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he Fast Fourier Transform (FFT) algorithm has been 
used in a variety of applications in signal and image T processing [1-51. In this article, a simple procedure 

for designing Finite-extent Impulse Response (FIR) discrete- 
time filters using the FFT algorithm is described. The zero- 
phase (or linear phase) FIR filter design problem is 
formulated here to altemately satisfy the frequency domain 
constraints on the magnitude response bounds and time do- 
main constraints on the impulse response support 16-81, The 
design scheme is iterative in which each iteration requires 
two FFT computations. The resultant filter is an equiripple 
approximation to the desired frequency response. 

The main advantage of the FFT-based design method is 
its implementational simplicity and versatility. Furthermore, 
the way the algorithm works is intuitive and any additional 
constraint can be incorporated in the iterations, as long as the 
convexity property of the overall operations is preserved [6]. 

In one-dimensional cases, the most widely used equiripple 
FIR filter design algorithm is the Parks-McClellan algorithm [7]. 
This algorithm is based on linear programming, and it is com- 
putationally efficient. However, it caninot be generalized to 
higher dimensions. Extension of om design method to higher 
dimensions is straightforward. In this case two Multi-Dimen- 
sional (M-D) FFT computations are needed in each iteration [8].  

Zero Phase FIR Filter Specifications 
and Design Considerations 

In this section, the zero-phase FIR filter design problem is 
described and the notation of the article is introduced. 

The term FIR filter refers to a linear shift-invariant system 
whose input-output relation is represented by a convolution 

y[.] = C h [ k ] x [ n  - k ]  , 
k d  

where x[n] and y[n] are the input and the output sequences, 
respectively, h[n] is the impulse response of the filter, and I 
is the filter support. The FIR filters have only a finite number 
of nonzero coefficients so that the support I is a bounded 
region. Usually the filter support, 1, is selected as a symmetric 
region centered at the origin, i.e., Z = { -N, -N+l, ..., -1, 0, 1, 
..., N } .  The causal FIR filter can be obtained by simply 
delaying h[n] by N samples. 

The problem of designing an FIR filter consists of deter- 
mining the impulse response sequence, h[n], or its system 
function, H(z),  so that given requirements on the filter re- 
sponse are satisfied. The filter requirements are usually speci- 
fied in the frequency domain, and only this case is considered 
here. The frequency response, H(e'@), corresponding to the 
impulse response A[.], with a support, I ,  is expressed as 

ne1 

Notice that H(e'O) is a periodic function with period 2n. This 
implies that by defining H(e'O) in the region { -n < o 2 n} the 
frequency response of the filter for all 0) E R is determined. 

Filter specifications are usually given in terms of the 
magnitude response, IH($@)I. In most applications a two-level 
magnitude design, where the desired magnitude levels are 
either 1.0 (in passbands) or 0.0 (in stopbands), is of interest. 

Consider the design of a lowpass filter whose specifica- 
tions are shown in Fig. 1. The magnitude of the lowpass filter 
ideally takes the value 1.0 in the passband region, Fp = [-CO,, 
a,], and 0.0 in the stopband region, F, = [-E, -op] U lo,, n]. 
As magnitude discontinuity is not possible with a finite filter 
support it is necessary to interpose a transition region, F,, 
between F, and F,. Also, magnitude bounds 1 - S,< IH(o)l< 
1 + 6, in the passband, F,, and IH(o)l_< 6, in the stopband, F, 
, are specified, where the parameters 6, and 6, are positive 
real numbers, typically much less than 1 .O. Consequently, the 
lowpass filter is specified in the frequency domain by the 
regions, Fp, F,, and the tolerance parameters, 6, and 6,. Other 
widely used filters, bandpass, and highpass filters are speci- 
fied in a similar manner. The FFT based procedure can 
easily accommodate arbitrary magnitude specifications 
as well. 

In order to meet given specifications, an adequate filter 
order (the number of nonzero impulse response samples) 
needs to be determined. if the specifications are stringent with 
tight tolerance parameters and small transition regions then 
the filter support region, I ,  must be large. In other words, there 
is a trade-off between the filter support region, I ,  and the 
frequency domain specifications. In the general case the filter 
order is not known a priori and may be determined through 
an iterative process. If the filter order is fixed then the 
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1. Frequency response specifications for the lowpass filter ( I  - 6, 
5 I H(w) I 5 I + 6, for  U) E Fp and I H(w)l< &for w E Fs). 

tolerance parameters, 6, and 6,, must be properly adjusted to 
meet the design specifications. 

Phase linearity or “zero phase” condition is important in 
many filtering applications [3, 181, and the discussion here is 
limited to the case of “zero phase” design, with a purely real 
frequency response. The term “zero phase” is somewhat 
misleading in the sense that the frequency response may be 
negative at some frequencies. 

In frequency domain the zero-phase or real frequency 
response condition corresponds to 

H ( P )  = H*($“), ( 3 )  

where H*(dW) denotes the complex conjugate of H(dW). The 
condition (3) is equivalent to 

h[n] = hY[-n] (4) 

in time-domain. Makiing a common practical assumption that 
h[n] is real, the above condition reduces to 

h[n] = h[-n], ( 5 )  

implying a symmetric filter about the origin. 

Iterative Design Method 

We now consider the FFT based design procedure, which 
leads to an equiripple frequency response. In this method we 
formulate the zero-phase FIR filter design problem in such a 
way that time and frelquency domain constraints on the im- 
pulse response are alternately satisfied through an iterative 
algorithm [6, 91. The iterative algorithm requires two FFT 
computations in each iteration. 

The frequency response, H(dW), of the zero-phase FIR 
filter is required to be within prescribed upper and lower 
bounds in its passbands and stopbands. Let us specify bounds 
on the frequency response H(d7 of the FIR filter, h[n], as 
folYows: 

where H i d ( i W )  is the ideal filter response, Ed(o) is a positive 
function of W, which may take different values in different 
passbands and stopbands, and F, is the union of passband(s) 
and stopband(s) of the filter (note that H ( P )  is real for a 
zero-phase filter). Usually, Ed(w) is chosen constant in a 
passband or a stopband. For instance, 

1, if w E Fp 
0, if W E &  H i d ( W )  = 

and 

(7) 

for the lowpass filter example of the previous section. In- 
equality (6) is the frequency domain constraint of the iterative 
filter design method. 

In time domain the filter must have a finite-extent support, 
I, which is a symmetric region around the origin in order to 
have a zero-phase response (or to achieve phase linearity). 
The time domain constraint requires that the filter coeffi- 
cients must be equal to zero outside the region, 

I = { n  = -N, -N+1, ..., -1,O, 1, ..., N} . (9) 

The iterative method begins with an arbitrary finite-extent, 
real sequence h,[nl that is symmetric (h,[n] = h, [-n]) around 
the origin. A good candidate for the initial estimate can be 
obtained from the inverse Fourier Transform of the ideal 
frequency response hid[nl = F’[H,(W)I as 

hid[n] if n E I 
0, otherwise 

Each iteration of the algorithm consists of making succes- 
sive imposition of spatial and frequency domain constraints 
onto the current iterate. The k-th iteration consists of the 
following steps: 

Compute the Fourier Transform of the k-th iterate 
hJn]  on a suitable grid of frequencies by using an FFT 
algorithm, 
Impose the frequency domain constraint as follows 

Hid ( eiw ) + Ed ( W) if Hk ( ejm) > Hid (e@) + Ed ( W) 

Gk( ejm) = Hid(ejm) - &(a) if Hk(ejw) < Hid( ejm) - Ed(w) 
otherwise. 

(11) I Hk ( ejo) 

compute the inverse Fourier Transform of Gk(ejw) 

zero out gk[n] outside the region Z to obtain hk+l as 

g k [ n ] ,  if n c I  
h,+,[nl= 0, otherwise 
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. Flow diagram of the itevative filter design algorithm. 

o if the Mean Squared Error between the iterates hk[n] and 
hk+l[n] is less than a predefined threshold, then exit. 
The flow diagram of this method is shown in Fig. 2. It can 

be proven that the iterative FIR filter design algorithm is 
globally convergent. The proof is based on the method of 
Projections onto Convex Sets (POCS) [10-131. The con- 
straints (6) and (9) define two convex sets in the set of square 

summable sequences, -e2 = h : z l h [ n ] / 2  < 00 , andEquations 

(11) and (12) are the orthogonal projections onto these sets. 
If the sets intersect then the iterates converge to a member 
(sequence) in the intersection set. Furthermore, if there is just 
one sequence satisfying both of the conditions (6) and (9) then 
this sequence is the equiripple solution of the filter design 
problem. Consequently, the iterations converge to the 
equiripple FIR filter. 

This method requires the specification of the bounds or 
equivalently, Ed(c0), and the filter support, I. If the specifica- 
tions are too tight then the algorithm does not converge. In such 
a case one can either progressively enlarge the filter support 
region, or relax the bounds on the ideal frequency response. In 
one-dimensional cases there are empirical formulas relating the 
filter support region and bounds [ 141. For lowpass and highpass 
filters the filter order, 2N + 1, can be estimated by 

{ . ;  'i 

-2010g,~ $,6, - 13 
N =  

14.6(~, - m p ) / ( 2 n )  (13) 

Other filter order estimates can be found in [7]. 

Ideally the iterative algorithm should be implemented via 
the Discrete-Time Fourier Transform. Therefore, the size of 
the FFT algorithm must be chosen sufficiently large. As a rule 
of thumb the size of the FFT must be greater than 10 x N for 
a filter of order 2N + 1. The passband and stopband edges are 
very important for the convergence of the algorithm. These 
edges must be represented accurately on the frequency grid 
of the FFT algorithm. If the edge frequencies are not on the 
FFT grid then the frequency values on the grid which render 
a tighter passband are selected. 

Let us now consider an example. We use this example to 
compare the FTT based design method with the well-known 
Parks-McClellan algorithm [7]. 

Example I :  A zero phase half-band filter whose passband 
and stopband are odd-symmetric around CO = nI2 is to be 
designed. The desired frequency response of the filter is given 
as follows: 

1, o ~ { O < 0 ) 5 0 . 4 ~ }  
0, o ~(0.671.I CO 5 K }  (14) 

The tolerance parameters are chosen as 6, = 6, = 0.05. In 
this case a filter of order 11 satisfies the above requirements. 
The values of the filter coefficients which are obtained after 
20 iterations are shown in Table 1A. Notice that the coeffi- 
cients, h[2n], n # 0 are negligible compared to h[O]. Theoreti- 
cally these coefficients must be equal to zero due to the 
odd-symmetric frequency response of the filter. The fre- 
quency responses of the iterates after one, two, and 20 itera- 
tions are depicted in Fig. 3. The final design is an equiripple 
approximation to the desired frequency response. 

The same filter is also designed using the Parks-McClel- 
lan algorithm. The filter coefficients are listed in Table 1B 
and they are very close to the coefficients of the FFT-based 
method. 

I Table 1A. Linear Phase Filter Coefficients 
Obtained bv the FFT-Based Method I 

h[O] = 0.50000000 x 10' = h[O] 
hrii = 0.31307556 x io0 = hr-ii 

h[51 = 0.52610448 x lo-' = hl-51 

Table 1B. Linear Phase Filter Coefficients 
Obtained by Parks-McClellan Algorithm 

h[O] = 0.50000000 x 10' = h[O] 

h[l] = 0.31308165 x loo=  h[-11 
h[2] = 0.90987973 x lo-* = h[-21 

h[3] = -0.91150835 x 10.' = h[-31 
h[4] = -0.21467915 x = h[-41 
h[5] = 0.52676763 x 10.' = h[-51 
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by (a) the FFT based algorithm and by (b) Parks McClellan algo- 
rithm. 

Example 2:  A high-order zero-phase bandpass filter is to 
be designed by using larger filter sizes. The filter constraints 
are: 

0 ,  w ~i (0 2 w 20.244~) 

0, 0 EI (0.756~ 5 w 5 Z} 

1, w E; (0.256~ I w I0 .744~)  

The tolerance parameters are chosen as 6, = 6, = 0.157. A 
filter of order 91 satisfies the given constraints after 130 
iterations. Since the transition band is very narrow, the order 
of the filter is high. The magnitude responses of the filters 
generated by this algorithm and by Parks-McClellan algo- 
rithm are given in Fig. 4. 

The design of the above filters does not take more than a 
few minutes on a workstation. 

Multidimensional (M-D) FIR Filter Design 

Extension of the FFT based design method to higher dimensions 
is straightforward. The design of an M-D filter with desired 
frequency response, H( e j w z ,  . . ., ejwm ) , can be carried out 

by defining a multidimensional constraint function E ( q ,  a,, ..., 
0,) as in 1-D case. Every iteration of the design method requires 
two (M-D) FFT computations [SI. The availability of efficient 
FFT routines makes this procedure advantageous for large-order 
M-D FIR filter design. 

Most of the M-D Equiripple FIR filter design methods are 
extensions of the 1-D design methods [5], [21]. However, the 
Parks-McClellan procedure based on the alternation theorem 
does not find a direct extension to the M-D case. This is because 
the set of cosine functions used in the 2-D approximation does 
not satisfy the Haar condition on the domain of interest [ 151, and 
the Chebyshev approximation does not have a unique solution. 
Techniques that employ exchange algorithms [ 15-17] have been 
developed for the 2-D case at the expense of increase in compu- 
tational complexity. Review of these basic design methods for 
2-D FIR filters are given in [SI. 

Example 3: Let us consider the design of a circularly 
symmetric lowpass filter that leads to an approximately 
equiripple response. In this case, each iteration requires two 
2-D FFT computations. 

Maximum allowable deviation is 6, = 6, = 0.05 in both 
passband and stopband. This means that the 2-D tolerance 
functions, Ed(w1, 0,) = 0.05, in the passband and the stop- 
band. The passband and stopband cut-off boundaries have 
radius of 0 . 4 3 ~  and 0 . 6 3 ~ ,  respectively. In the transition band 
the frequency response is conveniently bounded by the upper 
bound of the stopband and the lower bound of the passband. 
The filter support is a square-shaped 17 x 17 region. The 
frequency response of this filter is shown in Fig. 5. 

The shape of the filter support is very important in any 
M-D filter design method (see e.g. [S, 19, 201. The support 
should be chosen to exploit the symmetries in the desired 
frequency response. For example, diamond-shaped supports 
show a clear advantage over the commonly assumed rectan- 
gular regions in designing 2-D 90" fan filters [22]. 

Example 4: Let us now consider an example in which we 
observe the importance of filter support. We design a fan 
filter whose specifications are shown in Fig. 6a. Maximum 
allowable deviation is 6, = 6, = 0.1 in both passband and 
stopband. If one uses a 7 x 7 square-shaped support with 49 
points then the design specifications cannot be met. However, 
a diamond shaped support, 
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5. Frequency response of the lowpass filter of Example 3. 

1.2, 

(b) 
(a) Spec$cations and (b) frequency response of the fan filter 

designed in Example 4. 

together with the restriction that 

Ide = I d  n {ni + n2 = odd or ni  = n2 = 0 )  (17) 

produces a filter satisfying the bounds. The filter support 
region, I,,, contains 37 points. The resultant frequency re- 
sponse is shown in Fig. 6b. 

Conclusions 

In this article, an iterative equiripple FIR filter design proce- 
dure was described. The iterative algorithm employs the 
well-known FFT algorithm at each iteration and can be 
implemented very easily. It can also be generalized to higher 
dimensions in a straightforward manner. 
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