
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 26, NO. 3, APRIL 2008 13

Dynamic Wavelength Allocation in
IP/WDM Metro Access Networks

Emre Yetginer, Student Member, IEEE, and Ezhan Karasan, Member, IEEE

Abstract— Increasing demand for bandwidth and proliferation
of packet based traffic represent a challenge for today’s metro
networks, which have been traditionally designed to carry circuit-
switched connections. The problem is further complicated by the
constraints of cost efficiency and traffic adaptability, imposed by
the limited customer base in the metro area. Recently, several ar-
chitectures have been proposed for future metro access networks.
Nearly all of these solutions support dynamic reconfigurability,
however reconfiguration policies have not been fully explored yet.
In this paper, reconfiguration policies for IP/WDM metro access
networks with switching delays are considered, where dynamic
reconfiguration corresponds to dynamic allocation of wavelengths
to access nodes. Exact formulation of the dynamic wavelength
allocation (DWA) problem is developed as a Markov Decision
Process (MDP) and a new cost function is proposed to attain
both throughput efficiency and fairness. For larger problems,
a heuristic approach based on first passage probabilities is
developed and shown to yield nearly optimum performance
through simulations.

Index Terms— Metro access networks, IP over WDM, dynamic
wavelength allocation, reconfiguration, Markov Decision Process,
switching delay.

I. INTRODUCTION

THE steady increase of the Internet traffic has caused
architectural and conceptual changes in communication

networks. The infrastructure, once designed to carry legacy
voice services, is no longer able to put up with this ever
increasing packet-based traffic. Long-haul backbone networks
have been adapted to this change using the optical transmis-
sion technology and dense wavelength division multiplexing
(DWDM). In the future, core networks are expected to evolve
towards a fully optical transport network architecture [1].
Meanwhile, in the access side service rates have increased
to megabits level. With the penetration of optical fibers down
to the premises of end users, the target is to offer gigabit
per second rates directly to the customers [2]. But, metro
networks, that are in between access and core networks lag
behind in terms of speed and capacity. Hence, they constitute a
barrier for this large volume of traffic to be transmitted from
access networks to the high speed backbone networks. The
pressure from the access side forces metro networks, most of
which still rely on legacy time division multiplexing (TDM)
based technologies, into an evolutionary process [3]. High
capacity, protocol transparency, cost efficiency and dynamic
traffic adaptability are major requirements in this transforma-
tion [4].
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The proximity of metro networks to the end users differ-
entiates them from core networks. Large volumes of traffic
aggregation in core networks results in slowly changing and
hence to a large extent stable and predictable traffic patterns
[5]. Therefore, static design of the logical topology and over-
provisioning the capacity to handle traffic uncertainty prove
to be sufficient. Reconfiguration of these networks is mostly
manual and requires a time duration in the order of hours or
days. However, this is not a concern since reconfiguration is re-
quired only in case of large and persistent demand deviations,
such as the addition of new nodes to the network or network
failures. On the other hand, metro access networks serve to a
limited number of users. Hence, traffic variability is naturally
expected. Since each node of a metro access ring serves a
different district of a town, it is possible to see nearly periodic
oscillations in the traffic demand [6], [7]. These variations may
occur at different time scales. Traffic patterns may change on a
daily basis, e.g., in weekdays and weekends different portions
of the network may become congested. During working hours,
hot spots may shift from residential areas to business districts,
corresponding to a traffic variation in the order of hours.
At the extreme case, where traffic aggregation is very low,
individual flows corresponding to high-speed transactions may
cause more frequent fluctuations.

These reasons, together with the cost constraints, necessitate
a high level of traffic adaptability in metro access networks.
Most of the solutions designed for future metro access net-
works (e.g., Next Generation SONET (NGS) [8], IP/WDM
[9]) already support dynamic reconfiguration. Likewise, re-
configurability is also possible for Ethernet Passive Optical
Networks (EPON) that are seen as a promising technology
for future access networks [10]. However, development of the
methods that can be used for dynamic reconfiguration is still
an open research problem.

Dynamic resource allocation has been studied for various
problems and under different settings. There are several work
in the context of polling systems, where the problem is
to find an optimum schedule for a single server to visit
several queues. For the case without switching overheads, the
optimum solution is the cµ-rule [11], which gives preemptive
priority to the queue for which the product of the holding cost
(c) and the service rate (µ) is largest. But no general result is
available for the case with switching overhead. The problem
studied in this paper contains multiple servers (wavelength
channels) and preemption is not applicable since it is necessary
to preserve connectivity at all times.

A heuristic reconfiguration policy for IP/WDM access net-
works is proposed in [12]. The main idea is to reconfig-
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ure wavelengths to balance the load on each wavelength.
Simulation results obtained for instant switching case show
considerable improvement compared to static allocation. In
this paper, we provide an exact formulation for a similar
problem considering also the effects of switching delay and
using the information about the flow arrival and departure
processes. We also propose a heuristic method and compare
it with the algorithm presented in [12].

A different approach to the dynamic wavelength allocation
(DWA) problem in single-hop broadcast lightwave networks
is given in [13], where the reconfiguration problem is decom-
posed into two subproblems: “How to reconfigure” and “When
to reconfigure”. Given the traffic demand between each pair of
nodes in the network, the first question is answered using the
Generalized Longest Processing Time (GLPT) algorithm. The
second part of the problem is solved based on the concept
of “degree of load balancing (DLB)” which measures the
distance of the system to the ideally balanced situation. As-
suming that DLB changes over time according to a Markovian
process, the problem is modeled as a Markov Decision Process
(MDP), the solution of which yields a threshold type policy.
Our approach differs from this work in several aspects. First,
we try to jointly solve the problems of “How to reconfigure”
and “When to reconfigure”. Besides, a network where the
number of channels is smaller than the number of nodes is
studied in [13], hence a single channel is time-shared between
multiple nodes. In the DWA problem studied here, each node is
assigned one or more channels which are not shared with other
nodes. Moreover, in [13], a reconfiguration action may result
in multiple switches which take the network into the most
balanced state possible. The methods considered in this paper
aim to gradually improve the load balance in the network by
making a single switch at each decision instant, thus limiting
the effect of switching overhead on the network performance.
In [13], the cost of reconfiguration is calculated based on
a pre-defined function using the number of re-tunings as a
parameter, whereas in this paper the reconfiguration cost is
modeled as loss of service during the switching delay.

A conceptually similar resource allocation problem is stud-
ied in the context of computing grid architectures in [14].
In that work, resources are the servers and competing jobs
join separate queues based on their type. The available servers
are grouped into clusters to serve different types of jobs. The
servers are dynamically switched between clusters in order to
minimize the holding cost of jobs in the system. A dynamic
programming formulation is developed for the problem and
optimal switching policies are obtained. A heuristic method
is also proposed and shown to produce efficient resource
utilization compared to static allocation.

In this paper, we develop an MDP model for the DWA
problem with switching delays. We also propose a new cost
function to be used with this model and compare it with cost
functions available in the literature. Through simulations, it
is shown that this new cost function effectively combines the
throughput and fairness objectives. The results for a 3-node
network suggest that it is possible to obtain 25% to 35%
improvement in throughput with respect to the static allocation
and a significant gain in fairness. For larger networks, we
introduce a heuristic approach based on the proposed cost

Fig. 1. IP/WDM network architecture

function and utilizing first passage probabilities. The heuristic
inherently takes into account the switching delays associated
with the reconfiguration actions. It is shown that the heuristic
method performs close to the optimum policy in terms of
throughput. The optimality gap is below 5% for moderate
load and it decreases further as the network load increases.
Comparisons with other heuristics available in the literature
demonstrate the effectiveness of the proposed method for
different network loads, average flow sizes and under non-
stationary traffic conditions.

The rest of the paper is organized as follows. In Section
II, IP/WDM metro access network architecture and DWA
problem are introduced. In Section III, MDP formulation
is presented along with the numerical results obtained with
different cost functions. The heuristic reconfiguration policy
is developed in Section IV and compared with other heuristic
approaches in Section V.

II. DWA FRAMEWORK FOR IP/WDM METRO ACCESS

NETWORKS

Traditional metro networks have been built using a two-
level hierarchy comprising metro access and metro core [9],
as shown in Fig. 1. Metro access is also called as collector
ring or metro edge, and spans a distance of 20-65 km. The
traffic from the last mile networks and business is collected
via distribution networks and aggregated at the central offices
(COs). Metro access network connects these COs to each
other and to the metro core through hub COs. Traffic in the
metro edge has a hubbed traffic pattern and rings are natural
choices of implementation in this part of the network [4].
Metro core, also known as regional network, in turn provides
the connectivity between the hub COs and to the long haul
backbone.

An IP/WDM metro access network consists of a single
feeder ring with up to 10-20 access nodes (AN) each located
at a CO. The ring may be implemented using a single fiber or
multiple fibers, where each fiber supports tens of wavelengths.
Last mile networks and high speed customers are connected
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to the feeder ring through ANs. The feeder ring itself is
connected to the metro core network through a hub node
located at the Hub CO. This hub node is responsible for
the resource management of the ring. It allocates separate
wavelength channel(s) to access nodes. Each AN aggregates
traffic from distribution networks and transmits it to the hub
node on the wavelengths assigned to itself. Finally, the hub
node forwards the traffic to the metro core network. For the
downlink case, the traffic follows the reverse path.

Each AN consists of an IP router and an optical add
drop multiplexer (OADM). AN is also equipped with tunable
receivers and transmitters, so that wavelengths assigned to
ANs can be changed dynamically by tuning these transmitters
and receivers in order to support DWA.

For the IP/WDM network under consideration, resource
management corresponds to the allocation of wavelengths
to access nodes. In the simplest case, wavelengths can be
assigned to access nodes based on traffic forecasts and are
not changed in time, which is called “static allocation”. For
instance, if all the nodes have the same expected offered load,
then the wavelengths should be evenly distributed between
nodes. But if the traffic uncertainty or variability is high,
static allocation strategy will be inefficient and possibly unfair.
In that case, it is a better idea to change the number of
wavelengths assigned to each node dynamically (“dynamic
allocation”) to follow the traffic fluctuations.

Dynamic allocation has an overhead due to signalling
requirements, reconfiguration of OADMs and tuning latencies
of the transmitters and receivers. During this delay period,
called the switching delay, and denoted by τ , the wavelength
channel being switched becomes unavailable. Hence, there is
a tradeoff between the switching costs and the responsiveness
of the network to the traffic changes.

In the formulation of the DWA problem, several assump-
tions and simplifications are made in this paper. First, only
the traffic in one direction is considered. This is not a
restrictive assumption because traffic to and from the hub
node is transmitted on independent set of wavelengths. Hence
a similar formulation can be used for the traffic in reverse
direction. Secondly, the local traffic between ANs is neglected.
This is a realistic assumption since observations within access
networks have shown that approximately 90% of data traffic
is originated at or destined for points outside the network
[12]. It is also assumed that the number of wavelengths is
greater than the number of ANs in the feeder ring, which is
an operational requirement for wavelength routed IP/WDM
networks. Moreover, due to connectivity requirements, each
node must be assigned at least one wavelength at any time.

Reconfiguration actions are only allowed at the flow arrival
and departure times. For simplicity, at each reconfiguration
epoch at most one wavelength switch is permitted. Moreover,
if the switching of a wavelength has not been completed,
another switch cannot be initiated. Thus, at any time at most
one wavelength can be in the switching state.

At each AN, a packet scheduler is used, so that each of the
flows at a node uses a fair share of the bandwidth available at
that node, and a flow may use the capacity of multiple wave-
lengths. With this assumption, the total bandwidth allocated
to a node can be seen as a single channel with an aggregated

Fig. 2. Logical view of the IP/WDM network

capacity of all channels. Moreover, flows are assumed to be
elastic, i.e., they do not have any peak rate, so that they can
efficiently utilize the available capacity.

Under these assumptions, the DWA problem can be stated
as the maximization of the network efficiency by deciding
on a reconfiguration action at each flow arrival or departure
event. The action may be to keep the current wavelength
allocation intact or to change the allocation by switching a
single wavelength between a pair of nodes.

III. EXACT SOLUTION OF THE DWA PROBLEM

Exact solution of the DWA problem can be obtained by
modeling the system as a Markov chain whose state transition
probabilities depend on the reconfiguration actions taken. The
resulting process is called a Markov Decision Process (MDP)
[15] and can be solved using numerical techniques, such as
value iteration.

A. MDP Model

The abstract view of the network used in MDP model devel-
opment is illustrated in Fig. 2. The network has N nodes and
W wavelengths where W is assumed to be larger than N . To
each node i, flows arrive according to an independent Poisson
process with rate λi. Flow sizes at node i are exponentially
distributed with mean B/µi, where B is the bandwidth of a
single wavelength channel. Total bandwidth allocated to node
i is the product of the number of channels assigned, wi, and B.
Hence, service rate of flows at node i is wi×µi. The switching
delay, τ , is exponentially distributed with mean 1/σ.

The state of the network, s ∈ S, can be represented by the
triplet s = (f ,w, k). f = [fi] is the flow vector, where fi is
the number of flows at node i, w = [wi] is the wavelength
vector, where wi is the number of wavelengths allocated to
node i, and k indicates the node to which a wavelength is
currently being switched. If no switching action is underway, k
is 0. Valid states are s = (f ,w, k) such that I+(k)+

∑
i wi =

W , where I+(k) = 1 if k > 0, I+(k) = 0 otherwise.
As is the action space consisting of the valid actions that

may be taken at state s. Since at most one switch at a time is
allowed, if there is already a wavelength being switched, i.e.,
if k > 0, As = {a0}, where a0 corresponds to no-switching.
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Otherwise, As consists of a0 and subset of actions alm, which
correspond to switching one wavelength from node l to node
m, such that node l has more than one wavelength allocated.
That is,

As =
{ {a0}, if k > 0

{a0} ∪ {alm | wl > 1}, if k = 0.
(1)

Transition rates from state s = (f ,w, k) to state s′ =
(f ′,w′, k′) under action a is denoted as qss′(a). Transition
rates when no switching is performed are given as

qss′(a0) =

⎧⎪⎪⎨
⎪⎪⎩

λi, if f ′ = f + ei

wiµi, if f ′ = f − ei

σ, if k > 0 and k′ = 0 and w′ = w + ek

0, otherwise,

where ei denotes the unit vector which has 1 in position i and
zeros elsewhere. When the action is to switch a wavelength
from node l to node m (alm), there is an instant transition from
state s = (f ,w, k) to state s′ = (f ′,w′, k′), with w′ = w−el

and k′ = m.
The cost function is represented as g(s, a), where s is the

state and a is the action. It defines the cost per unit time,
depending on the state of the system and possibly the action
taken. The objective of the MDP is to minimize the infinite
horizon total discounted cost defined as:

lim
n→∞ E

{∫ tn

0

e−βtg (s (t) , a (t)) dt

}
,

where tn is the occurrence time of the nth state transition and
β is the discount rate [16].

In order to solve the continuous time MDP formulation,
it is convenient to develop an equivalent discrete time pro-
cess and use dynamic programming techniques. In the DWA
problem, the control actions (wavelength switching) is applied
at discrete times (flow arrival or departure instants), but the
cost is continuously accumulated. Moreover, the time between
successive control choices is variable and depends on the
current state and the action taken, resulting in non-uniform
transition rates. To develop the discrete time equivalent pro-
cess, the transition rates should be made uniform regardless of
the state and the action. To transform the process into a process
with uniform transition rates, the technique of uniformization
is used [16]. The basic idea of uniformization is to introduce
fictitious transitions from a state to itself, so that the transitions
that are slow on the average are speeded up with the added
transitions.

The uniform transition rate, ν, should be greater than the
maximum transition rate of the original process. Hence, for
the continuous time MDP at hand, a suitable choice may be

ν =
N∑

i=1

λi + Wµ + σ

where µ = max(µi). Next, an equivalent discrete time Markov
chain is constructed with the following transition probabilities:

pss′(a) =
{

qss′(a)/ν, if s′ �= s
1 − qs(a)/ν, if s′ = s

where qs(a) =
∑

s′ qss′(a).

Fig. 3. Infinite Markov chain

Fig. 4. Exponential distribution

The discount factor for the resulting discrete-time Markov
chain is

β̃ =
ν

β + ν

The cost per stage is calculated as

g̃(s, a) =
g(s, a)
β + ν

Then, Bellman’s equation takes the form

J(s) = min
a∈As

[
g̃(s, a) + β̃

∑
s′

pss′(a)J(s′)

]
(2)

where J(s) is the cost associated with state s for a given
policy [16].

B. Solution of the MDP Model

The solution of the set of linear equations in (2) results
in the value of each state and the optimum switching policy,
which is the action to be taken at each state. The number
of flows at each node is a process described by the Markov
chain depicted in Fig. 3, where the service rate µ depends on
the number of wavelengths allocated to the node. Since this
chain is infinite, the size of the state space, S, and therefore
the number of equations in (2) is infinite. In order to use
numerical solution techniques, the number of equations should
be made finite. This can be accomplished by truncating the
number of flows at each node at F . A simple truncation may
be inadequate if the probability of states beyond F is not
negligible. For this reason, it may be a better idea to match
the first moment of the sojourn time in the truncation process.

For the infinite Markov chain with uniform transition rates,
sojourn time at the set of states ≥ F , for any value of F , is
exactly same as the busy period in an M/M/1 queue. The first
moment (i.e., mean) of this distribution is

m1 = E[T ] =
1

(1 − ρ)
1
µ

,

where ρ = λ/µ.
The first moment of the sojourn time distribution can be

matched using a simple exponential distribution (Fig.4) with
mean 1/α = m1 [17]. The resulting chain is shown in Fig. 5,
where the state F+ corresponds to the set of states with
number of flows equal to or greater than F . After truncation,
the resulting finite-state discrete-time MDP is solved using the
method of value iteration [18].
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Fig. 5. Truncated Markov chain with first moment matched

C. Cost Function

Cost function is the key component of any optimization
problem and it should be designed in accordance with the
objectives of the optimization. For the DWA problem at hand,
the primary goal is to maximize the throughput which is
equivalent to minimizing flow completion times. Meanwhile,
it is also desirable that each flow uses a fair share of the
capacity available. Following cost functions are considered in
this paper.

1) Flow Sum (FS)
In resource allocation problems, it is usually assumed
that each job waiting or being serviced in the system
incurs a holding cost per unit time depending on the
relative importance of the job type [14]. If each type
of job has equal importance, then the holding cost can
simply be defined as the sum of the number of jobs

g(s, a) =
∑

i

fi. (3)

With this definition, the total cost is equal to the sum
of flow completion times. Hence, FS aims to minimize
the sum of flow completion times which is equivalent
to maximizing average throughput.

2) Normalized Flow Sum (NFS)
This cost function is derived from the heuristic method
of [12]. Although not explicitly stated, this heuristic
method can be seen as an approximation to the optimum
policy obtained with the cost function

g(s, a) =
∑

i

fi

wi
.

The motivation behind NFS is to balance the load be-
tween wavelength channels to achieve high throughput
and fairness.

3) Normalized Squared Flow Sum (NSFS)
In this work, we propose the following cost function

g(s, a) =
∑

i

f2
i

wi
.

The basic idea behind NSFS is to minimize both the
flow completion times and load imbalance between
wavelength channels in order to obtain better results in
terms of throughput and fairness.

These cost functions may be compared based on the fol-
lowing properties, which can be considered useful in order to
achieve the objectives of throughput and fairness.

P1. Cost of a node should be an increasing function of
number of flows at the node. This property is based
on the idea that the throughput can be maximized by
minimizing the duration of flows at each node. All of
the above cost functions satisfy this property.

Fig. 6. 3-node test network

P2. Cost of a node should be a decreasing function of
number of wavelengths assigned to the node. It is
clear that, increasing the service rate also increases the
throughput. Moreover, this property is useful to account
for the costs associated with the unavailability of the
reconfigured wavelength during the switching period. It
is observed that this property holds for the cost functions
NFS and NSFS.

P3. Total cost should be minimum when the load is balanced
among wavelength channels. A fair service is achieved
when the number of wavelengths at each node is pro-
portional to the number of flows at the corresponding
node. Hence, it may be desirable that the cost function
attains the minimum value at this point, i.e., when wi is
proportional to fi. This property is satisfied by the cost
function NSFS as shown in Appendix I.

In the following subsection, these cost functions are used
in the MDP formulation to obtain optimum reconfiguration
policies and the performance of these policies are compared
through simulations.

D. Comparison of Cost Functions

The three cost functions are compared on a 3-node network
scenario shown in Fig. 6. In this network, there are 7 wave-
length channels. Flow arrival rates are λ, 2λ, and 4λ flows/s
to nodes 1, 2, and 3, respectively. The bandwidth of a single
channel is 10 Gpbs and the average flow size is 1250 MB.
Hence, the service rate of a flow by a single channel, µi, is 1
flows/s, for all nodes i. Average switching delay, 1/σ, is 50
ms.

Figures 7(a), 7(b) and 7(c) show parts of the optimum
policies (corresponding to states with w = [3, 2, 2] and f =
[15, f2, f3]) obtained using the cost functions considered, for
λ = 0.7 and F = 20. The x-axis corresponds to the number
of flows at node 3 and the y-axis is the number of flows at
node 2. Each cell in the matrices corresponds to a single state
and the value of the cell is the optimum action to be taken at
that state. The switching actions, aij are labeled on the figures
as ij meaning that a switch from node i to node j is to be
performed. No switching decisions, a0, are labeled as 0.

FS aims to minimize the total duration of flows in the net-
work and it does not consider load balancing at all. Consistent
with this objective, it prefers to switch a wavelength from a
node when the number of flows at that node is very low, as
can be observed from Fig. 7(a). Since the number of flows at
node 1 is large for all states shown, the policy does not make
switches from node 1.
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(a) Optimum policy for FS (b) Optimum policy for NFS (c) Optimum policy for NSFS

Fig. 7. Optimum switching policies for the 3-node test network, for states with w = [3, 2, 2] and f = [15, f2, f3] .

The policy obtained using NFS is shown in Fig. 7(b). It is
observed that this policy makes more switches compared to
FS policy. In addition to the actions taken when the number of
flows at a node gets small, this policy also makes switches to
achieve load balancing between wavelengths. This is evident
from the fact that, for high number of flows at nodes 2 or 3,
a wavelength is switched from node 1.

Fig. 7(c) plots the policy obtained with NSFS. This policy
has a similar structure with the NFS policy, but the area
corresponding to no action (a0) is smaller. So, it may be
concluded that this policy makes more switches in order
to balance the load at each node. In order to evaluate the
performance of each policy, simulations are performed where
λ is changed from 0.1 to 0.9. Each simulation is repeated
10 times and the average values are plotted. Throughput and
fairness are used as performance metrics. Slowdown is used
as a normalized measure of the throughput efficiency [12]. It
is defined as the ratio of actual flow duration to the time that
would be required if the flow was served by a single dedicated
wavelength channel. The average slowdown experienced by all
flows is used as the throughput performance metric. Holding
cost defined in (3) is also used to measure the throughput
performance [14]. To assess the fairness, the “fairness index”
proposed in [19] is used, which takes values in the interval
(0,1], and it is defined as:

f(x) =
[
∑n

i=1 xi]
2

n
∑n

i=1 x2
i

where n is the total number of flows and xi is the slowdown
experienced by the ith flow.

For comparison, we also use the static wavelength alloca-
tion, where the channels are assigned based on average traffic
demands and they are not reconfigured. For this scenario,
the static allocation corresponds to allocating 1, 2, and 4
wavelengths to nodes 1, 2, and 3, respectively. Fig. 8(a) plots
the slowdown obtained using each of the switching policies
normalized with respect to the slowdown experienced under
the static policy. As a first observation, it is seen that the
dynamic policies yield significantly better slowdown perfor-
mance than the static policy. Among the dynamic policies,
NSFS achieves the minimum slowdown for all values of
network load. The results obtained with FS are close to NSFS.

On the other hand, the slowdown obtained with the cost
function NFS gets worse as the network load increases.

The performances of policies in terms of fairness as a
function of the flow arrival rate are compared in Fig. 8(b).
Static policy has a clear disadvantage in terms of fairness. All
of the dynamic policies have better fairness at low load levels
but as the load increases the fairness begins to drop. Among
the dynamic policies, worst performance belongs to FS. This
is expected since FS does not consider load balancing. With
this policy, fairness drops sharply at high loads to the level
obtained by the static policy. NFS is better than FS, but NSFS
shows the best performance except at very low load levels.

Fig. 8(c) plots the holding cost obtained with each policy
normalized to the holding cost experienced under the static
policy. This graph is similar to the slowdown results. For
low load levels all of the dynamic policies achieves 30%-
35% lower holding costs compared to the static policy. The
gains obtained with FS and NSFS increase further with
the increasing load while the performance of NSF degrades
sharply. It is observed that although NSFS policy is better
than FS in terms of slowdown, the difference is negligible in
terms of the holding cost. In fact, FS policy optimizes the
holding cost and the results suggest that NSFS policy reduces
the slowdown and increases fairness without sacrificing the
holding cost objective.

Average rate of switches (switches per second) performed
by each of the policies is depicted in Fig. 8(d). The curves
corresponding to each policy has a similar pattern. Switching
rate increases with increasing load up to 0.6, and then begin
to decrease with the increasing load. At moderate loads FS
performs the minimum number of switches among all policies.
This result is related to the fact that at moderate and high load
levels, the probability of having small number of flows at any
node decreases and FS policy does not make switches unless
the number of flows at a node is very low.

In summary, it can be stated that the NSFS policy has
important advantages as a DWA method. It attains minimum
slowdown and maximum fairness nearly for all levels of
network load.
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(a) Slowdown (b) Fairness

(c) Holding Cost (d) Average Switching Rate

Fig. 8. Performance of cost functions as a function of network load.

IV. HEURISTIC METHODS

As usual with most of the optimization problems, dynamic
programming solution of the MDP suffers from curse of
dimensionality. The size of the state space for the MDP
formulation is FN ×WN

max×(N +1), where N is the number
of nodes, F is the truncation level for number of flows and
Wmax is the maximum number of wavelengths possible at
each node, respectively. Since the size of the state space grows
exponentially with N , the problem is solvable only for small
networks. For a real-life IP/WDM network with around 10
nodes and 10-100 wavelengths, it is practically impossible to
obtain a solution using the MDP approach. For this reason,
development of heuristic methods is necessary.

In the following subsections, we introduce three heuristic
methods which can be used to determine the switching action
to be performed at flow arrival or departure instants. The state
of the network prior to any switching action is denoted as
s∗ = (f∗,w∗, k∗) and As∗ is the valid set of actions at state
s∗, as defined in (1).

A. Heuristic Method 1 (HM1)

This heuristic is inspired by the method devised in [14].
Although the context is different in that work, the underlying

problem is similar to the DWA problem. HM1 makes switch-
ing actions if the action would help to balance the holding
costs, taking into account the switching overheads. HM1 can
be seen as an approximation to the optimum policy obtained
using cost function FS. At each decision instant the following
rule is applied:

• Calculate the following for each action aij ∈ As∗

R = f∗
j +

1
σ

(
λj − µjw

∗
j

)− K

(
f∗

i +
1
σ

(λi − µiw
∗
i )
)

where K is recommended to be 5 in [14].
• Take the action which yields the maximum R, if it is

strictly greater than 0.

Note that the departure rate term in [14] is appropriately
modified and the holding costs of flows at each node is taken
as 1, to adapt the heuristic to the problem at hand.

B. Heuristic Method 2 (HM2)

This heuristic is proposed in [12]. At each decision epoch,
action aij ∈ As∗ with i = arg minx{f∗

x/w∗
x} and j =

arg maxx{f∗
x/w∗

x}, is performed if the following inequality
holds

f∗
j

w∗
j + 1

+
f∗

i

w∗
i − 1

<
f∗

j

w∗
j

+
f∗

i

w∗
i



20 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 26, NO. 3, APRIL 2008

The basic idea behind HM2 is to keep all wavelengths in
the system evenly loaded. So, a switch will be performed if
it is going to improve the load balance in the system. The
switching costs are not taken into account and the flow arrival
and departure rates are not considered. HM2 may be thought
as a first order approximation to the optimum policy obtained
using cost function NFS.

C. Heuristic Method 3 (HM3)

It is shown in Section III that the cost function NSFS
performs best in terms of slowdown and fairness nearly for
all levels of network load. Therefore, it seems reasonable
to think that a heuristic method, which aims to minimize
the cost function NSFS can be an efficient solution for the
DWA problem. Based on this idea, a new algorithm, HM3,
is proposed. HM3 applies the following rule to determine the
action at each decision instant:

• For each action aij ∈ As∗ , consider the 2-node subnet-
work consisting of the nodes i and j, and calculate the
value vij as

vij =
{

0, if c ∈ D
1 − FcD(τ), otherwise

where c = (f∗
i , f∗

j ) and D is defined as

D = {(fi, fj) | fi > mfj} , (4)

m =

√
w∗

i (w∗
i − 1)

w∗
j (w∗

j + 1)
.

FcD(τ) = Pr (TcD < τ), where TcD is the time that
starting from c, the first transit to a state in D occurs in
the two-dimensional birth-death process with arrival rate
λi, (λj), and service rate (wi − 1)µi, (wjµj), at node
i, (node j), respectively. τ is the switching delay, which
has an exponential distribution.

• Apply the action with maximum vij , if vij > T , where
T < 1 is the switching threshold, used in order to
eliminate unnecessary switches.

The basic idea of HM3 can be demonstrated with the help of
Fig. 9. In this figure, x- and y-axes correspond to the number
of flows at node j and node i, respectively. The wavelength
allocation, (w∗

i , w∗
j ), defines the line LW (solid line) with

slope w∗
i /w∗

j along which a perfect load balance is achieved.
As c (depicted by a star) moves away from LW the load
imbalance and the cost increases. The wavelength allocation
of (w∗

i − 1, w∗
j + 1) results in lower NSFS cost if

f∗
i

f∗
j

< m =

√
w∗

i (w∗
i − 1)

w∗
j (w∗

j + 1)
.

This condition is satisfied when the point (f∗
i , f∗

j ) is below
the line LT (dashed line), which has a slope of m. The states
above LT , which are shown shaded in Fig. 9, constitute the
set D, and the action aij may be beneficial if c /∈ D.

At any state, there may be more than one action which
potentially decrease the cost. Since at most one action is
allowed at each decision step, it is important to select the
most beneficial one. For this aim, it is necessary to attach

Fig. 9. Geometric interpretation of HM3

a quantitative value, vij , to each action, aij , based on its
expected reward. If c is above LT , i.e., c ∈ D, aij does
not improve the cost, hence vij is taken as 0 for this case.
Otherwise, aij may decrease the cost.

When the switching delay is neglected, vij can simply be
defined as the differential cost between the states before and
after the switching. However, this approach is not adequate
when the switching delay is not negligible. This is due to the
fact that, during the reconfiguration period, fi and fj may
change with the arrival and departure of flows, in which case
action may become useless or even detrimental. In order to
take this effect into account, vij is defined as the probability
that the intended action will be useful throughout the switching
period, which is equal to the probability that the point (fi, fj)
will always be below LT until the switching is completed and
hence a new switching can be initiated. This can be calculated
as the probability that the first passage time starting from c
until LT is hit, is greater than the switching period, τ . With
this definition, vij inherently considers the load imbalance,
since it takes larger values as c gets farther away from LT .

D. Implementation of HM3

HM3 requires the calculation of vij corresponding to each
valid action aij at each decision epoch. This can be achieved
by first truncating fi and fj at levels Fi(> f∗

i ) and Fj(>
f∗

j ), respectively. It is observed that truncation with matching
the first three moments of the sojourn time, as explained in
Appendix II, yields satisfactory results. Then, on this truncated
two-dimensional chain, vij can be calculated using the method
given in Appendix III and utilizing Lemma III.1.

However, it is also possible to calculate and record the first
passage probabilities for a representative set of states, and re-
use this data at each decision epoch to calculate the required
vij values. The method of calculation is illustrated in Fig. 10.
fi and fj evolve in time with the arrival and departure of flows

fi(u) = fi(0) + ai(u) − di(u)
fj(u) = fj(0) + aj(u) − dj(u)

where ai(u) (aj(u)) and di(u) (dj(u)) are the number of
arrivals and departures at node i (node j) up to time u.

In the following discussion, U(r, ε) is the function defined
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Fig. 10. Calculation of first passage probability data

as

U(r, ε) = arg min
k

{(
k∑

i=0

e−r ri

i!

)
> 1 − ε

}
,

so that, if γ is a Poisson distributed random variable with
parameter r then Pr{γ > U(r, ε)} < ε.

The proofs of the following lemmas are postponed to
Appendix IV for a clear presentation. The existence of the
reflecting boundary, fi = 0 affects the first passage probabil-
ities because the departure rate from node i is 0 along this
line. However, this effect gets smaller with larger f∗

i and can
be neglected for states with large enough f∗

i , as discussed in
the following lemma.

Lemma IV.1. Let PB be the probability of the event of hitting
the reflecting boundary at fi = 0 before the first passage to
D occurs starting from c. Then for a given ε > 0, PB < ε if
f∗

i > Di = U(τµi(wi − 1), ε).

The following lemma shows that, if f∗
i > Di the first

passage probability becomes approximately a function of the
distance between the point c and the line LT .

Lemma IV.2. If f∗
i > Di, then the first passage probability

starting from c is approximately a function of

h((f∗
i , f∗

j )) = mf∗
j − f∗

i (5)

where h((f∗
i , f∗

j )) corresponds to the vertical distance be-
tween c and the line LT , given by the equation fi = mfj .

It is also possible to neglect the first passage probability
starting from a state with sufficiently large distance to LT , as
stated in the following lemma.

Lemma IV.3. If h((f∗
i , f∗

j )) > H , then the first passage
probability starting from c is smaller than 2ε, where

H = mDj + Ai, (6)

Ai = U(τλi, ε), and Dj = U(τµjwj , ε).

With this assumption, first passage probabilities for the
states below the line L0 can be approximated as 0 and first
passage probabilities starting only from states between LT and
L0 in Fig. 10 are non-zero.

If the slope of LT is approximated as

m ≈ (wi − 0.5)/(wj + 0.5), (7)

then it suffices to calculate the first passage probabilities
starting from states in the shaded region, P . Because, P is
repeating itself along the strip between the lines LT and L0,
hence all of the states in this strip can be mapped to a state
in P as stated by the following lemma.

Lemma IV.4. Let Tj = (2wi − 1)/ gcd(2wi − 1, 2wj + 1)
and Ti = mTj . First passage probability starting from state
(f∗

i nTi, f
∗
j + nTj) for any integer n > 0 is equal to the first

passage probability starting from state (f∗
i , f∗

j ) if f∗
i > Di.

Therefore, for a given wavelength allocation wi and wj ,
the first passage probability starting from any (fi, fj) can be
obtained by considering only the states 0 ≤ fj ≤ Fj and
0 ≤ fi ≤ Fi. Fj can be calculated as

Fj = fj0 + Tj + Aj (8)

where
fj0 = �(Di + H)/m� (9)

and Aj = U(τλj , ε) is the margin added so that the effects of
the boundary on the right hand side can be ignored. Fi can
be taken as

Fi = �mFj� (10)

To sum up, HM3 calculates and saves the first passage
probability data corresponding to states (fi, fj), for fi =
0, . . . , Fi and fj = 0, . . . , Fj , for each possible node pair
(i, j) and wavelength allocation (wi, wj). The outline of this
calculation is shown in Algorithm 1. During the simulation,
this data is used by the dynamic part of the HM3 algorithm
for calculating the switching actions, as given in Algorithm 2.
First passage probability for state c = (f∗

i , f∗
j ) is taken to be

0, if c ∈ D or h(f∗
i , f∗

j ) > H . Otherwise, it is read from the
saved data directly if f∗

i < Fi and f∗
j < Fj − Aj , or after

a mapping operation done according to Lemma IV.4, if the
condition is not satisfied.

The number of iterations for calculating the first passage
probability data in Algorithm 1 is O(N2 × W 2). On the
other hand, the memory requirement for Algorithm 1 grows
proportionally with N2 ×W 2. Algorithm 2, which is used to
determine the switching actions compares at most N×(N−1)
values read from the data generated by Algorithm 1, i.e., the
algorithm has an O(N2) complexity.

V. NUMERICAL RESULTS

For the network given in Fig. 6, reconfiguration policies are
calculated using the heuristic methods discussed in Section IV.
Parts of the policies corresponding to a sample set of states are
shown in Figs. 11(a), 11(b) and 11(c) for comparison purposes.
the switching decisions are close to the axes and it does not
perform switches to balance the load on each wavelength.
HM2 resulted in a symmetric matrix, since it does not consider
the arrival rates. Due to this symmetric nature, there are states
at which more than one action have the same cost. These
states are shown unlabeled in the figure. It is also observed
that HM2 makes switches from node 1 when the number of
flows at other nodes gets large. So it may be concluded that
HM2 makes switches to balance the load. Compared with the
NFS policy, HM2 performs switches at more states. Finally,
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Algorithm 1 Calculation of First Passage Probabilities
Input: N , W , τ , ε, and λi, µi, i = 1, . . . , N
Output: MF ,MTi

,MTj
,Mfj0

for all node pairs (i, j) do

for wi = 2 to Wmax do
for wj = 1 to (Wmax + 1 − wi) do

STEP-1: Set MTi
[i, j, wi, wj ] = Ti,

MTj
[i, j, wi, wj ] = Tj , where Ti and Tj is

calculated as in Lemma IV.4.
STEP-2: Set Mfj0 [i, j, wi, wj ] = fj0, where fj0 is
calculated using (9).
STEP-3: Calculate Fj and Fi using (8) and (10),
respectively.
STEP-4: Construct the infinitesimal matrix, Q,
for the two-dimensional Markov chain with states
(fi, fj), where fi, fj are truncated at Fi and Fj ,
respectively, as explained in Appendix II.
STEP-5: For each c = (fi, fj), set
MF [i, j, wi, wj , fi, fj ] = FcD(τ), where D is
obtained using (4) with the assumption in (7), and
FcD(τ) is calculated using Lemma III.1.

end for
end for

end for

Algorithm 2 Calculation of Switching Actions

Input: s∗ = (f∗, w∗, k∗),MF ,MTi
,MTj

,Mfj0

Output: a∗

for all aij ∈ As∗ do

if (f∗
i /f∗

j ) > m, where m is given in (7) then
vij ← 0

else if h(f∗
i , f∗

j ) > H , where h(f∗
i , f∗

j ) and H are
defined by (5) and (6), then

vij ← 0
else

Ti ← MTi
[i, j, w∗

i , w∗
j ]

Tj ← MTj
[i, j, w∗

i , w∗
j ]

fj0 ← Mfj0 [i, j, w
∗
i , w∗

j ]
c ← max(0, 
(f∗

j − fj0)/Tj�)
f̃i ← f∗

i − cTi

f̃j ← f∗
j − cTj

FcD(τ) ← MF [i, j, w∗
i , w∗

j , f̃i, f̃j ]
vij ← 1 − FcD(τ)

end if
end for
(u, v) ← arg maxij{vij}
if vuv > T then

a∗ ← auv

else
a∗ ← a0

end if

TABLE I

TIME VARYING ARRIVAL RATES.

time (s) λ1 λ2 λ3 λ4 λ5

0– 500 1 2 3 4 5

500– 900 1 2 3 4 5

1300–1700 2 3 4 5 1

1700–2100 3 4 5 1 2

2100–2500 4 5 1 2 3

2500–2750 5 1 2 3 4

Fig. 11(c) plots the policy obtained with HM3 using T = 0.9.
Similar to HM2, switches from node 1 are performed when
the number of flows at node 2 or node 3 gets large. The area
corresponding to no-switching is narrower for HM3 compared
to HM1 and HM2. Hence, HM3 performs switches at a larger
number of states and the resulting policy closely resembles
the NSFS policy.

The performance of HM1, HM2 and HM3 are evaluated
through simulations and the results are plotted in Fig. 12. The
results of the optimum policies corresponding to this scenario
were shown in Fig. 8. It is observed that the performance of
HM1 is worse than the optimum policy FS for all network
loads. HM1 is more conservative in switching, and results
in higher slowdown and holding costs. It has also the worst
fairness performance among the heuristic methods. HM2 be-
haves similar to optimum policy NFS as the load increases.
Its slowdown and holding cost performance are good at low
network loads. But as the load is increased, HM2 becomes
the worst method. HM3 gives the best results in terms of
slowdown and fairness. Its behavior is close to the optimum
policy NSFS, especially for load levels greater than 0.5.

For a heuristic method to be robust, it should work satis-
factorily under different conditions. It has been already shown
that HM3 performs well for all levels of network load for a
given average flow size. Thus, another dimension of interest
is the performance of the heuristic methods for different flow
length distributions. It is clear that for a given load level,
uncertainty increases with decreasing flow size (increasing
arrival rate). At the extreme case, as the average flow size
goes to zero, current state of the network carry no information
about the future states and there is no point in dynamic
reconfiguration. Therefore, the switching policy should make
less and less switches and converge to the static policy as the
flow sizes decrease.

To evaluate the effects of average flow size on the perfor-
mance of heuristic methods, simulations are performed on the
same network. The load is kept fixed at 0.5 and the average
flow size and flow arrival rate are changed accordingly. The
results are plotted in Fig. 13. It has been observed that
only heuristic method HM3 succeeds to adapt to changes in
the flow size. For small flow sizes, performances of HM1
and HM2 deteriorate rapidly, even below the performance
of the static policy. On the other hand, HM3 adjusts itself
appropriately and converges to the static policy as the average
flow size decreases. Moreover, HM3 shows the best fairness
performance for all values of average flow size.

As discussed in Section I, metro access networks have
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(a) Heuristic policy HM1 (b) Heuristic policy HM2 (c) Heuristic policy HM3

Fig. 11. Heuristic switching policies for the 3-node test network, for states with w = [3, 2, 2] and f = [15, f2, f3] .

(a) Slowdown (b) Fairness

(c) Holding Cost (d) Average Switching Rate

Fig. 12. Performance of heuristic methods as a function of network load.

traffic patterns changing in time. Hence, the adaptability of
the DWA methods to time varying traffic characteristics is an
important property. To test this case, simulations are performed
using the network shown in Fig. 14 which has 5 nodes and
30 wavelengths. Flow arrival rates are changed with time
according to Table I. Since, the average flow arrival rate to
each node is equal, for the static policy each node is allocated
6 wavelength channels. Performance metrics are calculated for

the time interval [500-2500] sec and tabulated in Table II.
HM1 succeeds to decrease the holding cost to nearly 60% of
the static policy. But the improvement in terms of slowdown
is just 30%. Interestingly, the fairness with HM1 is below the
static policy. HM2 performs the highest number of switches
and attains a good performance in terms of slowdown and
holding costs. It achieves 49% lower slowdown with respect
to the static policy and a fairness index of 0.6842. HM3, on the
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(a) Slowdown (b) Fairness

(c) Holding Cost (d) Average Switching Rate

Fig. 13. Comparison of heuristic methods for different average flow sizes.

TABLE II

COMPARISON OF HEURISTIC POLICIES UNDER DYNAMIC TRAFFIC

CONDITIONS.

Method # Switch Slowdown Fairness H. Cost

Static 0 0.5786 0.4631 17309.0

HM1 21697 0.4146 0.4982 10049.0

HM2 23249 0.2949 0.6842 7789.6

HM3 14654 0.2832 0.7765 7794.3

other hand attains better results by making much less switches.
Holding cost of HM3 is close to HM2, but the slowdown
is 4% better and there is significant improvement in fairness
compared to HM2.

VI. CONCLUSION

In the evolution of metro access networks, dynamic traffic
adaptability is a major requirement as a result of the inherently
variable nature of the traffic demand. In this work, benefits and
tradeoffs related to dynamic wavelength allocation is investi-
gated for an IP/WDM metro access network. The problem is
formulated as an MDP and a new cost function is proposed.
It is demonstrated that the optimum policy obtained using
the proposed cost function achieves superior performance in

Fig. 14. 5-node test network

terms of slowdown and fairness. Also, a heuristic method
based on the proposed cost function and first passage prob-
abilities is developed and compared with similar heuristics
in the literature. Through simulations it is demonstrated that
the proposed heuristic generates near-optimum solutions and
results in significant improvements in throughput efficiency
and fairness for a wide range of network load and average
flow size conditions. It is also verified that the heuristic method
adapts to dynamically changing network load appropriately.
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APPENDIX I
MINIMA OF COST FUNCTION NSFS

Lemma I.1. The function, g(f ,w) =
∑

i f2
i /wi, is convex

cup, and it is minimized when w is proportional to f .

Proof: Let R be the region consisting of w vectors
defined by

N∑
i=1

wi = W

For any vector α, β in R, the vector θα + (1 − θ)β is in R
for 0 ≤ θ ≤ 1, because

N∑
i=1

(θαi + (1 − θ)βi) = θW + (1 − θ)W = W

So, R is a convex region. For all α, β in R and 0 ≤ θ ≤ 1,

θg(f ,α) + (1 − θ)g(f ,β) − g(f , θα + (1 − θ)β) =
N∑

i=1

f2
i

(αi − βi)2

αiβi(θαi + (1 − θ)βi)
≥ 0

Hence, g is convex cup (∪) over R and therefore it has a
minima which can be found using the method of Lagrange
Multipliers:

∂

∂wi

(
N∑

i=1

f2
i

wi
+ λ

(
N∑

i=1

wi − W

))
= − f2

i

w2
i

+ λ = 0

=⇒ f2
i

w2
i

= λ =⇒ fi

wi
=

√
λ

APPENDIX II
TRUNCATION OF MARKOV CHAINS WITH THREE MOMENT

MATCHING

For an infinite Markov chain with uniform transition rates
(Fig. 3), sojourn time, T , at states s ≥ K for any K is exactly
the same as the busy period in an M/M/1 queue. First three
moments of T are: m1 = E[T ] = 1

(1−ρ)
1
µ , m2 = E[T 2] =

2
(1−ρ)3

1
µ2 , and m3 = E[T 3] = 6(1+ρ)

(1−ρ)5
1

µ3 , where ρ = λ/µ.
In order to match the first three moments of the sojourn

time, two-phase Coxian+PH distribution, shown in Fig. 15,
can be used [17].

Fig. 15. Coxian+PH distribution

The parameters of Coxian+PH distribution are

β1 = (1 − px)λx1 β12 = pxλx1 β2 = λx2

λx1 =
u +

√
u2 − 4v

2µ1
λx2 =

u −√
u2 − 4v

2µ1

px =
λx2(λx1µ1) − 1

λx1

u =
6 − 2m3

3m2 − 2m3
v =

12 − 6m2

m2(3m2 − 2m3)

The resulting truncated chain is shown in Fig. 16.

Fig. 16. Truncated Markov chain with first three moments matched

APPENDIX III
FIRST PASSAGE PROBABILITIES

For a finite, irreducible, continuous time Markov chain
(CTMC) with n states and generator matrix Q, the first
passage time from a source state c into a non-empty set of
target states D is defined as

TcD(t) = inf{u > 0 : X(t + u) ∈ D | X(t) = c}
where X(t) denotes the state of CTMC at time t ≥ 0 [20].

When the CTMC is stationary and time-homogeneous, TcD

is independent of t:

TcD = inf{u > 0 : X(u) ∈ D | X(0) = c}
Let fcD(t) be the probability density function of TcD, then

Pr(a < TcD < b) =
∫ b

a

fcD(t)dt 0 ≤ a < b

Using a first step analysis, the Laplace transform of fcD

can be written as

LcD(s) =
∑
k �∈D

pck

( −qcc

s − qcc

)
LkD(s) +

∑
k∈D

pck

( −qcc

s − qcc

)

The first term denotes the event that the system first transits
to a non-target state k then to a target state in D. The second
term is for the case where the system transits from state c
directly to a state in D. Using the relation pck = −qck/qcc,
this expression can be rewritten as,

(s − qcc)LcD(s) =
∑
k �∈D

qckLkD(s) +
∑
k∈D

qck

The set of equations can also be expressed in matrix-vector
form. For example, when D = {1},⎡
⎢⎢⎢⎢⎢⎣

s − q11 −q12 · · · −q1n

0 s − q22 · · · −q2n

0 −q32 · · · −q3n

...
...

. . .
...

0 −q2n · · · s − qnn

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

L1D(s)
L2D(s)
L3D(s)

...
LnD(s)

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

0
q21

q31

...
qn1

⎤
⎥⎥⎥⎥⎥⎦
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The value of LcD(s) can be obtained by solving this set
of n linear equations. The value of fcD(t) is then calculated
by using one of several methods for numerical transform
inversion, such as Euler and Post-Widder algorithms [21].

The Laplace transform LcD has also a direct probabilistic
interpretation as stated by the following lemma.

Lemma III.1.

LcD(σ) = Pr(TcD < τ) = FcD(τ)

where τ is an exponential random variable with rate σ.

Proof:

Pr(TcD ≤ τ) =
∫ ∞

0

Pr(TcD ≤ t)σe−tσdt

=
∫ ∞

0

∫ t

0

fcD(s)dsσe−tσdt

=
∫ ∞

0

fcD(s)
∫ ∞

s

σe−tσdtds

=
∫ ∞

0

fcD(s)e−sσds

= LcD(σ)

APPENDIX IV
PROOFS OF LEMMAS IV.1-4

A. Lemma IV.1

Proof: Let B denote the event that the boundary fi = 0
is hit in time interval 0 ≤ u < τ and B′ its complementary
event. The probability of event B can be written as

PB = Pr {B} = 1 − Pr {fi(u) > 0, 0 ≤ u < τ} . (11)

PB can be bounded as follows

PB = 1 − Pr {f∗
i + ai(u) − di(u) > 0, 0 ≤ u < τ}

< 1 − Pr {f∗
i − di(u) > 0, 0 ≤ u < τ}

= 1 − Pr {di(τ) < f∗
i }

< 1 − Pr
{

d̂i(τ) < f∗
i

}
where d̂i is a Poisson random variable with parameter
τµi(wi − 1). Hence, PB converges to 0 as f∗

i increases. If
f∗

i > Di, then

PB < 1 − Pr
{

d̂i(τ) < Di

}
< 1 − (1 − ε) = ε

B. Lemma IV.2

Proof: The first passage probability can be decomposed
into two terms conditioned on B:

FcD(τ)=Pr {TcD < τ}
=PB Pr {TcD < τ |B} + (1 − PB) Pr {TcD < τ |B′}

If f∗
i > Di then due to Lemma IV.1 FcD(τ) can be

approximated as:

FcD(τ) ≈ Pr {TcD < τ | B′}
= Pr {inf {u > 0 : h (fi(u), fj(u)) < 0}}

where

h (fi(u), fj(u)) = m(f∗
j +aj(u)−dj(u))−(f∗

i +ai(u)−di(u))

= (mf∗
j − f∗

i ) − m(dj(u) − aj(u)) + (di(u) − ai(u))
= h(f∗

i , f∗
j ) − m(dj(u) − aj(u)) + (di(u) − ai(u))

Since, ai, di, aj , and dj are independent Poisson pro-
cesses with state independent rates, FcD(τ) is a function of
h(f∗

i , f∗
j ).

C. Lemma IV.3

Proof: FcD(τ) can be partitioned conditioning on the
number of arrivals and departures at nodes i and j during
the time interval τ . Using Px(y) as a shorthand notation for
Pr{x = y},

FcD(τ)=

∞∑
i+=0

∞∑
i−=0

∞∑
j+=0

∞∑
j−=0

Pai(i
+)Pdi(i

−)Paj (j
+)Pdj (j

−)

Pr
{
TcD < τ | ai = i+, di = i−, aj = j+, dj = j−

}

<

∞∑
i+=0

∞∑
j−=0

Pai(i
+)Pnj (j

−) Pr
{
TcD < τ | ai = i+, dj = j−

}

=

⎛
⎝ Ai∑

i+=0

Dj∑
j−=0

+

∞∑
i+=0

∞∑
j−=Dj

+

∞∑
i+=Ai

∞∑
j−=0

−
∞∑

i+=Ai

∞∑
j−=Dj

⎞
⎠

Pai(i
+)Pnj (j

−) Pr
{
TcD < τ | ai = i+, dj = j−

}
<

Ai∑
i+=0

Dj∑
j−=0

Pai(i
+)Pnj (j

−) Pr
{
TcD < τ | ai = i+, dj = j−

}
+

ε + ε − ε2

Observe that if m(f∗
j − Dj) − (f∗

i + Ai) > 0 then M = 0,
and FcD(τ) < (2ε − ε2) < 2ε.

D. Lemma IV.4

Proof: Tj is an integer by the definition of gcd. Since
wi and wj are integers gcd(2wi − 1, 2wj + 1) is an integer.
Therefore,

Ti = mTj

=
wi − 0.5
wj + 0.5

2wj + 1
gcd(2wi − 1, 2wj + 1)

=
2wi − 1

gcd(2wi − 1, 2wj + 1)

is also an integer. Then,

h(fi + nTi, fj + nTj) = m(fj + nTj) − (fi + nTi)
= mfj − fi + mnTj − nTi

= h(fi, fj)

If f∗
i > Fi then due to Lemma IV.2 FcD can be approximated

as a function of h(f∗
i , f∗

j ). Since, h(fi + nTi, fj + nTj) =
h(f∗

i , f∗
j ), first passage probabilities starting from these states

are equal.
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