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Abstract— In this paper, we study the blocking probabili-
ties in a wavelength division multiplexing-based asynchronous
bufferless optical packet/burst switch equipped with a bank of
tuneable wavelength converters dedicated to each output fiber
line. Wavelength converter sharing, also referred to as partial
wavelength conversion, corresponds to the case of a number
of converters shared amongst a larger number of wavelength
channels. In this study, we present a probabilistic framework for
exactly calculating the packet blocking probabilities for optical
packet/burst switching systems utilizing wavelength converter
sharing. In our model, packet arrivals at the optical switch are
first assumed to be Poisson and later generalized to the more
general Markovian arrival process to cope with very general
traffic patterns whereas packet lengths are assumed to be expo-
nentially distributed. As opposed to the existing literature based
on approximations and/or simulations, we formulate the problem
as one of finding the steady-state solution of a continuous-time
Markov chain with a block tridiagonal infinitesimal generator. To
find such solutions, we propose a numerically efficient and stable
algorithm based on block tridiagonal LU factorizations. We show
that exact blocking probabilities can be efficiently calculated
even for very large systems and rare blocking probabilities, e.g.,
systems with 256 wavelengths per fiber and blocking probabilities
in the order of 10−40. Relying on the stability and speed of the
proposed algorithm, we also provide a means of provisioning
wavelength channels and converters in optical packet/burst
switching systems.

Index Terms— Optical packet switching, optical burst switch-
ing, wavelength conversion, converter sharing, block-tridiagonal
LU factorization, Markovian arrival process.

I. I NTRODUCTION

DRAMATIC growth in Internet traffic demands has led to
the use of Wavelength Division Multiplexing (WDM)

systems which multiplex wavelengths of different frequen-
cies onto a single fiber. This multiplexing operation creates
multiple channels on the same fiber each carrying a different
signal. Today’s long-haul WDM systems support up to 160
channels each having a capacity of 10 Gb/s with an overall
capacity of 1.6 Tb/s on a single fiber. On the other hand, client
requirements are very diverse in terms of required capacity,
connection utilization (continuous or bursty), connection du-
ration, connection set-up times, etc. Using circuit switching
at wavelength or subwavelength levels, today’s wavelength-
routed WDM networks route connection requests through the
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optical network to account for diversified capacity needs of
users. In this switching paradigm, connection durations and
set-up times tend to be very long and dynamic bandwidth
sharing across clients is minimal which gives rise to inefficient
bandwidth use especially for bursty data traffic.

To cope with bursty traffic and for more efficient utilization
of the fiber capacity, two new packet-based optical switching
paradigms have been introduced: Optical Packet Switching
(OPS) [1],[2] and Optical Burst Switching (OBS) [3],[4].
OPS requires line-rate header parsing and is thus viewed
as a longer term solution due to the current technological
limitations in packet header processing [2]. OBS, on the other
hand, eliminates the need for header parsing by segregating
the control and data planes. In OBS, the reservation request
for a burst is signalled out of band by the use of a burst control
packet which is processed in the electronic domain whereas
the burst itself is transported end-to-end completely in the
optical domain. When the control packet arrives at an optical
burst switch towards its destination, the switch is configured
for the corresponding data burst which would arrive after an
offset time. Under the just enough time (JET) reservation
protocol, allocated resources are released as soon as the burst
is transmitted by the switch [3]. Although the control planes
of OPS and OBS are different, both of them have similar data
planes. Throughout this paper, the terms “(optical) packet”
and “(optical) packet switching” refer to a packet/burst and
the data plane of OPS/OBS, respectively, since the analysis
we pursue involves only the data plane of optical packet/burst
switching.

We consider the online blocking model described in [5] in
which lightpaths are set up and torn down at the packet level.
In synchronous (i.e., time-slotted) optical packet switching
networks, packet lengths are fixed and packets are assumed
to arrive at slot boundaries [6]. In asynchronous (i.e., un-
slotted) networks, packets can have variable sizes and are
not aligned before they enter the optical switch [6]. Slotted
switching systems generally lead to a better performance than
their unslotted counterparts since the arrival behavior of the
incoming packets to the switch is regulated in the former
type leading to fewer contentions [7]. Moreover, the packet
loss rate at a bufferless synchronous optical switch does not
depend on the autocorrelation structure of the incoming traffic
thereby making combinatorial analysis techniques possible.
On the down side, it is more costly to implement synchronous
optical packet switching nodes with high data rates since it
requires the synchronization of all incoming packets in the
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optical domain. On the other hand, the node architecture for
asynchronous networks is simpler because there is no need for
the synchronization stage [6]. Furthermore, the asynchronous
operation is a more natural fit for switching IP packets.
For these reasons, it is worthwhile to consider asynchronous
operation with variable-sized packets and our focus in this
study is on asynchronous packet switching.

One of the major issues in optical packet switching net-
works is contentionwhich arises as a result of two or more
incoming packets contending for the same output wavelength.
Contention is resolved either in wavelength domain by wave-
length converters, in time domain by Fiber Delay Lines (FDL),
or in space domain by deflection routing [3]. If contention
cannot be resolved by any one of the proposed techniques,
then one or more contending packets will be blocked. Calcu-
lating the packet blocking probabilities is crucial in evaluating
the performance of optical packet switches with a certain
contention resolution capability. In this paper, we study the
packet blocking probabilities for the full-range “wavelength
conversion” approach in which Tunable Wavelength Convert-
ers (TWC) are used for switching optical packets from any
input wavelength onto any output wavelength for contention
resolution. In Full Wavelength Conversion (FWC), a packet
arriving at a certain wavelength channel can be switched onto
any other idle wavelength channel towards its destination.
FWC reduces packet blocking probabilities significantly com-
pared with the case of No Wavelength Conversion (NWC)
[8],[9],[10]. However implementing all-optical FWC is very
costly.

Converter sharing or equivalently Partial Wavelength Con-
version (PWC) is proposed as a cost-conscious alternative to
FWC [11]. In PWC, there is a limited number of TWCs, and
consequently some optical packets cannot be switched towards
their destination, i.e., blocked, when all converters are busy
despite the availability of free wavelength channels on the
output fiber. In PWC, TWCs may be configured as a single
converter pool for converter sharing across all fiber lines,
which is referred to as the Share-Per-Node (SPN) architecture
[7]. An alternative architecture allows separate TWC banks per
output fiber and the corresponding solution is called the Share-
Per-Line (SPL) architecture. Although the SPN architecture
leads to a better performance, the complexity of the switching
matrix is lower in the SPL architecture [7]. Our focus in this
study will be on SPL type converter sharing. We also note
that a Share-Per-Input-Line (SPIL) architecture is proposed in
[12] where a bank of TWCs is shared for all packets arriving
on the same input fiber but SPIL is outside the scope of the
current paper.

Another issue regarding wavelength conversion is whether
there is a specified range of wavelengths that a given wave-
length can be converted to. Such a converter is said to be
limited-range. If there is no tuning range limit then the con-
verter is calledfull-range. The focus of the current paper is on
the blocking analysis of asynchronous optical packet switches
using simpler-to-implement SPL-type converter sharing and
with full-range TWCs. This model is depicted in Fig. 1
which presents a diagram of an optical packet switch with an
internally non-blocking switch fabric and which hasN input
and output fiber lines,K wavelength channels per fiber, and a
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Fig. 1. The general architecture of an optical packet switching node with
N fiber I/O lines,K wavelength channels on each fiber line, and a bank of
wavelength converters of sizeW shared per output line.

wavelength converter bank of sizeW < K dedicated to each
output fiber. We note that we will also study the limiting cases
W = 0 and W = K which correspond to NWC and FWC
architectures, respectively.

For the general PWC case, there is no closed form expres-
sion for the blocking probability and analytical results are also
rare [13]. To the best of our knowledge, a numerical CTMC
(Continuous Time Markov Chain) based algorithm for PWC
in asynchronous SPL architectures is first proposed in [14].
Recently, a similar CTMC-based analysis is also proposed
in [15] for the SPL case with Poisson packet arrivals and
exponentially distributed packet lengths, and an approximate
analysis is proposed for the SPN case. Although the analysis
of [15] for the SPL case is similar to that of [14], the block
structure of the CTMC is not exploited and the authors report
problems in large systems (e.g.,K = 64) and for rare blocking
probabilities. In [13], a fixed-point iteration-based approximate
method for PWC for the SPN architecture is mentioned but not
detailed. The work in [16] is simulation-based and attempts
to find the number of wavelength converters required to attain
a desired GoS (Grade of Service) in terms of blocking rates.
In [7], simulations and an approximate analysis are provided
for the same problem for the asynchronous case. Poisson and
non-Poisson dynamic traffic patterns are simulated in [16]
and [17] to show the impact of the packet arrival process on
throughput. Simulation is generally a very useful tool since it
can be applied to a wide range of models but i) simulations
typically suffer from long run-times, ii) studying rare blocking
probabilities may not be feasible, iii) it is computationally
costly to use simulations in scenarios that might require
iterations (e.g., analysis of networks, design and dimensioning
problems, etc.).

In this paper, first we exactly calculate the packet blocking
probabilities for a bufferless asynchronous optical packet
switch with SPL-type converter sharing using the usual Pois-
son arrival and exponential packet length assumptions. As
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opposed to existing literature based on approximations and/or
simulations and following [14], we formulate the problem as
one of finding the steady-state solution of a Continuous-Time
Markov Chain (CTMC) with a block tridiagonal infinitesimal
generator. For Poisson arrivals, we propose a numerically effi-
cient and stable solution technique based on block tridiagonal
LU factorizations. We show that blocking probabilities can
be found exactly and efficiently even for very large systems
and rare blocking probabilities. Using the proposed solution
method, we also present a design procedure for provisioning
wavelength channels and converters in the case of Poisson
packet traffic.

We also generalize our results to more general packet
arrivals that are modelled with the Markovian Arrival Process
(MAP) that was first introduced in [18]; also see [19],[20],[21].
The MAP is a versatile process that allows correlation in
packet interarrival times. Moreover, MAPs have a significant
property that they are dense in the set of all stationary point
processes. Special cases of the MAP are widely used in the
literature for a variety of scenarios; the Interrupted Poisson
Process (IPP) to approximate overflow traffic [22], a Phase
Type (PH)-type process for fitting long-tailed data [23], a two-
state Markov Modulated Poisson Process (MMPP) to describe
the superposition of a number of on-off packet sources [24],
more general MMPPs to model correlated aggregate Internet
traffic [25],[26],[27]. There are several possibilities to use the
MAP as a traffic modeling tool in optical packet switching
networks; i) measuring the optical packet traffic directly and
fitting a MAP to data, ii) using the existing aggregate Marko-
vian Internet traffic models together with the packetizer at the
edge of the optical domain to build MAP-based traffic models
for the optical core to accurately capture the bursty nature of
the traffic, iii) using a MAP for representing overflow traffic to
study the performance of optical packet switching networks.
The use of MAP in optical packet switching networks is
relatively new: for example [28] uses a two-state MMPP for
burst generation in an OBS network and [29] uses a two-
state hyperexponential arrival process (a subcase of MAP)
to be fed to an OPS network. In this paper, we use the
same technique used for Poisson arrivals for SPL analysis
this time for the case of MAP traffic and derive an expression
for the packet blocking probability which gives us a way of
studying the effect of traffic characteristics on packet switch
performance with PWC. In particular, we study the impact of
autocorrelation in the optical packet arrival process on packet
blocking performance by using a MAP with a fixed marginal
but a varying autocorrelation function.

The remainder of this paper is organized as follows. Section
II describes the model with Poisson packet arrivals as well
as the solution procedure. The extension to MAP arrivals is
studied in Section III. Section IV is devoted to numerical
examples. We conclude in the final section.

II. A NALYSIS OF SPL ARCHITECTURE FORPOISSON

TRAFFIC CASE

We study the asynchronous optical packet switch in Fig. 1
which hasN input and output fiber lines andK wavelength
channels per fiber. We assume a wavelength converter bank
of size 0 ≤ W ≤ K dedicated to each output fiber. Optical

packets destined to a particular output fiber line arrive at
the switch from one of theN input fibers. We assume that
the wavelength channel a packet arrives on is uniformly
distributed on(1,K), and packet durations are exponentially
distributed with mean1/µ.

A new optical packet arriving at the switch on wavelength
w and destined to output linek
• is forwarded to output linek without using a TWC if

channelw is available, else
• is forwarded to output linek using one of the free

TWCs in the converter bank and using one of the free
wavelength channels selected at random, else

• is blocked.
We concentrate only on one of the output fiber lines, say

the kth fiber, throughout this paper and study its packet
blocking performance. The overall switch performance can
then be obtained using the individual output fiber blocking
probabilities since we use complete TWC partitioning across
output fiber lines. We first assume that the aggregate optical
packet arrival process from theN input lines and destined for
the output linek is Poisson with rateλ. This assumption is
very common especially whenN is large. ForW = K (i.e.,
full wavelength conversion), the OPS system behaves as an
M/M/c/c loss system withc = K servers and offered load

q = λ/µ. (1)

On the other hand, the system load, or the traffic intensity is
denoted by

ρ = q/c (2)

in anM/M/c/c system which describes the offered work load
to a single server [30, page 13]. ForW = 0 (i.e, no wavelength
conversion), we haveK independent single serverM/M/1/1
loss systems each with offered loadq = λ/µK. In a general
M/M/c/c loss system, the blocking probabilityPb can be
obtained using the Erlang B formula [30, page 80]:

Pb =
qc/c!∑c
i=0 qi/i!

. (3)

A Markovian analysis for the partial wavelength conversion
case, i.e.,0 < W < K, is described below. Leti(t) and j(t)
denote the number of wavelength channels and the number
of TWCs that are in use at timet, respectively. The process
X(t) = {(i(t), j(t)) : t ≥ 0} is a Markov process on the state
spaceS = {(i, j) : 0 ≤ i ≤ K, 0 ≤ j ≤ min(i,W )}. To show
this, let us assume that the process is in some state(i, j), 0 ≤
i < K, 0 ≤ j ≤ min(i,W ) at timet. If a new packet arrives in
the interval(t, t+δt) which occurs with probabilityλδt+o(δt)
(i.e., limδt→0 o(δt)/δt = 0) [31, page 48], then there are three
possibilities:

a1) the wavelength on which the burst is riding is not
currently used on the link which occurs with probability
(K−i)/K and the burst will be admitted and the process
will jump to (i + 1, j) at time t + δt,

a2) that wavelength is already used which occurs with
probability i/K

a21) then if j = W , then the packet will be blocked
because the converter pool is all busy leading to
no state change,
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a22) else if j < W , then the packet will be admitted on
one of the available wavelengths randomly using
one of the free converters and the process will
make a transition to state(i + 1, j + 1) at time
t + δt.

When the process is in state(K, j) for somej at timet, then
the arriving burst will be blocked since all wavelengths are
busy.

Assume now that the processX(t) is currently in some
state (i, j), 0 < i ≤ K, 0 ≤ j ≤ min(i,W ) at time t. If
a burst departs in the interval(t, t + δt) which occurs with
probability iµδt + o(δt) then there are two possibilities:

b1) a TWC was used for this burst which occurs with
probability j/i and the processX(t) will jump to state
(i− 1, j − 1) at at timet + δt,

b2) a TWC was not used for this departing burst which
occurs with probability(i− j)/i and the processX(t)
will make a transition to state(i− 1, j) at time t + δt.

When the processX(t) is in state(0, 0), then there cannot
be any departures. It is thus clear that the processX(t) is a
CTMC.

The next step is to write the infinitesimal generator of this
CTMC in a form that is amenable to numerically stable and
efficient computation of the steady-state probabilities. For this
purpose, we decompose the state space into subsets called
levels such that the number of wavelengths in use is constant
within a level and we enumerate the states in the following
order:

S = { (0, 0)︸ ︷︷ ︸
level 0

, (1, 0), (1, 1)︸ ︷︷ ︸
level 1

, (2, 0), (2, 1), (2, 2)︸ ︷︷ ︸
level 2

, · · · ,

(K, 0), (K, 1), · · · , (K, W )︸ ︷︷ ︸
level K

}. (4)

Based on this enumeration, we conclude that state transitions
can occur either among neighboring levels or within a level.
The final step is to express the infinitesimal generator of the
processX(t) based on the observations a1, a21, a22, b1, and
b2. For this purpose, we define the following three matrices
for i ≥ 0:

Ni =




K−i
K

i
K

K−i
K

i
K

K−i
K

.. .

.. .




,

Mi =




i
1 i− 1

2 i− 2
.. .

. . .


 ,

Īi =




0 0 · · · 0
0 0 · · · 0
...

...
. ..

...
0 0 . . . i/K


 .

We also letIi denote an identity matrix of sizei but we drop
the subscript if the size is clear from the context. The process

X(t) is then written as a CTMC with a block tridiagonal
infinitesimal generatorQ which is in the following form:

Q =




A0 U1

D0 A1 U2

D1 A2
. . .

.. .
. . . UK

DK−1 AK




. (5)

In the above generator, it is not difficult to show by using a1,
a21, and a22 that

Ui = λŪi, 0 < i ≤ K, (6)

whereŪi+1 equals
{

upper-left(W + 1)× (W + 1) block of Ni W ≤ i,
upper-left(i + 1)× (i + 2) block of Ni 0 ≤ i < W .

On the other hand,Di in (5) is expressed as

Di = µD̄i, 0 ≤ i < K, (7)

whereD̄i−1 equals
{

upper-left(W + 1)× (W + 1) block of Mi W < i,
upper-left(i + 1)× i block of Mi 1 ≤ i ≤ W .

Finally,

Ai =




−(λ + iµ)Ii+1 i < W,
−(λ + iµ)IW+1 + λĪi W ≤ i < K,
−iµIW+1 i = K.

(8)

Steady-state probabilities of this irreducible and aperiodic
CTMC can be found by solving for the unique stationary
solution [31, pages 44–53]

xQ = 0, xe = 1, (9)

where e is a column vector of ones of suitable size. Note
that the size ofQ is (W + 1)(K − W

2 + 1) and calculating
the stationary solution using conventional finite Markov chain
solution methods (see for example the direct methods in
[32, pages 61–117]) would be prohibitive especially for large
systems, e.g.,K = 256, W >> 1.

We now give a numerical solution procedure by taking
advantage of the block tridiagonal structure of the generator.
Since one of the equations in the first of the equations (9)
is redundant, we can replace one such equation, say the first
equation, to obtain a nonsingular system while preserving the
block tridigonal structure. For this purpose, letP be obtained
by replacing the entries of the first column ofQ by setting

A0 := λ,D0 :=
[

0
0

]
, (10)

although we note that other choices are possible. Also letb be
a zero row vector except its first unity entry. It is clear that if
z is a solution to

zP = b, (11)

then
x :=

z

ze
(12)

gives the steady-state probabilities.
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We propose the block tridiagonal LU factorization algorithm
given in [33, pages 174–175] for solvingzP = b. In this
algorithm, the goal is to obtain a block LU factorization of
the matrixP :

P =




I
L0 I

.. .
.. .

LK−1 I







F0 U1

F1
.. .
.. . UK

FK




.

(13)
For this purpose, we partition the solution vectorsz =
(z0, z1, . . . , zK), x = (x0, x1, . . . , xK), and the right hand
side of (11)b = (b0, b1, . . . , bK) according to levels. Note
that b0 = 1 and bi = 0, 0 < i ≤ K. The matrices{Fi}, i =
0, 1, . . . , K and{Li}, i = 0, 1, . . . , K−1 can now be obtained
using the following recurrence relation:

F0 = A0

y0 = b0F
−1
0 (Solvey0F0 = b0 for y0)

for i = 1 : K

Li−1 = Di−1F
−1
i−1

Fi = Ai − Li−1Ui

yi = (bi − yi−1Ui)F−1
i

end

By backward substitution, one can then findzk, k =
0, 1, . . . , K:

zK = yK

for i = K − 1 : 0
zi = yi − zi+1Li

end

Oncezks are computed, one can find the steady-state solution
to (9) by using the identity (12). For numerical stability of the
algorithm, we need a bound

max (||Li||, ||Fi||) < M, ∀i
for some finite real numberM and for some legitimate matrix
norm. The block LU factorization algorithm is known to be
stable for block tridiagonal matrices that are block diagonally
dominant by columns [34],[35]. We note that this condition
is not met for the block tridiagonal matrixP . However, the
matrix P satisfies the block diagonal dominance by rows
condition [34]:

||A−1
i || (||Ui+1||+ ||Di−1||) ≤ 1, 0 ≤ i ≤ K, (14)

whereUK+1 andD−1 are taken as zero matrices. Using the
∞ matrix norm from now on, we observe that the matrixP is
block diagonal dominant by rows since (14) is met fori = 0
andK and

||A−1
i || = 1

λ + iµ
, ||Ui+1|| = λ, 0 < i < K,

and

||Di−1|| = iµ, 1 < i < K, ||D0|| = 0.

When the block diagonal dominance by rows condition is met,
it can be shown that [34]:

||Fi|| ≤ ||Ai||+ ||Ui+1||, 0 ≤ i ≤ K,

and

||Li|| ≤ ||Di||
||Ui+1|| , 0 ≤ i ≤ K − 1.

Since ||Ui|| = λ, 1 ≤ i ≤ K in our case, the proposed
block tridiagonal LU factorization algorithm is numerically
stable ensuring that the norms of the matricesFi and Li

will not grow unreasonably large, i.e., these norms are in the
order of the norms of the blocks of the original generator.
Equivalently, this proposed method does not bring any addi-
tional instability when compared with conventional methods.
Note that bulk of the computational effort is concentrated
on the LU decomposition of the matricesFis required in
solving the linear systems in the block LU decomposition
algorithm and the size ofFi equalsi + 1 for i ≤ W and
it is W + 1 otherwise. Recalling that an LU decomposition
requires2/3 N3 flops for anN × N matrix, the proposed
algorithm requires2/3(W +1)2(W 2/4+(W +1)(K−W +1))
flops for all the LU decompositions which in turn gives rise
to significant runtime and storage gains compared to the brute
force approach.

We note that a new optical packet is blocked under the
following two conditions upon the packet’s arrival:

• the Markov chain resides in(K, j), 0 ≤ j ≤ W (i.e. all
wavelength channels are in use)

• the Markov chain resides in state(i, W ),W ≤ i < K
(i.e. all converters are in use) and the incoming wave-
length is occupied (this occurs with probabilityi/K)

The PASTA (Poisson Arrivals See Time Averages) property
suggests that the steady-state probabilities at arbitrary times
as calculated above are the same as those of the embedded
discrete-time Markov chain at the epochs of arrivals [30,
pages 221–222]. Therefore, the packet blocking probability
Pb can be expressed as

Pb = xKe +
K−1∑

i=W

i

K
xi,W , (15)

where the solution vector for leveli, namelyxi, is partitioned
asxi = (xi,0, xi,1, . . . , xi,W ) for i ≥ W .

III. A NALYSIS OF SPL ARCHITECTURE FOR THE

MARKOVIAN ARRIVAL PROCESSCASE

In this section, we aim at studying the impact of the packet
arrival process characteristics on packet blocking performance.
For doing so, we generalize our analytical model of Section
II so as to cover also the MAP (Markovian Arrival Process)
arrivals. The MAP generalizes the Poisson process by allowing
non-exponential interarrival times but still maintaining its
Markovian structure. The MAP is described by two processes,
namely the the count processN(t) and the phase process
J(t), assuming values in{0, 1, . . .} and{0, 1, . . . , m−1}, re-
spectively. The two-dimensional Markov process{N(t), J(t)}
is then modelled as a Markov process on the state-space
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{(i, j) : i ≥ 0, 0 ≤ j ≤ m−1} whose infinitesimal generator
matrix Q can be represented in block form as

Q =




C D · · ·
C D · · ·

C D · · ·
. ..


 . (16)

In the above generator,C and D are m × m matrices,C
has negative diagonal elements and non-negative off-diagonal
elements,D is non-negative, andE = C +D is an irreducible
infinitesimal generator. When the generator is of the form
(16) then the underlying process is called MAP which is
characterized by the matrix pair(C,D). The evolution of
the MAP is as follows. Assume that the Markov process
with generatorE is in statej, 0 ≤ j ≤ m − 1. After an
exponentially distributed time interval with parameter−Cjj ,
there occurs either a transition to another statek 6= j without
an arrival with probability Cjk

−Cjj
or to a statel (possibly the

same state) with an arrival with probabilityDjl

−Cjj
. Let π be

the stationary probability vector of the phase process with
generatorE so thatπ satisfies

πE = 0, πe = 1. (17)

The mean arrival rateλ for a MAP is given by [19]

λ = πDe. (18)

Note that if we define

d = De =
[

d0 d1 · · · dm−1

]T
, (19)

thendi gives the arrival rate at phasei and the mean arrival
rate for the underlying MAP can then be written asλ =∑m−1

i=0 πidi which is equivalent to (18).
A subcase of MAP is PH-type which is widely used in the

literature for modelling independent and identically distributed
but non-exponential interarrival times [36, pages 44–46]. To
describe a PH-type distribution, we define a Markov process
on the states{0, 1, . . . , m} with initial probability vector(v, 0)
and an infinitesimal generator

[
T T 0

0 0

]

wherev is a row vector of sizem, the subgeneratorT is an
m × m matrix, andT 0 is a column vector of sizem such
that T 0 = −Te. The distribution of the time till absorption
into the absorbing statem is called a PH distribution with
representation(v, T ). If the interarrival times are modelled by
PH distributions, then the arrival process is called a PH-type
process. A PH-type process with representation(v, T ) is also
a MAP by settingC = T andD = T 0v.

Let us now study the optical packet switched link for
the 0 < W < K case first and with an arrival process
modelled as a MAP with the characterizing pair of two
m × m matrices(C, D). It can be shown that the process
X(t) = {(i(t), l(t), j(t)) : t ≥ 0 } on the state spaceS =
{(i, l, j) : 0 ≤ i ≤ K, 0 ≤ l ≤ m − 1, 0 ≤ j ≤ min(i, W )},
wherei(t) andj(t) are defined as before andl(t) is the phase

of the MAP at timet, is also a CTMC. We enumerate the
states asS =

{(0, 0, 0), · · · , (0,m− 1, 0)︸ ︷︷ ︸
level 0

,

(1, 0, 0), (1, 0, 1), (1, 1, 0), · · · , (1,m− 1, 1)︸ ︷︷ ︸
level 1

, · · ·

(K, 0, 0), · · · , (K, 0,W ), (K, 1, 0), · · · , (K, m− 1,W )︸ ︷︷ ︸
level K

}.

(20)

As before, we partition the solution vectorx =
(x0, x1, . . . , xK) according to levels. We also define the
Kronecker product of anm × n matrix A = {aij} and a
p× q matrix B to be anmp× nq matrix:

A⊗B =




a11B · · · a1nB
... · · · ...

am1B · · · amnB


 .

One can show that the resulting CTMC possesses an infinites-
imal generator of the same block tridiagonal form (5) where

Ui = D ⊗ Ūi, (21)

Di = µIm ⊗ D̄i, (22)

and

Ai =





(C − iµIm)⊗ Ii+1 i < W,
(C − iµIm)⊗ IW+1 + D ⊗ Īi W ≤ i < K,
(E − iµIm)⊗ IW+1 i = K.

(23)
Therefore, the steady-state probabilities of this CTMC can
be obtained using the same block LU factorization algorithm
described in Section II. Finding these individual probabilities,
one can find the packet blocking probability as follows. We
first note that the PASTA property does not hold since the
arrival process is not Poisson. However, when the system is
at state(i, l,W ) : W ≤ i ≤ K − 1, 0 ≤ l ≤ m − 1, then the
converter pool is busy and an arriving packet will be blocked
when it needs conversion which occurs with probabilityi/K.
Partitioningxi,W ≤ i ≤ K as

xi = [xi,0,0, . . . , xi,0,W , xi,1,0, . . . , xi,m−1,W ], (24)

and recalling (19), the rate of blocked traffic at this state will
be i xi,l,W dl/K. On the other hand, if the system is at state
(K, l, j) : 0 ≤ l ≤ m − 1, 0 ≤ j ≤ W , then the wavelength
channels are all busy and an arriving packet will be dropped.
The rate of blocked traffic in this state will then bexK,l,j dl.
Summing up the rates of blocked traffic for all such states and
dividing that to the mean arrival rate for the whole system, we
find the probability that a single arriving packet will be lost,
see also [36, page 94]. The above procedure can be formulated
in terms of matrix operations for ease of computation. For this
purpose, we first define the following two matrices

G1 = De⊗




1
...
1
1


 , G2 = Im ⊗




0
...
0
1


 .
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Fig. 2. Blocking probabilityPb as a function of the wavelength conversion ratior for three different values of the system loadρ.

The packet blocking probabilityPb can then be written as

Pb =
xKG1 +

∑K−1
i=W

i
K xiG2De

πDe
. (25)

The above analysis applies to0 < W < K. The special cases
of W = 0 andW = K are studied next.

A. No Wavelength Conversion

In case of NWC (i.e.,W = 0), we haveK independent
servers each fed with a MAP that is obtained by splitting
the aggregate MAP stream(C, D) evenly intoK substreams.
The characterizing pair of matrices(CNWC , DNWC) for each
substream is given by

CNWC = C +
K − 1

K
D, DNWC =

1
K

D.

The infinitesimal generator for the underlyingMAP/M/1/1
system for each wavelength channel is then written as

Q =
[

CNWC DNWC

µIm E − µIm

]
. (26)

Solving the steady state probabilities for (26) through

xQ = 0, xe = 1, x = (x0, x1) ,

the blocking probability for each channel can be written as

Pb =
x1DNWC e

πDNWC e
. (27)

B. Full Wavelength Conversion

The other boundary atW = K is the full wavelength con-
version case and the loss system then gives rise to the so-called
MAP/M/K/K system. This process has the infinitesimal
generator of the form (5) where

Di = (i + 1)µIm, 0 ≤ i < K,

Ai = C − iµIm, 0 ≤ i < K, AK = E −KµIm,

Ui = D, 1 ≤ i ≤ K.

Solving for the steady-state probabilities of this CTMC and
partitioning the solution asx = (x0, x1, . . . , xK), the blocking
probability for theMAP/M/K/K system is given by

Pb =
xKDe

πDe
. (28)

IV. N UMERICAL RESULTS

The exact analysis method introduced in this paper for
calculating the blocking probabilities in packet switching
nodes is implemented using Matlab. Without loss of generality,
we set the mean packet length1/µ to unity in all the numerical
examples. We use a C++ based event driven program to carry
out the simulations. Each simulation result for the blocking
probability is obtained via the mean of ten independent runs
where an overall of109 optical packets are simulated at
each run. We keep track of the occupancy of each individual
wavelength in the simulations. To generate MAPs, we use the
description of the MAP at the beginning of Section III.

We first assume that the packet arrival process is Poisson.
Using the expression (15), the packet blocking probabilities
are analytically calculated for the two casesK = 32 and
K = 128 as a function of the wavelength conversion ratio

r := W/K (29)

and for three different system loadsρ = 0.5, 0.7, and 0.9,
and the results are compared against simulations. We present
our results in Fig. 2. For all the tested cases, the analytical
results are in perfect accordance with the simulation results,
validating the proposed approach for Poisson traffic. We
note that simulations are not performed in cases where rare
probabilities such asPb < 10−8 need to be simulated due to
excessive simulation run-times that would be needed.

In the second example, we plot the blocking probabilityPb

as a function ofr andρ in Fig. 3 in the form of a 3-dimensional
mesh for three different cases ofK = 64, 128, and 256,
respectively. This plot shows that we can obtain blocking
probabilities for very large systems (e.g.,K = 256) and for
very rare probabilities (e.g.,Pb ≈ 10−40) and for a wide
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Fig. 3. Blocking probabilityPb as a function of the wavelength conversion
ratio r and system loadρ for three different values ofK.

range of system parameters (i.e.,0.4 < ρ < 1, 0 < r < 1)
without encountering any numerical problems. Moreover, such
probabilities can be obtained rather rapidly. Plotting the three
planes on Fig. 3 required solution of 4554 problems described
in Section II and obtaining Fig. 3 consisting of three planes
took less than 1 1/2 hours on a 3 GHz Pentium based PC. We
believe that rapid generation of these plots can be very helpful
for converter provisioning purposes as will be described later
in the sequel.

The computation times for the caseK = 128 andρ = 0.5
are plotted in Fig. 4(a) as a function of the number of
convertersW . We observe a faster than linear growth in the
execution times whenW is small followed by an almost
linear behavior in execution times for a wide range ofW .
The execution times tend to grow slower than linear whenW
approachesK. The conclusion we draw from this observation
is that growth in the size of the converter bank does not
pose computational problems as they would in algorithms with
polynomial complexity. For the dual case withW = 80 and
q = 64, we observe that the computation times tend to be
linear in K as depicted in Fig. 4(b).

A. Effect of Packet Interarrival Time Distribution

We assume that the packet arrival process is phase type and
we study the impact of the Squared Coefficient of Variation
(SCV), denoted byγ, of packet interarrival times on packet
blocking performance [37]. The SCV of a random variable
is the variance divided by the squared mean of that random
variable and is indicative of its variability. For Poisson arrivals
γ = 1, whereas forγ < 1 we use the Erlang-k distribution
which hasγ = 1/k and which hask phases. On the other
hand, the cases ofγ > 1 can be obtained by using an
appropriate two phase hyperexponential distribution (denoted
by H2) with balanced means [37, pages 58–59]. Fig. 5
depicts the packet blocking probabilities as a function of the
wavelength conversion ratio forK = 64, under two different
loads and for different values of the SCV of the arrival process.
Again for the PH-type case, we obtain a perfect match of the
analytical results with those obtained using simulations. We
conclude that packet blocking probabilities are significantly
lower for regularly spaced arrivals with relatively small SCV.
This observation demonstrates that not only the mean but also
the variance of packet interarrival times have a substantial
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Fig. 4. Computation times for (a) with respect to varyingW for K = 128
(b) with respect to varyingK whenW = 80.

impact on packet blocking performance and these second order
traffic characteristics need to be taken into consideration for
accurately modelling optical packet switching systems. We
also conclude that traffic shaping at the ingress of an OPS
network that can reduce the SCV would also be effective in
reducing packet blocking inside the OPS core.

B. Effect of Packet Length Distribution

It is also interesting to study whether the blocking proba-
bilities are sensitive to the packet length distribution for the
Poisson arrival case. Recall that in the Erlang loss systems, the
service time distribution influences the blocking probability
only through its mean, and the higher-order statistics do not
affect the blocking probabilities. Since the boundary cases
of W = 0 and W = K reduce to Erlang loss systems
of some form, one might lead to the conclusion that the
blocking probabilities in the general PWC case, i.e.,0 <
W < K, is also insensitive to the higher order statistics of the
packet length distribution. To study this phenomenon, we take
three packet length distributions (exponential, deterministic,
hyperexponential) all with the same mean but with different
SCV values. We then fixK = 32, and for different values
of W and ρ we obtainPb but we resort to simulations for
non-exponential packet length distributions. The results are
presented in Table I. We observe that the blocking probabilities
for the PWC system with deterministic and hyperexponential
packet lengths deviate slightly from the one with exponential
packet lengths especially under the regime of low load and
moderate number of TWCs. These results lead us to believe
that the corresponding insensitivity may not be perfect for
PWC as in the Erlang loss systems but one can still make use
of exponential packet length distributions for approximating
the behavior of non-exponential burst lengths. However, we
note that studying the sensitivity to packet length distributions
for more general MAP arrivals is left for future research.
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Fig. 5. Blocking probabilityPb for K = 64 as a function ofr for different values of the squared coefficient of variationγ.

TABLE I

PACKET BLOCKING PROBABILITIES FOR EXPONENTIAL, DETERMINISTIC AND HYPEREXPONENTIAL PACKET LENGTH DISTRIBUTIONS IN A NUMBER OF

SCENARIOS

SCV=1 SCV=0 SCV=4

W (%95 Conf. Intervals) (%95 Conf. Intervals)

ρ = 0.4

4 1.32E-01 1.33E-01 (± 3.38E-05 ) 1.31E-01 (± 6.82E-05 )

12 7.37E-03 8.14E-03 (± 1.39E-05 ) 7.01E-03 (± 2.27E-05 )

20 6.76E-05 8.97E-05 (± 1.39E-06 ) 5.59E-05 (± 1.22E-06 )

28 2.86E-06 2.95E-06 (± 2.89E-07 ) 2.82E-06 (± 1.27E-07 )

ρ = 0.6

4 2.65E-01 2.66E-01 (± 7.13E-05 ) 2.65E-01 (± 1.05E-04 )

12 9.25E-02 9.47E-02 (± 8.57E-05 ) 9.18E-02 (± 7.61E-05 )

20 1.49E-02 1.65E-02 (± 5.18E-05 ) 1.43E-02 (± 3.68E-05 )

28 2.17E-03 2.24E-03 (± 1.48E-05 ) 2.12E-03 (± 9.25E-06 )

C. Effect of Packet Arrival Process Correlation

Another issue we study is the impact of the arrival process
correlation on packet blocking probabilities. For this purpose,
we use the method of [38] which introduces a correlation into
an arbitrary uncorrelated arrival process without changing the
marginals. As an example if we have a PH-type distribution
characterized by the pair(v, T ) with T 0 = −Te, then the
MAP defined by

C = T, D = (1− ψ)T 0v − ψT, 0 ≤ ψ < 1

has a lag-k autocorrelation between theith andi+kth interar-
rival times in the formcψk for some constantc. A large value
of the correlation parameterψ implies a slow decay of the
lag-k autocorrelation function and therefore strong correlation.
On the other hand, a smallψ yields weakened autocorrelation
and in the limit whenψ = 0 we obtain back the uncorrelated
phase-type process. As an example, we take an arrival process
with hyperexponential (with balanced means) marginals with
γ = 16 and we incorporate autocorrelation into this process
as described above. In Fig. 6, the packet blocking probability
is plotted with respect to the wavelength conversion ratior

for three different correlation parameter valuesψ in a PWC
system withK = 64 and for two different cases stemming
from two different choices ofρ. The results are again in
accordance with the simulation results in all cases validating
our proposed approach for MAP arrivals. Moreover, increase
in the correlation parameterψ also substantially increases the
packet blocking probability as would be expected whereas the
impact is more severe with increasing wavelength conversion
ratio.

D. Tradeoff Between Number of Channels and Converters

We utilize this fast and exact blocking probability analy-
sis technique for finding the minimum cost combination of
number of wavelength channels and converters for achieving
a given Grade of Service (GoS) requirement in optical packet
switching systems. While doing so, we assume arrivals are
Poisson in all the examples although the proposed procedure
can be applied to more general MAP arrivals as well. For
Fig. 7-9, we assume a fixedλ = 15. For a varying number
of wavelengths per fiber (i.e.,K), we iteratively find the
minimum number of wavelength converters that meets a GoS
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Fig. 6. Blocking probabilityPb for K = 64 as a function of the wavelength conversion ratior for different values of the system loadρ and correlation
parameterψ.
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requirement expressed in terms ofPb. The results are depicted
for different values ofPb in Fig. 7. The region above each
curve in Fig. 7 represents the feasibility set composed of
(K, W ) pairs satisfying the GoS requirement. For a fixed
offered traffic and target GoS expressed in terms ofPb, the
trade-off between the number of wavelengths and number of
converters is illustrated in Fig. 7. From Fig. 7, we observe
that lack of converters can be compensated by increasing the
number of wavelength channels in order to achieve a target
GoS.

This trade-off is further investigated in Fig. 8 from the
switch cost point of view. We assume that a TWC has a cost
which is α times larger than the wavelength channel cost.
The points indicated in Fig. 8 are the optimum combination of
(K, W ) resulting in the minimum switch cost withPb = 10−4

for three different values ofα, α = 2, 6, 15. Each optimum
point corresponds to the intersection of the equi-cost line of
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Fig. 8. Optimum operating point(K, W ) for Pb = 10−4 as a function the
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slope−1/α that is tangent to the boundary of the feasibility
region for Pb = 10−4. As the cost of TWC increases, the
optimum operation point moves to a regime where fewer
number of converters are used in conjunction with a larger
number of wavelength channels. The least cost solution has
a conversion ratior of about two thirds when TWCs are
relatively inexpensive (α = 2). On the other hand, with
relatively high cost of conversion (α = 15), conversion ratio
r reduces to about10% in the optimum solution.

The effects ofα and Pb on the optimum conversion ratio
are studied in Fig. 9. We observe that the optimum con-
version ratio quickly drops asα increases for different GoS
constraints, but the decrease rate slows down asα becomes
prohibitively high. The optimum conversion ratio increases
as the GoS constraint becomes more stringent, however the
dependence is not very strong, i.e., the conversion ratio is
relatively insensitive with respect to the targetPb.



SUPPLEMENT ON OPTICAL COMMUNICATIONS AND NETWORKING 79

2 4 6 8 10 12 14
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

α

o
p

ti
m

u
m

 c
o

n
v
e

rs
io

n
 r

a
ti
o

 
r

P
b
=10

−12

P
b
=10

−8

P
b
=10

−4

Fig. 9. Optimum conversion ratio as a function of the cost parameterα for
Pb = 10−4, 10−8 and10−12.

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

λ=10

λ=50

λ=10

λ=50

λ=10

λ=50

λ=10

λ=50

number of wavelengths K

n
u

m
b

e
r 

o
f 

w
a

v
e

le
n

g
th

 c
o

n
v

e
rt

e
rs

 W

α=2

α=5

α=8

α=11

Fig. 10. Optimum operating points(K, W ) for Pb = 10−8 as a function
the arrival rateλ for different values of cost parameterα.

Finally, the effect of the Poisson arrival rateλ on the
optimum combination of(K,W ) for different values ofα
is depicted in Fig. 10 forPb = 10−8. In this figure,λ is
increased from 10 to 50 in steps of 10. It is observed that as
λ increases, the optimum(K,W ) pair moves approximately
along a line passing through the origin for all values ofα
we tested. The rate of this increase decreases with increasing
α since the minimum cost switch uses fewer converters asα
increases. Consequently, we conclude that increasingλ has a
minor effect on the optimum conversion ratio whenα remains
constant.

V. CONCLUSION

We propose an exact analytical method for exactly calcu-
lating blocking probabilities in OBS/OPS nodes employing
shared wavelength conversion on a share-per-link basis. The
method is first formulated for Poisson arrivals and then ex-
tended to the more general Markovian arrival process which
is commonly used for traffic modelling in the Internet. The

proposed exact analysis method can be used for efficiently
and accurately calculating blocking probabilities even in very
large systems with hundreds of wavelength channels and
rare blocking probabilities. Moreover, using the analysis for
Markovian arrivals, we show that the variability of the interar-
rival times and the correlation in the packet traffic substantially
impact the blocking probabilities in asynchronous optical
packet switching systems and such second-order statistics also
need to be taken into account. The rapid calculation of the
packet blocking probabilities allows optimum provisioning of
bufferless OPS links when the cost relationship between a
wavelength channel and a wavelength converter is available.
Using an optimum provisioning procedure, we also study the
effects of arrival rate, GoS constraint and the converter cost
on the optimum sizing of optical packet switching systems.
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