

At each step of the scan, four sonar echo signals are
acquired as a function of time (Fig. 6). In the figure,
A Appy Ay, and Ay, denote the maximum values of the
echo signals, and t,, t,,, ts, and f,, denote the TOF
readings extracted from the same signals by simple
thresholding. The first index in the subscript indicates
the transmitting transducer, the second index denotes
the receiver. At each step of the scan, only these
eight amplitude and TOF values extracted from the

Amplitude

four echo signals are recorded. For the given scan
range and motor step size, 58 (=2 X 52°/1.8°) angular
samples of each of the amplitude and TOF patterns
Aaa(a)7 Ahb(a)7 Aab(a)’ Aba(a)a taa(a)a tbb(a)a tab(a)
and f,,(a) are acquired at each target location. These
scans can be considered as acoustic signatures embody-
ing shape and position information of the objects.

Since the cross terms A, («) and A, («) (or t,(a) and
ta(a)) should be equal under ideal conditions due to
reciprocity, it is more representative to employ their
average. Thus, 58 samples each of the following
six functions are taken collectively as the input to the
overall system:

Aab(a) + Aba(a)

Aaa(a)»Abb(a)’ )

> taa(a)9 tbb(a)»

and

tab(a) + tba(a)
2

Scans are collected with 4-fold redundancy for each
target primitive at each location, resulting in 700
(=4-fold redundancy X 25 locations X 7 target types)
sets of scans to be used for training.

Amplitude
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Fig. 6. Real sonar echoes from a planar target located at = 60 cm and 6 = 0° when: (a) transducer a transmits and transducer a receives; (b) transducer b
transmits and b receives; (c) transducer a transmits and b receives; and (d) transducer b transmits and a receives. Reprinted from Ayrulu and Barshan (2001).
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Fig. 7. The range and azimuth estimation error versus the tolerance levels €, and €, when the grid locations are used as test positions (test set I). The data points
correspond to €,=0.125, 1, 5, 10 cm and €, = 0.25, 2, 10, 20°. The squares, diamonds and stars correspond to a = 0 (no pre-processing), a = 1 (DFT pre-

processing), a = ay (DFRT pre-processing), respectively.

5. Experiments and results

The neural networks constructed consist of one input, one
hidden, and one output layer. The number of input-layer
neurons is determined by the total number of samples of
the amplitude and TOF patterns of the input signal,
described above. After averaging the cross terms of the
raw amplitude and TOF patterns, there are six patterns
each with 58 samples; therefore, 348 (=6 X 58) input
units are used.

Two well-known methods for determining the number
of hidden-layer neurons in feed-forward neural networks
are pruning and enlarging (Haykin, 1994). Pruning begins
with a relatively large number of hidden-layer neurons and
eliminates unused neurons according to some criterion.
Enlarging begins with a relatively small number of
hidden-layer neurons and gradually increases their number
until learning occurs. In this study, the number of hidden-
layer neurons is determined by enlarging. On average, 79
units are used at the hidden layer for the different networks
constructed. The number of output-layer neurons is 21.
The first seven neurons encode the target type. The next
seven represent the target range » which is binary coded
with a resolution of 0.25 cm. The last seven neurons repre-
sent the azimuth 6 of the target, which is also binary coded
with resolution 0.5°. To ensure that the initial weight
values do not affect the results, we averaged the results

of 10 networks with different randomly chosen initial
weights.

The networks have been first tested with test set L
Each target primitive is placed in turn in each of the 25
training positions shown in Fig. 4. Four sets of scans
are collected for each combination of target type and
location, again resulting in 700 sets of experimentally
acquired scans. Based on these data, the trained neural
networks estimate the target type, range, and azimuth.
The test data are collected independently from the train-
ing data and the targets are presented to the neural
network in a randomized order. These ensure that
systematic biases do not result in overstatement of the
performance of the method.

The average classification error obtained without
pre-processing of the amplitude and TOF patterns is 14%,
whereas it is 5% with the ordinary discrete Fourier trans-
form (DFT) pre-processing and 0% with discrete fractional
Fourier transform (DFRT) pre-processing. A range or
azimuth estimate is considered correct if it is within an
error tolerance of €, or €4 of the actual range or azimuth,
respectively. Average range and azimuth estimation errors
for different values of €, and €4 are given in Fig. 7. As
expected, the average errors decrease with increasing
tolerance. We observe that DFRT pre-processing offers
significant reduction in localization error compared to
no pre-processing (on average, 72% or 3.6-fold for range
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estimation and 88% or 8.3-fold for azimuth estimation).
Since the DFRT has a fast algorithm, these improvements
do not introduce substantial overhead once the system is
trained. The DFT also results in considerable reduction of
the error (on average, 50% or 2-fold for range estimation
and 47% or 1.9-fold for azimuth estimation); however, since
the cost of computing the DFRT and DFT are the same, the
additional improvement coming from the use of the DFRT
brings no additional cost after training.

The networks have been also tested for targets situated
arbitrarily in the continuous estimation space (test set II) and
not necessarily confined to the 25 training locations of Fig. 4.
This second set of test data was also acquired independently
after collecting the training data. Randomly generated
locations within the area shown in Fig. 4, not necessarily
corresponding to one of the 25 grid locations, are used as
target positions. The r, 6 values corresponding to these
locations are generated by using the uniform random
number generator in MATLAB. The range for r is
[32.5 cm, 57.5 cm] and that for 6 is [—25° 25°]. In this
case, the average classification error obtained without pre-
processing is 15%, whereas it is 5% with the DFT and 0%
with DFRT pre-processing. The localization results are
given in Fig. 8. We see that the DFRT results in comparable
improvements as in the case where the test targets were
located at the grid positions. The reduction in error is on

average 57% for range estimation and 77% for azimuth
estimation. Similar comments as we have made for Fig. 7
apply. As expected, the errors for the non-grid test positions
can be higher than those for the grid test positions (compare
the corresponding data points in Figs. 7 and 8).

Noting that the networks were trained only at 25 loca-
tions and at grid spacings of 5cm and 10° it can be
concluded from the localization errors at tolerances of
€,=0.125 and 1cm and €,=0.25 and 2° that the
networks demonstrate the ability to interpolate between
the training grid locations. Thus, the neural network main-
tains a certain spatial continuity between its input and
output and does not haphazardly map positions which are
not drawn from the 25 locations of Fig. 4. Correct target
recognition percentages are quite high and the accuracy of
the range/azimuth estimates would be acceptable in many
applications. If better estimates are required, they can be
achieved by reducing the training grid spacing in Fig. 4.

It is instructive to examine the confusion matrices
associated with the classification process. We consider
test sets I and II. In the following matrices, the (i, j)-th
element denotes the percentage of classification of
actual target i as target j, where i, j=1, ..., 7 corre-
sponds, respectively, to a planar target, a corner of
0.=90°, an acute corner of 6.=60°, an edge of
0.=90° and cylinders with radii r,=2.5, 5.0 and
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7.5 cm. By definition, the row
For no pre-processing:

sums are equal to 100.

90 0 5 0 5 0 07 -87 0 5 0 5 0 31
0910 9 000 09 2 8 000
3 2910 400 0 09 0 400
Chone=| 112 08 000 Chone=| 4 11 0 85 0 0 0
0 2 0 084122 0 2 1 081106
1 01 0 987 1 0 1 012806
L 4 0 1 0 91175 L4 0 1 0 101273
for DFT pre-processing:
97 0 1 0 2 0 01 97 1 1 0 1 0 01
0 1000 0 000 0 100 0 0 0 00
0 0 980 200 0 0 980 200
Chrr=| 0 3 09 100 Chrr = 309 000
1 0 1 00952 1 0 0 1 09432
1 0 1 0 30932 1 0 1 0 4922
[ 3 0 0 0 4 4 89 [ 3 0 2 0 4 685
and for DFRT pre-processing:
-100 0 0 0 0 0 07 100 0 0 0 0 0 07
0 100 0 00 0 0 0 100 0 0 000
0 0 1000 0 0 0 0 0 100 0 000
Chr=| 0 1 0 990 0 0 Comrr=]| 0 1 0 9900 0
0 0 0 09 1 0 0 0 0 0910
0 0 0 0 01000 0 0 0 0 10981
Lo 0o 0 00 1 9] L 0 0 0 0 0 49

By studying these matrices, it is possible to deduce which
targets are most similar under the different pre-processing
feature spaces and how these similarities are resolved with
DFRT pre-processing. For instance, for test set I with no
pre-processing, a plane is confused 5% of the time as an
edge and 5% of the time as a cylinder. Cylinders with differ-
ent radii are often confused with each other. We observe that
DFRT pre-processing does a much better job of discriminat-
ing these targets.

We have carried out further tests with the same system
using targets not scanned during training, which are
slightly different in size, shape, or roughness than the

B. Barshan, B. Ayrulu / Neural Networks 15 (2002) 131-140

targets used for training (test set III). These are two smooth
cylinders of radii 4 and 10 cm, a cylinder of radius 7.5 cm
covered with bubbled packing material, a 60° smooth edge,
and a plane covered with bubbled packing material. The
packing material with bubbles has a honeycomb pattern of
uniformly distributed circular bubbles of diameter 1.0 cm
and height 0.3 cm, with a center-to-center separation of
1.2 cm. The test data are collected at the 25 grid locations
used for training. In this case, the average classification
error obtained with unpre-processed patterns is 19%,
whereas it is 18% with DFT pre-processing and 9% with
DFRT pre-processing. The corresponding range and
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Fig. 9. The range and azimuth estimation error versus the tolerance levels €, and €, when targets which are not scanned during training are used for testing at
the discrete positions (test set III). The data points correspond to €, = 0.125, 1, 5, 10 cm and €, = 0.25, 2, 10, 20°. The squares, diamonds and stars correspond
to a =0 (no pre-processing), a = 1 (DFT pre-processing), a = a,, (DFRT pre-processing), respectively.

azimuth estimation errors are presented in Fig. 9. Once
again, we observe substantial improvements with the use
of DFRT pre-processing. On average, there is 58% reduc-
tion in range estimation error and 62% reduction in
azimuth estimation error compared to no pre-processing.
When the network is tested with these modified targets,
there is some increase in localization errors compared to
the results obtained with targets identical to those used for
training (compare the corresponding data points in Figs. 7
and 9). Overall, we can conclude that the network exhibits
some degree of robustness to variations in target shape,
size, and roughness.

The percentage errors of correct classification, correct
range (r) and azimuth () estimation for no pre-processing,
DFT, and DFRT pre-processing are summarized in Table 1
for the three test sets. The error tolerances corresponding to
r and 6 estimation are selected equal to the grid intervals
which are 5 cm and 10°, respectively. It can be clearly seen

Table 1

that only the optimal DFRT achieves 100% correct
classification for test set I, and it still achieves the best
performance for test sets II and III.

No pre-processing corresponds to the space domain and
DFT pre-processing corresponds to the Fourier domain.
Both no pre-processing and DFT pre-processing have the
same status as being limiting special cases of DFRT pre-
processing, with a = 0 and 1, respectively. Therefore, while
DFRT pre-processing will by definition always be at least
equal to or better than both, there was no a priori reason to
expect DFT pre-processing to give better results than no
pre-processing. Nevertheless, in our results, we observe
that DFT pre-processing consistently gives better results.

6. Conclusions

In this paper, we considered the use of the discrete

The percentage errors of correct classification, correct range (r) and azimuth (6) estimation for no pre-processing, DFT, and DFRT pre-processing for test sets
I, IT and III. The error tolerances corresponding to r and 6 estimation were selected equal to the grid intervals which are 5 cm and 10°, respectively

Classification r estimation 6 estimation

I I I 1 I 11 1 1I 11
No pre-processing 14 15 19 35 45 53 14 24 41
DFT 5 5 18 16 24 28 6 10 25
DFRT 0 1 9 9 16 23 2 2 14
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fractional Fourier transform (DFRT) pre-processing for
neural network input signals with the purpose of increasing
the overall performance. We have illustrated the method
with a specific application example using experimental
data: target classification and localization with sonar. The
order parameter of the DFRT provides an additional degree
of flexibility for optimization to reduce errors. The DFT also
results in considerable reduction of the error; however, since
the cost of computing the DFRT and DFT are the same, the
additional improvement coming from the use of the DFRT
brings no additional cost once the system is trained.

The method presented can be further generalized by
employing the three-parameter family of linear canonical
transforms instead of the one-parameter family of fractional
Fourier transforms (Barshan et al., 1997; Ozaktas et al., 2001).

Although trained on a discrete and relatively coarse grid, the
networks are able to interpolate between the grid locations and
offer higher resolution than that implied by the grid size. The
correct estimation rates for target type, range and azimuth can
be further increased by employing a finer grid for training.

In conclusion, the use of fractional Fourier transform
pre-processing results in increased performance compared
to both no pre-processing and ordinary Fourier transform
pre-processing with substantial reduction in classification
and localization error. While use of the fractional Fourier
transform increases the cost of the training procedure, the
improvements achieved with its use come at no additional
routine operating cost.
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