EEE-424 Digital Signal Processing: Final-Term Exam 2009/2010

Duration: 2 hours
Instructions: No calculators, book or notes allowed. SHOW YOUR WORK! No credit for results without explanations or steps!!

Q. 1

Given $x[n]=\{1,4,1,4,1,1\}$ starting at index zero.
Q.1a (3 pts) Calculate the estimated mean \hat{m}_{x} and estimated variance $\hat{\sigma}_{x}^{2}$ of $x[n]$.

Solution : $m_{x}=2, \sigma_{x}^{2}=2$.
Q.1b (11 pts) Propose a third order anticausal FIR filter $h[n]$ with $h[0]=1$ so that the output signal $y[n], n=1,2,3,4$ has smaller variance than the input signal $x[n]$. Calculate (approximately) the variance $\hat{\sigma}_{y}^{2}$ of $y[n], n=1,2,3,4$. Specify the type of your proposal filter $h[n]$.
Solution : One possible sol: $h[-1]=h[1]=0.5 \Rightarrow\left(\hat{\sigma}_{y}^{2} \approx 1.3 / 4\right) \leq \sigma_{x}^{2}$. Lowpass.
Q.1c (11 pts) Propose a third order anticausal FIR filter $g[n]$ with $g[0]=1$ so that the output signal $z[n]=g[n] * x[n], n=1,2,3,4$ is zero-mean. Specify the type of your proposal filter $g[n]$.

Solution : Proposal: $g[n]=a \delta[n-1]+\delta[n]+a \delta[n+1] \Rightarrow \sum_{n=1}^{4} z[n]=17 a+10 \stackrel{!}{=} 0 \Rightarrow a=$ $-10 / 17$. Highpass.

Q. 2

Design a Lowpass Butterworth filter with $w_{c}=\pi / 2$ and filter order $N=1$.
Q.2a (5 pts) Determine the analog prototype filter $H_{a}(s)$.

Solution : $\Omega_{c}=\frac{2}{T} \tan (\pi / 4)=\frac{2}{T} \Rightarrow\left|H_{a}(s)\right|^{2}=\frac{1}{1+\left(\frac{s}{j 2 / T}\right)^{2}}$.
Q.2b (5 pts) Determine all poles of $H_{a}(s)$.

Solution : $s_{1}=2 / T, s_{2}=-2 / T$
Q.2c (10 pts) Apply bilinear transform to determine a stable digital filter $H(z)$.

Solution : Use s_{2} in the left half plane: $H_{a}(s)=\frac{-s_{2}}{s-s_{2}} \Rightarrow H(z)=\frac{1}{2}\left(1+z^{-1}\right)$.
Q.2d (5 pts) Determine the Region Of Convergence (ROC) of the digital filter.

Solution : ROC $=\mathbb{C} /\{0\}$.

Q. 3

Given $x_{1}[n]=\{-1,-2,0,1,-1,3\}$ and $x_{2}[n]=\{1,1,-3,2,1,-3,1\}$, both W.S.S. and starting at index zero.
Q.3a (12 pts) Which signal is more likely white noise? Explain your answer by computing a suitable statistical measure for both signals and comparing it.

Solution : $\hat{r}_{x_{1}}=\{16 / 6,-1 / 3,1 / 6,1 / 6, \ldots\}, \hat{r}_{x_{2}}=\{26 / 7,-12 / 7,-9 / 7,2, \ldots\} . x_{1}$ is more likely white noise.
Q.3b (5 pts) Consider $y_{1}[n]=h[n] * x_{1}[n]$, where $h[n]$ is an FIR filter. Is $y_{1}[n]$ W.S.S.? Explain your answer.

Solution : FIR is an LTI system, which is linear and stable. Mean and variance are preserved over time.
Q.3c (8 pts) Let $w[n]$ be a W.S.S. zero mean white noise signal with variance 1. Compute its spectrum $S_{w}\left(e^{j \omega}\right)$. Comment on your result.

Solution : $r_{w}[n]=\delta[n] \Rightarrow S_{w}\left(e^{j \omega}\right)=1 \forall \omega$.

Q. 4

Given the sequence of W.S.S. random numbers $x[n]=\{1,1,2,3,5\}$ starting at index zero.
Q.4a (15 pts) A second order linear MMSE predictor $\hat{x}[n]=a_{1} x[n-1]+a_{2} x[n-2]$ shall be determined by following method: Find a_{1}, a_{2} such that $g\left(a_{1}, a_{2}\right)=\sum_{n=2}^{4}(x[n]-\hat{x}[n])^{2}$ is minimized. Do NOT use the ACNE (no autocorrelations!). Hint: Use derivatives $\frac{d g\left(a_{1}, a_{2}\right)}{d a_{1}}$ and $\frac{d g\left(a_{1}, a_{2}\right)}{d a_{2}}$.
Solution : $a_{1}=a_{2}=1$.
Q.4b (3 pts) Compute the predictions $\hat{x}[2], \hat{x}[3], \hat{x}[4]$ and $\hat{x}[5]$ using the predictor from [Q.4a].

Solution : $\hat{x}[2]=2, \hat{x}[3]=3, \hat{x}[4]=5, \hat{x}[5]=8$.
Q.4c (7 pts) Consider $y[n]=\frac{\sin (n)}{n}, n \geq 0$. Is $y[n]$ W.S.S.? Explain your answer!

Solution : This is a deterministic signal. One can compute the properties mean and autocorrelation though. Mean is zero. For the autocorrelation, we can write

$$
\begin{align*}
\left|r_{y}[k]\right| & =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1}\left|\frac{\sin (n)}{n} \frac{\sin (n+k)}{n+k}\right| \tag{1}\\
& \leq \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1}\left|\frac{\sin ^{2}(n)}{n^{2}}\right| \tag{2}\\
& \leq \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1}\left|\frac{1}{n^{2}}\right|=0 \forall k \tag{3}
\end{align*}
$$

These properties remain constant, so this signal, though being deterministic, has a mean and autocorrelation and they are constant. It satisfies W.S.S properties.

Formulas

- Estimated mean:

$$
\hat{m}_{x}=\frac{1}{N} \sum_{n=0}^{N-1} x[n]
$$

- Estimated variance:

$$
\hat{\sigma}_{x}^{2}=\frac{1}{N} \sum_{n=0}^{N-1}\left(x[n]-\hat{m}_{x}\right)^{2}
$$

- Estimated autocorrelation (for zero mean seq.):

$$
\hat{r}_{x}[k]=\frac{1}{N} \sum_{n=0}^{N-k-1} x[n] x[n+k], k \geq 0
$$

- Spectrum of random signal $x[n]$:

$$
S_{x}\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} r_{x}[n] e^{-j \omega n}
$$

- Butterworth filter:

$$
\left|H_{a}(j \Omega)\right|^{2}=\frac{1}{1+\left(\frac{j \Omega}{j \Omega_{c}}\right)^{2 N}},\left|H_{a}(s)\right|^{2}=\frac{1}{1+\left(\frac{s}{j \Omega_{c}}\right)^{2 N}}
$$

- Poles of Butterworth filter:

$$
s_{k}=\Omega_{c} e^{j \frac{\pi}{2}\left(1+\frac{2 k+1}{N}\right)}, k=1, \ldots, 2 N
$$

- Bilinear transform:

$$
\Omega=\frac{2}{T} \tan (\omega / 2), H(z)=\left.H_{a}(s)\right|_{s=\frac{21-z^{-1}}{T} 1+z^{-1}}
$$

