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Surface differentiation by parametric modeling
of infrared intensity scans
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Abstract. We differentiate surfaces with different properties with simple
low-cost IR emitters and detectors in a location-invariant manner. The
intensity readings obtained with such sensors are highly dependent on
the location and properties of the surface, which complicates the differ-
entiation and localization process. Our approach, which models IR inten-
sity scans parametrically, can distinguish different surfaces independent
of their positions. Once the surface type is identified, its position (r,u)
can also be estimated. The method is verified experimentally with wood;
Styrofoam packaging material; white painted matte wall; white and black
cloth; and white, brown, and violet paper. A correct differentiation rate of
100% is achieved for six surfaces, and the surfaces are localized within
absolute range and azimuth errors of 0.2 cm and 1.1 deg, respectively.
The differentiation rate decreases to 86% for seven surfaces and to 73%
for eight surfaces. The method demonstrated shows that simple IR sen-
sors, when coupled with appropriate signal processing, can be used to
recognize different types of surfaces in a location-invariant manner.
© 2005 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.1931467]

Subject terms: surface differentiation; infrared sensors; position estimation; Lam-
bertian reflection; Phong model; pattern recognition; feature extraction; optical
sensing.
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1 Introduction

Surface recognition and localization is of considerable in-
terest for intelligent autonomous systems that must explor
their environment and identify different types of surfaces in
a cost-effective manner. In this paper, we propose the use
a simple IR sensor consisting of one emitter and one detec
tor, where the emitted light is reflected from the target and
the return intensity is measured at the detector. Althoug
these devices are inexpensive, practical, and widely avai
able, their use has been mostly limited to the detection o
the presence or absence of objects in the environment fo
applications such as obstacle avoidance or counting. Gat
ering further information about the objects with simple IR
sensors has not been much investigated. However, due
the limited resources of autonomous systems, the availab
resources must be exploited as much as possible. Th
means that the ability of simple sensor systems to extrac
information about the environment should first be maxi-
mally exploited before more expensive sensing modalitie
with higher resolution and higher resource requirement
~such as computing power! are considered for a given task.
Therefore, one of the aims of this study is to explore the
limits of simple and inexpensive IR sensors for surface rec
ognition and localization to extend their usage to tasks be
yond simple proximity detection.

One problem with the use of simple IR detectors is tha
it is not possible to deduce the surface properties and th
geometry of the reflecting target based on a single intensit
return without knowing its position and orientation, be-
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cause the reflected light depends highly on the distance
the angular orientation of the reflecting target. Similar
one cannot make accurate range estimates based on a s
intensity return. Due to single intensity readings not p
viding much information about an object’s properties, t
recognition capabilities of IR sensors have been undere
mated and underused in most work. One way around
problem is to employ IR sensors in combination with oth
sensing modalities to acquire information about the surf
properties of the object once its distance is estimated. S
an approach is taken in Refs. 1 and 2, where colors
differentiated by employing IR and ultrasonic sensors in
complementary fashion. Reference 3 is based on a sim
approach, where the properties of planar surfaces a
known distance~measured by an ultrasonic sensor! are de-
termined first. Once the surface type is determined, the
sensor is used as a range finder for the same type of su
at other distances. In this paper, we propose a scan
technique to collect intensity signals and a method for s
face recognition by parametric modeling of IR intens
scans. The proposed approach can differentiate a mode
number of surfaces and estimate their positions accura
Our results indicate that if the data acquired from su
simple IR sensors are processed effectively through the
of suitable techniques, substantially more informati
about the environment can be extracted with these dev
than in their typical applications.

The use of IR sensing in the pattern recognition area
been mostly limited to the recognition or detection of fe
tures or targets in conventional 2-D images. Examples
work in this category include face identification,4 automatic
vehicle detection,5 automatic target recognition6 and
-1 June 2005/Vol. 44(6)
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Aytaç and Barshan: Surface differentiation . . .
tracking,7 detection and identification of targets in bac
ground clutter,8 remote sensing, and automated terra
analysis.9

IR sensors are used in robotics and automation, pro
control, remote sensing, and safety and security syste
More specifically, they have been used in simple object
proximity detection,10 counting,11 distance and depth mon
toring, floor sensing, position measurement and contro12

obstacle and collision avoidance,13 and map building.14 IR
sensors are used in door detection and mapping of open
in walls,15 as well as monitoring doors and windows
buildings and vehicles, and ‘‘light curtains’’ for protectin
an area. References 16 and 17 deal with the optical de
mination of depth information. Reference 18 describe
passive IR sensing system that identifies the locations
the people in a room. IR sensors have also been used
automated sorting of waste objects made of differ
materials.19

In our earlier works,20–22 we considered the differentia
tion and localization of objects using a template-based
proach, which uses distinctive natures of the IR intens
scans. In Ref. 20, a correct classification rate of 97% w
achieved with absolute range and azimuth errors of 0.8
and 1.6 deg for targets with different geometrical prop
ties, but made of the same surface material~unpolished
wood!. A rule-based approach to the same problem can
found in Ref. 23, where we achieve an average cor
target differentiation rate of 91.3% over four target typ
with average absolute range and azimuth errors of 0.55
and 1.03 deg, respectively. The advantages of a rule-b
approach are shorter processing time, minimal storage
quirements, and greater robustness to noise and devia
in geometry and surface properties, since the rule-ba
approach emphasizes structural features rather than th
act functional forms of the scans. In Ref. 21, targets m
of different surface materials but of the same planar geo
etry are differentiated with a correct differentiation rate
87% and absolute range and azimuth errors of 1.2 cm
1.0 deg. In Ref. 22, we dealt with the problem of differe
tiating and localizing targets whose geometry and surf
properties both vary, generalizing and unifying the resu
of Refs. 20 and 21. A correct classification rate of 80%
both geometry and surface over all target types conside
is achieved and targets are localized within absolute ra
and azimuth errors of 1.5 cm and 1.1 deg, respectively.
approach in these earlier works can be considered as
parametric, unlike the approach taken in this paper.

This paper is organized as follows. Section 2 revie
some existing reflection models and discusses our para
ric modeling of IR intensity scans. Section 3 provides e
perimental verification of the approach presented in t
paper. Concluding remarks are made in the last section

2 Modeling of IR Intensity Scans

Light reflected from a surface depends on the wavelen
the distance, and the properties of the light source~i.e.,
point or diffuse source!, as well as the properties of th
surface under consideration such as reflectivity, absorb
ity, transmittivity, and orientation.24 Depending on the sur
face properties, reflectance can be modeled in differ
ways.
067202Optical Engineering
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Matte materials can be approximated as ideal Lamb
tian surfaces, which absorb no light and reflect all the in
dent light equally in all directions such that the intensity
the reflected light is proportional to the cosine of the an
between the incident light and the surface normal.24–26This
is known as Lambert’s cosine law.27

When a Lambertian surface is illuminated by a po
source of radiancel i , then the radiance reflected from th
surface will be

ls,L5 l i @kd~ l,n!#, ~1!

where kd is the coefficient of the diffuse reflection for
given material andl andn are the unit vectors representin
the directions of the light source and the surface norm
respectively, as shown in Fig. 1~a!.

In perfect or specular~mirror-like! reflection, the inci-
dent light is reflected in the plane defined by the incide
light and the surface normal, making an angle with t
surface normal which is equal to the incidence anglea
@Fig. 1~b!#.

The Phong model,28 which is frequently used in com
puter graphics applications to represent the intensity of
ergy reflected from a surface, combines the three type
reflection—ambient, diffuse~Lambertian!, and specular
reflection—in a single formula:

ls,total5 laka1 l i @kd~ l,n!#1 l i @ks~r,v!m#, ~2!

wherels,total is the total radiance reflected from the surfac
la and l i are the ambient and incident radiances on the s
face; ka , kd , and ks are the coefficients of ambient ligh
and diffuse and specular reflection for a given material;l, n,
r, andv are the unit vectors representing the directions
the light source, the surface normal, the reflected light, a
the viewing angle, respectively, as shown in Fig. 1~b!, and
m refers to the order of the specular fall-off or shine. T
scalar product in the second term of the Phong mo
equals cosa, wherea is the angle between the vectorsl and
n. Similarly, the scalar product in the last term of the Pho
model equals cosb, whereb is the angle betweenr andv.
Since the IR emitter and receiver are situated at appr
mately the same position, then the angleb between the
reflected vectorr and the viewing vectorv is equal to 2a.

In Ref. 3, the simple nonempirical mathematical mod
represented by Eq.~2! is used to model reflections from
planar surfaces located at a known distance~10 cm! by
fitting the reflectance data to the model to improve the
curacy of the range estimates of IR sensors over a lim
range interval~5 to 23 cm!. A similar approach with a sim-
plified reflection model is employed in Ref. 29, where
IR-sensor-based system can measure distances up to
The requirement of prior knowledge of the distance to
surface is eliminated in Refs. 30 and 31 by considering t
angular intensity scans taken at two different known d
tances~10 and 12 cm!. The distance error is less than 1 c
over a very limited range interval~10 to 18 cm! for the
reflection coefficients found based on the scans at 10
12 cm. As the distance increases to the maximum opera
range~24 cm!, the distance error increases, as reported
Refs. 30 and 31. For five different surfaces, a correct c
sification rate of 75% is achieved31 by considering the in-
-2 June 2005/Vol. 44(6)
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Fig. 1 (a) Diffuse reflection and (b) specular reflection from an opaque surface.
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variance property of the sum of the reflection coefficie
below a certain range~14 cm!. In the same study, the au
thors alternatively propose to use the maximum inten
values at a known range for improved surface differen
tion, which requires prior knowledge or estimation of t
range to the surface. In Ref. 32, the recognition capabili
of active infrared sensor arrays are analyzed by simula
of infrared signal propagation, using the model represen
by Eq. ~2!.

Our approach differs from those in Refs. 3 and 29 in t
it takes distance as a variable and does not require p
knowledge of the distance. Another difference is that th
works concentrate mainly on range estimation over a v
limited range interval rather than the determination of
surface type, whereas in this paper, we focus on the de
mination of the surface type over a broader range inter
When we compare our results with those of Refs. 30 a
31, we can conclude that the proposed approach is bett
terms of the correct differentiation rate and the number
surfaces recognized. Furthermore, in the work presente
this paper, we can simultaneously recognize surfaces
estimate their ranges by relating maximum intensity val
to the reflection coefficients in a novel way. We also no
that the position-invariant pattern recognition and posit
estimation achieved in this paper is different from su
operations performed on conventional images33 in that here
we work not on direct ‘‘photographic’’ images of the su
faces obtained by some kind of imaging system, but rat
on intensity scans obtained by rotating a point sensor.
such, position-invariant differentiation and localization
achieved with an approach quite different from those e
ployed in invariant pattern recognition and localization
conventional images.34

The surface materials considered are unpolished wo
067202
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Styrofoam packaging material; white painted matte wa
white and black cloth; and white, brown, and violet pap
~not glossy!. The IR sensor35 @see Fig. 2~a!# is mounted on
a 12-in. rotary table36 to obtain angular intensity scans from
these surfaces. A photograph of the experimental setup
its schematic can be seen in Figs. 2~b! and 3, respectively.

Reference intensity scans were collected for each
face type by locating the surfaces between 30 and 52.5
with 2.5-cm distance increments atu50 deg. The resulting
reference scans for the eight surfaces are shown in Fi
using dotted lines. These intensity scans were modeled
approximating the surfaces as ideal Lambertian surfa
since all of the surface materials involved had matte s
faces. The received return signal intensity is proportiona
the detector area and inversely proportional to the squar
the distance to the surface and is modeled with three
rameters as

I5
C0 cos~aC1!

@z/cosa1R~1/cosa21!#2
, ~3!

which is a modified version of the second term in the mo
represented by Eq.~2!. In our case, the ambient reflectio
component, which corresponds to the first term in Eq.~2!,
can be neglected with respect to the other terms becaus
IR filter, covering the detector window, filters out this term
Furthermore, the second term in Eq.~2!, representing Lam-
bertian reflection, dominates the third term for the ma
surface types considered in this study, as further discus
in the following paragraph. In Eq.~3!, the product of the
intensity of the emitter, the area of the detector, and
reflection coefficient of the surface are lumped into the c
stantC0 , andC1 is an additional coefficient to compensa
-3 June 2005/Vol. 44(6)
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Aytaç and Barshan: Surface differentiation . . .
for the change in the basewidth of the intensity scans w
respect to distance~Fig. 4!. A similar dependence onC1 is
used in sensor modeling in Ref. 37. Thez is the horizontal
distance between the rotary platform and the surface
shown in Fig. 3. The denominator ofI is the square of the
distanced between the IR sensor and the surface. From
geometry of Fig. 3,d1R5(z1R)/cosa, from which we
obtaind asz/cosa1R(1/cosa21), whereR is the radius of
the rotary platform anda is the angle made between the I
sensor and the horizontal.

Besides the model represented by Eq.~3!, we checked
the suitability of a number of other models to our expe
mental data, which were basically different variations
Eq. ~2!. The increase in the number of model paramet
results in overfitting to the experimental data, whereas s
pler models result in larger curve fitting errors. The mod
represented by Eq.~3! was the most suitable in the sens
that it provided a reasonable trade-off.

Using the model represented by Eq.~3!, parameterized
curves were fitted to the reference intensity scans emp
ing a nonlinear least-squares technique based on a mo
trust region method provided38 by MATLAB™. The result-

Fig. 2 (a) The IR sensor and (b) the experimental setup.
067202Optical Engineering
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ing curves are shown in Fig. 4 as solid lines. For t
reference scans,z is not taken as a parameter since t
distance between the surface and the IR sensing un
already known. The initial guesses of the parameters m
be made cleverly so that the algorithm does not converg
local minima, and curve fitting is achieved in a small
number of iterations. The initial guess forC0 is made by
evaluatingI at a50 deg, and corresponds to the product
I with z2. Similarly, the initial guess forC1 is made by
evaluatingC1 from Eq. ~3! at a known anglea other than
zero, with the initial guess ofC0 and the known value ofz.
While curve fitting, theC0 value is allowed to vary be-
tween62000 of its initial guess andC1 is restricted to be
positive. The variations ofC0 , C1 , andz with respect to
the maximum intensity of the reference scans are show
Fig. 5. As the distanced decreases, the maximum intensi
increases andC0 first increases then decreases, butC1 and
z both decrease, as expected from the model represente
Eq. ~3!. The model fit is much better for scans with small
maximum intensities because our model takes only diffu
reflections into account, but the contribution of the specu
reflection components around the maximum value of
intensity scans increases as the distance decreases. H
the operating range of our system is extended at the
pense of the error at nearby ranges.

3 Experimental Verification and Discussion

In this section, we experimentally verify the propose
method. In the test process, the surfaces are randomly
cated at azimuth angles varying from245 to 45 deg, and
range values between 30 to 52.5 cm. In the given regi
the return signal intensities do not saturate. In fact, we
perimented with fitting models to the saturated scans so
the operating range of the system is extended to include
saturation regions. However, these trials were not very s
cessful. For unsaturated scans, first, the maximum inten
of the observed intensity scan is found and the angu
value where this maximum occurs is taken as the azim
estimate of the surface. If there are multiple maximum
tensity values, the average of the minimum and maxim

Fig. 3 Top view of the experimental setup used in surface recogni-
tion and localization. The emitter and detector windows are circular
with 8-mm diameter and center-to-center separation of 12 mm. (The
emitter is above the detector.) Both the scan angle a and the surface
azimuth u are measured counterclockwise from the horizontal axis.
-4 June 2005/Vol. 44(6)
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Optical
Fig. 4 Intensity scans of the eight surfaces collected between 30 and 52.5 cm in 2.5-cm increments.
Solid lines indicate the model fit and the dotted lines indicate the experimental data for (a) wood, (b)
Styrofoam, (c) white painted matte wall, (d) white cloth, (e) black cloth, (f) white paper, (g) brown
paper, and (h) violet paper.
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angular values where the maximum intensity values oc
is calculated to find the azimuth estimate of the surfa
Then, the observed scan is shifted by the azimuth estim
and the model represented by Eq.~3! is fitted using a
model-trust region based nonlinear least-squa
technique.38 The initial guess for the distancez is found
from Fig. 5~c! by taking the average of the maximum po
sible and the minimum possible range values correspon
to the maximum value of the recorded intensity scan.~Lin-
ear interpolation is used between the data points in the
ure.! This results in a maximum absolute range error
approximately 2.5 cm. Therefore, the parameterz is al-
lowed to vary between62.5 cm of its initial guess. Using
the initial guess forz, the initial guesses forC0 andC1 are
made in the same way as already explained for the re
ence scans. After nonlinear curve fitting to the observ
scan, we obtain three parametersC0* , C1* , andz* . In the
067202Engineering
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decision process, the maximum intensity of the obser
scan is used, and a value ofC1 is obtained by linear inter-
polation between the data points in Fig. 5~b! for each sur-
face type. In other words, Fig. 5~b! is used like a look-up
table. Surface-type decisions are made based on the a
lute difference ofC12C1* for each surface because of th
more distinctive nature of theC1 variation with respect to
the maximum intensity. The surface type giving the min
mum difference is chosen as the correct one. The deci
could have also been made by comparing the parame
with those at the estimated range. However, this would
give better results because of the error and the uncerta
in the range estimates. We also considered taking diffe
combinations of the differencesC02C0* , C12C1* , andz
2z* as our error criterion. However, the criterion based
C12C1* difference was the most successful.
-5 June 2005/Vol. 44(6)
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Optic
Fig. 5 Variations of the parameters (a) C0 , (b) C1 , and (c) z with respect to maximum intensity of the
scan.
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For a set of six surfaces including Styrofoam packag
material; white painted matte wall; white or black clot
and white, brown, and violet paper~also matte!, we get a
correct differentiation rate of 100% and the surfaces
located with absolute range and azimuth errors of 0.2
and 1.1 deg, respectively. We can increase the numbe
surfaces differentiated at the expense of a decrease in
correct differentiation rate. For example, if we add wood
our test set and keep either white or black cloth, we ge
correct differentiation rate of 86% for seven surfaces~Table
1!. For these sets of surfaces, absolute range and azim
errors are 0.6 cm and 1.1 deg, respectively. Similarly, if
form a set of surfaces excluding wood but keeping b
white and black cloth, we achieve a correct differentiati
rate of 83% for seven surfaces~Table 2! and the surfaces
are located with absolute range and azimuth errors of
cm and 1.1 deg, respectively. The recognition results for
eight surfaces considered are tabulated in Table 3. O
these eight surfaces, an overall correct differentiation
of 73% is achieved and surfaces are located with abso
067202al Engineering
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Table 1 Surface confusion matrix: C1-based differentiation (initial
range to the surface is estimated using the maximum intensity of the
scan).

Surface

Differentiation Results

TotalWO ST WW WC(BC) WP BR VI

WO 4 — — — 7 — 1 12

ST — 12 — — — — — 12

WW — — 12 — — — — 12

WC(BC) — — — 12 — — — 12

WP 4 — — — 8 — — 12

BR — — — — — 12 — 12

VI — — — — — — 12 12

Total 8 12 12 12 15 12 13 84

WO: wood, ST: Styrofoam, WW: white painted matte wall, WC: white
cloth, BC: black cloth, WP: white paper, BR: brown paper, VI: violet
paper.
-6 June 2005/Vol. 44(6)
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Aytaç and Barshan: Surface differentiation . . .
range and azimuth errors of 0.8 cm and 1.1 deg, resp
tively. Referring to Tables 1 to 3, note that the range e
mation accuracy improves with increasing correct class
cation rate, whereas the azimuth estimation accurac
independent of it, as expected, because of the way
estimated. In these tables, white and black cloth as we
wood and white paper are the surface pairs most often c
fused with each other. Thus, the decrease in the differen
tion rate resulting from adding new surfaces does not r
resent an overall degradation in differentiation rates acr
all surface types but is almost totally explained by pairw
confusion of the newly introduced surface with a pre
ously existing one, resulting from the similarity of theC1
parameter of the intensity scans of the two confused
faces.

To investigate the effect of the initial range estimate
the surface on the differentiation process, we now assu
that the distance to the surface is known beforehand.
this case, only the two variablesC0 and C1 are taken as
parameters. Since the azimuth estimation process is i
pendent of range estimation, for the same set of surfa
the same azimuth estimation results are obtained. Th
fore, they are not repeated here. For the same six surf
considered as in the previous case~where the initial range
to the surface is estimated using the maximum intensity

Table 2 Surface confusion matrix: C1-based differentiation (initial
range to the surface is estimated using the maximum intensity of the
scan).

Surface

Differentiation Results

TotalST WW WC BC WP BR VI

ST 12 — — — — — — 12

WW — 12 — — — — — 12

WC — — 7 5 — — — 12

BC — — 9 3 — — — 12

WP — — — — 12 — — 12

BR — — — — — 12 — 12

VI — — — — — — 12 12

Total 12 12 16 8 12 12 12 84

Table 3 Surface confusion matrix: C1-based differentiation (initial
range to the surface is estimated using the maximum intensity of the
scan).

Surface

Differentiation Results

TotalWO ST WW WC BC WP BR VI

WO 4 — — — — 7 — 1 12

ST — 12 — — — — — — 12

WW — — 12 — — — — — 12

WC — — — 7 5 — — — 12

BC — — — 9 3 — — — 12

WP 4 — — — — 8 — — 12

BR — — — — — — 12 — 12

VI — — — — — — — 12 12

Total 8 12 12 16 8 15 12 13 96
067202Optical Engineering
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the scan!, the same correct classification rate of 100%
achieved. If we add wood to our test set and keep eit
white or black cloth, we get a correct differentiation rate
87% for seven surfaces~Table 4!. Similarly, if we form a
set of surfaces excluding wood but keeping both white a
black cloth, we achieve a correct differentiation rate of 88
for seven surfaces~Table 5!. The differentiation results ove
all eight surfaces are given in Table 6, corresponding t
correct differentiation rate of 78%. When we compare the
results with those obtained without exact knowledge of
distance to the surface, we can conclude that similar
faces are confused with each other~wood/white paper and
white/black cloth! with smaller confusion rates.

As an alternative, we take as the initial range estima
the mid-point of the operating range~30 to 52.5 cm!, which
is 41.25 cm for all surfaces. An overall correct differenti
tion rate of 65% over eight different surfaces is achiev
~Table 7!, which is worse than the two classification alte
natives already considered. The surfaces are located wit
absolute range error of 1 cm, which is slightly greater th
the absolute range error achieved with the initial range
timate using the maximum intensity of the scan. If we e
clude wood and white cloth or wood and black cloth fro
our test set, we get correct differentiation rates of 93 a
94% for the remaining six surfaces and the surfaces
located with absolute range errors of 0.3 and 0.4 cm,
spectively. As azimuth estimation errors are independen
the applied classification techniques, they are not repe
here. Note that for these sets of surfaces, a correct di
entiation rate of 100% was achieved using the classifica
approaches already considered. These high differentia
rates show that even for a maximum initial guess error
11.25 cm in the range estimates, the proposed approach
recognize a moderate number of surfaces with reason
good accuracy.

4 Conclusion

The main accomplishment of this study is that we achiev
position-invariant surface differentiation and localizatio
with simple IR sensors despite the fact that their individu
intensity readings are highly dependent on the surface
sition and properties, and this dependence cannot be re
sented by a simple analytical relationship. The intens
scan data acquired from a simple low-cost IR emitter a
detector pair was processed and modeled. Different par

Table 4 Surface confusion matrix: C1-based differentiation (range
to the surface is known).

Surface

Differentiation Results

TotalWO ST WW WC(BC) WP BR VI

WO 5 — — — 6 — 1 12

ST — 12 — — — — — 12

WW — — 12 — — — — 12

WC(BC) — — — 12 — — — 12

WP 4 — — — 8 — — 12

BR — — — — — 12 — 12

VI — — — — — — 12 12

Total 9 12 12 12 14 12 13 84
-7 June 2005/Vol. 44(6)
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Aytaç and Barshan: Surface differentiation . . .
eterized reflection models were considered and evaluate
find the most suitable model fit to our experimental da
which also best represents and classifies the surfaces u
consideration. The proposed approach can differentiate
different surfaces with 100% accuracy. In Ref. 21, whe
we considered differentiation and localization of surfac
by employing nonparametric approaches, a maximum
rect differentiation rate of 87% over four surfaces w
achieved. Comparing this rate with that obtained in t
paper, we can conclude that the parametric approach is
perior to nonparametric ones, in terms of the accura
number of surfaces differentiated, and memory requ
ments, since the nonparametric approaches we consid
require the storage of reference scan signals. By param
izing the intensity scans and storing only their paramet
we eliminated the need to store complete reference sc
The decrease in the differentiation rate resulting from a
ing new surfaces in the parametric approach does not
resent an overall degradation in differentiation rates acr
all surface types but is almost totally explained by pairw
confusion of the newly introduced surface with a pre
ously existing one, resulting from the similarity of theC1
parameter of the intensity scans of the two confused
faces. ~Similar decreases in differentiation rate with i
creasing number of surfaces or objects are also obse
with nonparametric template-based approaches.! As an im-
provement, one can consider using differentiation te

Table 5 Surface confusion matrix: C1-based differentiation (range
to the surface is known).

Surface

Differentiation Results

TotalST WW WC BC WP BR VI

ST 12 — — — — — — 12

WW — 12 — — — — — 12

WC — — 8 4 — — — 12

BC — — 6 6 — — — 12

WP — — — — 12 — — 12

BR — — — — — 12 — 12

VI — — — — — — 12 12

Total 12 12 14 10 12 12 12 84

Table 6 Surface confusion matrix: C1-based differentiation (range
to the surface is known).

Surface

Differentiation Results

TotalWO ST WW WC BC WP BR VI

WO 5 — — — — 6 — 1 12

ST — 12 — — — — — — 12

WW — — 12 — — — — — 12

WC — — — 8 4 — — — 12

BC — — — 6 6 — — — 12

WP 4 — — — — 8 — — 12

BR — — — — — — 12 — 12

VI — — — — — — — 12 12

Total 9 12 12 14 10 14 12 13 96
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niques or learning and/or clustering algorithms that invo
more parameters. One possibility is to take a sequen
approach. If the estimatedC1 parameter of the surfac
matches more than one surface closely, one can then
spect the other parameters of the surface in sequence.
would be faster than taking all the parameters into acco
all of the time.

This paper demonstrated that simple IR sensors, w
coupled with appropriate processing, can be used to ext
substantially more information about the environment th
such devices are commonly employed for. We expect
flexibility to significantly extend the range of application
in which such low-cost single-sensor-based systems ca
used. Specifically, we expect that it will be possible to
beyond relatively simple tasks such as simple object
proximity detection, counting, distance and depth monit
ing, floor sensing, position measurement, and obstacle
collision avoidance, and deal with tasks such as differen
tion, classification, recognition, clustering, position estim
tion, map building, perception of the environment and s
roundings, autonomous navigation, and target tracking.
approach presented here would be more useful where
correcting operation is possible due to repeated obse
tions and feedback.

The demonstrated system would find application in
telligent autonomous systems such as mobile robots wh
task involves surveying an unknown environment cons
ing of different surface types. Industrial applications whe
different materials or surfaces must be identified and se
rated may also benefit from this approach. Current and
ture work involves designing a more intelligent syste
whose operating range is adjustable based on an in
range estimate to the surface. This will eliminate saturat
and enable the system to accurately differentiate and lo
ize surfaces over a wider operating range. Another issue
are considering is the extension of the model to inclu
specular reflections from glossy surfaces. We are a
working on the recognition of surfaces through the use
artificial neural networks to improve the accuracy. Param
ric modeling and representation of intensity scans of diff
ent geometries~such as corner, edge, and cylinder! is also
being considered to employ the proposed approach in

Table 7 Surface confusion matrix: C1-based differentiation (initial
range estimate is taken as half of the operating range for all sur-
faces).

Surface

Differentiation Results

TotalWO ST WW WC BC WP BR VI

WO 2 — — — — 9 — 1 12

ST — 12 — — — — — — 12

WW — — 9 1 2 — — — 12

WC — — — 7 5 — — — 12

BC — — — 10 2 — — — 12

WP 4 — — — — 7 1 — 12

BR 1 — — — — — 11 — 12

VI — — — — — — — 12 12

Total 7 12 9 18 9 16 12 13 96
-8 June 2005/Vol. 44(6)
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simultaneous determination of the geometry and the sur
type of targets.
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tor Award, and the 1999 Mustafa N. Parlar Foundation Research
Award. Dr. Barshan’s current research interests include intelligent
sensors, sonar and inertial navigation systems, sensor-based robot-
ics, and multisensor data fusion.
-9 June 2005/Vol. 44(6)


