EEE-424 Digital Signal Processing: Grand Quiz Spring 2011

Duration: 70 minutes
Instructions: No calculators, book or notes allowed. SHOW YOUR WORK! No credit for results without explanations or steps!!

Q. 1 Overlap-and-Add

Given $x[n]=\{1,2,0,1,0,2,-2,-1\}$ and $h[n]=\{1,-1\}$, both starting at $n=0$.
Q.1a (10 pts) Compute $y[n]=h[n] * x[n]$ using regular convolution.

Solution : $y[n]=\{1,1,-2,1,-1,2,-4,1,1\}$
Q.1b (23 pts) Compute $y[n]=h[n] * x[n]$ using the overlap-and-add method by breaking $x[n]$ into two parts, where

$$
\begin{equation*}
x[n]=x_{1}[n]+x_{2}[n], x_{1}[n]=\{x[0], \ldots, x[3]\}, x_{2}[n]=\{0,0,0,0, x[4], \ldots, x[7]\} \tag{1}
\end{equation*}
$$

How many samples do overlap?
Solution : $x_{1}[n]=\{1,2,0,1\}, x_{2}[n]=\{0,0,0,0,0,2,-2,-1\}$, both starting at $n=0$:

$$
\begin{align*}
h[n] * x[n] & =h[n] *\left(x_{1}[n]+x_{2}[n]\right)=h[n] * x_{1}[n]+h[n] * x_{2}[n] \tag{2}\\
& =\{1,1,-2,1,-1\}+\{0,0,0,0,0,2,-4,1,1\}=\{1,1,-2,1,-1,2,-4,1,1\} \tag{3}
\end{align*}
$$

Q. 2 Accumulator

Consider the so called accumulator: $y[n]=\sum_{k=-\infty}^{n} x[k]$.
Q.2a (11 pts) Is the accumulator a linear system? Prove your answer.

Solution : Let $y_{1}[n]=\sum_{k=-\infty}^{n} x_{1}[k]$ and $y_{2}[n]=\sum_{k=-\infty}^{n} x_{2}[k]$.
Define $y_{3}[n]=\sum_{k=-\infty}^{n}\left(a x_{1}[k]+b x_{2}[k]\right)=a y_{1}[n]+b y_{2}[n]$.
Q.2b (11 pts) Is the accumulator a time-invariant system? Prove your answer.

Solution : Let $x_{1}[n]=x\left[n-n_{0}\right]$. To show: $y_{1}[n]=\sum_{k=-\infty}^{n} x_{1}[k]=y\left[n-n_{0}\right]$

$$
\begin{equation*}
y_{1}[n]=\sum_{k=-\infty}^{n} x_{1}[k]=\sum_{k=-\infty}^{n} x\left[k-n_{0}\right]=\sum_{k=-\infty}^{n-n_{0}} x[k]=y\left[n-n_{0}\right] . \tag{4}
\end{equation*}
$$

Q.2c (11 pts) Determine the impulse response $h[n]$ of the accumulator system, e.g., $y[n]=$ $\sum_{k=-\infty}^{n} x[k]=h[n] * x[n]$. Prove your answer,e.g., show that your solution for the impulse response corresponds to the accumulator system.

Solution :

$$
h[n]=u[n] \Rightarrow \sum_{k} h[k] x[n-k]=\sum_{k=0}^{\infty} x[n-k]=x[n]+x[n-1]+\ldots=\sum_{k=-\infty}^{n} x[k]
$$

Q. 3 Random Signal

Consider the system

$$
\frac{1}{2} y[n]-\frac{1}{4} y[n-1]+x[n]+w[n]=0
$$

where $x[n]$ is W.S.S. zero-mean white noise with variance σ_{x}^{2} and $w[n]$ is W.S.S. zero-mean white noise with variance σ_{w}^{2}.
Q.3a (24 pts) Determine $r_{y}[k], k=0,1,2$. Simplify terms as far as possible.

Solution : $r_{y}[0]=\frac{16}{3}\left(\sigma_{x}^{2}+\sigma_{w}^{2}\right), r_{y}[1]=1 / 2 r_{y}[0]=\frac{8}{3}\left(\sigma_{x}^{2}+\sigma_{w}^{2}\right), r_{y}[2]=1 / 2 r_{y}[1]=\frac{4}{3}\left(\sigma_{x}^{2}+\sigma_{w}^{2}\right)$
Q.3b (10pts) Determine the expectation m_{y} of $y[n]$, defined by $m_{y}=\mathrm{E}[y[n]]$.

Solution : $\mathrm{E}[y[n]]=\mathrm{E}[1 / 2 y[n]-2 x[n]-2 w[n]]=1 / 2 \mathrm{E}[y[n-1]] \Rightarrow m_{y}=0$

Formulas

- Discrete-time convolution:

$$
x[n] * y[n]=\sum_{k=-\infty}^{\infty} x[k] y[n-k]
$$

- Autocorrelation (W.S.S.):

$$
r_{x}[k]=\mathrm{E}[x[n] x[n+k]]
$$

