Score:

Section:

EEE-424 Digital Signal Processing: Final-Term Exam 2010-05

Duration: 2 hours

Instructions: No calculators, book or notes allowed. <u>SHOW YOUR WORK</u>! No credit for results without explanations or steps!!

Q.1

Let $h_I[n]$ be the identity filter, i.e., $h_I[n] * x[n] = x[n]$. Furthermore, let

 $g[n] = a\delta[n-1] + \delta[n] + a\delta[n+1], \ a \neq 0.$

Q.1a (6 pts) Determine $h_I[n]$. Prove your result by testing it: calculate $h_I[n] * x[n]$.

Solution : $h_I[n] = \delta[n]$.

Q.1b (6 pts) Calculate the DTFT $G(e^{j\omega})$ of g[n] and plot it for a = 0.5 and $\omega \in [-\pi, \pi]$.

Solution : $G(e^{j\omega}) = 1 + 2a\cos(\omega)$.

- **Q.1c** (13 pts) We would like to find a filter v[n] which neutralizes the filter g[n], i.e., $v[n] * g[n] = h_I[n]$. Do NOT try to determine v[n], but find its DTFT $V(e^{j\omega})$. What can you say about the role of a?
- **Solution** : $V(e^{j\omega}) = 1/(1 + 2a\cos(\omega))$, a should be chosen such that the denominator is not 0 for $\omega \in [-\pi, \pi]$.

Consider the LPC-10 speech vocoder.

- Q.2a (5 pts) Describe the important properties of speech signals which enable their effective coding.
- **Solution** : Speech is quasi periodic.
- Q.2b (5 pts) What is the main idea to reduce the data amount of the encoded speech? Is the encoding lossless or lossy? Explain!
- **Solution** : To use prediction. In LPC-10, encoding is lossy, since the prediction is never perfect and we only use the prediction coefficients.
- Q.2c (10 pts) Plot a rough flow diagram of the encoder system.
- Q.2d (5 pts) Instead of speech, what is transmitted in LPC-10 over the channel?
- **Solution** : Coefficients, error variance, a flag indicating whether the signal part is speech or noise and pitch period.

Q.3

Let x[n] be W.S.S. zero mean white noise with variance σ_x^2 . Let y[n] be the output of an ideal low pass filter with cutoff frequency ω_c and input x[n].

Q.3a (5 pts) Determine the autocorrelation sequence $r_x[n]$ of x[n].

Solution : $r_x[n] = \sigma_x^2 \delta[n]$

Q.3b (5 pts) Determine the spectrum $S_x(e^{j\omega})$ of x[n].

Solution : $S_x(e^{j\omega}) = \sigma_x^2$

Q.3c (7 pts) Determine the spectrum $S_y(e^{j\omega})$ of y[n].

Solution : $S_y(e^{j\omega}) = \begin{cases} \sigma_x^2, & |\omega| < \omega_c \\ 0, & |\omega| \in [\omega_c, \pi] \end{cases}$

Q.3d (8 pts) Determine the autocorrelation sequence $r_y[n]$ of y[n].

Solution : $r_y[n] = \text{IDTFT}\{S_y(e^{j\omega})\} = \sigma_x^2 \frac{\sin(\omega_c n)}{\pi n}$.

Q.4

Let x[n] be a sampled signal with sampling period T. The corresponding continuous-time signal shall be denoted by $x_c(t)$, where $X_c(j\Omega)$ is the CTFT of $x_c(t)$. Recall that the DTFT of x[n] is

$$X(e^{j\omega}) = \frac{1}{T} \sum_{r=-\infty}^{\infty} X_c \left(j \left(\frac{\omega}{T} - \frac{2\pi r}{T} \right) \right).$$
(1)

Consider the downsampled signal $x_d[n] = x[Mn]$. Let the corresponding sampling period of $x_d[n]$ be T'.

Q.4a (3 pts) Express T' in terms of T.

Solution : T' = MT.

Q.4b (6 pts) Write down $X_d(e^{j\omega})$ in terms of X_c .

Solution : $X_d(e^{j\omega}) = \frac{1}{T'} \sum_{r=-\infty}^{\infty} X_c \left(j \left(\frac{\omega}{T'} - \frac{2\pi r}{T'} \right) \right).$

Q.4c (6 pts) Express $X_d(e^{j\omega})$ in terms of T.

Solution : $X_d(e^{j\omega}) = \frac{1}{MT} \sum_{r=-\infty}^{\infty} X_c \left(j \left(\frac{\omega}{MT} - \frac{2\pi r}{MT} \right) \right).$

Q.4d (10 pts) $X_d(e^{j\omega})$ can be expressed in terms of $X(e^{j\omega})$ by

$$X_d(e^{j\omega}) = \frac{1}{M} \sum_{i=0}^{M-1} X(e^{j(\omega/M - 2\pi i/M)}).$$
 (2)

Show the way to achieve this result analytically. **Hint**: Use your result from [Q.4c] and substitute the summation index r by i + kM, where i = 0, ..., M - 1 and $-\infty < k < \infty$.

Solution :

$$X_d(e^{j\omega}) = \frac{1}{MT} \sum_{r=-\infty}^{\infty} X_c \left(j \left(\frac{\omega}{MT} - \frac{2\pi r}{MT} \right) \right)$$
(3)

$$= \frac{1}{M} \sum_{i=0}^{M-1} \left[\frac{1}{T} \sum_{k=-\infty}^{\infty} X_c \left(j \left(\frac{\omega}{MT} - \frac{2\pi k}{T} - \frac{2\pi i}{MT} \right) \right) \right]$$
(4)

With $X(e^{j(\omega-2\pi i)/M}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c \left(j \left(\frac{\omega-2\pi i}{MT} - \frac{2\pi k}{T} \right) \right)$ follows the result.

Formulas

• Discrete-time convolution:

$$x[n] * y[n] = \sum_{k=-\infty}^{\infty} x[k]y[n-k]$$

• Continuus-Time Fourier Transform (CTFT):

$$X(j\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$$
$$x(t) = \frac{1}{2\pi}\int_{-\infty}^{\infty} X(j\Omega)e^{j\Omega t}d\Omega$$

• Discrete-Time Fourier Transform (DTFT):

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
$$x[n] = \frac{1}{2\pi} \int_{0}^{2\pi} X(e^{j\omega})e^{j\omega n} d\omega$$

Autocorrelation (W.S.S.):

$$r_x[k] = \mathbf{E}[x[n]x[n+k]]$$

Spectrum of W.S.S. random signal x[n]:

$$S_x(e^{j\omega}) = \sum_{n=-\infty}^{\infty} r_x[n]e^{-j\omega n}$$

Spectrum of filter output y[n], given W.S.S. random signal input x[n]:

$$S_y(e^{j\omega}) = |H(e^{j\omega})|^2 S_x(e^{j\omega})$$