Score:

EEE-424 Digital Signal Processing: Grand Quiz 2010

Duration: 60 minutes
Instructions: No calculators, book or notes allowed. SHOW YOUR WORK! No credit for results without explanations or steps!!

Q. 1

Consider the time domain signal $x[n]=1, n=\ldots,-2,-1,0,1,2, \ldots$.
Q.1a (10 pts) Show that $2 \pi \delta(\omega)=\operatorname{DTFT}\{x[n]\}$ is a solution for the DTFT of $x[n]$.

Solution : IDTFT: $x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} 2 \pi \delta(\omega) e^{j \omega n} d \omega=1 \forall n$.
Q.1b (15 pts) Determine all possible solutions for $\operatorname{DTFT}\{x[n]\}$. Explain why there is more than one solution.

Solution : DTFT is always 2π-periodic:

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} 2 \pi \delta(\omega) e^{j \omega n} d \omega=\frac{1}{2 \pi} \int_{-\pi}^{\pi} 2 \pi \delta(\omega+2 m \pi) e^{j \omega n} d \omega \forall m, n
$$

Q. 2

Consider the IIR filter $2 y[n]-y[n-1]-y[n-2]+3 x[n]-5 x[n-1]=0$.
Q.2a (12 pts) Compute the transfer function $H(z)$ of the IIR filter.

Solution : z-Tranf:

$$
2 Y(z)-z^{-1} Y(z)-z^{-2} Y(z)=-3 X(z)+5 z^{-1} X(z) \Rightarrow H(z)=\frac{-3+5 z^{-1}}{2-z^{-1}-z^{-2}}
$$

Q.2b (8 pts) Compute the corresponding frequency response $H\left(e^{j \omega}\right)$.
Q.2c (5 pts) Plot the flow diagram of the filter.

Q. 3

Consider the analog filter $H_{a}(s)=\frac{6 \Omega_{c}^{2}}{s^{2}+5 s \Omega_{c}+6 \Omega_{c}^{2}}$.
Q.3a (6 pts) Determine all poles of this system. Determine the type of this filter, explain your answer.

Solution : $s_{1}=-2 \Omega_{c}, s_{2}=-3 \Omega_{c}$.
Q.3b (12 pts) Digitize this filter by applying the Bilinear transform, where $\omega_{c}=0.2 \pi$.

Solution : Cut-off freq. conversion to setup analog filter:

$$
\Omega_{c}=\frac{2}{T} \tan (0.2 \pi / 2)=\frac{2}{T} \tan (0.1 \pi)
$$

Digital filter:

$$
H(z)=\frac{6 t^{2}\left(z^{-2}+2 z^{-1}+1\right)}{\left(1-5 t+6 t^{2}\right) z^{-2}+\left(-2+12 t^{2}\right) z^{-1}+1+5 t+6 t^{2}}, t=\tan (0.1 \pi)
$$

Q.3c (7 pts) Determine the difference equation (e.g., time domain representation) of the digital filter.

Solution : Digital filter i/o relation:

$$
6 t^{2}(x[n-2]+2 x[n-1]+x[n])=\left(1-5 t+6 t^{2}\right) y[n-2]+\left(-2+12 t^{2}\right) y[n-1]+\left(1+5 t+6 t^{2}\right) y[n]
$$

Formulas

- Discrete-time convolution:

$$
x[n] * y[n]=\sum_{k=-\infty}^{\infty} x[k] y[n-k]
$$

- Discrete-Time Fourier Transform (DTFT):

$$
\begin{aligned}
X\left(e^{j \omega}\right) & =\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \\
x[n] & =\frac{1}{2 \pi} \int_{0}^{2 \pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega
\end{aligned}
$$

- z-Transform:

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}
$$

- Bilinear transform:

$$
\Omega=\frac{2}{T} \tan (\omega / 2), H(z)=\left.H_{a}(s)\right|_{s=\frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}}
$$

