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Throughput Modeling of Single Hop CSMA
Networks with Non-Negligible Propagation Delay
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Abstract—We analyze the performance of the CSMA protocol
under propagation delays that are comparable with packet
transmission times. We propose a semi-Markov model for the
2-node CSMA channel. For the 2-node case, the capacity reduces
to 40% of the zero-delay capacity when the one-way propagation
delay is 10% of the packet transmission time. We then extend
this model and obtain the optimum symmetric probing rate
that achieves the maximum network throughput as a function
of the average propagation delay, d̄, and the number of nodes
sharing the channel, N. The proposed model predicts that the
total capacity decreases with d̄−1 as N goes to infinity when
all nodes probe the channel at the optimum rate. The optimum
probing rate for each node decreases with 1/N and the total
optimum probing rate decreases faster than d̄−1 as N goes to
infinity. We investigate how the short-term unfairness problem in
CSMA worsens as the propagation delay increases and propose a
back-off mechanism to mitigate this issue. The theoretical results
presented in this paper can be used as a benchmark for the
performance improvements provided by algorithms that have
already been developed.

Index Terms—Wireless networks; multiaccess communication;
Carrier Sense Multiple Access (CSMA); large propagation delay.

I. INTRODUCTION

CARRIER Sense Multiple Access (CSMA) is a distributed
multiple access protocol which does not require cooper-

ation between nodes. Due to its simple nature, CSMA forms
the basis of many communication standards. One of the main
drawbacks of the CSMA protocol is the collisions which may
occur as a result of the propagation delay between nodes.
In the current wireless configurations, however, propagation
delay is not considered as a significant problem because it
is negligible in comparison to the transmission times. On the
other hand, larger propagation delays should be considered
in the performance modeling of future wireless networks
for several reasons: First, there are new wireless networks
developed for covering larger areas to provide Internet access
in rural areas [1] where the propagation delay is larger.
Second, there is an emerging need for underwater acoustic
networks [2] which experience very large propagation delays
due to low propagation speed of acoustic waves. Finally, as the
transmission rates increase, packet durations decrease, conse-
quently, ratio of the propagation delay to the transmission time
increases.
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The IEEE 802.22 wireless regional area network (WRAN)
standard is developed for providing Internet access to rural
areas where deploying a cable infrastructure is expensive. In
this standard, a base station has a coverage range up to 100
km in radius [1]. The propagation delay of radio waves over a
distance of 100 km equals to 334 μs which is larger than the
transmission delay of a 2000 byte packet at rates exceeding
48 Mbps. Although the IEEE 802.22 standard specifies a
centralized access mechanism, propagation delay has to be
taken into account if new regional wireless networks using a
random access based multiple access control (MAC) scheme
are to be deployed in the future. The effect of the propagation
delay on the underwater acoustic networks is even more
dramatic: The propagation delay of a packet over a distance of
1 km is 670 ms which is larger than the transmission delay of a
2000 byte packet at rates exceeding 24 Kbps. So, propagation
delay must be a major consideration for terrestrial wireless
networks covering large distances and for underwater networks
even for short distances and low transmission rates.

We here model the throughputs of nodes sharing a single
CSMA channel under non-negligible propagation delays. We
determine how aggressive nodes should be in order to optimize
the trade-off between the channel utilization and the collision
probability. We also investigate the asymptotic behavior of the
capacity region as the propagation delay and the number of
nodes increase. Although the effects of the propagation delay
have been studied in the context of practical configurations
[3], [4], [5], fundamental capacity limits of the pure CSMA
protocol have not been previously considered to the best of
our knowledge. The contributions of the paper are:

• a semi-Markov model for the throughput of the two satu-
rated nodes sharing a CSMA channel. Using this model,
we present the capacity region of the CSMA channel
with non-zero propagation delay. When the propagation
delay is 10% of the packet transmission time, the capacity
reduces to 40% of the zero-delay capacity for the 2-node
case.

• derivation of the optimum probing rates as a function
of the average propagation delay, d̄, and the number of
nodes, N, by extending the 2-node model. The optimum
probing rate maximizes the channel utilization by exploit-
ing the balance between the collision probability and the
channel utilization.

• an investigation of the asymptotic total capacity for
large N. In the limit as N → ∞, the model predicts
that the total capacity changes in proportional to d̄−1.
The optimum node probing rate decreases with 1/N as
N → ∞. Moreover, the total optimum network probing
rate achieved by all nodes decreases faster than d̄−1 for
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large N according to the proposed model.
• an investigation of a back-off mechanism which is em-

ployed in order to mitigate the the short-term unfair-
ness problem in CSMA. When the propagation delay
increases, the capture effect in CSMA becomes more
significant especially when a small number of nodes are
sharing the channel. Using a back-off after each trans-
mission, this unfairness becomes much less significant
without having a throughput penalty.

• a comparison of the performance of the 802.11 channel
access scheme with the proposed capacity and optimum
probing rate analysis. For a simple two-node scenario, the
802.11 channel access scheme behaves closely similar
with the proposed analysis for the pure CSMA as the
propagation delay increases despite the discrepancies
between the studied CSMA model and the 802.11 MAC
protocol.

In the next section, we review the relevant literature. In
Section III, we describe the scenario on which we built our
study. The semi-Markov model for the 2-node case and the
capacity region of the CSMA link are presented in Section IV.
Derivation of the asymptotic optimum probing rate and the
total channel capacity along with the performance evaluation
of these expressions are discussed in Section V. We investigate
a back-off mechanism for imroving the fairness of CSMA
under large propagation delay in Section VI. Section VII
compares the 802.11 channel access scheme with the proposed
capacity and optimum probing rate analysis.

II. RELATED WORK

A. Throughput-optimal Multiple Access

Recently, it has been shown that throughput optimality in
a CSMA based wireless network can be achieved by using
an adaptive and distributed probing rate adaptation algorithm
[6]. Because of the zero-collision assumption in this algorithm,
channel access rates of nodes are allowed to approach infinity
in order to achieve the limits of the throughput region. How-
ever, increasing rates indefinitely will cause zero throughput
in practice because of collisions. Several studies explain how
throughput optimality can be attained in case of collisions
[7], [8], but the collision probability must approach to zero to
achieve throughput optimality. This condition requires nodes
not to be aggressive to capture the channel resulting in
large channel holding times. Hence, it is not possible to
achieve throughput optimality without sacrificing the short-
time fairness [9]. We here investigate how much of the zero-
collision capacity can be achieved without increasing channel
holding times under non-negligible propagation delays.

B. Performance of Random Access under Large Propagation
Delay

Performance analysis of unslotted CSMA was given by
Kleinrock and Tobagi [10]. Since this analysis is based on
the infinite number of users assumption [11], the throughput
expression does not provide accurate results for small number
of users. For finite number of users, Takagi and Kleinrock
analyzed persistent CSMA [12]. This analysis is valid only for

persistent CSMA and relies on the assumption that each user
has independent and exponentially distributed idle periods.

The effects of the propagation delay on the performance
of CSMA in terrestrial wireless networks have not been
extensively studied so far because of the short communication
ranges of wireless communication technologies where CSMA
is employed. Current wireless standards are based on the
assumption that packet transmission times are much larger
than the propagation delay. The performance of the 802.11
protocol for outdoor networks is analyzed in [13], [5] and it
is stated that the 802.11 protocol is not feasible for distances
larger than 6 km. Recently, however, the 802.22 WRAN
standard is proposed which has a coverage area of up to
100 km. If random access is to be used for next generation
wireless networks with larger coverage ranges, the influence
of the propagation delay on the network throughput must be
investigated.

The effect of the propagation delay is even more criti-
cal for underwater networks because of the relatively slow
propagation speed of acoustic waves [14]. The performance
of the CSMA protocol with the Request to Send / Clear to
Send (RTS/CTS) mechanism under large propagation delays
is investigated in [15], [16]. These studies demonstrate that
the use of RTS/CTS does not improve the performance of
CSMA under large propagation delays. The performance of
the ALOHA protocol for underwater sensor networks work-
ing with large propagation delays is analyzed in [17], [18].
Both studies state that the performance of slotted ALOHA
reduces to the performance of unslotted ALOHA under large
propagation delays. Adapting slot lengths according to the
propagation delay is proposed [19], [20], but using larger
slot lengths reduces efficiency when the propagation delay
is comparable with packet transmission times. Addition of
a guard band to transmissions is proposed in [18] and an
additional synchronization mechanism for slotted ALOHA
is suggested in [21]. A handshaking mechanism similar to
RTS/CTS is proposed for underwater networks in [3] and a
cross layer approach is proposed in [22].

We investigate the performance of CSMA instead of
ALOHA because channel sensing can prevent some of the col-
lisions and can be implemented in a simple manner. We model
the capacity of asynchronous CSMA without the RTS/CTS
mechanism since earlier work demonstrated the ineffectiveness
of the RTS/CTS mechanism and simple time synchronization
under large propagation delay [16]. Although prior studies
analyzed only the total channel throughput, we also present
expressions for individual throughputs of nodes for the 2-
node case. We study how the propagation delay affects the
channel capacity and what must be the optimum probing rates
to achieve the capacity.

Although the collision detection mechanism used in the
Ethernet protocol can potentially improve the performance of
CSMA under large propagation delays since the transmitter
can detect a collision much earlier, this mechanism is not
feasible for wireless networks [23]. However, there are a few
attempts to incorporate the collision detection mechanism for
wireless networks: [24] proposed a method in which the users
stop for a small amount of time after the beginning of the
transmission to detect other transmissions in the channel. This
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method, which is analyzed in [25], does not allow instant
collision detection because all nodes need to wait at least
for the largest propagation delay in the network. For large
propagation delays, this method is inefficient and it increases
the complexity of the radio. A collision detection method
which uses narrow-band pulses transmitted over a separate
out-of-band control channel to detect collisions is proposed in
[26], but addition of another channel is costly, complicating
the radio hardware.

III. SCENARIO DESCRIPTION

In this section, we present the assumptions of this study and
explain the motivations behind these assumptions.

• All nodes can hear each other, i.e., all transmissions are
single hop.

• Nodes employ an unslotted CSMA protocol. We model
a CSMA network where the largest one-way propagation
delay can be as much as half of the packet transmission
time.

• Nodes do not employ collision detection since collision
detection is not feasible for wireless networks.

• Nodes do not employ any handshaking mechanism to
avoid collisions. Although a handshaking mechanism
may reduce packet collisions, it brings a significant
overhead when the propagation delay is high. Besides,
control packets used in handshaking may also collide
when the propagation delay is large.

• We assume that the back-off intervals are exponentially
distributed. Since the exponential distribution supports
infinite back-off intervals, it is not used in real-life pro-
tocols. However, it is more suitable for the performance
analysis because of its memoryless behavior. Similarly,
geometric distribution is used in IEEE 802.11 perfor-
mance analysis in the literature because of its memoryless
nature, and it is shown to perform similar to the uniform
back-off length distribution [27].

• We assume a fixed packet transmission time. Although
some studies show that the throughput can be increased
by increasing packet transmission times as discussed in
Section II, we do not follow that approach in order to
avoid degradation in the short-term fairness.

IV. SEMI-MARKOV MODEL FOR THE 2-NODE CSMA
CHANNEL

In this section, we first present a throughput model for
the CSMA channel for 2 nodes. Then, we compare the
performance of this model with the simulation results and
present the capacity region of the 2-node CSMA channel to
demonstrate the effect of propagation delay on the capacity of
the CSMA protocol.

A. State Definitions

The semi-Markov model for the 2-node case is built from
the point of the view of one of the nodes where states represent
the phases that a node visits as time evolves. The state diagram
of the chain is depicted in Fig. 1.

Assume that node 1 started a transmission after a long idle
period and node 1 is sharing the channel with node 2. This

1(Backoff) 2(Vuln.
Trans.)

3(Safe
Comp.)

4(Waste)

5(Idle
Channel)

6(Safe
Start)

7(Vuln.
Trans.)

8(Idle
Channel)

9(Safe
Start)

10(Vuln.
Trans.)

Fig. 1: The state diagram for the semi-Markov model.

transmission is vulnerable to collisions until node 2 hears
this transmission (State 2). If the transmission survives this
period, it is certain that the transmission will safely complete
(State 3). After the end of this transmission, node 2 will still
be exposed to the transmission of node 1 for a period time
because of the propagation delay. During this period, node
1 is advantageous to start another transmission (State 5). If
node 1 starts a transmission while node 2 is still exposed to
its previous transmission, new transmission can be safe from
collisions for a period of time (State 6). When this period
ends, it becomes vulnerable again (State 7) but it can safely
complete after node 2 hears this transmission (State 3). If a
collision occurs, transmission is wasted (State 4). At the end of
this collided transmission, node 2 will still be exposed to the
collided transmission so a shorter period of successful probing
exists (State 8). New transmission will pass through safe (State
9) and vulnerable states (State 10).

Below we present the holding time distributions and the
transition probabilities between these states. We normalize the
time such that each packet has a fixed transmission time of
unit duration. Note that d denotes the one-way propagation
delay between nodes and we assume 2d < 1. Nodes 1 and 2
independently sense the channel at exponentially distributed
intervals with mean 1/R1 and 1/R2, respectively, and transmit
their packets if the channel is idle. R1 and R2 refer to the
probing rates of Nodes 1 and 2, respectively. Si denotes the
holding time in state i. Probability distribution function (PDF)
and cumulative distribution function (CDF) of Si are denoted
by fSi and FSi , respectively. We define pi, j as the transition
probability from state i to state j.

State 3 (Safe Completion): After a transmission starts,
a colliding transmission can only arrive within 2d period
because node 2 becomes aware of the transmission of node
1 at d. Since node 2 will not start a transmission after this
point, it is certain that a colliding transmission will not arrive
after 2d and the transmission will be safely completed. The
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(a) (b)

Fig. 2: (a) Idle channel period after a successful transmission.
Duration of this period is 2d. (b) If a transmission starts in this
idle period, it continues free from collisions for a duration of
a and enters into a vulnerable period. The duration a equals to
the starting transmission time after the successful transmission.

holding time in this state is deterministic and equal to 1−2d:

fS3(t) =

{
1 if t = 1− 2d,

0 o.w.
(1)

After a successful transmission, there is an idle channel period
which is the next state described. In our model, that period is
denoted as State 5 and the transition probability from State 3
to State 5 is 1, i.e.,

p3,5 = 1. (2)

State 5 (Idle Channel): After a successful transmission,
it is certain that node 1 will not receive a transmission from
node 2 for a duration of 2d because node 2 is still exposed
to node 1’s successful transmission as shown in Fig. 2a. After
the successful completion, if node 1 performs channel probing
within the 2d duration, it will find the channel idle and start
transmission and enter State 6 (Safe Start). If it does not probe
the channel within the 2d period, the system will enter State
1 (Backoff). Hence, the transition probabilities from State 5
are given by

p5,1 = e−R12d p5,6 = 1− e−R12d (3)

and the holding time distribution in State 5 is given by

fS5(t) =

⎧⎪⎨
⎪⎩

R1e−R1t if t < 2d,

e−R12d if t = 2d,

0 o.w.

(4)

Then, the expected holding time at State 5 can be written as

E[S5] =

∫ 2d

0
tR1e−R1t dt + 2de−R12d =

1− e−R12d

R1
. (5)

State 6 (Safe Start): If node 1 starts transmission within
the 2d period, it is certain that this transmission will safely
continue until time te + 2d, where te is the end of last packet
transmission as it can be observed from Fig. 2b. After this

(a) (b)

Fig. 3: (a) Busy and idle channel periods after an unsuccessful
transmission. (b) If a transmission starts in the idle period, it
continues free from collisions for a while and enters into a
vulnerable period.

state, the transmission will enter a vulnerable state (State 7):

p6,7 = 1. (6)

The holding time distribution in this state is given by

fS6(t) =

{
R1e−R1(2d−t)

1−e−R12d if t < 2d

0 o.w.
(7)

Then,

E[S6] =
∫ 2d

0
t
R1e−R1(2d−t)

1− e−R12d
dt =− 1

R1
+ d+ d coth(R1d). (8)

State 7 (Vulnerable Transmission): After State 6, the
transmission becomes vulnerable in [te+2d, ts+2d] as shown
in Fig. 2b, where ts is the starting time of the transmission of
the current packet. As noted in the figure, the length of the
vulnerable period is equal to the starting time of the transmis-
sion after the last transmission. For that reason, the length of
this period is exponentially distributed truncated at 2d. Then,
the probability of successful completion of the transmission,
which corresponds to the probability of transition to State 3,
is expressed as

p7,3 =

∫ 2d

0

R1e−R1t

1− e−R12d e−R2t dt

=
e−R2dR1csch(R1d)sinh((R1 +R2)d)

R1 +R2
.

(9)

Consequently,
p7,4 = 1− p7,3. (10)

In order to obtain the holding time distribution of this state,
the distribution of the minimum of two random variables has
to be found. Either the vulnerable period will end without
collisions and the system will enter State 3 or a colliding
transmission will arrive and the system will enter State 4. The
first distribution which denotes the length of the vulnerable
period, V , is exponentially distributed truncated at 2d. The
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second distribution is the distribution of the arrival of the other
node’s transmission, C, which is exponentially distributed with
mean 1/R2.

FS7(t) =

{
1−

(∫ 2d
t

R1e−R1x

1−e−R12d dx
)

e−R2t t < 2d

1 o.w.
(11)

Taking the derivative, fS7(t) can be obtained:

fS7(t) =

{
− e−aR1−aR2+2R1d R1

1−e2R1d +
e−aR2(1−e−aR1+2R1d)R2

1−e2R1d t < 2d

0 o.w.
(12)

The expected length of this period is given by

E[S7] =
∫ 2d

0
t fS7(t)dt =

(−1+ e−2R2d
)

R1 +
(−1+ e2R1d

)
R2

(−1+ e2R1d)R2(R1 +R2)
.

(13)
State 4 (Waste): If a colliding transmission arrives during

the vulnerable period of a transmission, the system will enter
State 4. The duration of this period equals 1 which is the
length of the colliding transmission, hence E[S4] = 1. After
State 4, the system will enter an idle waiting state (State 8):
p4,8 = 1.

State 8 (Idle Channel): After State 4, there is still an idle
period during which a probe will be successful as it can be
observed in Fig. 3a. However, this period will be shorter than
2d in contrast to State 5. The length of this period is given
by 2d − tc where tc is the duration of the collision after the
previous transmission. We assume that the collision duration
is uniformly distributed in [0,2d]. Then, the probability that
the node probes the channel before the end of the idle period,
i.e., the transition probability from State 8 to State 9, can be
expressed as

p8,9 =

∫ 2d

0

1
2d

∫ u

0
R1e−xR1dxdu = 1− 1− e−R12d

2R1d
(14)

and p8,1 = 1− p8,9. The distribution of the holding time in
State 8 is the minimum of two random variables. The first one
is the length of the idle period which is uniformly distributed
between 0 and 2d. The other one is the probing time which
is exponentially distributed with mean 1/R1.

FS8(t) =

{(
1− e−R1t 2d−t

2d

)
t < 2d

1 o.w.
(15)

Taking the derivative, fS8(t) can be written as

fS8(t) =

{
e−R1t

2d +
e−R1t R1(−t+2d)

2d t < 2d

0 o.w.
(16)

The expected holding time at State 8 is given by

E[S8] =

∫ 2d

0
t fS8(t)dt =−1− e−2R1d − 2R1d

2R2
1d

. (17)

State 9 (Safe Start): If the node probes the channel in
the idle period after an unsuccessful transmission, the started
transmission will continue safely for a while as shown in
Fig. 3b. Let U denote the length of the idle period which is
uniformly distributed between 0 and 2d and E is the starting
time of the transmission which is exponentially distributed
with mean 1/R1. Since the length of the idle period is U −E ,

the CDF of S9 can be written as

FS9(t) = Pr(U −E < t|E <U)

= Pr(U −E < t|E <U,U < t)+

Pr(U −E < t|E <U,U > t)

= Pr(U < t)+Pr(U −E < t|E <U,U > t)

=
t

2d
+

∫ 2d

0

1
2d

∫ u

u−t
R1e−R1t dtdu

=
t + 1−e−R1t−eR1(t−2d)+e−R12d

R1

2d

(18)

Then, fS9(t) is given by

fS9(t) =
1+ e−R1t − eR1(t−2d)

2d
(19)

and the expected holding time is expressed as

E[S9] =

∫ 2d

0
t fS9(t)dt

=
1+R1d(−1+R1d)− e−R12d(1+R1d)

R2
1d

.

(20)

After visiting State 9, the system will enter State 10: p9,10 = 1.

State 10 (Vulnerable Period): After State 9, there is a
vulnerable period during which a collision may occur as it
can be observed from Fig. 3b. Distribution of the holding
time of State 10 is the minimum of two distributions: The
first one is the maximum duration of this period which is
the subtraction of the holding time in State 9 from 2d and
the second one is exponentially distributed with mean 1/R2
which corresponds to the duration until the start of a colliding
transmission. Probability that a colliding transmission arrives
during a transmission can be written as

p10,4 =
∫ 2d

0

1+ e−(2d−u)R1 − eR1(−u)

2d

∫ u

0
R2e−R2t dtdu

= 1+
e−2dR1

2d(R1 −R2)
+

e−2dR2

2dR2
+

e−2dR2

2d(−R1 +R2)

− e−2d(R1+R2)

2d(R1 +R2)
− R1

2d
(
R1R2 +R2

2

)
(21)

and p10,3 = 1− p10,4. The holding time cumulative distribution
function, FS10(t), is given by

FS10(t) = 1− e−R2t
∫ 2d

t

1+ e−R1(2d−t)− eR1(−t)

2d

= 1− e−R2t − e−R2t

2dR1
− e−2dR1−R2t

2dR1

+
e−R1t−R2t

2dR1
+

e−R2t+R1(−2d+t)

2dR1
+

e−R2t t
2d

(22)

Then, the expected holding time is given by

E[S10] =

∫ 2d

0
t fS10(t)dt

=
1

2dR2
2

(−R2
1 +R2

2

)e−2d(R1+R2)

(
(R1 −R2)R2 − e2dR1(R1 − 2R2)(R1 +R2)

− e2dR2R2(R1 +R2)

+ e2d(R1+R2)
(
R2

1 −R1(1+ 2dR1)R2 + 2dR3
2

))
.

(23)
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State 1 (Backoff): If the node does not probe the channel in
the idle periods after successful or unsuccessful transmissions,
the system will enter the backoff state. In this state, the
successful probing probability (i.e. the probability of finding
the channel idle at the time of probing) is reduced because
the other node’s transmission could have been already started
before the node probes the channel. If the node finds the
channel busy, the system will make a self-transition to this
state. Although the probability of finding the channel idle
depends on the previous state, we assume it is independent
of the previous states and express the successful probing
probability as

p1,2 =

1
R2

1
R2

+ 1
(24)

which is the ratio of the expected waiting time over whole
time. The expected holding time in this state is

E[S1] =
1

R1
(25)

and p1,1 = 1− p1,2.

State 2 (Vulnerable Transmission): If the node finds
the channel idle at State 1, it starts a transmission. This
transmission will be vulnerable to other node’s transmission
from the beginning since it does not start immediately after
a transmission. So, probability of transition from State 2 to
State 3 and 4 can be written as

p2,3 = e−R22d p2,4 = 1− e−R22d . (26)

Then, the holding time distribution in State 2 is given by

fS2(t) =

⎧⎪⎨
⎪⎩

R2e−R2t if t < 2d,

e−R22d if t = 2d,

0 o.w.

(27)

Then, the expected holding time at State 2 can be written as

E[S2] =

∫ 2d

0
tR2e−R2t dt + 2de−R22d =

1− e−R22d

R2
. (28)

Throughput Expression: The transition matrix of the
jump-chain of the semi-Markov model shown in Fig. 1 is given
by

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1,1 p1,2 0 0 0 0 0 0 0 0
0 0 p2,3 p2,4 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0

p5,1 0 0 0 0 p5,6 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 p7,3 p7,4 0 0 0 0 0 0

p8,1 0 0 0 0 0 0 0 p8,9 0
0 0 0 0 0 0 0 0 0 1
0 0 p10,3 p10,4 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(29)
The steady-state probability distribution of the jump chain
with a transition matrix P is a 1x10 vector, π , and it can
be obtained by solving

π = πP

∑
i

πi = 1. (30)
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Fig. 4: Performance of the semi-Markov model and the
simplified model as R1 changes for d = 0.4.

since the stationary probability vector, π , remains same despite
the multiplication of the transition matrix. Let T1 and T2 denote
throughputs of node 1 and node 2, respectively. Since the
duration of a successful transmission is 1 and π3 gives the
successful transmission probability, T1 can be written as

T1(R1,R2,d) =
π3

∑i πiE[Si]
. (31)

Although the throughput has a closed-form expression, space
limitations prevent us from presenting the full expression. The
model computes the throughput very accurately as it will be
shown next through numerical examples.

B. Accuracy of the Model

We evaluate the performance of the semi-Markov model
for the 2-node case. The simulations are performed by a self-
developed simulation software based on Java for a duration of
106 time units where a transmission lasts for 1 time unit.

Fig. 4 depicts the throughputs of nodes in a 2-node network
as a function of R1 for d = 0.4. Different plots on the graph
correspond to different values of R2. As it can be observed,
the semi-Markov model accurately predicts the throughput.
Maximum absolute error in throughput between the model
and the simulations is 0.02, which shows that the assumptions
made in deriving the holding time distributions of State 1 and
8 have minor effects on the accuracy of the model.

C. The Capacity Region of the CSMA Channel for N = 2

In this part, we provide the capacity region of the CSMA
channel under non-zero propagation delay. Fig. 5a shows the
maximum achievable throughputs of the two nodes sharing
a CSMA channel as d increases. This graph is obtained by
numerical maximization of the throughput function obtained
by the semi-Markov model.

It is theoretically possible to achieve the full capacity region
for the zero-delay channel by probing the channel at an infinite
rate. In the zero-delay case, all throughput pairs T1 + T2 ≤
1 can be achieved. However, the capacity region shrinks as
d increases. This reduction is more apparent if nodes probe
the channel at similar rates as the wasted capacity increases
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Fig. 5: (a) The capacity region of a CSMA channel with two-nodes for different propagation delays. (b) Probing rates of nodes
required to achieve the limits of the capacity region.

due to collisions. On the contrary, total achievable throughput
increases if one of the nodes dominates the channel because
the dominant node experiences fewer collisions.

Fig. 5b shows the optimum probing rates of nodes that
achieve the maximum capacity as the propagation delay
changes. The graph shows that nodes should probe the channel
less aggressively if the propagation delay is large because
of higher collision probability. Also, it can be seen that the
optimum probing rate of a node is dependent on the probing
rate of the other node. Nodes should be less aggressive if both
nodes try to achieve similar throughputs. On the other hand,
an increase in the probing rate is beneficial only if the other
node probes the channel at a low rate.

The effect of the propagation delay on the throughput
can be seen in Fig. 6 for symmetric probing rate values.
As the propagation delay increases, probing at a lower rate
yields larger throughputs by reducing the collision probability.
Probing at a higher rate, however, increases the throughput
at low propagation delays by decreasing the channel access
delay.

These results show the importance of network-awareness
and probing rate adaptation when the propagation delay is
non-negligible. If several nodes sharing a channel have high
throughput demands, they must be cautious not to probe the
channel too frequently in order not to increase collisions. The
distributed probing rate adaptation algorithm proposed in [6]
allows arbitrarily large probing rates because of the zero-delay
assumption but simulations show that this approach is not
optimal especially when the propagation delay is large.

V. ASYMPTOTIC CAPACITY AND OPTIMUM PROBING RATE

In this section, we obtain the optimum probing rate which
achieves the maximum throughput for a CSMA channel with
N nodes. We investigate how this optimum rate and maximum
throughput changes as the average propagation delay, d̄, and
the number of nodes sharing the CSMA channel, N, increase.

For N > 2, modeling interactions between nodes sharing
a single channel in an asynchronous fashion becomes highly
complex. Each node is exposed to the transmissions of all
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Fig. 6: Total throughput of two nodes sharing a channel as the
propagation delay increases for different R1 = R2 = R values.

other nodes in the channel which are also affected by the
transmissions of the remaining nodes in the channel. Consid-
ering that the distances between nodes differ from each other
and transmissions may start at any time, some simplifying
assumptions are needed to obtain results for N > 2. For that
reason, we assume that the throughput reduction of a node
caused by each neighbor is independent of other neighbors
and total throughput reduction of a node can be found by
multiplying individual throughput reductions stemming from
each neighbor. Despite a reduction in accuracy, this approxi-
mation allows us to derive a simple expression for the channel
throughput which describes how total maximum throughput
and the optimum probing rate scales with d̄ and N. Numerical
results given at the end of this section show that the inaccuracy
resulting from the above independence assumption is small
and the proposed asymptotic throughput and optimum probing
rate functions accurately match with the simulation results.

Next, we model the throughput reduction caused by a single
neighbor of a node due to the propagation delay.
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A. Throughput Reduction Caused by a Single Neighbor

If the propagation delay between two nodes is 0, throughput
of node 1 is [28]

T1(R1,R2,0) =
R1

1+R1 +R2
. (32)

To single out the effect of propagation delay, we decompose
T1(R1,R2,d) into two parts:

T1(R1,R2,d) = T1(R1,R2,0)g1(R1,R2,d) (33)

where g1 represents the reduction in the throughput caused by
the propagation delay due to a neighbor at distance d and it
can be obtained by dividing the throughput found using the
semi-Markov model to the zero-delay throughput. In order
to obtain a simplification for g1, we first investigate how g1

changes with respect to R1, R2 and d using the proposed
semi-Markov model. The dependence of g1 on d is intuitive:
g1(R1,R2,0) = 1 because there are no collisions, while g1

decreases as d increases since larger propagation delay results
in higher collision probability. However, the dependences of
g1 on R1 and R2 are more complicated. Fig. 7 shows how g1

changes with respect to R1 and R2 for d = 0.3. The following
properties can be observed from this figure:

• If R2 = 0, g1(R1,0,d) = 1 independent of R1. Since there
are no collisions if node 2 does not probe the channel,
this result is expected.

• For a given R1 �= 0, g1 decreases as R2 increases since
the ratio of collided transmissions of node 1 increases.

• For a given R2 �= 0, g1 increases as R1 increases. Although
the number of collisions that node 1 experiences increases
with its probing rate, the ratio of its successful transmis-
sions to its attempted transmissions increases, resulting
in an increase in g.

We propose the following functional form in order to approx-
imate g1, which satisfies all of the above conditions

g̃1(R1,R2,d) =
1

1+ k
Rb

2dc

Ra
1

(34)

where a, b, c and k are positive parameters representing the
effect of several variables on g1. We applied a least squares fit
with integer values for a, b and c and obtained an approximate

function which is given by

g̃1(R1,R2,d) =
1

1+ k
R2

2d
R1

(35)

where k = 1.53. So, an approximation to T1 is given by

T̃1(R1,R2,d) =
R1

1+R1+R2

1

1+ k
R2

2d
R1

. (36)

The performance of this simplified function is given in
Fig. 4. Although this simplification is not as accurate as
the semi-Markov model, the maximum absolute error in the
throughput is limited to 0.06. Using this model, we will now
derive the asymptotic capacity and the optimum probing rate.

B. Derivation of the Asymptotic Capacity and Optimum Prob-
ing Rate

Let R represent the probing rate of all nodes. If there is
no propagation delay in the channel, there are no collisions.
Since all nodes probe the channel at exponentially distributed
intervals, neighbors of a node behave as a single node. Hence,
the throughput of a node is given by T1(R,(N −1)R,0) where
(N −1)R represents the total probing rates of all other nodes.
For the non-zero propagation delay case, we include the effect
of each neighbor as if its effect in reducing the throughput
of a node is independent from other nodes. We multiply the
zero-collision throughput by the individual collision reductions
g1(R,R, d̄) using the average distance for all nodes. Then, the
total throughput of all nodes, T A(.), can be written as

T A(R, d̄,N) = NT1(R,(N − 1)R,0)[g1(R,R, d̄)]
N−1. (37)

where g1(R,R, d̄) is the throughput reduction of a node caused
by another node if these two nodes were the only nodes
sharing the channel. Using (35), the total throughput is ap-
proximated as

T A(R, d̄,N)≈ T̃ A(R, d̄,N)� N
R

1+NR

( 1

1+ kRd̄

)N−1
. (38)

The first derivative of the throughput function has a single
positive root giving the optimum rate, R∗, which maximizes
the throughput, T̃ A, as given by

R∗(d̄,N) =
2

kd̄(N − 2)+
√

kd̄
√

kd̄(N − 2)2 + 4(N− 1)N
.

(39)
Note that R∗ decreases with 1/N as N goes to infinity. The
limit of the total optimum network probing rate achieved by
all nodes as N goes to infinity can be written as

RA(d̄)� lim
N→∞

NR∗(d̄,N) =
2

kd̄ +
√

kd̄(4+ kd̄)
. (40)

RA(d̄) can be bounded from below and above as given by

1

kd̄ +
√

kd̄
≤ RA(d̄)≤ 1

kd̄
. (41)

According to (41), the total optimum network probing rate
decreases faster than d̄−1 for large N.

Maximum achievable throughput by a single node can be
obtained by substituting (39) into (38). The limit of the total
capacity achieved by all nodes as the number of nodes goes
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Fig. 8: Comparison of the total network throughput as a
function of d̄ for different values of N along with the lower
and upper bounds, c(d̄) and c(d̄).

to infinity can be written as

c(d̄)� lim
N→∞

T̃ A(R∗, d̄,N) =
2e

− 2kd̄
kd̄+

√
kd̄(4+kd̄)

2+ kd̄+
√

kd̄(4+ kd̄)
(42)

and c(d̄) can be upper and lower bounded as

c(d̄)� e−1

1+ kd̄+
√

kd̄
≤ c(d̄)≤ e

− 1
1+ 1

4√
kd̄

1+ kd̄
� c(d̄). (43)

Since

lim
d̄→∞

c(d̄)

c(d̄)
= 1, (44)

these bounds are asymptotically tight as d̄ → ∞. Since the
dominant term in both bounds is d̄−1, the model predicts that
the total capacity decreases with d̄−1 for large N. Fig. 8 depicts
these bounds along with the total capacity as a function of
d̄ for different number of nodes. As N increases, the total
capacity curve falls between the upper and lower bounds.

We now evaluate the accuracies of the total optimum prob-
ing rate and the asymptotic capacity expressions given by (40)
and (42), respectively. We performed simulations for N =10,
25, 50 and 100 by uniformly distributing nodes over a circular
area whose size is determined in order to satisfy the desired
average delay, d̄. For each N, we conducted simulations for
d̄ =0.1, 0.2, 0.3, 0.4 and 0.5. For each N and d̄ combination,
we simulated 10 different topologies and we reported the
average of the results of these simulations. For each topology,
we performed 50 simulations for total probing rates between 0
and 5 with a resolution of 0.1 to obtain the optimum probing
rate which maximizes the total network throughput. We denote
this maximum network throughput as the network capacity.
For N = 2, we simulated a single topology with 2 nodes that
are separated by d̄ for each value of the probing rate.

The network capacity obtained by simulations for different
N is plotted as d̄ increases in Fig. 9. The proposed asymptotic
capacity expression given by (42) is also depicted. For large
N, the capacity of the network approaches to the proposed
asymptotic capacity. These results suggest that the capacity of
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Fig. 9: The capacity of the network as d̄ increases. The
asymptotic capacity is plotted using (42).
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Fig. 10: Total optimum probing rate in the network as d̄
increases. Asymptotic total optimum probing rate is plotted
using (40).

the network does not degrade indefinitely as the number of
nodes increases. Naturally, however, the individual through-
puts of nodes degrade with 1/N as nodes join the network.

Fig. 10 presents the optimum total probing rate obtained
by simulations for different values of N as d̄ increases. The
asymptotic optimum total probing rate given by (40) is also
depicted. Our analysis indicates that the optimum total probing
rate converges to an asymptotic value for large N for a given d̄.
So, the nodes have to reduce their probing rates in proportion
with 1/N as a node enters the network to keep the total probing
rate in the network constant.

These results indicate that the proposed asymptotic opti-
mum probing rate and the capacity expressions successfully
match with the simulation results for large N. The indepen-
dence assumption made in deriving these expressions does not
result in a significant inaccuracy.

VI. IMPROVING SHORT-TERM FAIRNESS IN A CSMA
CHANNEL WITH NON-NEGLIGIBLE PROPAGATION DELAY

In a CSMA channel with non-negligible propagation delay,
a node stays exposed to a completed transmission after the
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Fig. 11: Maximum throughput achieved by the back-off scheme.
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Fig. 12: Mean number of successive transmission achieved by the back-off scheme.

transmitting node finishes the transmission. For that reason,
the transmitting node finds the channel idle for some extra
duration after a completed transmission so this node can start
a new successive transmission if it probes the channel within
this interval, i.e., while the channel is in State 5 or in State
8 in the semi-Markov model presented in Section IV. This
opportunity may impair the short-term fairness of the CSMA
link by allowing a node to transmit successively several times.
In this section, we investigate the extent of unfairness caused
by successive transmissions and propose a method to reduce
the short-term unfairness.

In the proposed method, the probing rate of a transmitting
node is reduced after a transmission, so that the transmitting
station has a lower probability of capturing the channel. This
back-off mechanism corresponds to reducing the probing rate
of the node after completing a transmission when the node
is in States 5 or 8 in the semi-Markov CSMA model. The
reduction is performed both after a successful transmission
and a collided transmission, since the node cannot immediately
know whether the completed transmission is successful at the
end of its transmission.

As the short-term fairness metric, we use the mean number
of successive transmissions that a node makes when it captures
the channel [29]. The throughput performance of the proposed
method can be evaluated by making modifications on the
analytical model presented in Section IV. However, we resort
to simulations in this section since it is not possible to obtain
the mean number of successive transmissions from the model
due to its memoryless property.

We simulated N nodes sharing a CSMA channel with a
propagation delay of d for N = 2,10 and 100. For N = 2, the

two nodes are placed with a distance d between them and, for
N = 10 and 100, they are distributed uniformly inside a circle
so that the average distance between nodes is d. In the back-off
mechanism, the probing rate of a node is reduced by b times
(b ≥ 1) after each transmission. The case b= 1 corresponds to
the pure CSMA case where the transmitter does not reduce its
probing rate. We obtained the maximum achievable throughput
for each values of b, b = 1,2,4,10, which maximizes over
all possible values of the probing rate. The mean number
of successive transmissions are reported at the maximum
throughput. Note that the ideally fair mechanism is a TDMA-
like channel sharing where the nodes take turns to transmit in
which case the mean number of successive transmissions is
one. Also note that the successive transmission probability of
a node in a fair random access mechanism is 1

N which results
in N

N−1 successive transmissions for a node on the average.

Figs. 11 and 12 plot the maximum throughput and the mean
number of successive transmissions for different values of b
and N as d increases. The short-term unfairness problem is
more apparent for N = 2 as it becomes less significant for
larger N since the mean number of successive transmissions
approaches to one. For N = 2, the fairness improves as b
increases. As b increases, the maximum achievable throughput
slightly increases for small propagation delays while the
throughput slightly reduces for larger propagation delays.
For N = 10 and 100, the short-term unfairness problem is
insignificant because some of the randomly placed nodes are
close to the transmitting node for large N and these nodes are
exposed to the transmission of a node only for a short duration.
Yet, the number of successive transmissions reduces as b
increases without a degradation in the throughput. For all N,
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the fairness degrades as d increases because the duration that
other nodes are exposed to a transmission increases and thus
the probability that the transmitting node starts a successive
transmission increases.

We have evaluated the fairness and throughput performance
of the back-off mechanism under saturated traffic conditions
and we observe that the back-off mechanism improves the
short-term fairness without degrading throughput. The evalu-
ation of the mechanism for a heterogeneous traffic load is a
subject of future study. In this case, the performance of the
back-off mechanism may not be as desirable as in the case of
the saturated traffic. For example, when one of the nodes has
traffic and the other nodes are idle, the back-off mechanism
will cause an under-utilization of this node by reducing the
probing rate of this node after each transmission.

VII. COMPARISON OF THE PROPOSED CSMA MODEL

WITH IEEE 802.11B CHANNEL ACCESS

In this section, we evaluate the performance of the
CSMA/CA channel access scheme of the IEEE 802.11 proto-
col in terms of the capacity and the optimum probing rate
using simulations. Although the CSMA/CA MAC scheme
is different than the pure CSMA scheme modeled in this
paper, we wanted to see whether conclusions similar to the
ones drawn in earlier sections for the pure CSMA model
can be obtained for the 802.11 channel access scheme. We
simulated a network scenario where saturated bidirectional
User Datagram Protocol (UDP) traffic exists between two
nodes that are connected via a 802.11b link with a distance d.
We performed simulations using the ns-2 network simulator
[30]. In order to make the comparison more compatible,
we disabled the RTS/CTS mechanism of the 802.11 MAC
in the simulations. We selected the packet length as 2300
bytes which is close to the maximum frame length in the
802.11 standard. The transmission power of the transmitters
are selected sufficiently high so that packets are lost only
due to contention. We adjusted the acknowledgement timeout
value of the 802.11 standard according to the propagation
delay to prevent premature timeouts.

In order to make an appropriate comparison, we calculated
the throughput as the ratio of time spent for successful
transmissions to total simulation time and we normalized the
propagation delay with respect to the packet transmission time.
Fig. 13 presents the throughput for the 802.11 protocol along
with the optimum throughput obtained from the analytical
model proposed for the pure CSMA as the propagation delay
increases. Although the throughput of the 802.11 protocol
changes in parallel with respect to the optimum throughput
obtained for the pure CSMA model, it is below the opti-
mum throughput because of the acknowledgement mechanism.
Even when the propagation delay is negligible, the maximum
achievable throughput of the CSMA/CA MAC scheme is
0.75 due to the dead period during the transmission of the
acknowledgment frame and due to the minimum contention
window size which limits the maximum probing rate of the
802.11 MAC.

We also compared the proposed optimum rate analysis
against the back-off mechanism of the 802.11 protocol. In ad-
dition to the random back-off duration, the inter-transmission
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Fig. 13: Throughput of the IEEE 802.11 MAC and the
optimum throughput of the pure CSMA model.
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Fig. 14: Mean waiting times between transmissions of the
IEEE 802.11 MAC and the pure CSMA model operating at
the optimum probing rate.

time between transmissions in the 802.11 protocol includes the
waiting time for the acknowledgment and the DCF Interframe
Space (DIFS) duration. Because of these fixed durations, the
802.11 random back-off duration is not exactly comparable
with the random probing interval of the pure CSMA mech-
anism considered in this paper. We instead compared the
total waiting time between the transmissions in the 802.11
protocol against the total waiting time between transmissions
in the pure CSMA mechanism. Fig. 14 presents the normalized
waiting time between transmissions for the 802.11 protocol
and for the pure CSMA operating at the proposed optimum
rate. Waiting time between transmissions are higher in the
802.11 protocol but it behaves in a parallel fashion to the
optimum case. The fixed acknowledgment (ACK) timeout
duration incorporated in the 802.11 protocol can be accounted
for this difference.

It can be concluded that the 802.11 MAC protocol performs
in a parallel manner with the proposed model for the pure
CSMA in terms of the optimum probing rate and throughput as
the propagation delay increases. Although the 802.11 standard
adapts the probing rate using the collision information without
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the knowledge of the propagation delay, it performs consid-
erably well for the simulated two-node scenario. In order to
improve the performance of the 802.11 protocol under large
propagation delays, the acknowledgment mechanism can be
eliminated; but a new probing rate adaptation mechanism has
to be developed in this case.

VIII. CONCLUSIONS

We modeled the capacity of a single-hop CSMA network
when the propagation delays are comparable with the trans-
mission delay. Although large propagation delays are not typi-
cal for local area networks, underwater acoustic networks and
wireless regional area networks suffer from such propagation
delays.

We presented a semi-Markov model for the 2-node case
and we derived the capacity and the optimum probing rate
expressions for a large number of nodes using this model.
We examined how nodes should adapt their aggressiveness in
such a CSMA channel. We derived the optimum symmetric
rate expression as a function of the average propagation delay,
d̄, and the number of nodes, N. The optimum probing rate for
each node decreases asymptotically with 1/N as N increases.
On the other hand, the total optimum probing rate achieved
by all nodes in the network decreases faster than d̄−1 for large
N.

We have also derived the asymptotic total channel capacity
for large networks. According to the proposed model, the total
capacity at the optimum rate is asymptotically proportional
to d̄−1 as the number of nodes, N, increases. Despite the
increasing number of collisions between nodes, the achieved
capacity does not converge to 0 no matter how large the
number of nodes in the network is if all nodes in the network
probe the channel at the optimum rate.

We have also studied the fairness of the CSMA protocol
under large propagation delays and analyzed a back-off mech-
anism which improves the short-term fairness of the CSMA
protocol without a throughput penalty under saturated traffic
conditions.

We have compared the proposed capacity and the optimum
probing rate analytical model with the performance of the
IEEE 802.11b channel access scheme using a simple two-node
scenario. We observed that the 802.11b performs in a similar
fashion with the proposed model for the pure CSMA as the
propagation delay increases although 802.11 MAC utilizes an
acknowledgment mechanism.
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