Optical Engineering 44(6), 067202 (June 2005)

Surface differentiation by parametric modeling
of infrared intensity scans
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cloth; and white, brown, and violet paper. A correct differentiation rate of
100% is achieved for six surfaces, and the surfaces are localized within
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1 Introduction cause the reflected light depends highly on the distance and

Surface recognition and localization is of considerable in- the @ngular orientation of the reflecting target. Similarly,
one cannot make accurate range estimates based on a single

terest for intelligent autonomous systems that must explore ; D inale i . di
their environment and identify different types of surfaces in Mtensity return. Due to single Intensity readings not pro-
a cost-effective manner. In this paper, we propose the use of*/diNg much information about an object's properties, the
a simple IR sensor consisting of one emitter and one detec-"€cognition capabilities of IR sensors have been underesti-
tor, where the emitted light is reflected from the target and mated and underused in most work. One way around this

the return intensity is measured at the detector. Although PrOPIEM is to employ IR sensors in combination with other

these devices are inexpensive, practical, and widely avail-S€1SInd modalities to acquire information about the surface
able, their use has been mostly limited to the detection of properties of the object.once its distance is estimated. Such
the presence or absence of objects in the environment for?!) approach is taken in Refs. 1 and 2, where colors are

applications such as obstacle avoidance or counting. Gath_dlfferentlated by employing IR and ultrasonic sensors in a

ering further information about the objects with simple IR complementary fashion. Reference 3 is based on a similar

: . approach, where the properties of planar surfaces at a
sensors has not been much investigated. However, due tq - - distancémeasured by an ultrasonic sensare de-
the limited resources of autonomous systems, the availabletermined first. Once the sur?‘/ace type is determined, the IR
resources must be exploited as much as possible. This ’ y

means that the ability of simple sensor systems to extractSensor is used as a range finder for the same type of surface
Y P Y ~“"at other distances. In this paper, we propose a scanning

|nformat|on_about the environment .ShOUId f!rst be maxi- technique to collect intensity signals and a method for sur-
m.aIIy gxploned befpre more eXpensive sensing modalmes face recognition by parametric modeling of IR intensity
with higher reso_lutlon and h'ghef resource requirements g. s The proposed approach can differentiate a moderate
%_s#ch fas computl?gt;hpom@eare (f:(;ﬂgdetredd for ? g|ve? tas'&'] number of surfaces and estimate their positions accurately.
erefore, one or tne aims of this study 1S to explore € . regyits indicate that if the data acquired from such

limits of simple and inexpensive IR sensors for surface rec- g hje |R sensors are processed effectively through the use
ognition and localization to extend their usage to tasks be- of suitable techniques, substantially more information

yond simplﬁlproxir_nri]tyhdetectio?. impl d is th about the environment can be extracted with these devices
One problem with the use of simple IR detectors is that {151 in their typical applications.

it is not possible to deduce the surface properties and the  1ha use of IR sensing in the pattern recognition area has
geometry of the reflecting target based on a single intensity heen mostly limited to the recognition or detection of fea-
return without knowing its position and orientation, be- ,ac or targets in conventional 2-D images. Examples of
work in this category include face identificatidmutomatic
0091-3286/2005/$22.00 © 2005 SPIE vehicle detectiori, automatic target recogniti6nand
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tracking’ detection and identification of targets in back- Matte materials can be approximated as ideal Lamber-
ground clutteP remote sensing, and automated terrain tian surfaces, which absorb no light and reflect all the inci-
analysis’ dent light equally in all directions such that the intensity of

IR sensors are used in robotics and automation, procesgshe reflected light is proportional to the cosine of the angle
control, remote sensing, and safety and security systemsbetween the incident light and the surface norfiaf®This
More specifically, they have been used in simple object and is known as Lambert’s cosine l&i.

proximity detectiont counting'! distance and depth moni- When a Lambertian surface is illuminated by a point
toring, floor sensing, position measurement and confrol, source of radiancg, then the radiance reflected from the
obstacle and collision avoidant&and map building? IR surface will be

sensors are used in door detection and mapping of openings

in walls,"” as well as monitoring doors and windows of Iy, =1[kq(l,n)], (1)

buildings and vehicles, and “light curtains” for protecting
an area. References 16 and 17 deal with the optical deterwherekg is the coefficient of the diffuse reflection for a
mination of depth information. Reference 18 describes a given material and andn are the unit vectors representing

passive IR sensing system that identifies the locations ofthe directions of the light source and the surface normal,
the people in a room. IR sensors have also been used folrespectively, as shown in Fig(a.

autom_ateg sorting of waste objects made of different |n perfect or speculatmirror-like) reflection, the inci-
materials _ . _ ) dent light is reflected in the plane defined by the incident
In our earlier work$’~**we considered the differentia- light and the surface normal, making an angle with the

tion and localization of objects using a template-based ap-surface normal which is equal to the incidence angle
proach, which uses distinctive natures of the IR intensity [Fig. 1(b)].

scans. In Ref. 20, a correct classification rate of 97% was  The Phong modéef which is frequently used in com-
achieved with absolute range and azimuth errors of 0.8 cmputer graphics applications to represent the intensity of en-
and 1.6 deg for targets with different geometrical proper- ergy reflected from a surface, combines the three types of

ties, but made of the same surface matetiaipolished  reflection—ambient, diffuse(Lambertian, and specular
wood). A rule-based approach to the same problem can bereflection—in a single formula:

found in Ref. 23, where we achieve an average correct

target differentiation rate of 91.3% over four target types | .=k +1i[kq(l,n)]+1i[ks(r,v)™], 2)

with average absolute range and azimuth errors of 0.55 cm

and 1.03 deg, respectively. The advantages of a rule-basedyherel, ., is the total radiance reflected from the surface;
approach are shorter processing time, minimal storage re-|_and|; are the ambient and incident radiances on the sur-
quirements, and greater robustness to noise and deviation§ace; k., kg, andk, are the coefficients of ambient light

in geometry and surface properties, since the rule-based, 4 it se and specular reflection for a given matetja,
approach emphasizes structural features rather than the ex:

act functional forms of the scans. In Ref. 21, targets made fi ar?d" are the unit vectors representing the dlreq'uons of
of different surface materials but of the same planar geom- 1€ light source, the surface normal, the reflected light, and
etry are differentiated with a correct differentiation rate of 1€ Viewing angle, respectively, as shown in Figo)land
87% and absolute range and azimuth errors of 1.2 cm and™ refers to the (_)rder of the specular fall-off or shine. The
1.0 deg. In Ref. 22, we dealt with the problem of differen- Scalar product in the second term of the Phong model
tiating and localizing targets whose geometry and surface equgls.lcola, vr\]/herec? is the anglg bﬁtV\;een the Vicﬁbmﬂ
properties both vary, generalizing and unifying the results n. Similarly, the scalar prOdl.JCt In the last term of the Phong
of Refs. 20 and 21. A correct classification rate of 80% of mpdel equals CoB, wheref is the angle b_etweenandv. .
both geometry and surface over all target types considered>ince the IR emitter and receiver are situated at approxi-
is achieved and targets are localized within absolute rangeMately the same position, then the anglebetween the
and azimuth errors of 1.5 cm and 1.1 deg, respectively. Our 'eflected vector and the viewing vectov is equal to 2.
approach in these earlier works can be considered as non- In Ref. 3, the simple nonempirical mathematical model
parametric, unlike the approach taken in this paper. represented by E¢(2) is used to model reflections from
This paper is organized as follows. Section 2 reviews Planar surfaces located at a known distait@ cm by
some existing reflection models and discusses our parametfitting the reflectance data to the model to improve the ac-
ric modeling of IR intensity scans. Section 3 provides ex- curacy of the range estimates of IR sensors over a limited
perimental verification of the approach presented in this fange interval5 to 23 cm). A similar approach with a sim-

paper. Concluding remarks are made in the last section. Plified reflection model is employed in Ref. 29, where an
IR-sensor-based system can measure distances up to 1 m.

The requirement of prior knowledge of the distance to the
. . surface is eliminated in Refs. 30 and 31 by considering two
2 Modeling of IR Intensity Scans angular intensity scans taken at two different known dis-
Light reflected from a surface depends on the wavelength,tancesg10 and 12 cr The distance error is less than 1 cm
the distance, and the properties of the light soulice, over a very limited range intervdflO to 18 cm for the
point or diffuse source as well as the properties of the reflection coefficients found based on the scans at 10 and
surface under consideration such as reflectivity, absorbtiv- 12 cm. As the distance increases to the maximum operating
ity, transmittivity, and orientatioA? Depending on the sur-  range(24 cm), the distance error increases, as reported in
face properties, reflectance can be modeled in different Refs. 30 and 31. For five different surfaces, a correct clas-
ways. sification rate of 75% is achievédby considering the in-

Optical Engineering 067202-2 June 2005/Vol. 44(6)



Aytac and Barshan: Surface differentiation . . .

e
Sy
e

/2

(a)

surface & observer
normal

7

n J
incident v reflected
light A light
l B r
o | o
(b)

Fig. 1 (a) Diffuse reflection and (b) specular reflection from an opaque surface.

variance property of the sum of the reflection coefficients Styrofoam packaging material, white painted matte wall;
below a certain rangél4 cm. In the same study, the au- white and black cloth; and white, brown, and violet paper
thors alternatively propose to use the maximum intensity (not glossy. The IR senscr [see Fig. 2a)] is mounted on
values at a known range for improved surface differentia- a 12-in. rotary tabf& to obtain angular intensity scans from
tion, which requires prior knowledge or estimation of the these surfaces. A photograph of the experimental setup and
range to the surface. In Ref. 32, the recognition capabilities its schematic can be seen in Figgh)2and 3, respectively.
of active infrared sensor arrays are analyzed by simulation  Reference intensity scans were collected for each sur-
of infrared signal propagation, using the model representedface type by locating the surfaces between 30 and 52.5 cm
by Eqg.(2). with 2.5-cm distance increments @&t0 deg. The resulting
Our approach differs from those in Refs. 3 and 29 in that reference scans for the eight surfaces are shown in Fig. 4
it takes distance as a variable and does not require priorusing dotted lines. These intensity scans were modeled by
knowledge of the distance. Another difference is that those approximating the surfaces as ideal Lambertian surfaces
works concentrate mainly on range estimation over a very since all of the surface materials involved had matte sur-
limited range interval rather than the determination of the faces. The received return signal intensity is proportional to
surface type, whereas in this paper, we focus on the deter-the detector area and inversely proportional to the square of
mination of the surface type over a broader range interval. the distance to the surface and is modeled with three pa-
When we compare our results with those of Refs. 30 and rameters as
31, we can conclude that the proposed approach is better in
terms of the correct differentiation rate and the number of C,cog aCy)
surfaces recognized. Furthermore, in the work presented inZ= 0 L ,
this paper, we can simultaneously recognize surfaces and [z/cosa+R(1/cosa—1)]?
estimate their ranges by relating maximum intensity values
to the reflection coefficients in a novel way. We also note which is a modified version of the second term in the model
that the position-invariant pattern recognition and position represented by Ed2). In our case, the ambient reflection
estimation achieved in this paper is different from such component, which corresponds to the first term in &),
operations performed on conventional imagés that here can be neglected with respect to the other terms because the
we work not on direct “photographic” images of the sur- IR filter, covering the detector window, filters out this term.
faces obtained by some kind of imaging system, but rather Furthermore, the second term in K@), representing Lam-
on intensity scans obtained by rotating a point sensor. As bertian reflection, dominates the third term for the matte
such, position-invariant differentiation and localization is surface types considered in this study, as further discussed
achieved with an approach quite different from those em- in the following paragraph. In Eq3), the product of the
ployed in invariant pattern recognition and localization in intensity of the emitter, the area of the detector, and the
conventional images: reflection coefficient of the surface are lumped into the con-
The surface materials considered are unpolished wood;stantC,, andC; is an additional coefficient to compensate

)
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2004780749 Fig. 3 Top view of the experimental setup used in surface recogni-
tion and localization. The emitter and detector windows are circular
with 8-mm diameter and center-to-center separation of 12 mm. (The
emitter is above the detector.) Both the scan angle « and the surface
azimuth 6 are measured counterclockwise from the horizontal axis.

ing curves are shown in Fig. 4 as solid lines. For the
reference scang is not taken as a parameter since the
distance between the surface and the IR sensing unit is
already known. The initial guesses of the parameters must
be made cleverly so that the algorithm does not converge to
local minima, and curve fitting is achieved in a smaller
number of iterations. The initial guess f@y is made by
evaluatingZ at «=0 deg, and corresponds to the product of
7 with z2. Similarly, the initial guess foC; is made by
evaluatingC; from Eq. (3) at a known anglex other than
zero, with the initial guess o, and the known value of

20047 1/ 9 While curve fitting, theC, value is allowed to vary be-
tween 2000 of its initial guess an@; is restricted to be
(b) positive. The variations o€,, C,, andz with respect to
the maximum intensity of the reference scans are shown in
Fig. 2 (a) The IR sensor and (b) the experimental setup. Fig. 5. As the distancd decreases, the maximum intensity

increases an@, first increases then decreases, Gytand
z both decrease, as expected from the model represented by

for the change in the basewidth of the intensity scans with Ed- (3)- The model fitis much better for scans with smaller
respect to distancéFig. 4). A similar dependence 08, is maximum intensities because our model takes only diffuse
used in sensor modeling in Ref. 37. Thés the horizontal reflect!ons into account, but the contrlbu'glon of the specular
distance between the rotary platform and the surface, as_reflect!on components around the_ maximum value of the
shown in Fig. 3. The denominator @fis the square of the intensity scans increases as the distance decreases. Hence,
distanced between the IR sensor and the surface. From the the ope:catrl]ng range of oug system is extended at the ex-
geometry of Fig. 3d+R=(z+ R)/cos«, from which we pense of the error at nearby ranges.
obtaind asz/cosa+R(1/cosa—1), whereR is the radius of i L ) )
the rotary platform and is the angle made between the IR 3 EXperimental Verification and Discussion
sensor and the horizontal. In this section, we experimentally verify the proposed

Besides the model represented by E2), we checked method. In the test process, the surfaces are randomly lo-
the suitability of a number of other models to our experi- cated at azimuth angles varying from45 to 45 deg, and
mental data, which were basically different variations of range values between 30 to 52.5 cm. In the given region,
Eqg. (2). The increase in the number of model parameters the return signal intensities do not saturate. In fact, we ex-
results in overfitting to the experimental data, whereas sim- perimented with fitting models to the saturated scans so that
pler models result in larger curve fitting errors. The model the operating range of the system is extended to include the
represented by Ed3) was the most suitable in the sense saturation regions. However, these trials were not very suc-
that it provided a reasonable trade-off. cessful. For unsaturated scans, first, the maximum intensity

Using the model represented by HG), parameterized  of the observed intensity scan is found and the angular
curves were fitted to the reference intensity scans employ-value where this maximum occurs is taken as the azimuth
ing a nonlinear least-squares technique based on a modelestimate of the surface. If there are multiple maximum in-
trust region method providédby MATLAB™. The result- tensity values, the average of the minimum and maximum
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Fig. 4 Intensity scans of the eight surfaces collected between 30 and 52.5 cm in 2.5-cm increments.
Solid lines indicate the model fit and the dotted lines indicate the experimental data for (a) wood, (b)
Styrofoam, (c) white painted matte wall, (d) white cloth, (e) black cloth, (f) white paper, (g) brown
paper, and (h) violet paper.

angular values where the maximum intensity values occur decision process, the maximum intensity of the observed
is calculated to find the azimuth estimate of the surface. scan is used, and a value Gf is obtained by linear inter-
Then, the observed scan is shifted by the azimuth estimatepolation between the data points in Figbbfor each sur-

and the model represented by E@) is fitted using a  face type. In other words, Fig.(5 is used like a look-up
model-trust  region based nonlinear least-squaresaple. Surface-type decisions are made based on the abso-

technique™ The initial guess for the distanceis found e gifference ofC,—C* for each surface because of the
from Fig. c) by taking the average of the maximum pos- more distinctive nature of th€, variation with respect to

sible and the minimum possible range values corresponding : ) . L .-
to the maximum value of the recorded intensity sd&im- the maximum intensity. The surface type giving the mini-
ear interpolation is used between the data points in the fig-TuMm difference is chosen as the correct one. The decision

ure) This results in a maximum absolute range error of could have also been made by comparing the parameters

approximately 2.5 cm. Therefore, the parameteis al- with those at the estimated range. However, this would not
lowed to vary between2.5 cm of its initial guess. Using give better results because of the error and the uncertainty
the initial guess foe, the initial guesses fo€, andC, are in the range estimates. We also considered taking different

made in the same way as already explained for the refer-combinations of the differenceS,—Cg, C,—C7, andz
ence scans. After nonlinear curve fitting to the observed —z* as our error criterion. However, the criterion based on
scan, we obtain three paramet&@¥, C} , andz*. In the C,—C7 difference was the most successful.
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Fig. 5 Variations of the parameters (a) Cy, (b) C,, and (c) z with respect to maximum intensity of the

scan.

For a set of six surfaces including Styrofoam packaging
mate”a.l; white palnted matte wall; white or black cloth; Table 1 Surface confusion matrix: C,-based differentiation (initial
and white, brown, and violet papéaliso mattg, we get a range to the surface is estimated using the maximum intensity of the
correct differentiation rate of 100% and the surfaces are scan).
located with absolute range and azimuth errors of 0.2 cm
and 1.1 deg, respectively. We can increase the number of Differentiation Results
surfaces differentiated at the expense of a decrease in the
correct differentiation rate. For example, if we add wood to Surface WO ST WWw  WC(BC) WP BR VI Total
our test set and keep either white or black cloth, we get a o 4

correct differentiation rate of 86% for seven surfaCesble 1 . _7 o _1 E
1). For these sets of surfaces, absolute range and azimuth 1 B 1
errors are 0.6 cm and 1.1 deg, respectively. Similarly, if we

form a set of surfaces excluding wood but keeping both weee  — — - 12 - - — B
white and black cloth, we achieve a correct differentiation WP 4 = = - 8§ — — 12
rate of 83% for seven surfacé¥able 2 and the surfaces BR - - - — - 12 — 12
are located with absolute range and azimuth errors of 0.5V! - = = — - — 12 12
cm and 1.1 deg, respectively. The recognition results for all Total 8 12 12 12 15 12 13 84

eight Sqrfaces considered are tabulated .In Tabl.e .3' oVerWO: wood, ST: Styrofoam, WW: white painted matte wall, WC: white
these eight surfaces, an overall correct differentiation rate cjoth, BC: black cloth, WP: white paper, BR: brown paper, VI: violet
of 73% is achieved and surfaces are located with absolutepaper.
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Table 2 Surface confusion matrix: C;-based differentiation (initial Table 4 Surface confusion matrix: C;-based differentiation (range
range to the surface is estimated using the maximum intensity of the to the surface is known).
scan).

Differentiation Results

Differentiation Results

Surface WO ST WwW WCBC) WP BR VI Total
Surface ST ww WwWC BC WP BR Vi Total

wo 5 — — — 6 — 1 12
ST 2 - - - - - — 1 ST - 12 — — )
ww - 2 - - - - — 12 WW - - 12 — )
wc - - O e wcBee) — — — 12 - - - 12
BC - - °® 3 - - = 12 WP 4 — — — 8 — — 12
WP — — — — 12 — — 12 BR _ — — — — 12 — 12
BR — — — — — 12 — 12 VI _ _ — — —  — 12 12
Y| - - - - = = 12 12 Total 9 12 12 12 14 12 13 84
Total 12 12 16 8 12 12 12 84

) the scap the same correct classification rate of 100% is
range and azimuth errors of 0.8 cm and 1.1 deg, respec-achieved. If we add wood to our test set and keep either
tively. Referring to Tables 1 to 3, note that the range esti- white or black cloth, we get a correct differentiation rate of
mation accuracy improves with increasing correct classifi- 8794 for seven surface@able 4. Similarly, if we form a
cation rate, whereas the azimuth estimation accuracy isset of surfaces excluding wood but keeping both white and
independent of it, as expected, because of the way it isplack cloth, we achieve a correct differentiation rate of 88%
estimated. In these tables, white and black cloth as well asfor seven surface@able 5. The differentiation results over
wood and white paper are the surface pairs most often con-a|| eight surfaces are given in Table 6, corresponding to a
fused with each other. ThUS, the decrease in the dlﬁerentla-correct differentiation rate of 78%. When we compare these
tion rate resulting from adding new surfaces does not rep- results with those obtained without exact knowledge of the
resent an overall degradation in differentiation rates acrossdistance to the surface, we can conclude that similar sur-

all surface types but is almost totally explained by pairwise faces are confused with each otfferood/white paper and
confusion of the newly introduced surface with a previ- \hite/black cloth with smaller confusion rates.

ously existing one, resulting from the similarity of tig As an alternative, we take as the initial range estimate,
parameter of the intensity scans of the two confused sur-the mid-point of the operating rang80 to 52.5 cm, which
faces. is 41.25 cm for all surfaces. An overall correct differentia-

To investigate the effect of the initial range estimate of tion rate of 65% over eight different surfaces is achieved
the surface on the differentiation process, we now assume(Table 7, which is worse than the two classification alter-
that the distance to the surface is known beforehand. Fornatives already considered. The surfaces are located with an
this case, only the two variablgSs, and C, are taken as  absolute range error of 1 cm, which is slightly greater than
parameters. Since the azimuth estimation process is indethe absolute range error achieved with the initial range es-
pendent of range estimation, for the same set of surfacestimate using the maximum intensity of the scan. If we ex-
the same azimuth estimation results are obtained. Thereclude wood and white cloth or wood and black cloth from
fore, they are not repeated here. For the same six surface®ur test set, we get correct differentiation rates of 93 and
considered as in the previous cdgeéhere the initial range  94% for the remaining six surfaces and the surfaces are
to the surface is estimated using the maximum intensity of located with absolute range errors of 0.3 and 0.4 cm, re-

spectively. As azimuth estimation errors are independent of
the applied classification techniques, they are not repeated

Table 3 Surface confusion matrix: C,-based differentiation (initial here. Note that for these sets of surfaces, a correct differ-
rang§ to the surface is estimated using the maximum intensity of the entiation rate of 100% was achieved using the classification
scan).

approaches already considered. These high differentiation
rates show that even for a maximum initial guess error of
11.25 cm in the range estimates, the proposed approach can
Surface WO ST WW WC BC WP BR VI Total recognize a moderate number of surfaces with reasonably
good accuracy.

Differentiation Results

WO 4 — - — — 7 — 1 12

ST - 12 - - - - = — 12 4 Conclusion

Ww - - 1z - = - - — 12 The main accomplishment of this study is that we achieved
wC - - = 75 = = — 12 position-invariant surface differentiation and localization
BC - - = 9 3 - = — 12 with simple IR sensors despite the fact that their individual
WP 4 - - - — 8 — — 12 intensity readings are highly dependent on the surface po-
BR - - - - - - 12 - 12 sition and properties, and this dependence cannot be repre-
VI - - - - - - — 12 12 sented by a simple analytical relationship. The intensity
Total 8 12 12 16 8 15 12 13 96 scan data acquired from a simple low-cost IR emitter and

detector pair was processed and modeled. Different param-

Optical Engineering 067202-7 June 2005/Vol. 44(6)
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Table 5 Surface confusion matrix: C,-based differentiation (range
to the surface is known).

Differentiation Results

Surface ST WW WC BC WP BR VI Total
ST 2 - - - - — — 12
Ww - 12 - - - - - 12
wcC - - 8 4 — — — 12
BC - - 6 6 - — — 12
WP - - - - 12 - — 12
BR - - - - - 12 — 12
v - - - - - — 12 12
Total 2 12 14 10 12 12 12 84

Table 7 Surface confusion matrix: C,-based differentiation (initial
range estimate is taken as half of the operating range for all sur-
faces).

Differentiation Results

Surface WO ST Ww WC BC WP BR VI Total
WO 2 — — - — 9 — 1 12
ST — 12 — - = = = = 12
wWwW - - 9 1 2 - = = 12
wC — - — 7 5 —_ - = 12
BC — - — 10 2 —_ - = 12
WP 4 — — - — 7 1 — 12
BR 1 — — - - - 11 - 12
VI - — — - - - — 12 12
Total 7 12 9 18 9 16 12 13 96

eterized reflection models were considered and evaluated to

find the most suitable model fit to our experimental data,

which also best represents and classifies the surfaces under

consideration. The proposed approach can differentiate six

different surfaces with 100% accuracy. In Ref. 21, where
we considered differentiation and localization of surfaces

by employing nonparametric approaches, a maximum cor-

rect differentiation rate of 87% over four surfaces was
achieved. Comparing this rate with that obtained in this

paper, we can conclude that the parametric approach is su

perior to nonparametric ones, in terms of the accuracy,
number of surfaces differentiated, and memory require-

ments, since the nonparametric approaches we considere
require the storage of reference scan signals. By parameter
izing the intensity scans and storing only their parameters,
we eliminated the need to store complete reference scans

The decrease in the differentiation rate resulting from add-

ing new surfaces in the parametric approach does not rep-
resent an overall degradation in differentiation rates across

all surface types but is almost totally explained by pairwise
confusion of the newly introduced surface with a previ-
ously existing one, resulting from the similarity of tiy

parameter of the intensity scans of the two confused sur-

faces. (Similar decreases in differentiation rate with in-
creasing number of surfaces or objects are also observe
with nonparametric template-based approagh®&s.an im-
provement, one can consider using differentiation tech-

Table 6 Surface confusion matrix: C,-based differentiation (range
to the surface is known).

Differentiation Results

niques or learning and/or clustering algorithms that involve
more parameters. One possibility is to take a sequential
approach. If the estimate@, parameter of the surface
matches more than one surface closely, one can then in-
spect the other parameters of the surface in sequence. This
would be faster than taking all the parameters into account

all of the time.

This paper demonstrated that simple IR sensors, when

éoupled with appropriate processing, can be used to extract

ubstantially more information about the environment than
such devices are commonly employed for. We expect this
flexibility to significantly extend the range of applications
in which such low-cost single-sensor-based systems can be
used. Specifically, we expect that it will be possible to go
beyond relatively simple tasks such as simple object and
proximity detection, counting, distance and depth monitor-
ing, floor sensing, position measurement, and obstacle or
collision avoidance, and deal with tasks such as differentia-
tion, classification, recognition, clustering, position estima-
tion, map building, perception of the environment and sur-
oundings, autonomous navigation, and target tracking. The
pproach presented here would be more useful where self-
correcting operation is possible due to repeated observa-
tions and feedback.

The demonstrated system would find application in in-
telligent autonomous systems such as mobile robots whose
task involves surveying an unknown environment consist-
ing of different surface types. Industrial applications where
different materials or surfaces must be identified and sepa-
rated may also benefit from this approach. Current and fu-

Surface WO ST Ww WC BC WP BR VI Total ture work involves designing a more intelligent system
whose operating range is adjustable based on an initial
WO 5 - —- — — 6 — 1 12 ; L :
range estimate to the surface. This will eliminate saturation
ST - - = = 2 and enable the system to accurately differentiate and local-
ww - - 2 - = - - - 1 ize surfaces over a wider operating range. Another issue we
we - - — 8 4 - — — 12 are considering is the extension of the model to include
BC - - - 6 6 — — — 12 specular reflections from glossy surfaces. We are also
wP 4 - - - - 8 — — 12 working on the recognition of surfaces through the use of
BR - - - - - - 12 - 12 artificial neural networks to improve the accuracy. Paramet-
VI - - - - - - - 12 12 ric modeling and representation of intensity scans of differ-
Total 9 12 12 14 10 14 12 13 96 ent geometriegssuch as corner, edge, and cylinder also
being considered to employ the proposed approach in the
Optical Engineering 067202-8 June 2005/Vol. 44(6)
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simultaneous determination of the geometry and the surface24. S. K. Nayar, K. Ikeuchi, and T. Kanade, “Surface reflection: physical
type of targets.
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