|--|

ID:

Section:

Score:

/ 100

EEE-424 Digital Signal Processing: Grand Quiz Spring 2011

Duration: 70 minutes

Instructions: No calculators, book or notes allowed. <u>SHOW YOUR WORK</u>! No credit for results without explanations or steps!!

Q.1 Overlap-and-Add

Given $x[n] = \{1, 2, 0, 1, 0, 2, -2, -1\}$ and $h[n] = \{1, -1\}$, both starting at n = 0.

Q.1a (10 pts) Compute y[n] = h[n] * x[n] using regular convolution.

Solution : $y[n] = \{1, 1, -2, 1, -1, 2, -4, 1, 1\}$

Q.1b (23 pts) Compute y[n] = h[n] * x[n] using the overlap-and-add method by breaking x[n] into two parts, where

$$x[n] = x_1[n] + x_2[n], \ x_1[n] = \{x[0], ..., x[3]\}, x_2[n] = \{0, 0, 0, 0, x[4], ..., x[7]\}$$
(1)

How many samples do overlap?

Solution : $x_1[n] = \{1, 2, 0, 1\}, x_2[n] = \{0, 0, 0, 0, 0, 2, -2, -1\}$, both starting at n = 0:

$$h[n] * x[n] = h[n] * (x_1[n] + x_2[n]) = h[n] * x_1[n] + h[n] * x_2[n]$$
(2)
= {1, 1, -2, 1, -1} + {0, 0, 0, 0, 2, -4, 1, 1} = {1, 1, -2, 1, -1, 2, -4, 1, 1} (3)

Q.2 Accumulator

Consider the so called accumulator: $y[n] = \sum_{k=-\infty}^{n} x[k]$.

Q.2a (11 pts) Is the accumulator a linear system? Prove your answer.

Solution : Let $y_1[n] = \sum_{k=-\infty}^n x_1[k]$ and $y_2[n] = \sum_{k=-\infty}^n x_2[k]$. Define $y_3[n] = \sum_{k=-\infty}^n (ax_1[k] + bx_2[k]) = ay_1[n] + by_2[n]$.

Q.2b (11 pts) Is the accumulator a time-invariant system? Prove your answer.

Solution : Let $x_1[n] = x[n - n_0]$. To show: $y_1[n] = \sum_{k=-\infty}^n x_1[k] = y[n - n_0]$

$$y_1[n] = \sum_{k=-\infty}^n x_1[k] = \sum_{k=-\infty}^n x[k-n_0] = \sum_{k=-\infty}^{n-n_0} x[k] = y[n-n_0].$$
(4)

Q.2c (11 pts) Determine the impulse response h[n] of the accumulator system, e.g., $y[n] = \sum_{k=-\infty}^{n} x[k] = h[n] * x[n]$. Prove your answer, e.g., show that your solution for the impulse response corresponds to the accumulator system.

Solution :

$$h[n] = u[n] \Rightarrow \sum_{k} h[k]x[n-k] = \sum_{k=0}^{\infty} x[n-k] = x[n] + x[n-1] + \dots = \sum_{k=-\infty}^{n} x[k]$$

Q.3 Random Signal

Consider the system

$$\frac{1}{2}y[n] - \frac{1}{4}y[n-1] + x[n] + w[n] = 0,$$

where x[n] is W.S.S. zero-mean white noise with variance σ_x^2 and w[n] is W.S.S. zero-mean white noise with variance σ_w^2 .

Q.3a (24 pts) Determine $r_y[k]$, k = 0, 1, 2. Simplify terms as far as possible. **Solution** : $r_y[0] = \frac{16}{3}(\sigma_x^2 + \sigma_w^2), r_y[1] = 1/2r_y[0] = \frac{8}{3}(\sigma_x^2 + \sigma_w^2), r_y[2] = 1/2r_y[1] = \frac{4}{3}(\sigma_x^2 + \sigma_w^2)$ **Q.3b** (10pts) Determine the expectation m_y of y[n], defined by $m_y = E[y[n]]$. **Solution** : $E[y[n]] = E[1/2y[n] - 2x[n] - 2w[n]] = 1/2E[y[n - 1]] \Rightarrow m_y = 0$ • Discrete-time convolution:

$$x[n] * y[n] = \sum_{k=-\infty}^{\infty} x[k]y[n-k]$$

• Autocorrelation (W.S.S.):

$$r_x[k] = \mathbf{E}[x[n]x[n+k]]$$