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Abstract—Cooperative utilization of Unmanned Aerial Vehicles
(UAVs) in public and military surveillance applications has
attracted significant attention in recent years. Most UAVs are
equipped with sensors and wireless communication equipment
with limited ranges. Such limitations pose challenging prob-
lems to monitor mobile targets. This paper examines fulfilling
surveillance objectives to achieve better coverage while building
a resilient network between UAVs with an extended lifetime. The
multiple target tracking problem is studied by including a relay
UAV within the fleet whose trajectory is autonomously calculated
in order to achieve a reliable connected network among all UAVs.
Optimization problems are formulated for single-hop and multi-
hop communications among UAVs. Three heuristic algorithms
are proposed for multi-hop communications and their perfor-
mances are evaluated. A hybrid algorithm, which dynamically
switches between single-hop and multi-hop communications is
also proposed. The effect of the time horizon considered in the
optimization problem is also studied. Performance evaluation
results show that the trajectories generated for the relay UAV
by the hybrid algorithm can achieve network lifetimes that are
within 95% of the maximum possible network lifetime which can
be obtained if the entire trajectories of all targets were known a
priori.

Index Terms—UAVs, multi-target surveillance, resilient multi-
hop network topology, network lifetime.

I. INTRODUCTION

SURVEILLANCE systems have recently received a signif-
icant attention due to the rapid increase in security and

safety threats. Some of the surveillance applications include
search and rescue operations, monitoring an environment and
tracking mobile targets. Among the available surveillance
methods, use of Unmanned Aerial Vehicles (UAVs) has been
rather widespread for mainly two reasons [1]. Firstly, UAVs
can operate where it might be too dangerous for humans to
fulfill surveillance duties. Secondly, UAVs can also be operated
autonomously without human resource allocation. The rapid
advancement in UAV technology has propelled the significance
of utilizing cooperative UAVs for tasks related to surveillance
[2], tracking [3], and mobile target search [4]. This significance
is evident in various applications, particularly in search and
rescue operations, where cooperative UAVs are employed for
finding and observing targets, in addition to coordinating their
flight paths [5]–[7].

The objective of target tracking with cooperative UAVs is
to monitor a specific environment and acquire information on
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the mobile targets. This information is analyzed locally and
shared either with a central node or among UAVs. Since the
communication ranges of UAVs are limited, connectivity of the
UAVs becomes an issue as the mobile targets may move away
from each other. Therefore, building a reliable and connected
network among UAVs for achieving an extended lifetime is
critical.

Effective coordination is fundamental to the success of
cooperative UAVs in target tracking. UAV coordination in-
volves methods such as centralization, where a central station
manages task distribution and path planning; decentralization,
where leader UAVs collaborate on tasks and trajectories; and
distributed coordination, where each UAV exercises indepen-
dent task and trajectory determination [8]–[10]. Additionally, a
relay UAV can be used for a successful coordination amongst
UAVs [11]. The trajectory planning for relay UAVs is essential
for optimizing specific objectives, which involves sophisticated
techniques such as Gaussian process models, nonlinear model
predictive control, and genetic algorithms [12]–[16]. Various
studies explore coordination strategies, such as optimizing
network coverage and selecting relay UAVs. Resource opti-
mization and multi-channel, multi-radio models are also under
consideration. Particularly in disaster surveillance scenarios,
UAV-enabled communication systems, featuring multi-hop and
innovative routing algorithms, are developed to enhance over-
all system performance, specifically for search and rescue
operations [16], [17].

This paper proposes trajectory planning algorithms that
ensure a connected and robust network topology among dis-
tributed cooperative target tracking UAVs with the assistance
of a relay UAV. A connected network topology indicates that
each UAV in the network has a way of communicating with
each other. This study considers both single-hop and multi-
hop communication techniques for performing path planning
for the relay UAV. In single-hop communication, the relay
UAV is directly connected to other UAVs, creating a star
topology. On the other hand, in multi-hop communication, the
relay UAV can communicate with each UAV through other
UAVs, resulting in an arbitrary tree topology. The objective
is to maximize the duration for which a connected network
topology can be sustained among UAVs.

The main contributions of the study can be listed as follows:

• Trajectory planning algorithms are proposed which en-
sure a connected and robust network topology among
distributed cooperative target tracking UAVs with the
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assistance of a relay UAV for single and multi-hop
communication.

• A probabilistic coverage model is introduced, account-
ing for UAV position and velocity estimation errors to
enhance connectivity predictions. By assigning a proba-
ble convex region to each estimated UAV position, the
model reflects real-life conditions better and maximises
connectivity between UAVs for resilient operations.

• Analyses of network lifetime for two of communication
schemes, single-hop and multi-hop, are proposed. For
single-hop communication, an algorithm for optimal tra-
jectory planning of relay UAV for extending the lifetime
of the network is proposed. For multi-hop communi-
cation, three algorithms for optimal trajectory planning
of relay UAV for extending the lifetime of the network
are proposed. For both communication types, a heuristic
approach called “Center of Mass” algorithm is used as
a baseline to compare the performances of proposed
algorithms.

• Extensive simulations reveal that the proposed algorithms
outperform the baseline approach in terms of the maxi-
mum possible network lifetime. The most effective algo-
rithm among the proposed algorithms achieves network
lifetimes that are within 95% of the maximum lifetime
that can be obtained if all target locations were exactly
known a priori.

To the best of the authors’ knowledge, previous research has
not explored the concept of ensuring resilient communica-
tion with distributed coordination through the use of a relay
UAV which autonomously plans its trajectory for single-hop
and multi-hop network topology scenarios. Additionally, this
research utilizes a probabilistic coverage model which takes
estimation errors in UAV positions into account, which makes
it suitable for real-life applications.

The organization of the rest of the article is as follows:
Section II provides an overview of the existing research in
the field. Section III introduces the system model, position
estimator and path planner of relay UAV. In Section IV,
the problem formulation of trajectory planning is explained.
Section V illustrates the numerical results for the estimator and
path planner, respectively. The theoretical limits on network
lifetime are discussed in Section VI and the performances of
proposed algorithms are compared with these limits. Lastly,
Section VII concludes the paper.

II. RELATED WORK

Coordination amongst UAVs is critical for achieving suc-
cessful cooperative target tracking. Centralized coordination
means that UAVs transmit the information to a central station.
Task distribution and path planning for each UAV is calculated
at the central station and sent back to the on-duty UAVs [8].
Decentralized coordination means there are multiple UAVs
that act as central nodes. The information from other UAVs
is received by the leader UAVs that cooperatively assign tasks
and plan trajectories for the on-duty UAVs [9]. The UAVs
can also coordinate in a distributed manner, where each UAV
decides its task and plans its trajectory independently [10],
[18].

Relay UAVs, acting act as an intermediary bridge between
other UAVs or ground-based communication devices are used
for enhancing communications between UAVs that may be out
of direct range of each other. Regardless of the coordination
method, a relay UAV can also be used to achieve reliable target
tracking [11]. For the trajectory planning of relay UAV, the task
is to plan the path which optimizes a given objective. In [12]
path planning for a relay UAV in urban areas for Airborne
to Ground (A2G) communications is investigated, where the
ground nodes are stationary. A Gaussian process model is
formed and it is solved using a Nonlinear Model Predictive
Control (NMPC)-based trajectory planner. In [13], the same
problem is studied with mobile ground nodes. NMPC-based
trajectory planner is also used in this study, however, a discrete
genetic algorithm is used to find the optimal control input.
To find the optimal path, NMPC is combined with a finite
time horizon controlled system. The time horizon defines the
period during which the movements of the relay UAV are
to be optimized. [14] uses the same NMPC-based planner.
However, the objective function is calculated using the concept
of Minimum Spanning Tree (MST) which is used to choose the
communication link with the highest likelihood for successful
transmission. Group of autonomous UAVs for maximizing the
network coverage of mobile ground targets is studied in [15]
using the game theory, and the performance is compared with
the genetic algorithm.

Selection of relay UAVs from a set of cooperative UAVs is
suggested in [16]. A matching market-based optimization is
presented for different coordination among cooperative UAVs
in order to choose relay UAVs. The idea is further extended
in [17], where multi-channel, multi-radio competition model
is modeled using different objective functions.

Communication coverage amongst UAVs, under communi-
cation range restrictions and with multi-hop communication
between UAVs and a base station, is studied in [19]. The
study focuses on the routing problem in a communication
system enabled by UAVs for disaster surveillance. The system
includes multiple UAVs that communicate with each other
and a remote Terrestrial Base Station (TBS) for aiding search
and rescue operations. A novel algorithm called the Multi-
hop Opportunistic 3D Routing (MO3DR) is proposed, which
addresses coverage and collision constraints without the need
for trajectory planning. The aim of the study is to improve the
performance of the UAV-enabled communication in disaster
scenarios.

The proposed algorithm in [20] is a modular approach for
positioning relays and planning trajectories for UAV missions.
It ensures that the UAV mission team maintains connectivity
with minimal relays and feasible paths. The study presents
different strategies for relay positioning and compares them
with ideal and Voronoi-based benchmark schemes. The con-
cept is further developed in [21] by introducing dynamic relay
selection from a group of available UAVs.

The problem of network connectivity has been extensively
studied; however, several key innovations are introduced in
this work. Positioning uncertainties, which are inherent in
real-world UAV operations, are introduced to the problem
formulation for narrowing the gap between the literature
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and real-life applications. Additionally, both single-hop and
multi-hop communication scenarios are addressed, providing
a comprehensive and adaptable solution for various operational
contexts. This dual approach, uncommon in the literature,
offers practical insights into the trade-offs and advantages
of each communication type. The proposed algorithms are
benchmarked against a heuristic approach, ensuring that the
solutions are both theoretically sound and practically vi-
able. Furthermore, the algorithms are designed to maximize
the network’s operational lifespan under dynamic conditions,
ensuring sustained connectivity and robustness. This focus
on longevity and robustness under uncertainty significantly
extends the existing research.

III. SYSTEM MODEL

A target tracking system is considered, where mobile targets
are surveilled by a team of N UAVs, requiring connectivity
to be maintained throughout the mission. Connectivity among
the UAV team is enhanced by a relay UAV. The path of the
relay UAV is autonomously decided for ensuring continuous
connectivity with the other UAVs. The system primarily com-
prises five components: Firstly, the mobility model for the
targets is described by the target motion model. Information
on the targets is gathered by the tracker, allowing the UAV
to adjust its speed and turn angle for optimal tracking. The
mobility model of the UAVs is explained by the UAV motion
model. The positions and velocities of the tracker UAVs are
determined by the estimator. Finally, the optimal trajectory
for the relay UAV is found by the path planner using the
estimation data. The system model is depicted in Figure 1.

There are some assumptions which are essential for the
system model that are listed as follows:

• IMU and GNSS sensors on the tracker UAVs, along with
the GNSS receiver on the relay UAV, provide accurate and
timely position and velocity data. Each target is tracked
by a UAV, which directly observes the current state of
the target using its own sensors.

• It is assumed that the communication between the relay
UAV and the tracker UAVs occurs under line-of-sight
conditions, which is a realistic assumption for UAV-
to-UAV communication. For the communication model,
the disc model approach is chosen due to its simplicity
and suitability for UAV-to-UAV communication, which
typically occurs under line-of-sight conditions [22].

• UAVs are assumed to have fixed wings, imposing limi-
tations on acceleration and turn angles. Additionally, the
altitude of the UAVs is constant, so the z-coordinate is
omitted from the system models.

• The communication range of both the relay UAV and
the tracker UAVs is limited, necessitating careful path
planning for maintaining connectivity.

• The system is formulated using a discrete-time model.
In the discrete-time model, kth time step corresponds to
the sample at time k∆t, where ∆t is the sampling period.
Parameters related to target i ∈ {1, 2, . . . , N} are denoted
with the Ti superscript, e.g. xTi

k , which represents the state of
ith target. Parameters related to UAV i ∈ {1, 2, . . . , N} are

Target
Motion Model

UAV 
Motion Model Estimator

Path Planner

Tracker 

Fig. 1. System Model.

denoted with the Ui superscript, e.g. xUi

k , which corresponds
to the state of ith UAV. Parameters related to the relay UAV
are denoted with the U0 superscript, e.g. xU0

k which indicates
the state of the relay UAV.

A. Target Motion Model

Successful target tracking depends on accurately extracting
information about the target’s state from sensor observations.
The target motion should be modeled in a manner that allows
for easy extraction of this information [23]. In this system,
target tracking involves observing a moving target through
sensors and using airborne computers to process the signals
from these sensors. This process allows for the perception of
the target’s environment and the making of tracking decisions
accordingly [24].

For the target tracking, constant velocity (CV) and constant
turn (CT) models are available in the literature [23]. CV
motion is a non-manuevering motion that is straight and
linear with a constant velocity. On the other hand CT model
represents the motion of a model that have a constant speed
and constant turn rate.

Discrete-time state-space model of the CT motion can be
written as follows [25]:

xTi

k+1 = FxTi

k +Gηk, (1)

where xTi

k is the target state vector of ith target. F is the state
transition matrix, G is the disturbance matrix and ηk is the
process noise. The state vector comprises of target position
and velocity vectors pTi

k ,vTi

k , respectively and can be written
as follows:

xTi

k = [pTi

k ,vTi

k ]T,

pTi

k = [pTi

x,k, p
Ti

y,k]
T,

vTi

k = [vTi

x,k, v
Ti

y,k]
T,

(2)

where pTi

x,k, pTi

y,k corresponds to positions in the x and y

directions of ith target at time step k, respectively and vTi

x,k,
vTi

y,k represent velocities in the x and y directions of ith target
at time step k and T denotes the transpose operation for the
rest of the paper. The measurement equation of ith target can
be written as:

zTi
k = HxTi

k + ζk (3)

where zTi
k is the received measurement, H is the measurement

matrix and ζk is the measurement noise. For CV models with
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known turn rate ω following state transition matrix F is used
[25]:

F =


1 sin(ω∆t)

ω 0 − 1−cos(ω∆t)
ω

0 1−cos(ω∆t)
ω 1 sin(ω∆t)

ω
0 cos(ω∆t) 0 − sin(ω∆t)
0 sin(ω∆t) 0 cos(ω∆t)

 . (4)

For G, H matrices and ηk, ζk noises, the system model in
[25] used.

B. Kinematics of UAVs

A constant-altitude kinematic model is used for the relay
UAV, considering its physical constraints [26]. With sampling
period ∆t, the discrete kinematic model for ith UAV as
follows

pUi

x,k = pUi

x,k−1 + vUi

k−1 cos θ
Ui

k−1∆t,

pUi

y,k = pUi

y,k−1 + vUi

k−1 sin θ
Ui

k−1∆t,

vUi

k = vUi

k−1 + aUi

k ∆t,

θUi

k = θUi

k−1 + ωUi

k ∆t,

(5)

where pUi

x,k, pUi

y,k corresponds to positions in the x, y directions
and vUi

x,k, vUi

y,k are velocities in the x and y directions, aUi

k , θUi

k

and ωUi

k are acceleration, bank angle and turn rate of ith UAV
at time step k, respectively.

Kinematic model of UAVs in (5) is constrained by practical
limitations which are identical for both UAVs. The required
control input of ith UAV consists of the speed increment and
the turn rate is

uUi

k = [aUi

k , ωUi

k ]T ∈ R2. (6)

The limitations apply at each step k on the speed and on the
control input of UAVs.

vmin ≤ vUi

k ≤ vmax,

ωmin ≤ wUi

k ≤ ωmax,

amin ≤ aUi

k ≤ amax.

(7)

For this model we can write the UAV state vector for ith UAV,
xUi

k , as similar to the model in (2).

xUi

k = [pUi

k ,vUi

k ]T,

pUi

k = [pUi

x,k, p
Ui

y,k]
T,

vUi

k = [vUi

x,k, v
Ui

y,k]
T,

(8)

where UAV position and velocity vectors pUi

k ,vUi

k , respec-
tively. Note that vUi

x,k = vUi

k cos θUi

k and vUi

y,k = vUi

k sin θUi

k .
For relay UAV, xU0

k is used.

C. Tracker

The target tracking problem is defined using the state vectors
of targets and UAVs. The objective is to minimize the distance
between UAVs and targets so the optimization problem can be
formulated as follows [27]:

min
u

Ui
k

N∑
i=1

∥α ◦ (xUi

k − zTi

k )∥

s.t. (5), (6), (7), (8)

(9)

where α ∈ R4. α is the weight parameter to adjust the
focus of the optimization problem on different objectives and
◦ represents the Hadamard product. Received measurement
vector is used in the formulation instead of the state vector,
since the state vector is unknown to the UAV. State vectors
also include the velocity vectors.

D. Position Estimator

In order to estimate the tracker UAV positions, Kalman
Filter is utilized [28]. Relay UAV calculates the tracker UAV
states at time step k+1 with the information it received from
the tracker UAV sensors at time step k.

The state prediction stage can be written as:

x̂Ui

k =

[
p̂Ui

k

v̂Ui

k

]
=

[
pUi

k−1 + vUi

k−1∆t+ 1
2 ã

Ui

k−1∆t2

vUi

k−1 + ãUi

k−1∆t

]
. (10)

x̂Ui

k is the predicted state vector with similar construction to
(8). ãUi

k is the estimated acceleration vector which includes
acceleration values in Cartesian coordinates and aUi

k is the es-
timated acceleration vector which includes acceleration values
in Cartesian coordinates. The state prediction equation can be
rewritten as:

x̂Ui

k =

[
I I∆t
0 I

]
xUi

k−1 +

[
1
2I∆t2

I∆t

]
ãUi

k−1. (11)

where I represents 2× 2 identity matrix and 0 represents the
2× 2 zero matrix.

The process noise on the acceleration vector can be written
with its zero mean Gaussian noise vector ψk.

ãUi

k−1 = aUi

k−1 +ψk−1, (12)

The system model is given by:

x̂Ui

k = AxUi

k−1 +BaUi

k−1 +ψk−1, (13)

where,

A =

[
I I∆t
0 I

]
, (14)

B =

[
1
2I∆t2

I∆t

]T
. (15)

The following equation can be written for the measurement
vector zk:

zUi
k = MxUi

k + ξk (16)

where ξk is the measurement sensor noise at time step k. For
the measurement parameters M, ξk please check [28].

The tracker UAV positions can be estimated using the
Kalman Filter. The estimates, along with a probability pa-
rameter, are utilized for computing the cost function in the
optimization problem.
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E. Path Planner

In order to create a connected network between UAVs, a
dynamic optimization problem is solved by the relay UAV to
determine its own path autonomously. The aim is to create
a connected network within a designated time frame denoted
as [0, T ]. However, solving the optimization problem at the
beginning is not feasible due to the high computational com-
plexity and time constraints, particularly for larger values of
T . Moreover, it is essential to consider environmental changes,
target paths, and UAV paths. Therefore, a receding horizon
approach is used.

The estimator is utilized to estimate the UAV positions
within a certain time frame [k, k+E∆t] where E∆t represents
the estimation window’s duration. A path planning strategy is
created for a specific duration of [k, k + W∆t], where the
optimization horizon window’s duration, denoted as W∆t, is
utilized to ensure that the UAVs remain connected for as long
as possible. The selection of W and E is such that they are
positive integers (W,E ∈ Z0+) and that W is a factor of E,
i.e., W | E. If W = 1, the optimization problem is referred to
as the no horizon problem, as the objective function is solved
only to obtain the current time solution. Relay UAV estimates
the positions of tracker UAVs beforehand for a period of time
(E∆t), then the optimization problem for path planning is
solved for each (W∆t) time duration.

The aim of the optimization problem is to find the optimal
input vector ∗

uU0

k ∈ U which maximizes the probability that
the network topology is connected at time step k. U represents
the set of possible inputs under the restrictions of (7). For
arbitrary time step k0, given the variable ∗

uU0

k for the interval
k ∈ [k0, k0 +W∆t], the optimal state parameter ∗

xU0

k can be
found.

A discrete-time version of the dynamic optimization prob-
lem can be formulated similar to a Bolza-type Optimal Control
Problem (OCP) [29]. The Lagrange term can be defined as:

ΦL(k,u) = ρ(k,xU0

k ,uU0

k ), (17)

where ρ(k,xU0

k ,uU0

k ) denotes the probability of having a
connected network topology with state xU0

k at time step k.
The Mayer term can be written as:

ΦM (k) = d(xU0

k0+W∆t,x
U1

k0+W∆t, . . . ,x
UN

k0+W∆t), (18)

where d(xU0

k0+W∆t,x
U1

k0+W∆t, . . . ,x
UN

k0+W∆t) is a function of
distance between UAVs for at the end of the optimization
horizon for k ∈ [k0, k0 + W∆t]. The resulting optimization
problem is given by:

max
u

U0
k

ρ(k,xU0

k ,uU0

k )+

d(xU0

k0+W∆t,x
U1

k0+W∆t, . . . ,x
UN

k0+W∆t)
s.t. (5), (6), (7), (8)

k ∈ [k0, k0 +W∆t]

(19)

The objective of the task is to select the optimal values
of aU0

k and ωU0

k for a given interval k ∈ [k0, k0 + W∆t]
that maximize the objective function. In order to assess the
effect of the optimization horizon, the optimization problem
is also solved for W = 1, which corresponds to solving for

a sampling period of ∆t. The objective function ΦL(k,u) +
ΦM (k) varies depending on the type of the network: single-
hop or multi-hop communication.

IV. PROBLEM FORMULATION

A. Single-Hop Communication

In this section, tracker UAVs and the relay UAV should be
able to communicate with a single-hop communication. All the
tracker UAVs should be connected to the relay UAV directly.
To check the connectivity between relay UAV and the tracker,
the distance parameter is defined as:

di(k) = ||pU0

k − pUi

k ||2, (20)

where di(k) is the distance between ith tracker UAV and relay
UAV at time step k.

In order to model the inaccuracy in estimating the velocity
and position of UAVs, a probabilistic model is used as opposed
to a deterministic model. A probable convex region is assigned
to the estimated UAV to guarantee the maximization of the
connectivity between UAVs. In this case, a circular region is
assigned with radius ri(k) = m · vUi

k and center pUi

k to a
tracker UAV. Assuming a uniformly distributed position error,
the intersection area between the circular UAV position uncer-
tainty region and the area corresponding to the communication
range is calculated to get the connectivity likelihood function
I(R, r, l). The visualization for an example scenario is shown
in Figure 2.

The intersection area I(R, r, d) between two circles can be
found as:

I(R, r, d) =

R2 arccos

(
R2 − r2 + d2

2dR

)
+ r2 arccos

(
r2 −R2 + d2

2dr

)
− 1

2

(
(R+ r+d)(R− r+d)(−R+ r+d)(R+ r−d)

)1/2

,

(21)

where R and r are the radii of two circles and d is the distance
between the centers of two circles.

The probability of connectivity for UAV i, denoted as ρi,
is expressed as the ratio of the intersection area between the
circular regions of the tracker UAV and the relay UAV, to the
total area of the circular region of the tracker UAV.

ρi(k,x
U0

k ,uU0

k ) =

{
I(R,ri(k),di(k))

πri(k)2
, if di(k) ≤ R+ ri(k)

0, otherwise.
(22)

By using the independence assumption for connectivity of
individual UAVs and position errors between different UAVs,
the overall probabilistic connectivity function ρ can be written
in the product form. The probability that all tracker UAVs are
connected to the relay UAV can be expressed as follows:

ρ(k,xU0

k ,uU0

k ) =

N∏
i=1

ρi(k,x
U0

k ,uU0

k ), (23)

.
In single-hop communication, it is necessary for the relay

UAV to establish a direct connection with the tracker UAVs.
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ddii rrii

RR

Intersection
area

Fig. 2. Blue circle is the communication area of the relay UAV and the
orange circular region is the estimated UAV position area. If the tracker UAV
is within the intersection of these circles, it can communicate with the relay
UAV. Otherwise, it cannot. The position error of the tracker UAV is assumed
to be uniformly distributed, and the probability of connectivity is determined
by calculating the intersection area between the circle corresponding to the
relay UAV’s communication range and the circle corresponding to the tracker
UAV’s estimated position. The radius of tracker UAV’s position uncertainty
depends on its speed.

The proposed approach involves closely monitoring each
tracker UAV to accommodate any changes in their movements.
For this purpose, d(xU0

k0
,xU1

k0
, . . . ,xUN

k0
), is utilized which aims

to minimize the maximum distance between the relay UAV and
the tracker UAVs. In order to avoid this component dominating
the objective function, it is multiplied by a small value of ϵ,
0 < ϵ << 1. The function can be expressed as follows:

d(xU0

k0
,xU1

k0
, . . . ,xUN

k0
) = −ϵ ·max{di(k0)}. (24)

The resulting optimization problem is expressed as:

max
u

U0
k

N∏
i=1

ρi(k,x
U0

k ,uU0

k )− ϵ ·max{di(k0)}

s.t. (5), (6), (7), (8)
k ∈ [k0, k0 +W∆t]

(25)

While the primary objective is to maximize the probability
that the relay is connected to all tracker UAVs, the secondary
objective is used to make sure that among all solutions that
optimize the primary objective, the one which minimizes the
maximum distance between the relay and tracker UAVs is
chosen. The path planner component solves this optimization
problem with the given position estimates of the other UAVs
in a chosen horizon window and generates the trajectory.

B. Multi-Hop Communication

Within this section, multi-hop communication is utilized
by the tracker UAVs and the relay UAV, meaning that direct
connection between them is not required. Instead, the goal is to
establish a connected network topology among all N UAVs. To
solve the dynamic optimization problem, the objective function
defined in (19) is employed. The Lagrange term ρ(k,xU0

k ,uU0

k )
and the Mayer term d(xU0

k0+W∆t,x
U1

k0+W∆t, . . . ,x
UN

k0+W∆t) of
the objective function ΦL(k, u)+ΦM (k) will differ from those
used in the context of single-hop communication.

Multi-hop communication is established by creating a net-
work graph consisting of N + 1 UAVs, including the relay
UAV, where each UAV is represented as a node in the graph.
For all possible

(
N+1
2

)
edges, a state matrix S is defined to

calculate the probabilistic connectivity function ρ. The state
matrix contains all possible combinations of edges that can
be connected. Consequently, the size of the state matrix S is(
N+1
2

)
× 2(

N+1
2 ). To calculate the probability of a connected

network, the connectivity probability for each edge is com-
puted, and then multiplied with the state matrix to obtain the
value of the probabilistic connectivity function ρ.

The connectivity probability for each edge is determined by
calculating the average intersection area between each UAV,
utilizing the same model depicted in Figure 2. For edges
connecting the relay UAV to other UAVs, the probability of
connection derived in (22) is used. However, for network edges
connecting two tracker UAVs, a different probabilistic model
is employed due to position inaccuracy being valid for both
UAVs. Thus, an average intersection area between tracker
UAVs i and j is computed to determine the probability of
establishing a link between UAVs i and j.

The Probability Density Function (PDF) of distance be-
tween two tracker UAVs, f(x; d, r), can be geometrically
formulated as:

f(x; d, r) =
2x

πr2
arccos

(
x2 − r2 + d2

2dx

)
. (26)

The average intersection area can be found as follows:

Iij(k) =

∫ dij(k)+ri(k)

dij(k)−ri(k)

I(R, ri(k), x)f(x; dij(k), rj(k))dx

(27)
where I(R, ri(k), x) is the intersection area between UAV j
with communication radius R and UAV i with location region
with radius ri(k) at time step k. It is assumed that all tracker
UAVs possess the same communication radius R. The average
intersection area is calculated by integrating over the distance
dij(k)− rj(k) ≤ x ≤ dij(k) + rj(k) between two UAVs.

By applying (27) to each pair of vertices in the matrix,
vector ιk of size 1×

(
N+1
2

)
is derived. This vector is multiplied

with the state matrix S to obtain a vector of size 1× 2(
N+1

2 )

which contains the probabilities for all possible network
configurations. The transpose of this vector is multiplied
with the one vector 1

1×2(
N+1

2 ) to determine the probabilistic
connectivity function.

ρ(k,xU0

k ,uU0

k ) = 1(ιkS)
T. (28)

The relay UAV is responsible for establishing a connected
network in multi-hop communication. Three algorithms are
proposed to enable the relay UAV to strategically position
itself and sustain connectivity for longer periods while UAV
positions change over time.

1) Nearest Point Algorithm: The first algorithm involves
dividing the UAVs into two sets, denoted as S1 and S2. The
UAV furthest away from the other UAVs is placed in S1, while
the rest of the UAVs are in S2. The distances of all UAVs
in both sets to the relay UAV are measured, and the closest
ones are selected. Let UAV Uk ∈ S1 and UAV Ul ∈ S2
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be the closest to the relay UAV, with distances dk(k) and
dl(k), respectively. In the next iteration, the control input that
minimizes max{dk(k), dl(k)} is chosen. To prevent this part
from dominating the objective function, it is multiplied by a
small ϵ > 0 value. This can be used as the Mayer part of the
optimal control problem as follows:

d(xU0

k0
,xU1

k0
, . . . ,xUN

k0
) = −ϵ ·max {dk(k), dl(k)} (29)

The objective function of the resulting optimization problem
can be written as:

max
u

U0
k

1(ιkS)
T−

ϵ ·max {dk(k0 +W∆t), dl(k0 +W∆t)}
s.t. (5), (6), (7), (8)

k ∈ [k0, k0 +W∆t]

(30)

2) Midpoint Algorithm: In this algorithm, the centroid of
the positions of UAVs in S2 is first calculated and denoted
by pmean,k. Next, the distance between the relay UAV and
pmean,k is calculated and denoted as dmean(k).

dmean(k) = ||pU0

k − pmean,k||2. (31)

The control input is selected to minimize
max{dmean(k), dk(k)} in this algorithm. To prevent this part
from dominating the objective function, it is multiplied by a
small ϵ > 0 value. This can be utilized as the Mayer part of
the OCP as follows:

d(xU0

k0
,xU1

k0
, . . . ,xUN

k0
) = −ϵ ·max {dk(k), dmean(k)} (32)

The objective function of the optimization problem can be
expressed as:

max
u

U0
k

1(ιkS)
T−

ϵ ·max {dk(k0 +W∆t), dmean(k0 +W∆t)}
s.t. (5), (6), (7), (8)

k ∈ [k0, k0 +W∆t]

(33)

3) Hybrid Algorithm: A hybrid approach is employed in the
last algorithm, which dynamically switches between single-
hop and multi-hop objectives. The algorithm prioritizes single-
hop communication and solves the optimization problem in-
troduced in (25) if single-hop communication is possible. If
the obtained solution does not satisfy the following conditions:

max
u

U0
k

N∏
i

ρi(k,
∗
xU0

k ,
∗
uU0

k ) ≥ 0, (34)

single-hop connectivity is not achieved, hence the algorithm
switches to multi-hop communication optimization problem.
The optimization problem in (33) is then solved to obtain the
optimal trajectory.

V. PERFORMANCE ANALYSIS

The scenario under consideration involves a group of three
tracker UAVs, each tasked with observing a moving target.
In addition to these tracker UAVs, a relay UAV is employed,
which autonomously positions itself to extend the network’s
operational lifetime. The performance of the system is eval-
uated across several dimensions, including the accuracy of

TABLE I
GENERAL SIMULATION PARAMETERS

Parameters Value Description
T 10240 Number of time steps (∆t)
∆t 1 Time between time steps (s)
N 3 Number of UAVs
m 10 Probability multiplier of UAVs
Nsim 20 Number of different simulations

TABLE II
TARGET MOTION MODEL PARAMETERS.

Parameters Target 1 Target 2 Target 3
p
Ti
0 (m) [0,0] [500, 500] [1000, 1000]

v
Ti
0 (m/s) 35 30 25

ω 45◦ 0◦ −90◦

∆ω 128 128 256
ωmin 0◦ −15◦ −15◦

ωmax 7.5◦ 15◦ 15◦

the position estimator, the efficiency of the tracker, and the
effectiveness of the path planner. Furthermore, simulation
results are presented for both single-hop and multi-hop com-
munication scenarios, providing a comprehensive assessment
of the communication strategies employed in the network. The
general simulation parameters can be seen in Table I.

A. Target Motions and Target Tracking

There are three targets, each employing a stochastic CV
and CT mobility model. Each target begins from a unique
initial position and moves in different directions. Two of the
targets adjust their heading angle every 2 minutes, while the
third target changes its angle every 4 minutes. This periodic
change in angle is represented by the parameter ∆ω in Table
II. The detailed hyperparameters used in the simulation are
also presented in Table II.

The trajectories of the targets, along with their respective
tracker UAVs, are depicted in Figure 3. Tracker UAV trajec-
tories are generated with the formulated optimization problem
in Section II and parameters in Table III are used. If two
possible state vectors give equal objective function, it would
be better to try to match the velocity of the target. For this
reason α = [0.99, 0.99, 0.01, 0.01] is used for the objective
function.

Due to the initial positions and the inherent noise in the
system, tracking errors are observed, as illustrated in Figure
4a. Although the tracking performance is not perfect, it is
sufficient to create a realistic scenario where extending the
network’s operational lifetime proves beneficial. In this sce-
nario, UAVs must communicate with each other to successfully
execute the mission.

B. Estimation of Tracker UAVs

A Monte Carlo simulation is conducted with M = 100
to assess the robustness of the filter. The Root Mean Square
Error (RMSE) values obtained for the estimated position
and velocity are presented in Figure 4b. The plot reveals

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3528495

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on January 15,2025 at 06:52:41 UTC from IEEE Xplore.  Restrictions apply. 



8

TABLE III
TRACKER UAV PARAMETERS.

Parameter Value Description

R (m) {50, 100, 150, 200} Communication range

p
Ui
0 (m) [166.3, 500] Initial position

v
Ui
0 (m/s) [25, 25] Initial velocity

θ
Ui
0 0◦ Initial heading angle

vmin (m/s) 20 Minimum velocity

vmax (m/s) 40 Maximum velocity

ωmin −15◦ Minimum turn rate

ωmax 15◦ Maximum turn rate

that the average RMSE values for the estimated quantities
converge after some time. The error in position estimation is
approximately 2 [m], whereas the error in velocity estimation
is less than 0.03 [m/s]. This means the position and velocity
estimation of the tracker UAVs are successful and will not
affect the outcome of the path planner.

C. Path Planning

Different multiple scenarios with various setups were sim-
ulated to assess the performance of the path planner for
both single and multi-hop communication. General simulation
parameters can be seen in Table I. For the path planner specific
parameters, please check IV.

A center of mass [30] approach is used as a baseline, where
the UAV trajectory is chosen as the centroid of the three
targets at time t. The results of the center of mass approach
are treated as the baseline to compare with the optimization
problem results. The calculated trajectories of the relay UAV
are displayed for the scenario shown in Figure 5.

The trajectory of the relay UAV optimized for the single-
hop communication objective is shown in Figure 5a. The
movements of UAVs 2 and 3 are almost symmetric on the
x = y line, and due to the motion of UAV 1, the center
of mass trajectory has a similar shape. Conversely, the relay
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Fig. 3. Tracker UAV trajectories.
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(b) RMSE values for the position and velocity estimation obtained by
Monte Carlo simulations.

Fig. 4. Comparison of tracking and estimation errors.

UAV algorithm for the single-hop communication scenario
attempts to establish a connection with the furthest UAV. Its
trajectory shows an effort to maintain a connection with UAVs
2 and 3 since it is connected to UAV 1. However, since the
algorithm does not take future positions into account without
an optimization horizon, it fails to keep up with the tracker
UAVs, unlike in the case where an optimization horizon is
present.

The trajectory resulting from the nearest point algorithm in
the multi-hop communication scenario is depicted in Figure
5b. Among the UAVs, UAV 3 is the furthest, while UAV 1
and UAV 2 are in proximity to each other. Within this set,
UAV 1 is closer to the relay UAV. Thus, the relay UAV stays
in the centroid of UAV 1 and UAV 3, using UAV 1 to establish
communication with UAV 2. As UAV 3 moves farther away,
the relay UAV adjusts its trajectory to the centroid of UAV 1
and UAV 2 to remain connected with both UAVs. However,

TABLE IV
PATH PLANNER PARAMETERS.

Variable Value Description
R (m) {50, 100, 150, 200} Communication range
pU0
0 (m) [166.3, 500] Initial position

vU0
0 (m/s) [25, 25] Initial velocity

θU0
0 45◦ Initial heading angle
vmin (m/s) 20 Minimum velocity
vmax (m/s) 40 Maximum velocity
ωmin −30◦ Minimum turn rate
ωmax 30◦ Maximum turn rate
E (∆t) 32 Estimation window
W (∆t) {1, 8} Horizon window
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(a) Single-hop communication.
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(b) Multi-hop communication, nearest point algorithm.
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(c) Multi-hop communication, midpoint algorithm.
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(d) Multi-hop communication, hybrid algorithm.

Fig. 5. Simulation results with R = 100 km.

the relay UAV relies on UAV 1 to communicate with UAV 3
and does not consider the distance of UAV 3.

The trajectory of the relay UAV is influenced by the mid-
point algorithm, which considers the positions of all tracker
UAVs. The optimal relay UAV trajectories determined by
the algorithm are depicted in Figure 5c. At the start of
the simulation, the trajectory is similar to the nearest point
algorithm, aiming to be in the center of UAV 3, which is
the furthest UAV, and the centroid of UAV 1 and UAV 2.
However, before UAV 2 becomes the furthest UAV, the relay
UAV adjusts its movement in response to its movement due
to the objective function. This is the main difference between
the nearest point and midpoint algorithms. Towards the end
of the simulation, UAV 3 becomes the furthest UAV again,
and the relay UAV moves towards the x = y line. The impact
of the optimization horizon is similar to that of the single-hop
communication scenario, with more intricate movements when
the optimization horizon is taken into account.

In the hybrid algorithm, the trajectory at the beginning is
identical to that of the single-hop communication scenario
since the relay UAV tries to establish a direct connection
with all tracker UAVs. After some time, when the single-hop

communication is no longer feasible, it adopts the midpoint
objective, and its trajectory is almost identical to the midpoint
algorithm. The impact of the horizon window is similar to the
earlier scenarios. The trajectory of the relay UAV is shown in
Figure 5d.

At the beginning of the simulation, all UAVs are intercon-
nected, and the Mayer term of the optimization determines
the trajectory. When the distance between the relay UAV and
the tracker UAV reaches the communication range limits, the
Bolza term of the problem dominates the objective function.
The sharp turns in the trajectory are due to the Mayer term,
while the small distortions on the trajectory are results of
the Bolza term. The incorporation of an optimization horizon
results in increased performance of the path planner. However,
there are several issues associated with introducing an opti-
mization horizon. Firstly, the objective function becomes more
complex, and the dimensionality increases exponentially with
an increase in the horizon window. Moreover, the optimization
operates on the estimator results, therefore the optimization
horizon cannot exceed the estimation window. Longer horizon
windows decrease the precision to dynamic changes in the
environment.
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Fig. 6. Total connectivity duration of the proposed algorithms.

The single-hop communication method improves the base-
line technique by 7.89% in the absence of an optimization
horizon and 13.15% with its application. The nearest point
algorithm achieves a 36.84% improvement, irrespective of
the optimization horizon. The midpoint algorithm leads to an
improvement of 42.10% and 35.52% with and without opti-
mization horizon, respectively. Finally, the hybrid algorithm
enhances the baseline by 42.10%.

The duration of network connectivity during simulations
was calculated for four different communication ranges. Figure
6 illustrates the correlation between the communication range
of the UAVs and the connectivity time. It also demonstrates the
improvement achieved by the proposed methods compared to
the baseline method. For instance, when the communication
range is R = 100 km, the single-hop communication path
planner achieves connectivity for 43.99% of the total simula-
tion time, while the baseline method achieves only 35.71%.
Furthermore, the multi-hop communication path planners ex-
hibit better performance. The nearest point algorithm has a
connectivity duration of 47.56%, the midpoint algorithm has
48.73%, and the hybrid algorithm has 50.26%.

The present outcomes are inadequate as key performance
indicators for evaluating the planners, given that their accuracy
is significantly influenced by the extent of communication
coverage. In order to mitigate the impact of communication
range, the duration of sustained network connectivity is calcu-
lated and subsequently compared to the period during which
network connectivity is ensured by the relay UAV.

VI. THEORETICAL LIMITS ON NETWORK LIFETIME

In this section, whether the relay UAV can be positioned
such that a connected network topology is obtained among all
UAVs if the positions of tracker UAVs are exactly known at
time t is investigated. For each communication type, a separate
geometric problem is formulated.

A. Single-Hop Communication

To have a connected single-hop network, all tracker UAVs
have to communicate with relay UAV directly. At time step k,
let d(x,y)i (k) denote the distance between point (x, y) and the
tracker UAV i. If the distance d

(x,y)
i (k) ≥ R, the connection

link cannot be formed. To call a topology feasible, there at

RR

RR

RR

Fig. 7. Connectivity area (blue) for relay UAV to form a single-Hop
communication. The communication radius for all UAVs, including the relay
UAV, is R. For successful communication, the distance between the relay
UAV and any tracker UAV must be less than R. In the scenario with three
tracker UAVs and single-hop communication, the relay UAV must be within
the transmission circles of all tracker UAVs. This means the relay UAV must
be positioned within the intersection area of the three transmission circles to
ensure communication with all tracker UAVs.

least needs to be one point (x, y) in the map that satisfies
d
(x,y)
i (k) ≤ R for ∀i = 1, ..., N .
At each time instance k, circles are formed centered at the

positions of tracker UAVs with radius R, and the intersection
area between N circles is checked. The sum of these inter-
section areas over the simulation time gives the maximum
duration for which the network can remain connected. Figure
7 illustrates a feasible area for N = 3.

B. Multi-Hop Communication

In the case of multi-hop communication, it is necessary to
have a connected network graph among the UAVs. However,
determining the feasibility of placing the relay UAV to achieve
a connected network topology is more complex than in the
single-hop communication case. For instance, in some cases,
the relay UAV must bridge two subsets of tracker UAVs that
are already communicating within the subsets. The objective
is to determine if there is a viable area for the relay UAV
placement in a multi-hop network with N = 3 tracker UAVs.
To cover all possible cases, different topology configurations
are examined. The aim is to find a feasible area that guarantees
a connected topology between the UAVs.

Circular areas with radius R and centers pUi

k are drawn to
represent the communicable areas for each UAV. It is assumed
that any point within the circular area can communicate with
UAV i. The distance between tracker UAV i and j is denoted
by dij . It is assumed, without loss of generality, that d12 ≤
d13 ≤ d23. The distances between the UAVs are compared
to the communication range to determine the existence of a
feasible area The feasible points must lie within the union of
the communicable areas, as the relay UAV will be unable to
communicate with any UAVs otherwise.

Three possible scenarios arise when dealing with 3 UAVs:
all three are able to communicate, only two are able to
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Fig. 8. Relative connectivity duration of the proposed algorithms.

communicate, or none are able to communicate. In the case
where all three UAVs can communicate, any point within the
union of the communicable areas of each UAV is a feasible
point for the relay UAV, given that d13 ≤ R. In this scenario,
d23 does not impact communication since the three UAVs are
connected even without the relay UAV. An illustration of the
configuration of this case can be seen in Figure 7.

When only 2 UAVs can communicate, it implies that d12 ≤
R and d13 ≥ R. This case can be further divided into two
subcases based on d13 being either between R and 2R or larger
than 2R. In the former case, the relay UAV can be placed at the
intersection area of UAV 1 and UAV 3 to connect both of them,
since UAV 1 and UAV 2 are already connected. Consequently,
a connected network topology is formed. However, in the latter
case, it is impossible to place the relay UAV in a way that
connects UAV 1 and UAV 3, and thus a connected network
topology cannot be established.

In the event that there is no connection between the UAVs,
where the distance between two UAVs is greater than or equal
to the communication range, the relay UAV must establish
communication with all three UAVs to create a connected
network topology. This is equivalent to the process of de-
termining whether a single-hop network can be established
between the UAVs, as discussed previously. For two circles to
have an intersection area, the distance between their centers
should be smaller than the summation of their radii. To
have an intersection area between 3 circles, the distance
between the circles should satisfy the following inequality
R ≤ d12 ≤ d13 ≤ d23 ≤ 2R. There are two possible cases for
this configuration with intersection area and no intersection
area.

A feasibility check is carried out for each t, and the duration
that the topology can remain connected is determined by
summing the results throughout the simulation time to obtain
the maximum possible duration. The maximum amount of
time that the network can remain connected for each target
mobility case and communication range is evaluated. For each
algorithm, the ratio between the time the relay UAV maintains
network connectivity and the maximum possible duration of
network connectivity, called relative connectivity duration, is
calculated.

The results in Figure 8 show that both in single-hop and
multi-hop communication cases, relative connectivity dura-
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Fig. 9. Box plot of multi-hop algorithms.

tions increase with the proposed algorithms compared with
the center of mass baseline method. The algorithm for single-
hop communication has better results than the nearest point
algorithm since the feasible area increases in the multi-hop
communication scenario. Although the nearest point algorithm
planner has longer connection duration, it is not as relatively
successful as the single-hop communication planner in terms
of being in the connectivity area.

All three algorithms for the multi-hop communication sce-
nario improves the performance in terms of relative connec-
tivity duration compared to the baseline algorithm. Figure
8 shows that the midpoint algorithm performs better than
the nearest point algorithm, and hybrid algorithm performs
better than both. Figure 9 presents the statistics of the relative
connectivity duration for all simulations for the multi-hop
communication. It is observed that among the three algorithms
considered, the hybrid algorithm not only achieves the longest
connectivity duration, but also has the most robust perfor-
mance.

VII. NETWORK TOPOLOGY

The network established in this study operates within the
paradigm of Flying Ad Hoc Networks (FANETs), a spe-
cialised subclass of Mobile Ad Hoc Networks (MANETs)
and Vehicular Ad Hoc Networks (VANETs) [31]. FANETs
are characterised by dynamic and rapidly changing network
topologies due to the high-speed mobility of UAVs. This rapid
mobility leads to frequent alterations in node positions and
fluctuations in node load, presenting unique challenges for
network design and stability. FANETs are typically supported
by UAV-to-UAV data links, allowing them to expand coverage
dynamically and flexibly. However, in contrast to other ad
hoc networks, FANETs generally exhibit lower node density
due to both the spatial distribution of UAVs and their energy
constraints.

A key limitation in FANETs arises from the power con-
sumption constraints of UAV hardware, which restricts the
number of connections that each UAV can maintain. Fur-
thermore, latency is a critical design factor in FANETs, as
in all types of ad hoc networks, and must be considered
when determining the network topology. Network lifetime is
also essential for FANET performance, especially given that
communication hardware in FANETs draws power from the
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Fig. 10. Average lifetime ratio as a function of maximum number of tracker
and relay UAV connections.

UAV’s onboard energy source. Consequently, it is essential to
control node degree in order to limit the number of connections
each UAV can handle.

In this context, different communication strategies have
been evaluated to balance network extensibility with latency
reduction. Single-hop communication, similar to a star topol-
ogy, effectively minimises latency but suffers from limited
scalability and resilience due to potential coverage gaps in
larger networks. Alternatively, multi-hop communication, akin
to a mesh topology, offers enhanced connectivity at the cost of
increased latency. Multi-hop communication in FANETs can
be approached in two ways: (1) by minimising the number
of hops between a tracker UAV and the relay UAV or (2) by
minimising the number of nodal connections a UAV maintains.
The first approach, while theoretically advantageous, is limited
by the autonomous mobility models of tracker UAVs, which
prioritise specific target tracking over network-aware routing.
The second approach, however, optimises the network by
restricting the connection load on both tracker and relay UAVs,
which can help extend the network’s operational lifetime.

The connection optimization problem shares similarities
with the degree-constrained minimum spanning tree problem
[32], which is an NP-hard problem. We solved the problem of
FANET topology design under nodal degree constraints using
the variable neighborhood search [33] which was proposed for
the degree constrained spanning tree problem. To demonstrate
the potential for extended network lifetime with the proposed
algorithms, center of mass algorithm is used as a baseline to
explore the effects of the number of connections each UAV

can maintain.
The study evaluates 30 randomly generated scenarios with

100 tracker drones with the mobility models presented in
Section III-B across two coverage radii: R = 100 km and
R = 150 km. Considering the hardware limitations of typical
wireless communication devices used in UAVs, connection
limits for the relay UAV, dr, are set at dr = 10, 15, and 20,
while connection limits for tracker UAVs, dt, are evaluated
with 2, 3, 4, and 5. The position of the relay UAV is deter-
mined using the center of mass algorithm. Average lifetime
ratio which represents the the ratio between the duration
network is connected with the degree limitations and the
duration network can remain connected without the limitations
is used as the performance criteria. For single-hop, there is
no limitation on the number of connection the relay UAV can
make and tracker UAVs can only be connected directly to relay
UAV. These parameters are critical, as they directly influence
network durability and performance.

The results of these evaluations, presented in Figure 10a,
show that average lifetime ratio of network with single-hop
communication is only around 30%, which is substantially
lower than the lifetimes achieved under multi-hop communi-
cations. For the multi-hop communication, if tracker UAVs
can connect up to 4 or 5 UAVs, the connected network
topology can be achieved throughout the lifetime that it
remains connected. However for dt = 2 and dt = 3, the
lifetime of the network is lower. As the proposed algorithms
in Section IV-B are shown to perform better compared to
center of mass algorithm, proposed algorithms are expected
to achieve higher average lifetime ratios under nodal degree
constraints compared to results reported in this section.

VIII. CONCLUSION

In this paper, motion planning for a relay UAV for estab-
lishing a connected UAV network topology is investigated, so
that each UAV in the network has the ability to communicate
with other UAVs. The communication is studied under two
scenarios: single-hop and multi-hop. Single-hop communica-
tion involves a direct link from the tracking UAVs to the relay
UAV, which requires reliable and low delay communication
to ensure effective surveillance. On the other hand, in multi-
hop communication, the relay UAV can communicate with the
other UAVs through intermediate nodes, which increases the
duration that the UAVs remain connected to achieve higher
resilience. The optimization problems are formulated for both
single-hop and multi-hop communication, aiming to maximize
the connected time of the network topology.

Center of mass method which selects the trajectory of the
relay UAV as the centroid of the three targets at all times is
used as the baseline for comparison. The performance of the
algorithm used in the single-hop communication shows that
the solution with no time horizon shows 13% improvement,
while the solution with a time horizon shows 16% improve-
ment over the baseline. The formulation with optimization
horizon provides the best results, which is expected since the
trajectory is optimized with more knowledge about the tracker
UAVs. For the multi-hop communication scenario, trajectories
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generated by all proposed algorithms achieve connectivity for
a period which is over 90% of the maximum possible duration
of having a connected topology. Amongst the proposed three
algorithms, the hybrid algorithm is found to be the most
effective algorithm with over 95% of the maximum possible
network lifetime achieved.

As a future work, heterogeneous UAV systems with cover-
age and communication ranges can be explored. Additionally,
the implementation of multiple relay UAVs can be considered
to enhance connectivity. Further research could also investigate
adaptive algorithms that respond dynamically to changes in the
environment and target behavior, as well as the integration of
machine learning techniques to predict target movements and
optimize UAV trajectories more effectively.
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[1] Á. Madridano, A. Al-Kaff, D. Martı́n, and A. de la Escalera, “Trajectory
planning for multi-robot systems: Methods and applications,” Expert
Systems with Applications, vol. 173, p. 114660, 2021.

[2] L. Xing, X. Fan, Y. Dong, Z. Xiong, L. Xing, Y. Yang, H. Bai, and
C. Zhou, “Multi-UAV cooperative system for search and rescue based
on YOLOv5,” International Journal of Disaster Risk Reduction, vol. 76,
p. 102972, 2022.

[3] S. H. Alsamhi, A. V. Shvetsov, S. Kumar, S. V. Shvetsova, M. A.
Alhartomi, A. Hawbani, N. S. Rajput, S. Srivastava, A. Saif, and
V. O. Nyangaresi, “UAV computing-assisted search and rescue mission
framework for disaster and harsh environment mitigation,” Drones,
vol. 6, no. 7, p. 154, 2022.

[4] Y. Tian, K. Liu, K. Ok, L. Tran, D. Allen, N. Roy, and J. P. How,
“Search and rescue under the forest canopy using multiple UAVs,” The
International Journal of Robotics Research, vol. 39, no. 10-11, pp. 1201–
1221, 2020.

[5] E. Yanmaz, “Joint or decoupled optimization: Multi-UAV path planning
for search and rescue,” Ad Hoc Networks, vol. 138, p. 103018, 2023.

[6] Z. Sun, H. Garcia de Marina, B. D. Anderson, and C. Yu, “Collaborative
target-tracking control using multiple fixed-wing unmanned aerial vehi-
cles with constant speeds,” Journal of Guidance, Control, and Dynamics,
vol. 44, no. 2, pp. 238–250, 2021.

[7] X. Shao, J. Zhang, and W. Zhang, “Distributed cooperative surrounding
control for mobile robots with uncertainties and aperiodic sampling,”
IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 10,
pp. 18 951–18 961, 2022.

[8] M. Tortonesi, C. Stefanelli, E. Benvegnu, K. Ford, N. Suri, and M. Lin-
derman, “Multiple-UAV coordination and communications in tactical
edge networks,” IEEE Communications Magazine, vol. 50, no. 10, pp.
48–55, 2012.

[9] H. M. La and W. Sheng, “Dynamic target tracking and observing in
a mobile sensor network,” Robotics and Autonomous Systems, vol. 60,
no. 7, pp. 996–1009, 2012.

[10] S. Wang, S. Hosseinalipour, M. Gorlatova, C. G. Brinton, and M. Chi-
ang, “UAV-assisted online machine learning over multi-tiered networks:
A hierarchical nested personalized federated learning approach,” IEEE
Transactions on Network and Service Management, vol. 20, no. 2, pp.
1847–1865, 2023.

[11] M. A. Khan, N. Kumar, S. A. H. Mohsan, W. U. Khan, M. M. Nasralla,
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