
EEE 202-CIRCUIT THEORY

SOFTWARE LAB #4

ANALYSIS AND DESIGN OF A RECTIFIER

A) PRELIMINARY WORK (30%):

The circuit of a Rectifier is given below.

Perform a transient analysis by hand calculation on the above circuit and obtain the voltage-time plots for 3 periods, for the voltage of the output. Show your work clearly along with the associated equations. Assume the capacitor voltage to be zero before t=0, V_{s1} is a square wave with 5V amplitude, 2.5V DC offset and also the f_{osc} =100 kHz.

B) EXPERIMENTAL WORK (70%):

1. Verify your calculations by simulating your circuit on 5Spice.

i) When R_{out} is 10 K Ω , find the output voltage when the C_{out} is 1nF, 100nF and 1µF respectively. Compare the output voltages and explain the differences between the output voltages in your report.

ii) When C_{out} is 1 nF, find the output voltage when the R_{out} is 100 Ω , 1K Ω , 10K Ω and 1 M Ω respectively. Compare the output voltages and explain the differences between the output voltages in your report.

- 2. Compare the cases when
- i) $C_{out}=100nF$, $R_{out}=100\Omega$ and $C_{out}=1nF$, $R_{out}=10K\Omega$

ii) $C_{out}=1\mu F$, $R_{out}=1K\Omega$ and $C_{out}=1nF$, $R_{out}=1M\Omega$ and $C_{out}=100nF$, $R_{out}=10K\Omega$

Compare the output voltages and explain the differences between the output voltages in your report.