EEE-424 Digital Signal Processing: Mid-Term Exam 2009

Duration: 2 hours
Instructions: No calculators, book or notes allowed. SHOW YOUR WORK! No credit for results without explanations or steps!!

Q. 1

Consider the continuous-time signal $x(t)=\sin (2 \pi a t)+\sin (2 \pi b t)$, where $b>a$.
Q.1a Plot the continous-time Fourier-transform $X(j \Omega)$ of $x(t)$.
Q.1b What is the lower bound for the sampling frequency so that $x(t)$ can be theoretically reconstructed from its samples?
Q.1c Plot the block-diagram of the system which samples $x(t)$ to yield the discrete-time signal $x[n]$ without aliasing. Specify all components. Hint: use impulse-train.
Q.1d Plot the block-diagram of the system which reconstructs $x(t)$ from $x[n]$. Specify all components.

Q. 2

Given $x[n]=\delta[n+1]+2 \delta[n]+\delta[n-1]$ and $y[n]=3 \delta[n-2]-2 \delta[n-3]$.
Q.2a Compute $z[n]=x[n] * y[n]$.
Q.2b Compute the 4 -point DFT $X[n]$ of $x[n]$.
Q.2c Compute the 4 -point DFT $Y[n]$ of $y[n]$.
Q.2d Compute $z[n]$ by DFT and compare your result with Q.2a.

Q. 3

Given a discrete-time sequence $x[n], n=0, \ldots, 8$, the 9 -point-DFT shall be computed.
Q.3a Derive a decimation-in-time-FFT method for this task.
Q.3b Plot the corresponding FFT-flowgraph.
Q.3c Compare the computational complexity of calculating the FFT method developed in Q.3a with regular 9-point DFT.

Q. 4

Given a lowpass filter $H_{\mathrm{id}}\left(e^{j \omega}\right)$ with cutoff frequency ω_{c}.
Q.4a Plot $H_{\mathrm{id}}\left(e^{j \omega}\right)$ in the range $[-4 \pi, 4 \pi]$.
Q.4b Compute the corresponding impulse response $h_{\mathrm{id}}[n]$.
Q.4c Determine an FIR-filter $h_{a}[n]$ of order $2 L+1, L=3$ as an approximation of $h_{\mathrm{id}}[n]$ (rectangular windowing method). Specify the rectangular windowing function $w[n]$.
Q.4d Plot roughly the frequency response $H_{a}\left(e^{j \omega}\right)$ of $h_{a}[n]$. Explain the differences between $H_{\mathrm{id}}\left(e^{j \omega}\right)$ and $H_{a}\left(e^{j \omega}\right)$ and the cause of these differences as detailed as possible. Hint: use time-domain and frequency-domain plots or equations of the windowing function $w[n]$.

Cheat Sheet

- Discrete-time convolution:

$$
x[n] * y[n]=\sum_{k=-\infty}^{\infty} x[k] y[n-k]
$$

- Continous-Time Fourier Transform (CTFT):

$$
\begin{aligned}
X(j \Omega) & =\int_{-\infty}^{\infty} x(t) e^{-j \Omega t} d t \\
x(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \Omega) e^{j \Omega t} d \Omega
\end{aligned}
$$

- Discrete-Time Fourier Transform (DTFT):

$$
\begin{aligned}
X\left(e^{j \omega}\right) & =\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \\
x[n] & =\frac{1}{2 \pi} \int_{0}^{2 \pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega
\end{aligned}
$$

- N-point Discrete Fourier Transform (DFT):

$$
\begin{aligned}
& X[n]=\sum_{k=0}^{N-1} x[k] e^{-j \frac{2 \pi}{N} k n} \\
& x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j \frac{2 \pi}{N} k n}
\end{aligned}
$$

