
SF-DeviL: an algorithm for energy-efficient Bluetooth

scatternet formation and maintenance

Canan Pamuk, Ezhan Karasan*

Department of Electrical and Electronics Engineering, Bilkent University, 06800 Ankara, Turkey

Received 21 July 2004; accepted 21 July 2004

Available online 11 September 2004

Abstract

Bluetooth is a short-range ad hoc networking technology, which enables formation of inexpensive personal area networks with low power

consumption. Using Bluetooth technology, a small number of closely located devices can be interconnected within a piconet. Building larger

ad hoc networks is possible by interconnecting multiple piconets to form a scatternet. As the Bluetooth topology grows from isolated piconets

to a scatternet, energy-efficiency becomes a critical issue since additional power is consumed for multi-hop routing. A scatternet should be

formed in such a way that batteries of mobile devices are efficiently used in order to lengthen scatternet lifetime.

We discuss the problem of energy-efficient topology construction and maintenance for Bluetooth scatternets. An energy-efficient,

distributed Bluetooth Scatternet Formation algorithm based on Device and Link characteristics (SF-DeviL) is presented. SF-DeviL forms

scatternets with tree topologies and increases battery lifetimes of devices by using device types, battery levels and received signal strengths.

The topology is dynamically reconfigured in SF-DeviL so that energy efficiency is maintained during the lifetime of the scatternet. It is shown

through simulations that even without performing reconfiguration the network lifetime is increased by at least 229% compared to LMS

algorithm and increased by at least 10% compared to BlueMesh algorithm in heterogeneous networks.
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1. Introduction

The widespread usage of information intensive consumer

devices necessitates introduction of networking techno-

logies for interconnection of these modules. Mobility of

devices and variety of applications have led to wireless ad

hoc networking solutions, where the network is formed

without requiring a manual configuration and a wired/wire-

less infrastructure. A short-range wireless networking

solution is useful in personal area networks to interconnect

a laptop with a mouse or a digital camera, in a smart home

network to interconnect a gateway/controller with home

appliances, in sensor networks, etc. One of the candidate

solutions for providing networking services to these types of

applications is Bluetooth.
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Bluetooth is a short-range (10–100 m) wireless ad hoc

network technology that supports both voice and data

communication [1]. Bluetooth operates in the unlicensed

2.4 GHz ISM band and employs fast frequency hopping

spread spectrum (FHSS) technique which provides robust-

ness against interference and fading. Technical features of

Bluetooth such as non-line-of-sight communication, low-

power consumption, low cost, and higher security (due to

FHSS) are the main advantages of Bluetooth over other

competing technologies, such as IrDa, IE801.11b (WiFi)

and HomeRF.

The basic network architecture of Bluetooth is a piconet,

which consists of a master and up to seven active slave

nodes. The master controls intra-piconet communication by

polling the slaves. Bluetooth also enables inter-piconet

communication by forming scatternets. Scatternet is the

network formed by interconnecting piconets through bridge

nodes. A sample scatternet architecture with different bridge

configurations is illustrated in Fig. 1. Scatternets allow
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Fig. 1. Illustration of a scatternet with bridge nodes undertaking different

roles (M/S, master in one piconet and slave in the other; S/S, slave in both

piconets; M/S/S, master in one piconet and slave in the other two).
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communication among hundreds of Bluetooth enabled

devices. Furthermore, if the scatternet allows multi-

hopping, i.e. each node does not have to be within the

transmission range of all other nodes, connectivity over

distances greater than the short radio range can be provided.

The Bluetooth standard enables formation of scatternets,

but it does not define an exact method [1]. The problem of

scatternet formation can be stated as the assignment of

master, slave and bridge roles to Bluetooth nodes and the

determination of links to be established between nodes.

Some of the factors that make scatternet formation more

challenging are mobility of devices, low computational and

energy resources of devices, devices with no prior know-

ledge about other nodes, requirement to form the scatternet

within a tolerable delay, requirement to set up each link

before data can be exchanged (due to frequency hopping

channel).

Bluetooth technology requires a solution to the scatternet

formation problem in order to be considered as a candidate

for a larger range of applications. One possible application

area for Bluetooth is low-power sensor networks. Experi-

ments conducted with Bluetooth wireless sensor networks

point out that the lack of scatternet support is a deficiency

for usage of Bluetooth in sensor networks [2–5]. It is also

indicated that the scatternet formation method needs to

make a distinction among gateways and different sensor

types during scatternet formation for preventing link

congestion and buffer overflow in intermediate sensor

nodes [3].

A wide variety of solutions for the scatternet formation

problem are proposed in the literature. Centralized algo-

rithms are not suitable for dynamic Bluetooth networks

because knowledge of neighboring nodes and their positions

is difficult to obtain on a continuous basis. Some of the

proposed algorithms are restricted to single-hop configur-

ations where all nodes are required to directly communicate

with each other. The topologies formed by different

algorithms also demonstrate variations such as tree or

mesh formations.

Energy efficiency is one of the most important aspects of

Bluetooth operation since mobile devices rely on batteries.

Battery depletion for a given device is undesired from that

specific user’s perspective, and it may also require
reconfiguration of the whole topology when the remaining

network becomes disconnected. Energy efficiency can be

measured in terms of the lifetime of a scatternet, which is

defined as the duration until one of the Bluetooth devices

exhausts its battery. Both the constructed topology and

routing decisions play an important role on the lifetime of

the scatternet. Possible methods for lengthening scatternet

lifetime are energy-efficient topology construction, dynamic

reconfiguration, power-aware routing and scheduling.

In this paper, we present a multi-hop, distributed

scatternet formation and maintenance algorithm called

SF-DeviL, which efficiently manages battery powers of

devices in order to increase the scatternet lifetime.

SF-DeviL is compatible with Bluetooth specifications [1].

It uses device characteristics (class of device, battery

capacity and level) and link features (received signal

strength) together with power control, in order to achieve

energy efficiency. Master, slave and bridge roles are

assigned based on the device types of the nodes. The links

in the topology are determined such that potential links with

lower transmit power requirements are given higher priority

for establishment. Minimum transmit power for each

candidate link is obtained from the quantized measurements

of the received signal strength. One of the important features

of SF-DeviL is that slave nodes select their masters.

SF-DeviL reconfigures the scatternet topology as the battery

levels deplete and positions of devices change in order to

maintain energy-efficiency. Simulations show that

SF-DeviL increases scatternet lifetime by at least 229%

compared to the LMS algorithm [6] and by at least 10%

compared to the BlueMesh algorithm [7] in heterogeneous

networks even topology reconfiguration is not performed. In

homogeneous networks, scatternet lifetime is increased by

up to 24% compared to LMS, whereas it is decreased

compared to the BlueMesh algorithm. Lifetime is increased

further by up to 56% in heterogeneous networks and by

75–410% in homogeneous networks when the scatternet

topology is reconfigured in response to changing battery

levels.

The rest of the paper is organized as follows. Proposed

solutions for Bluetooth scatternet formation are reviewed in

Section 3. SF-DeviL is introduced in Section 4 as an energy-

efficient algorithm for scatternet formation. Scatternet

maintenance for SF-DeviL in response to depleting batteries

and mobility is described in Section 5. Simulation results are

presented for comparing performances of SF-DeviL with

other scatternet formation algorithms in Section 6.
2. Scatternet formation algorithms

Bluetooth scatternet formation has recently attracted

significant attention, where existing studies can be

classified as formation algorithms [6–12] and performance

related studies [13–16]. The algorithms for Bluetooth

scatternet formation show differences in their approaches.
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A centralized approach [8] needs extensive messaging

between nodes, and hence it is impractical to use centralized

algorithms in dynamic environments. Distributed tech-

niques provide the most appropriate solution for construct-

ing scatternets. In single-hop scatternet formation

algorithms, it is assumed that all nodes are within

communication range of other nodes [6,9]. LMS [6],

which tries to minimize the number of piconets, and TSF

[9], are distributed single-hop scatternet formation algor-

ithms that result in tree topologies, and they can maintain

topology changes such as node additions and deletions

(failures). Algorithms with multi-hop scatternets [7,10–12]

do not require the assumption that all nodes are within

communication range of other nodes, and thus they have a

wider application range.

Algorithms also differ in the resulting scatternet

topology: some with tree [6,8–11] and some with mesh

topologies [7,12]. It is shown that the optimum Bluetooth

scatternet topologies are application dependent [13]. Two

distributed, multi-hop scatternet formation protocols

resulting in tree topologies, called Bluetrees, are proposed

in Ref. [11]. A multi-hop solution, called BlueMesh, which

generates mesh topologies, is proposed in Ref. [7]. In the

BlueMesh algorithm, the scatternet is formed in two phases:

first, one and two-hop neighboring devices are discovered,

and then the piconets and their interconnection are provided

by selected gateways. This protocol assigns a ‘weight’ to

each device, which is used for selection of slaves.

A distributed, multi-hop topology construction algor-

ithm, called SF-DeviL, which forms scatternets with tree

topologies, is proposed in Ref. [10]. SF-DeviL has two

phases: each node discovers its neighbors and selects its

master in the first phase, and disconnected trees obtained

at the end of the first stage are merged in the second

phase. Battery levels and classes of devices are used to

assign roles to Bluetooth units, and received signal power

levels from neighboring devices are used for determining

the links to be established. The resulting algorithm is

shown to form energy-efficient scatternets with increased

lifetimes.

A dominating set-based scatternet formation protocol

with localized maintenance property is proposed in Ref.

[12]. The goal of this protocol is to form a scatternet with

localized maintenance such that local position changes do

not trigger global updates.

Energy-efficient techniques for routing in Bluetooth

scatternets have been investigated, and it is shown that a

considerable gain in network lifetime can be achieved by

using distance-based power control and battery level-based

master/slave switch [17]. This study assumes that all the

nodes in a piconet are within listening distance of each other

in order to avoid reconfigurations of the topology every time

a master/slave switch takes place. It is also assumed that

the distance between a master and a slave is known both to

the master and slave.
3. SF-DeviL: energy-efficient scatternet

formation algorithm

SF-DeviL forms a scatternet such that efficient usage of

device batteries throughout scatternet operation is main-

tained. Battery capacities of devices and transmission

powers for potential links are considered while forming

the scatternet. In SF-DeviL, each device selects the best

master for itself. Each device selects its own master

resulting in a tree topology with leaf nodes undertaking

slave roles, intermediate nodes being M/S type bridges and

the root node undertaking the master role.

Below, we first define the algorithm parameters, and then

the main aspects of the best master selection are described.

The SF-DeviL algorithm is explained next, and finally it is

proven that the algorithm generates connected scatternets.

3.1. Algorithm parameters

SF-DeviL quantifies device and link specific features

using two parameters: device grade and received signal

strength grade.

3.1.1. Device grade (DG)

Each device in the network is assigned a Device Grade

(DG) using the ‘class of device’ and battery level

information. The class of a device can reveal many features

of the node such as mobility, traffic generation rate and

battery capacity. For example, a laptop has a larger battery

capacity than a mobile phone, and it most likely generates

more traffic. In a sensor network, a video sensor typically

generates more traffic than a temperature sensor.

In SF-DeviL, each Bluetooth unit calculates its DG by

using the following expression:

DG Z Battery Capacity � Battery Level

CTraffic Generation Grade

where BatteryCapacity indicates the capacity of the device

battery, BatteryLevel represents the fraction of remaining

battery energy and TrafficGenerationGrade is a prediction

of the amount of traffic generated by the device. Battery

Capacity and TrafficGenerationGrade are specific to the

class of the device. Devices with larger and/or fuller

batteries and higher traffic generation rates have larger DGs.

Each Bluetooth module knows its device class, and this

information is exchanged with neighboring devices during

connection establishment by using the 24-bit class of

device/service (CoD) field in the FHS packet [1]. CoD

field consists of major and minor device class fields together

with a service class field. Some examples of major classes

defined in Bluetooth specifications are computer, phone,

peripheral, LAN/Network Access point, sensor, etc. Some

minor classes of the sensor major class are video,

temperature, motion, pressure, conductance, force, sound,

etc. This way various types of devices are identified using
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major and minor device classes. We assume that the

BatteryLevel information is also embedded onto some

reserved bits of the FHS packet. Thus, two devices that

establish a connection can calculate DGs of each other.

3.1.2. Received signal strength grade (RSSG)

Bluetooth supports power control, where transmission

power can be lowered as long as reliable communication is

provided. The power control capability for Bluetooth

modules is mandatory when the transmitted power is over

1 mW, and it is optional when transmit power is under

1 mW. Power control can be used for optimizing the system

interference and energy-efficiency. A Bluetooth transceiver

that supports power-controlled links has a receiver signal

strength indicator (RSSI) that measures the strength of the

received signal [1]. In SF-DeviL, each device assigns a

received signal strength grade (RSSG) to each neighboring

device, based on the measured RSSI for each link. RSSG is

quantized according to the strength of the received signal as:

weak (W), medium (M), strong (S) and very strong (VS).

3.2. Best master selection

Using DG and RSSG, each device chooses itself a

master, i.e. slaves choose their master based on DG and

RSSG information. The selection of the ‘best master’ is

done by comparing DG and RSSG of a discovered neighbor

with the corresponding values for the current master. The

flow chart for the BestMaster selection procedure is given in

Fig. 2 for the generic node X. The BestMaster selection is

done based on the following observations that are also

illustrated in Fig. 3:
1.
 A device with high DG is more appropriate for becoming

a master since it has higher battery capacity, battery level
Fig. 2. Flow chart for the BestMaster selection procedure.
and/or traffic generation rate. As illustrated in Fig. 3a,

a reasonable topology is constructed if each device

chooses its master as a device with higher or equal DG.
2.
 Establishing links with lower path loss provides

advantages since transmission power and interference

can be reduced by using power control. Fig. 3b illustrates

a case, where mobile phones choose a laptop, which is

closer, as their master instead of a desktop, which is

further away.

BestDevice(master, neighbor) is the procedure for

determining the most suitable master for X. The BestMaster

selection procedure chooses the better node between the

current master and a newly discovered neighbor. A

discovered neighbor is selected as the master only if it has

a larger or equal DG compared to X. This ensures that a

scenario such as the one in Fig. 3a(i) is avoided. When DGs

are equal, the device with larger number of slaves or larger

BD_ADDR (in case of equal number of slaves) is selected

as the master.

A link with RSSGZVS, i.e. a link where a very strong

signal is received, has priority over other links. This

increases the likelihood that links between devices receiving

strong signals from each other are established, so that less

power is consumed for transmitting signals, thereby

increasing the lifetime of the scatternet and also reducing

interference to other systems such as WiFi. The node master

with the largest sum of RSSG and DG is chosen as the

master. Using this rule, a closer video sensor can be chosen

as the master instead of a far away gateway.

The BestMaster selection procedure allows each device

to have a single master. This results in a tree topology where

only M/S type of bridge nodes exists, i.e. S/S bridges are not

used. The details of the algorithm are described in the next

part.
3.3. Algorithm for scatternet formation

SF-DeviL is a two-phase algorithm:
I.
 Neighbor discovery. During this phase, each node

continuously tries to discover other devices. Each time

a new neighbor is discovered, the better master for the

node is determined by choosing between its current

master and the newly discovered neighbor using the

BestMaster selection procedure. This phase ends when

the discovery timeout (discTO) is reached. At the

conclusion of this phase, each device should have

chosen a master and connected to it.
II.
 Merging. In the beginning of the second phase, each

device has either found a master, or it has declared

itself as the root of the scatternet. In the Merging

phase, paging procedures are initiated by the nodes

that have no assigned master, so that disconnected

trees resulting after the first phase, are merged.



Fig. 3. (a) Piconet (scatternet) formation based on device characteristics, and (b) scatternet formation based on link characteristics.
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This phase ends when all disconnected trees are

combined into a scatternet.

The details of these two phases are described below.
3.3.1. Neighbor discovery phase

SF-DeviL is a distributed algorithm where each device

upon initialization starts the MAIN procedure given in

Table 1. The generic device X calculates its DG and starts

device discovery by alternating between I/IS modes [1,8]

until a neighboring device Y is found. Upon establishment

of a link to node Y, X executes the ArrangeRoles(X,Y)

procedure given in Table 2.

Using the ArrangeRoles(X,Y) procedure, either the

master–slave roles for the established link X–Y are chosen,

or the link is deleted. Node X gets the BD_ADDR and DG
of Y and computes RSSG of link X–Y. The BS_ADDR and

DG are exchanged through FHS packets, whereas RSSG is

obtained from RSSI measurements during the connection

establishment procedure. X stores the entry of Y in a list,

called neighbor_list(X), where all neighboring device

information is kept.

In line 2 of the ArrangeRoles procedure, X uses the

BestMaster procedure to select itself the best master. If Y is

chosen, X frees itself from its current master and becomes

the slave of Y. If X is the inquirer (which implies that X

becomes the master of Y automatically after connection

establishment), X and Y additionally switch master/slave

roles for X to become the slave of Y. This is done to ensure

that ‘better nodes’ become masters. According to the

BestMaster procedure, Y being the best master of X implies

that Y is also a better node than X. If Y is not a better master
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Main procedure of SF-Devil
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for X, X requests Y to disconnect from itself. If both nodes

X and Y request for disconnection, the newly established

X–Y link is broken.

During the BestMaster selection, two devices are

considered as candidates for becoming the master, and the

link with the worse candidate is terminated after the

selection. Finally, each slave has a single master, resulting

in a tree topology, where intermediate nodes have M/S

bridge roles. The leaf nodes have slave roles, and the root

has the master role. Since a bridge participates in just two

piconets, it does not become a bottleneck between a large

number of piconets.

Node X continues with the discovery of neighbors,

seeking the best master for itself by comparing newly

discovered neighbors with its current master. X forms a list

of its discovered neighbors by adding the discovered

devices to its neighbor_list(X). The first phase continues

until the discovery timeout (discTO) is reached.
Table 2

ArrangeRoles procedure
The execution of SF-DeviL is illustrated by an example

in Fig. 4. The node locations are shown in Fig. 4a where

the nodes are labeled by BD_ADDR.DG. The established

links during the first phase are shown as dashed lines and

labeled by the time sequence of their establishment and the

corresponding RSSG. The values corresponding to RSSGs

are assigned as: VSZ3, SZ2, MZ1 and WZ0. Nodes A

and B are the first nodes to discover each other. They

establish link 1, which has a low path loss corresponding to

RSSGZVS, and run the ArrangeRoles procedure. By this

procedure, node A adds the entry B.4.VS to neighbor_

list(A) and node B adds the entry A.6.VS to neighbor_

list(B). Afterwards, B runs the BestMaster selection

procedure, by which it chooses node A as its best master

since DG(A)ODG(B) and node B has no previous master. If

B has been the inquirer during the connection establishment

procedure, a master-slave switch is done at link 1 since the

inquirer becomes the master by default in the Bluetooth link



Fig. 4. Illustration of SF-DeviL by an example: (a) nodes labeled as BD_ADDR.DG and dashed links corresponding to discovered neighbors labeled by the

sequence of discovery and RSSG; (b) resulting links after establishment of links 1–6; (c) resulting topology at the end of the Neighbor discovery phase and the

unconnected but heard nodes in neighbor_lists; (d) topology after the execution of the P–PS(., true) procedure in line 1 of the Semiroot procedure; (e) topology

just before the selection of the better path during the execution of the P–PS(., false) procedure in line 4 of the Semiroot procedure; and (f) resulting scatternet.
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establishment procedure. Meanwhile, node A decides that

node B is not a suitable master for itself through the

BestMaster selection procedure since DG(B)!DG(A) and

thus requests node B to disconnect from itself by line 6 of

ArrangeRoles procedure. Since node B selects node A as its

master, this disconnection request is not accepted by B, and

link 1 is kept for which nodes A is the master of node B.

(The established links in Fig. 4b–f are indicated by arrows

directed from slaves to masters.)

Link 2 with RSSGZW, is established after nodes B and

C discover each other, and the entry B.4.W is added to

neighbor_list(C) and C.7.W is added to neighbor_list(B).

Through the BestMaster selection procedure, node B

decides that node A is a better master for itself than node

C since the link to node A, link 1, has RSSGZVS.
Meanwhile, node C decides that node B is not a better

master for node C since DG(B)!DG(C). So both nodes B

and C request to disconnect and link 2 is terminated (line 6

of ArrangeRoles procedure).

Link 3 is kept where node D chooses node E as its best

master, because node D has no previous master. Likewise,

link 4 is also kept where node F chooses node E as its best

master. After the establishment of link 5, D requests F to

disconnect from itself since DG(F)!DG(D). On the other

hand, node F, after executing the BestMaster selection

procedure, finds out that DG(neighbor D)CRSSG(neighbor

D)Z5C2(S) is smaller than DG(master)CRSSG(mas-

ter)Z9C1(M). Thus node F also requests node D for

disconnection and link 5 is deleted. Link 6 is also deleted

since node D selects E as a better master than G. In this case,
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Semiroot procedure
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both the DGs of the masters E and G and the RSSGs of links

3 and 6 are equal, and thus node D keeps the previously

established link. The topology formed up to this point in

time is shown in Fig. 4b.

By the establishment of link 7 that has RSSGZVS, node

D decides that node C is a better master than node E by the

BestMaster selection procedure (due to the fact that a closer

device is a better master than a far away node with higher

DG). Therefore, the D–E link is deleted, and the link C–D is

kept as shown in Fig. 4c. The first phase of SF-DeviL ends

by the timeout discTO, up to which links 1–7 are assumed to

be established in this example.
3.3.2. Merging phase

If a node has not found a master in the first phase, it

declares itself as the semiroot (this term is used for a node

that may be the actual root of the scatternet but has not

proven it yet) and runs the Semiroot procedure given in

Table 3. By this procedure, the semiroots that are accessible

within a single hop are merged first (line 1), and the
Table 4

P–PS procedure
semiroots that are accessible in multiple hops are merged

next (lines 2–6). The detection of being a semiroot or the

actual root, and merging of the disconnected trees, in case

the node is a semiroot, are done using the P–PS(X,B)

procedure given in Table 4. The Semiroot procedure in

the Merging phase of SF-DeviL is executed only by the

semiroots. Thus, at least one device goes through this

second phase.

Through exchanging messages with the tree members,

the semiroot finds out if there is any discovered node

appearing in one of the neighbor_lists of its tree members,

but not connected to the tree. The check for unconnected

discovered nodes in line 3 of P–PS procedure is done as

follows:
1.
 The semiroot X generates a packet named ‘member_

list(X)’ which contains the BD_ADDRs of all the

members of the tree and floods this packet downwards

to all members of the tree.
2.
 All members of the tree, including X, compare their

neighbor_lists with member_list(X). If there is any node
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in any of the neighbor_lists which does not exist in the

member_list(X), this node is reported back to X.
3.
 Each member has to report back to the semiroot, even if

it does not detect such a node, in which case it will send a

NULL report.
4.
 If the number of NULL reports reaching X is equal to the

number of the tree members, i.e. no such node exists, X

declares itself as the root, and SF-DeviL terminates.
5.
 At least one non-NULL report implies that the scatternet

is not formed yet, and X cannot declare itself as the root,

and it then starts to apply procedures described below in

order to get connected to these nodes.

At the conclusion of the above procedure, X either learns

that it is the root and SF-DeviL terminates, or X gets the list

of all unconnected discovered devices so that it can initiate

paging procedures to connect to these disconnected

nodes/trees.

If any unconnected node exists, X alternates between

page and page scan modes, paging all the unconnected

nodes with DGRDG(X) (line 5 of P–PS procedure). If no

unconnected node with DGRDG(X) exists, X only does

page scanning. This is done to ensure that other semiroots

are paged rather than their descendants (since tree

descendants have smaller DGs).

Each time node X connects to any of the other semiroots,

it executes the ArrangeRoles procedure. At the conclusion

of ArrangeRoles, X decides whether it will keep the link,

and if so, which node will become the master. After each

merging of trees, X goes to lines 2 and 3 of P–PS procedure

in order to check whether there are other unconnected

nodes, since the new link may have brought new

unconnected discovered devices.

When node X is not in the communication range of the

sought devices or the once discovered devices are gone, X

may not be able to establish connection with any of the

paged devices and may not be paged for a specific paging

timeout (pageTO). In this case, if X has a master (X may

have a master after merging trees), it gives up the Semiroot

procedure and reports the unconnected devices to the

semiroot of its tree and exits from the Merging phase. If X

has no master, it orders all the tree members to execute the

P–PS(., false) procedure, by which all the tree members
le 5

erseLinks procedure
page the unconnected discovered devices (line 4 of Semi-

root procedure). This is done in order to provide multihop

connectivity among disconnected trees whose semiroots are

not in communication range of each other. All members of

the tree page the unconnected discovered devices (also

execute PS alternately) for a period of pageTO. If

an unconnected device Y is found by the tree member M,

a connection is established through that member M (lines

9–10 of P–PS procedure). If the link M–Y is the first link to

be established merging the two trees, both X and the

semiroot of Y, need to approve the establishment of this link

and the ReverseLinks procedure given in Table 5 is

executed. The slave of link the M–Y determined by the

BestMaster selection procedure, requests its semiroot for

master/slave switching at all intermediate nodes from its

semiroot down to itself.

On the other hand, if X and the semiroot of Y are already

connected via other tree members, a comparison of paths

connecting these two semiroots is done and the establish-

ment of the M–Y is approved if link M–Y belongs to the

‘better’ path. The ‘better’ path is defined as the one with the

smaller number of intermediate nodes (in case of equal

number of intermediate nodes, the path with a larger

average DG, which is computed by averaging the DGs of all

nodes on the path). If the establishment of link M–Y is

approved, the previous path is cut by deleting the link for

which the node with the smallest DG is a slave. In the case

that there is a tie, the link with the highest path loss is

deleted among such links. This way, two disconnected trees

are connected via the ‘better’ path, enhancing energy-

efficiency where the semiroots are not within communi-

cation range of each other.

Each connection to an unconnected discovered device

provides merging of disconnected trees and SF-DeviL

terminates when no more unconnected device exist. If none

of the unconnected discovered devices is found while

execution of line 5 of P–PS(., false) procedure up to the

timeout pageTO, X declares itself as the root, and SF-DeviL

scatternet formation terminates.

The Merging phase of SF-DeviL is illustrated by the

example in Fig. 4. At the conclusion of the Neighbor

discovery phase, nodes B, D and F have chosen a master

as shown in Fig. 4c and they exit the MAIN procedure of
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SF-DeviL. Nodes A, C, E and G that have no masters

execute the Semiroot procedure. Through line 1 of this

procedure, A, C, E and G find out that there are

unconnected discovered neighbors as shown within

boxes in Fig. 4c. Thus A, C, E and G find out that they

are not the actual roots, just semiroots. Node A, finds out

that C.7.W, which is an entry in neighbor_list(B), is

an unconnected discovered node. Thus, node A alternates

between page and page scan modes in which it pages C

since DG(C)RDG(A). Likewise, node C discovers that B,

E, F and G are unconnected discovered nodes and pages

nodes E and G that have DGRDG(C). This is done to

ensure that node C pages E, which is the root of the tree

instead of F, which is a member of a tree. Node G finds

out that D is an unconnected discovered node but does

only page scanning since DG(D)!DG(G). Similarly, node

E finds out that D is an unconnected discovered node, and

it only executes page scanning. The semiroots execute the

P–PS(., true) procedure in line 1 of the Semiroot

procedure in order to merge the disconnected trees.

While C is paging E and E is in page scan mode, assume

that link 8 is established as shown in Fig. 4d. By the

ArrangeRoles procedure, this link is kept, and E becomes

the master of C since DG(E)ODG(C). The establishment of

link 8, i.e. merging of two disconnected trees, results in new

unconnected discovered nodes for node E (line 3 of P–PS

procedure). Node E learns that G is an unconnected

discovered node, and node E alternately page scans and

pages node G since DG(G)RDG(E). Assuming that link 9 is

established next, node E becomes the master of G since the

device with larger number of slaves, in case of equal DGs,

becomes the master. Link 10 which is established next is

deleted since C has a current master, E, which is a better

master than node G (the DGs and RSSGs of E and G are the

same, thus the link to the current master is kept). The

establishment of link 10 merges previously unconnected

node G with one of the disconnected trees, resulting in a

disconnected tree with semiroot E. Assuming that the nodes

A and C are out of the communication range of each other,

node A that pages node C cannot find C through the P–PS(.,

true) procedure.

After execution of P–PS(., true) for a duration of

pageTO, node A finds out that C is still the unconnected

discovered node. Nodes C, E and G discover that B is the

only unconnected discovered node (line 2 of the Semiroot

procedure). Nodes C and G that have found a master exit

from the Semiroot procedure, while A and E execute line

4 of the Semiroot procedure. Fig. 4e illustrates how the

disconnected trees of the out of range semiroots A and E

are merged. The semiroot A and its descendant B page C,

whereas E and the descendants of E page B while entering

the page/page scan (P/PS) mode alternately. Assume that

link 11 in Fig. 4e is established first. Since this link

merges two disconnected trees, both semiroots A and E

approve link 11. The better master among A and E, which

is E, becomes the root of the merged tree, and
master/slave roles of link 1 are reversed by the

ReverseLinks procedure. Assume that link 12 is esta-

blished next. The semiroots A and E compare the paths

formed by links 11 and 12 from one semiroot to the other,

i.e. from A to E, and find out that the path formed by link

12 is better since there are fewer number of intermediate

nodes. Thus, A and E approve link 12, and link 11 is

deleted. P–PS(., false) procedure continues until pageTO

is reached, and the resulting scatternet topology formed by

SF-DeviL is shown in Fig. 4f.
3.4. Deletion of the worst slave

Each master is allowed to have a maximum of seven

active slaves. These slaves are the first discovered neighbors

that selected a particular node as their master. It is possible

that a master with seven slaves discovers an eighth neighbor

that can only be connected to the scatternet through that

specific master. In a different scenario, the link with the 8th

neighbor may have a higher RSSG than existing links with

other slaves. The procedure used by SF-DeviL in handling

these situations is described below.

In both Neighbor discovery and Merging phases, if after

a connection is established, the number slaves of a node, e.g.

X, increases to seven, X deletes its ‘worst’ slave. The

deletion of the worst slave is done as follows:
1.
 First, X determines its ‘worst’ slave by the WorstSlave

selection procedure, which is the inverse of the Best-

Master selection. Among the slaves of X, the one with

the lowest DGCRSSG sum is selected as the worst

slave. In case of a tie, the slave with lower RSSG, i.e.

more path loss, is selected as the worst slave.
2.
 Secondly, X requests the worst slave, S1, to check its

neighbor_list for other masters with DGRDG(S1). If

there is at least one such master, S1 accepts deletion of

X–S1 link and S1 initiates paging procedures to connect

to its second (or third, fourth, etc.) best master. If there is

no entry in neighbor_list(S1) with DGRDG(S1), S1

rejects deletion of X–S1 link. In this case, X tries to

delete its ‘second worst’ slave, third, fourth, and so on.

The deletion of the worst slave enhances connectivity

and energy-efficiency of SF-DeviL, by replacing better links

with previously established links.
3.5. Connectivity of the scatternet topology

The connectivity of the scatternet depends on the timeout

values: discTO, which is used to terminate the Neighbor

discovery phase, and pageTO, which is used to terminate the

Merging phase. The greater the values of discTO and

pageTO, the probability for a device to discover more

neighbors is higher, and the scatternet formation delay is

longer. We assume that these timeouts are sufficiently large
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so that adequate number of neighbors necessary to form a

connected topology can be discovered or paged.

We first prove that any single node that has discovered at

least one node of a connected node set will merge with that

set. Then, we prove that two disconnected sets of nodes will

be merged if there exists a pair of nodes, one from each set,

which can hear each other.

Proposition 1. Given a node w and a set of nodes S, where

nodes in S are already connected, w can be connected with

the nodes in S if and only if dv2S such that

w2neighbor_list(v).

Proof. If node w is not in any neighbor_list of nodes in set S,

then none of the members of S are in neighbor_list(w).

Since w has no member of S in neighbor_list(w), it cannot

select itself a master that belongs to S. Likewise, none of the

nodes in S can select w as a master. This results in w being

disconnected from S.

Suppose now that w has discovered at least one member

of S, node v, at some time. In this case, three situations may

occur:

Case (1). If w selects v as its best master, after executing

the ArrangeRoles(w,v) procedure, w keeps the link to v

through which w becomes connected to S.

Case (2). If v selects w as its best master, and if v is the

semiroot of S, then w becomes connected to S as the semiroot

of S. But if v is not the semiroot of S, then after executing the

ArrangeRoles(w,v) procedure v keeps the link to w and

deletes the link to its current master, which results in nodes w

and v becoming disconnected from S. This causes the

formation of two disconnected trees: S and Svw (Svw contains

nodes v and w only). In the Merging phase, the semiroot of S

will discover v to be an unconnected discovered node,

whereas the semiroot of Svw, which is w, will discover ex-

master of v to be an unconnected discovered node (line 3 of

P–PS procedure). If DG(ex-master of v)RDG(w), the

semiroot of Svw, which is w, will page ex-master of v until

pageTO is reached. Likewise, if DG(v)RDG(semiroot of S),

the semiroot of S will page v until pageTO expires (line 5 of

P–PS procedure). Two situations may occur at this point: (a)

if ex-master of v is a semiroot, it will be page scanning while

w is paging it, and a connection between w and the ex-master

of v will be established after by the P–PS(., true) procedure in

line 1 of the Semiroot procedure (assuming that pageTO is

large enough); (b) if the ex-master of v is not a semiroot, it

will not be listening for the pages. Thus the sets S and Svw

remain disconnected after execution of line 1 of the Semiroot

procedure. The semiroots of S and Svw move to line 4 of

Semiroot procedure, since v is an unconnected discovered

node for the semiroot of S, and ex-master of v is an

unconnected discovered node for w. In line 4 of the Semiroot

procedure, the semiroot of S orders all its descendants,

including ex-master of v, to alternately page v and execute

page scan. Likewise, w orders v to alternately page and page

scan for a period of pageTO. Consequently, either node v

establishes a connection to any member of S, or ex-master of
v establishes a connection to any member of Svw.

Master/slave switches take place at nodes from the slave of

this connection upto the semiroot of the slave and node w

becomes connected to S by the ReverseLinks procedure.

Case (3). If neither w nor v is selected as the best master

for each other, w–v link is broken by the ArrangeRoles(w,v)

procedure. This results in the same case as 2, explained

above. ,

Having proven that a single node discovered by any

member of a tree is connected to that tree at the end of SF-

DeviL, we will now prove that any two disconnected trees

will be merged if there exists a pair of nodes that discovered

each other.

Proposition 2. Given two disjoint sets of nodes S1 and S2,

where nodes in S1 and S2 are already connected among

themselves, S1 and S2 can be merged if and only if dv2S1

and dw2S2 such that w2neighbor_list(v).

Proof. The three cases explained in Proposition 1 are

possible again.

Case (1). Node v chooses w as its master and becomes

connected to S2, resulting in two sets S2gv and S1/v.

Case (2). Node w chooses v as its master and becomes

connected to S1, resulting in the two disconnected sets

S1gw and S2/w.

Case (3). None of v and w chooses the other as best

master.

In all three cases, at least one node in both disconnected

sets have at least one unconnected discovered node in its

neighbor list. Thus, these disconnected sets are merged

the same way as explained in Case 2 of the Proof of

Proposition 1. ,
4. Topology maintenance in SF-DeviL

The energy-efficient scatternet formation protocol

SF-DeviL is extended in this section to handle topology

maintenance due to decreasing battery levels and mobility.
4.1. Maintenance with depleting battery levels

Scatternet topology is reconfigured by SF-DeviL when

battery levels are depleted. If BatteryLevel of a device

(except for leaf nodes) reaches a threshold value, a

scatternet update request is sent to the root. The root orders

all members to re-calculate their DGs and collects the

updated DGs from all descendants. The root sends a packet,

which includes BD_ADDR and DGs of all tree members, to

its descendants. Upon receiving this packet, each tree

member starts paging and page scanning devices with

higher or equal DGs. This way the devices with decreasing

battery levels are pushed downward towards the leaf

positions in the tree to increase their battery lifetimes.



Table 6

Quantization of RSSG-based nominal received powers

Nominal received power (NRP) RSSG

K30 dBm%NRP VS (very strong)

K40 dBm%NRP!K30 dBm S (strong)

K50 dBm%NRP!K40 dBm M (medium)

NRP!K50 dBm W (weak)
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4.2. Maintenance with mobility

SF-DeviL scatternets are updated also in response to

node deletions and additions as explained below:

Node deletions. A master receiving no reply from one of

its slaves for a specific number of times, starts P/PS by

paging that node until the paging timeout (pageTO) expires.

If no reply is received, the root is informed that the

connection with a node is lost. The root sends a packet to all

nodes and asks them to execute P/PS for finding the lost

node. Nodes that receive this packet, except leaf nodes, may

just forward this request without executing P/PS if their

traffic load is high, i.e. if they have too many packets waiting

in their transmission queues. If the lost node cannot be found

within pageTO, the node is deleted from routing tables.

Any node that has lost connection from an SF-DeviL

scatternet, executes P/PS where it first pages its master for a

duration of pageTO. If the lost node cannot find its master, it

pages any entry in its neighbor_list with DGODG(X) and

enters PS alternately. If no connection is established, the lost

node starts inquiry/inquiry scanning (I/IS), returning to

device discovery phase.

Node additions. The leaf nodes of a tree are the nodes

that have the lowest transit traffic load. They do not switch

between piconets and do not forward packets like the root

and bridges. In SF-DeviL, each leaf-master (masters that

have at least one slave as a leaf node) orders one of their

slaves, the one with the largest DG, to execute device

discovery. The leaf nodes that are assigned for device

discovery execute I/IS to allow addition of new nodes.

Consequently, the nodes that are least likely to have a

battery depletion are assigned with the additional task of

new node discovery, which in turn increases the energy

efficiency of the scatternet operation.

SF-DeviL forms scatternets in case of node deletions

occurring during the scatternet formation process. The

timeout used during the Merging phase of SF-DeviL,

pageTO, ensures that paging of a deleted (or failed) node is

not carried on indefinitely.
Fig. 5. Scatternet lifetime comparison of SF-DeviL with LMS and BlueMesh
5. Simulation results

A CCC-based simulator compliant with Bluetooth

specifications [1] is developed in order to evaluate the

performance of SF-DeviL. The lifetime, number of

piconets, network diameter, average number of hops

between source–destination pairs, average link length and

formation delay of SF-DeviL are compared with the tree

structured LMS [6] and mesh structured BlueMesh [7]

scatternets. The effects of changing discTO on SF-DeviL

scatternet formation and maintenance performance are also

investigated. Two different networking scenarios are

considered in this study: a network with identical devices

(corresponding to a homogeneous sensor network) and a

network with devices of different classes (corresponding to

multiple PANs or a heterogeneous network).

In the simulations, nodes are randomly distributed in

an area of 10 m!10 m. Although SF-DeviL supports

multi-hop operation, nodes are positioned such that all

nodes can communicate with each other since this is

required by the LMS algorithm. For a given number of

nodes, the averages of the performance metrics obtained

for five randomly generated node locations and traffic

patterns are reported.

The following classes of devices are used: laptops,

mobile phones, PDAs, headsets, peripherals and sensors.

The devices are initially assigned with full batteries. At each

node, traffic is generated randomly with a rate proportional

to the TrafficGenerationGrade that is assigned to each

device based on the kind of traffic it generates.
algorithms when devices are of: (a) different types and (b) same type.



Fig. 6. Scatternet lifetime of SF-DeviL with and without topology maintenance when devices are of: (a) different types and (b) same type.
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Power consumed for transmission/reception at each slot

is taken as Ptransmit for transmission and Preceive for

reception. Power consumed in the standby mode is ignored.

Based on the specifications of Bluetooth chips currently

available in the market, the maximum transmit power and

Preceive are assumed to be equal. Power control is done at

each node assuming a receiver sensitivity of K60 dBm. We

assume that Ptransmit can be reduced by at most 30% by

the power control. The following path loss model is used

[18]:

PLðdÞ Z PLðd0ÞC10g logðd=d0ÞCXs

where PL(d) denotes the path loss, in dB, for a path of length

d, PL(d0Z1 m)Z30 dB, gZ2.5, XsZN(0,s) with sZ5 dB.

RSSGs of links are quantized as given in Table 6. In this

table, the nominal received power corresponds to the

received power level when the maximum transmit power

is used.

We assume that nodes are fixed, and the topology is

reconfigured only in response to battery level depletions.

Each device, other than the leaf nodes, initiates a scatternet

update when its battery is halved, i.e. BatteryLevel%1/2.

For the implementation of the BlueMesh algorithm, the

BD_ADDR of devices are assigned as weights. Routing in
Fig. 7. Percentage of total update duration.
the BlueMesh scatternets is done via the shortest paths

computed by Dijkstra’s algorithm.

The average scatternet lifetimes of SF-DeviL without

topology maintenance are compared in Fig. 5 with the LMS

and BlueMesh algorithms, as a function of the network size,

for heterogeneous and homogeneous networks. Two differ-

ent values of discTO are used commonly for SF-DeviL and

BlueMesh. For different device types, the lifetime is

increased substantially by 229–6314% with respect to the

LMS algorithm, whereas the lifetime is increased by

10–154% for discTOZ5 s and 19–66% for discTOZ10 s

with respect to the BlueMesh algorithm. When all devices

are of the same type (homogeneous network), the lifetime is

still increased by 1–24% compared to LMS. For the

homogeneous network, BlueMesh increases the lifetime by

up to 86% for discTOZ5 s and up to 81% for discTOZ10 s

with respect to SF-DeviL. This is due to the fact that SF-

DeviL forms the scatternet by making use of RSSG only,

since all devices have the same DG during the initial

formation of the scatternet. Since the tree topology generated

by SF-DeviL typically has a larger number of bottleneck

nodes compared with the mesh topology of BlueMesh, the

network lifetime decreases for the homogeneous network.

Fig. 6 shows the effect of scatternet maintenance due to

battery level depletions on scatternet lifetimes of SF-DeviL
Fig. 8. Number of piconets.



Fig. 9. Network diameter.
Fig. 11. Average length of links in the scatternet.
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for different values of discTOs. For different device types,

topology maintenance increases lifetimes of large scatter-

nets. The effect of maintenance is more pronounced in the

homogeneous network where an increase of 75–410% is

observed with respect to SF-DeviL without scatternet

update. When the scatternet topology is reconfigured in

response to depleting battery levels, SF-DeviL achieves

lifetimes that are significantly higher than the BlueMesh

algorithm even for the homogeneous network.

These results show that SF-DeviL increases lifetime for

both homogenous and heterogeneous networks, but more

for the heterogeneous case. It is observed in the simulations

that batteries of leaf nodes are the first ones to be depleted

for some of the relatively small-sized heterogeneous

networks, since devices with higher DGs are assigned as

the root and bridge nodes. Since leaf nodes cannot trigger

topology updates, the network lifetime does not improve

significantly with maintenance. When the network becomes

larger, the nodes in the upper layers of the tree topology are

carrying more transit traffic, and these nodes become more

likely to trigger topology reconfigurations. Thus scatternet

updates in response to decreasing battery levels provide

more significant lifetime improvements for larger sized

heterogeneous networks.
Fig. 10. Average number of hops.
Average lifetimes of SF-DeviL scatternets for different

values of discTO exhibit similar behavior. Large discTO

results in longer I/IS intervals and more battery dissipation

during discovery, which may decrease the lifetime in some

cases. On the other hand, with a small discTO, e.g.

discTO!5 s, a smaller fraction of neighboring devices

can be discovered and a connected scatternet topology

cannot always be formed. Simulations show that with

discTOZ5 s, 50–70% of the neighbors are discovered,

whereas with discTOZ10 s, almost all neighbors can be

discovered.

The total time required for topology updates as a

percentage of the scatternet lifetime is shown in Fig. 7,

which is at most 0.012% of the scatternet lifetime.

The maximum rate of topology updates occurs for the

50-node network, which is 2.9 updates/hour.

SF-DeviL, unlike LMS, does not have the explicit goal of

forming scatternets with small number of piconets. As shown

in Fig. 8, the number of piconets with LMS is smaller than

SF-DeviL, and there is not a significant difference in the

number of piconets when different values of discTO are used

with SF-DeviL. SF-DeviL forms scatternets with smaller

number of piconets compared with the BlueMesh algorithm.

The network diameter, defined as the maximum number

of hops between two nodes, is slightly lower for SF-DeviL
Fig. 12. Scatternet formation delay.
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compared to the LMS algorithm, and larger compared with

the BlueMesh algorithm, as shown in Fig. 9. The average

number of hops between source–destination pairs is shown

in Fig. 10. The average number of hops in SF-DeviL is

smaller than LMS and larger than BlueMesh. The network

diameter and the average number of hops for BlueMesh are

smaller than SF-DeviL since the mesh topology of Blue-

Mesh provides larger nodal degrees and a denser

connectivity.

SF-DeviL forces each node to connect to the closest node

with the highest DG. For this reason, the average distance of

links is smaller compared to LMS and BlueMesh as shown

in Fig. 11. As the number of nodes increases, the nodal

density increases resulting in shorter links. SF-DeviL

scatternets formed by discTOZ5 s contain longer links

compared to the case of discTOZ10 s since only a subset of

neighbors is discovered by each node. Shorter links result in

less transmit powers and less interference for other wireless

technologies such as IEEE 802.11b which also uses the ISM

band.

In Fig. 12, the formation delay for SF-DeviL is shown

as a function of the network size for different values of

discTO. We observe that the formation of the scatternet

takes longer than LMS and slightly shorter than Blue-

Mesh. The connection delay for SF-DeviL increases with

the network size due to the increase of number of

discovered neighbors. Increasing discTO increases con-

nection delay, thus there is a trade-off between

discovering more neighbors and formation delay. Simu-

lations show that discTOZ5 s provides a good compro-

mise between these two trends.

6. Conclusions

Energy-efficiency in scatternet formation and mainten-

ance is an important issue in developing services using

the Bluetooth technology. SF-DeviL is a tree-based

Bluetooth scatternet formation and maintenance algor-

ithm targeting low-power consumption in multi-hop

wireless networks. Power control capability, received

signal strength indication and availability of device class

information are used for energy-efficient communications.

SF-DeviL reconfigures the topology in response to

depleting battery levels. SF-DeviL produces scatternets

where a node participates in just two piconets so that

bridge nodes do not become bottlenecks between

multiple piconets.

Simulations show that using class and link character-

istics during scatternet formation and performing top-

ology maintenance in response to changing battery levels,

network lifetimes can be substantially prolonged with

respect to existing algorithms. The total time durations

spent during topology reconfiguration is only a small

fraction of the network lifetime. SF-DeviL is a viable

solution for building energy-efficient scatternets
especially in heterogeneous environments. In homo-

geneous networks, using mesh topologies instead of

trees can enhance energy-effieciency even further. More-

over, SF-DeviL also forms topologies with number of

piconets close to the minimum within reasonable

formation delays.
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