series with nt source in lent circuits

cuits can be cuit voltage and (3) the

iits can also solving for nt analysis.

rface signal $_{\mathrm{X}}=v_{\mathrm{OC}}i_{\mathrm{SC}}/4$ natched.

the voltage, ints depend ers that are ort interface o solutions.

the circuit in

 $\nu_{\mathbf{x}}$

the circuit in

40 mA ned off.

FIGURE

3-4' (a) Formulate node-voltage equations for the circuit in Figure P3-4.

20 mA

 $2 k\Omega$

≤4 kΩ

6 kΩ≶

 $1~k\Omega$

 $1 \text{ k}\Omega \leq$

(b) Use these equations to find v_x and i_x .

FIGURE

- 3-5 (a) Formulate node-voltage equations for the circuit in Figure P3-5.
 - **(b)** Solve for v_x and i_x when $R_1 = R_2 = R_3 = R_4 = 10 \text{ k}\Omega$, $v_{\rm S} = 20 \, {\rm V}$, and $i_{\rm S} = 2 \, {\rm mA}$.

- (3-6)(a) Formulate node-voltage equations for the circuit in Figure P3-6.
 - **(b)** Solve for v_x and i_x when $R_1 = R_2 = R_3 = R_4 = R_5 =$ $10 \text{ k}\Omega$, and $v_S = 20 \text{ V}$.

FIGURE P 3 - 6

- 3-7 (a) Formulate node-voltage equations for the circuit in Figure P3-7.
 - **(b)** Solve for v_A , v_B , and v_C when $R_1 = 1 \text{ k}\Omega$, $R_2 = 2 \text{ k}\Omega$, $R_3 = 4 \text{ k}\Omega$, $R_4 = 2 \text{ k}\Omega$, and $i_{S1} = i_{S2} = 2 \text{ mA}$.

FIGURE P3 - 7

- 3-8 (a) Formulate node-voltage equations for the circuit in Figure P3-8.
 - **(b)** Solve for v_x and i_x when $R_1 = R_4 = 1 \text{ k}\Omega$, $R_2 = R_3 =$ 250 Ω, $R_x = 500$ Ω, and $v_S = 15$ V.

- 3-9 (a) Formulate mesh-current equations for the circuit in Figure P3-9.
 - **(b)** Use these equations to find v_x and i_x .

3-10 (a) Formulate mesh-current equations for the circuit in Figure P3-10.

(b) Use these equations to find v_x and i_x .

3-11 (a) Formulate mesh-current equations for the circuit in Figure P3-11.

(b) Use these equations to find v_x and i_x .

3–12 (a) Formulate mesh-current equations for the circuit in Figure P3–12.

(b) Solve for v_x and i_x when $R_1 = 200 \Omega$, $R_2 = 300 \Omega$, $R_3 = 50 \Omega$, $R_4 = 250 \Omega$, $R_5 = 200 \Omega$, $i_S = 50 \text{ mA}$, and $v_S = 15 \text{ V}$.

(c) Find the total power dissipated in the circuit.

FIGURE P3-12

3-13 (a) Formulate mesh-current equations for the circu in Figure P3-13.

(b) Solve for v_x and i_x when $R_1 = R_2 = 10 \text{ k}\Omega$, $R_3 = 2 \text{ k}\Omega$, $R_4 = 1 \text{ k}\Omega$, $I_5 = 2.5 \text{ mA}$, $V_{S1} = 12 \text{ V}$, and $V_{S2} = 0.5 \text{ V}$

(c) Find the power supplied by v_{S1} .

3-14 The circuit in Figure P3-14 seems to require two super meshes since both current sources appear in two meshes However, sometimes rearranging the circuit diagram wil eliminate the need for a supermesh.

(a) Show that supermeshes can be avoided in Figure P3-14 by rearranging the connection of resistor R_6 .

(b) Formulate mesh-current equations for the modified circuit as redrawn in part (a).

(c) Solve for v_x when $R_1 = R_2 = R_3 = R_4 = 2 \text{ k}\Omega$, $R_5 = R_6 = 1 \text{ k}\Omega$, $i_{S1} = 40 \text{ mA}$, and $i_{S2} = 20 \text{ mA}$.

3-39 Find the Thévenin equivalent seen by $R_{\rm L}$ in Figure P3-39. Find the power delivered to the load when $R_{\rm L}=50~{\rm k}\Omega$ and 200 k Ω .

3-40 Find the Norton equivalent at terminals A and B in Figure P3-40.

3–41 The purpose of this problem is to use Thévenin equivalent circuits to find the voltage ν_X in Figure P3–41. Find the Thévenin equivalent circuit seen looking to the left of terminals A and B. Find the Thévenin equivalent circuit seen looking to the right of terminals A and B. Connect these equivalent circuits together and find the voltage ν_X .

FIGURE P3-41

3-42 Figure P3-42 shows an active circuit with two access ble terminals. The output current is $i = 10 \, \text{mA}$ when $\nu = 0$. The output voltage is $\nu = 6 \, \text{V}$ when a 2.4-1 resistor is connected between the terminals. How mucurrent would this source deliver to a 6-V battery?

- **3–43** The $i-\nu$ characteristic of the active circuit in P3–42 $5\nu + 500i = 60$. Find the output voltage when a 500 resistive load is connected across the two accessite terminals.
- 3-44 Figure P3-42 shows a source circuit with two accessil terminals. Some voltage and current measurements at t accessible terminals are

$$\nu(V)$$
 -10 -5 0 +5 +10 12 13 14 $i(mA)$ +5 +4 +3 +2 +1 0 -1 -2

- (a) Use these data to plot the source $i-\nu$ characteristic.
- (b) Develop a Thévenin equivalent circuit valid on t range |v| < 10 V.
- (c) Use the equivalent circuit to predict the source v and i_{SC} .
- (d) Compare your results in part (c) with the given me surements and explain any differences.
- 3–45 The Thévenin equivalent parameters of a practive voltage source are $\nu_T=25~\mathrm{V}$ and $R_T=150~\Omega$. Find the smallest load resistance for which the load voltage excees 15 V.
- 3-46 Use a sequence of source transformations to find t Thévenin equivalent at terminals A and B in Figure P3-4

FIGURE P3-46

HNIQUES

vo accessimA when a 2.4-kΩ Iow much y?

n P3-42 is n a 500-Ω accessible

accessible ents at the

14 1 - 2

cteristic. lid on the

source $v_{\rm OC}$

given mea-

a practical . Find the ge exceeds

to find the ure P3-46.

3-47 Select the value of R_L in Figure P3-47 so that $i_0 = 80 \, \mu A$.

3-48 Find the Thévenin equivalent at terminals A and B in Figure P3-48.

- 3–49 A nonlinear resistor is connected across a two-terminal source whose Thévenin equivalent is $v_T = 5 V$ and $R_{\rm T} = 500 \,\Omega$. The $i-\nu$ characteristic of the resistor is $i = 10^{-4}(v + 2 v^{3.3})$. Plot the i-v characteristic of the source and the resistor and graphically determine the voltage across and current through the nonlinear resistor.
- 3-50 A nonlinear resistor is connected across a two-terminal source whose Thévenin equivalent is $\nu_T = 10 \, \mathrm{V}$ and $R_{\rm T} = 200 \,\Omega$. The $i-\nu$ characteristic of the resistor is $v = 4000 i^2$. Plot the i-v characteristic of the source and the resistor and graphically determine the voltage across and current through the nonlinear resistor.
- 3–51 Find the Norton equivalent seen by $R_{\rm L}$ in Figure P3–51. Select the value of R_L so that 100 mW is delivered to the

3-52 Find the Norton equivalent seen by $R_{\rm L}$ in Figure P3-52.

3-53 Find the Thévenin equivalent seen by R_L in Figure

OBJECTIVE 3-4 MAXIMUM SIGNAL TRANSFER (SECT. 3-5)

Given a circuit containing linear resistors and independent sources:

- (a) Find the maximum voltage, current, and power available at a specified pair of terminals.
- Find the resistive loads required to obtain the maximum available signal levels.

See Example 3–17 and Exercise 3–19

3–54 The resistance R in Figure P3–54 is adjusted until maximum power is delivered to the load consisting of R and the 6-k Ω resistor in parallel. Find the required value of R.

