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Abstract Burst assembly mechanism is one of the
fundamental factors that determine the performance of an
optical burst switching (OBS) network. In this paper, we
investigate the influence of the number of burstifiers on TCP
performance for an OBS network. The goodput of TCP flows
between an ingress node and an egress node traveling through
an optical network is studied as the number of assembly buf-
fers per destination varies. First, the burst-length indepen-
dent losses resulting from the contention in the core OBS
network using a non-void-filling burst scheduling algorithm,
e.g., Horizon, are studied. Then, burst-length dependent
losses arising as a result of void-filling scheduling algo-
rithms, e.g., LAUC-VF, are studied for two different TCP
flow models: FTP-type long-lived flows and variable size
short-lived flows. Simulation results show that for both types
of scheduling algorithms, both types of TCP flow models,
and different TCP versions (Reno, Newreno and Sack), TCP
goodput increases as the number of burst assemblers per
egress node is increased for an OBS network employing
timer-based assembly algorithm. The improvement from one
burstifier to moderate number of burst assemblers is signif-
icant (15–50% depending on the burst loss probability, per-
hop processing delay, and the TCP version), but the goodput
difference between moderate number of buffers and per-flow
aggregation is relatively small, implying that an OBS edge
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switch should use moderate number of assembly buffers per
destination for enhanced TCP performance without substan-
tially increasing the hardware complexity.
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1 Introduction

Increasing demand for services with very large bandwidth
requirements facilitates the deployment of optical network-
ing technologies [1]. Using Dense Wavelength Division Mul-
tiplexing (DWDM) technology, optical networks are able
to meet the huge bandwidth requirements of future Internet
Protocol (IP) backbones. Currently, IP routers are intercon-
nected with virtual circuits over synchronous optical net-
works (SONET) through multiprotocol label switching
(MPLS) [2]. However, a wavelength routed network, also
called optical circuit switching (OCS), is not suitable for car-
rying bursty IP traffic with time-varying bandwidth demand
since a whole wavelength is the smallest bandwidth unit. In
addition, delays during connection establishment and release
increase the latency especially for services with small hold-
ing times. An alternative to OCS is optical packet switching
(OPS) [3], which can adapt to changing traffic demands and
requires no reservation, but the optical buffering and signal
processing technologies have not matured enough for possi-
ble deployment of OPS in core networks in the near future.
Optical burst switching (OBS) is proposed as a short-term
feasible solution that can combine the strengths and avoid
the shortcomings of OCS and OPS [4,5].

In OBS, IP packets reaching the edge router are aggregated
into bursts before being transmitted in the optical core net-
work. The assembly algorithm at the edge router keeps track
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of the size of the burst and the delay experienced by the first
packet in the burst. A timer-based assembly algorithm creates
a burst when the delay for the first packet reaches a timeout,
while a size-based algorithm creates a burst when the size of
the burst reaches a threshold. A size/timer-based hybrid burs-
tifier creates a burst when either of the size or time thresholds
is reached. As far as TCP throughput is concerned, size-based
burstification performs the worst, size/timer-based performs
better, and timer-based performs the best [6,7].

Performance of TCP traffic in OBS networks has been
recently addressed in several studies [2,6–13]. TCP through-
put degradation resulting from the additional burst assem-
bly delay, called the delay penalty (DP) [6], increases as
the assembly time increases [2,6,8,9]. An important con-
sequence of the burst assembly is the combined loss or com-
bined successful delivery of consecutive packets in a burst
belonging to the same TCP flow. The improvement in TCP
rate as a result of this correlation is called the correlation
gain, which increases with the average number of packets in
a burst belonging to the same TCP flow [10]. This improve-
ment is explained by the increased time elapsing between
two loss events, and it is referred to as the delayed first loss
(DFL) gain [6]. Meanwhile, the average number of packets
in a burst belonging to a particular flow depends on the access
network bandwidth and the assembly timeout.

Performance improvement in OPS networks with larger
optical packets is noted in [11]. It is observed that the
improvement of larger burst size on throughput gets more sig-
nificant as the drop probability is decreased [9]. On the other
hand, increasing the burst size leads to performance deteri-
oration as the assembly delay becomes dominant [2,12]. It
is also shown that TCP performance degrades with aggre-
gation as a result of the synchronization between TCP flows
sharing the same aggregation buffer [11,13]. This synchroni-
zation results from simultaneous decrease of the congestion
window sizes of TCP flows that have packets in a lost burst.

Another effect of the burst size on the loss performance is
due to the voids formed between consecutive bursts [14]. If
the burst control packets arriving to a switch have different
residual offset times and a void-filling type burst scheduling
algorithm such as LAUC-VF [15] is used, some bursts are
scheduled into voids formed between two reservations that
have been made earlier. As a result, bursts with smaller sizes
can be more easily fit into these voids resulting in reduced
loss probability for small-sized bursts. Burst-length depen-
dent losses do not occur if all bursts arriving at a switch have
the same residual offset times, e.g., when they are all des-
tined for the same egress node, or a non-void-filling type
burst scheduling algorithm such as Horizon [5] is used.

In this paper, we focus on the effect of the number of
assembly buffers on TCP throughput. We consider two loss
models. First, we study the case when the burst losses are
burst-size independent, which is further extended to burst-

size dependent losses. We use an ns2-based [16] OBS net-
work simulator (n-OBS) [17] for studying the performance
of several TCP implementations as the number of burstifiers
is changed. We show for both loss models that TCP goodput
increases significantly as the number of assembly buffers per
destination is increased since the effect of flow synchroniza-
tion is reduced. This improvement saturates as the number
of burst assemblers is increased further, e.g., when per-flow
aggregation is used. For the burst-length dependent loss case,
we show that the TCP goodput increase with per-flow aggre-
gation is significantly larger for TCP flows having smaller
residual offset times.

The organization of the paper is as follows: in Sect. 2, the
ingress node model used in this study is presented. The effects
of the number of burstifiers are discussed for the burst inde-
pendent loss model in Sect. 3 and for the burst-length depen-
dent loss model in Sect. 4. The conclusions of the study are
presented in Sect. 5.

2 Ingress node model

The ingress node model used in this paper is shown in Fig. 1.
The burstifier queues shown are kept per-egress, and there is
a group of M assembly buffers generating bursts destined for
the same egress node. For simplicity, the burstifier queues for
a single egress are shown in Fig. 1. When multiple destina-
tions are considered, a burstifier queue block containing M
burstifiers should be used for each egress node. Burstifiers are
in the form of FIFO buffers to aggregate IP packets into opti-
cal bursts. The number of burstifiers per egress, M ≤ N , is
chosen amongst divisors of N to allow balanced mapping of
TCP flows to the burstifiers. When a burst is generated by any
burstifier, the burst is sent to the nodal burst scheduler. The
scheduler keeps track of the schedule on each wavelength of
the output WDM links. If the scheduler is able to find a suit-
able interval on an available wavelength over the first link of
the route for this burst, the burst waits in the electronic burst
queue until the reservation interval. The burst queue is nec-
essary in order to avoid contention between bursts coming
from different burstifiers.

3 Effect of multiple assembly buffers with
non-void-filling scheduling

The network topology used for studying the effects of burst
assembly on the performance of OBS networks is shown in
Fig. 2 for the burst-length independent loss model. The burst-
length independent loss model is valid for the cases when all
bursts arriving to a switch have the same residual offset times,
or a non-void-filling burst scheduling algorithm is used. We
simply model the core optical network as a single fiber link
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Fig. 1 Ingress node model Per Egress Burstifier Queues
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Fig. 2 Topology used for non-void-filling scheduling

with Bernoulli distributed drop probability p in O1 → O2

direction to account for losses due to contentions in the core
network. The optical link in O2 → O1 direction and access
links are lossless. On the reverse path, ACK packets do not
experience any drops or assembly delays. Let Ba, Ta, Bo,
and To denote the access link bandwidth, access link delay,
optical link bandwidth, and optical link delay, respectively.
We assume that each TCP source si employs an infinite FTP
flow to the respective destination di , 1 ≤ i ≤ N .

The parameters used in the simulations are N = 10,
M = 10, Ba = 155 Mbps, Ta = 1 ms, Bo = 1 Gbps, and
To = 10 ms. The MSS of TCP connections are set to 1,040
Bytes and the receive windows are set to 10,000 MSS.

Since the highest goodput is obtained by the timer-based
algorithm, we resort to the timer-based burstification in this
paper for studying the effect of the number of the burstifi-
ers on TCP performance [6,7]. Figures 3–8 show the total
goodput for p = 0.001 and p = 0.01 for TCP Reno, New-
reno, and Sack, respectively, for M = 1, 2, 5, and 10. We

observe that increasing the number of burst assemblers
significantly improves the goodput for all three TCP versions
since synchronization between large numbers of TCP flows
is avoided as the number of burstifiers is increased. When
a burst is lost in the optical core, all the sources that have
packets in that burst simultaneously decrease their conges-
tion windows. In other words, flows sharing an aggregation
buffer become synchronized. In the full-aggregation case,
i.e., M = 1, all flows 1 − N are synchronized and hence
the optical link is underutilized [11,13]. When the degree
of synchronization is reduced by increasing the number of
burstifiers, the congestion windows of flows belonging to
different burst assemblers tend to balance each other and the
link is better utilized.

The evolutions of the congestion windows of N = 10 TCP
Reno flows are shown in Fig. 9 for M = 1 and M = 10.
TCP flow synchronization effect in OBS networks is clearly
observed in Fig. 9a where M = 1. With per-egress burstifi-
cation, TCP flows are synchronized resulting in a significant
drop in channel utilization after each burst loss. On the other
hand, with per-flow burstification, i.e., M = 10, no flows are
synchronized and the sum of the congestion windows is very
smooth corresponding to a better bandwidth utilization as
shown in Fig. 9b.

The plots also show that as the assembly time is increased,
the goodput first increases, and then starts to decrease for all
three TCP versions. In the region where the goodput increases
with the assembly timeout, the delay penalty is small and
DFL gain is dominant, therefore increasing the burst size
increases the goodput. On the other hand, the improvement
provided by DFL gain saturates after some timeout value
and the delay penalty begins to dominate, which causes the
goodput to deteriorate.

Another important observation is that the rate of decrease
in goodput as the timeout is increased depends on the loss
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Fig. 3 Total goodput with
timer-based assembly for
N = 10, p = 0.001,
M = 1, 2, 5, 10 and Reno TCP
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Fig. 4 Total goodput with
timer-based assembly for
N = 10, p = 0.01,
M = 1, 2, 5, 10, and Reno TCP
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probability p. When p is large, the congestion window cannot
increase to large values due to more frequent burst losses. In
this case, the burst size does not increase significantly as the
timeout increases since the DFL gain does not change much
with increasing timeout. As a result, the goodput decreases
more rapidly with increasing timeout due to the delay penalty.
On the other hand, larger bursts are generated as the timeout
is increased when p is small, and the DFL gain increases
with the timeout. This partially compensates the effect of the

delay penalty, and the goodput does not degrade much with
the increasing assembly timeout for all three TCP versions.
In addition, it is observed that a relatively low number of
assembly buffers may perform close to the per-flow aggrega-
tion case (M = N ). Since the cost of additional burstifiers can
be compromised by the improvement in goodput, employing
moderate number of buffers with respect to the number of
flows constitutes a cost-effective solution for ingress node
architecture.
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Fig. 5 Total goodput with
timer-based assembly for
N = 10, p = 0.001,
M = 1, 2, 5, 10, and Newreno
TCP
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Fig. 6 Total goodput with
timer-based assembly for
N = 10, p = 0.01,
M = 1, 2, 5, 10, and Newreno
TCP
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Although all three TCP versions exhibit similar charac-
teristics as the timeout and the number of burstifiers are
changed, TCP Sack achieves the highest goodput among
the three TCP versions. Sack outperforms the other two
versions since it quickly retransmits the lost segments with
selective acknowledgements. Reno and Newreno have very
close performances, with Newreno slightly outperforming
Reno.

In Table 1, the goodput enhancement of using multiple
burstifiers per-egress with respect to the single burstifier case,
i.e., per-destination burstification, is shown for different TCP
versions, number of TCP flows, and loss probability. For
N = 10 and p = 0.001, the goodput with per-flow burstifi-
cation increases 33–65% compared to the case with per-desti-
nation burstification for different TCP versions. The goodput
enhancement is largest with Reno and smallest with Sack.
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Fig. 7 Total goodput with
timer-based assembly for
N = 10, p = 0.001,
M = 1, 2, 5, 10, and Sack TCP
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Fig. 8 Total goodput with
timer-based assembly for
N = 10, p = 0.01,
M = 1, 2, 5, 10, and Sack TCP

1 4 7 10 13 16 19 22 25 28 31 34 37 40
1

1.2

1.4

1.6

1.8

2

2.2
x 10

2

Assembly time threshold (ms)

G
oo

dp
ut

 (
M

bp
s)

M=10
M=  5
M=  2
M=  1

We also observe that the goodput achieved with M = 5 is
very close to the per-flow burstification case. For N = 10 and
p = 0.01, the goodput enhancement with per-flow burstifi-
cation with respect to per-destination burstification is about
15–20%. Similarly, the goodput achieved with M = 5 is very
close to the per-flow burstification case. The burstification
architecture at the edge router should be designed taking into
account both the goodput enhancement and additional man-
agement complexity of using multiple burstifiers, and M = 5
seems to provide a nice compromise for this particular case.

4 Effect of multiple assembly buffering with void-filling
scheduling

The burst-length dependent losses naturally occur at a switch
where a void-filling scheduling algorithm, e.g., LAUC-VF
[15], is used and arriving bursts have different residual offset
times [18,19]. This is due to the fact that the burst length
affects the probability that the burst scheduler will be suc-
cessful in finding a suitable void for an incoming burst. This
dependence is strongest for the flows having smaller residual
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Fig. 9 Congestion window
sizes, in MSS, for TCP Reno
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Table 1 Percentage goodput increase versus number of burstifiers for
different TCP versions and loss probability

p M Reno Newreno Sack

0.001 2 24.55 24.77 17.31

5 51.00 45.99 30.50

10 65.40 58.48 33.84

0.01 2 6.85 8.22 9.48

5 14.10 16.63 17.16

10 15.20 19.36 20.52

offset times, and the dependence becomes weaker for flows
having larger residual offset times. For the flow with the larg-
est residual offset time, the burst losses occur independent of
their sizes.

The network topology used for studying the effects of burst
length dependent losses is shown in Fig. 10. Sources S1–SN

employ an infinite FTP flow to the respective destination
D1–DN (N = 20). All optical links have Bo = 1 Gbps band-
width and To = 2.5 ms propagation delay. The background

burst generator produces bursts whose sizes are exponen-
tially distributed with mean 1/µ and burst arrival process is
Poisson with rate λ. All bursts are destined uniformly to the
five egress nodes connected to D1–D20. Access links have
Ba = 50 Mbps bandwidth and Ta = 1 ms propagation delay.
LAUC-VF burst scheduling algorithm is used at the optical
nodes. In the simulations in this section, we use the follow-
ing parameters: 1/λ = 2 ms, 1/µ = 200 µs, and the nodal
processing delay � = 50 µs (unless stated otherwise).

4.1 FTP-type long-lived TCP flows

In the first part of the simulations, we use FTP-type TCP
flows where multiple concurrent long lasting FTP flows are
used to generate the bursts. Figure 11 shows the loss proba-
bility for each egress node as a function of the burst length for
M = 1 and the assembly timeout T = 10 ms. The statistics
of the generated bursts are grouped into 10 bins according to
the number of packets in the burst, which ranges from 1 to a
maximum of 60 packets. It is observed that the loss probabil-
ity is relatively high for the flows with smaller residual offset
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Fig. 11 Loss probability versus
burst length for different egress
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Fig. 12 Goodput and average
burst size versus assembly time
threshold for egress node 3
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Fig. 13 Goodput and average
burst size versus assembly time
threshold for egress node 7
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times, as expected. Moreover, the loss probability increases
as the burst size increases. The impact of void filling mecha-
nism in the core router scheduler becomes important for those
bursts that are closer to their destinations because they need
to fit in the voids created beforehand by the bursts that have
larger residual offset times. Consequently, the dependence
of the loss probability on the burst size is strongest for the
bursts destined to D1–D4. Such a correlation is not observed
for the bursts destined to D17–D20, as expected.

In addition to the mechanisms mentioned in [6], such as
DP, the loss penalty, and correlation gain, this observation
brings forward another critical factor in analysis of TCP per-
formance in OBS networks. The significance of the burst
length dependent losses depends on the residual offset time,

per-hop processing delay (�), and the burst transmission
time.

Figures 12 and 13 plot the goodput and the average burst
size as a function of the burst assembly timeout for the near-
est and farthest egress nodes, respectively, and for different
values of the number of burstification buffers, M , when TCP
Reno is used. We observe that for both destinations the aver-
age goodputs increase with the number of burstifiers. It is
also observed that the average burst size increases linearly
with the assembly timeout for flows destined to D17–D20.
On the other hand, the average burst size first increases and
then saturates for the flows destined to D1–D4. This is due
to the fact that the TCP flows destined to D1–D4 experi-
ence much more frequent burst losses, and consequently they
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Table 2 Percentage goodput increase as a function of the number of burstifiers for TCP Reno

� (µs) M Destination

1–4 5–8 9–12 13–16 17–20 Avg.

50 4 16.91 8.15 6.86 2.91 2.43 6.22
50 2 6.47 4.22 4.19 3.28 1.36 3.87
100 4 34.82 26.83 8.61 6.21 1.89 6.91
100 2 13.91 7.78 2.85 4.91 0.82 2.69
200 4 26.78 35.79 31.73 6.70 15.52 23.15
200 2 13.86 14.86 12.36 4.31 6.01 6.70
500 4 26.49 27.83 31.22 34.97 15.95 36.92
500 2 13.36 10.94 14.53 16.76 3.27 10.24

Table 3 Percentage goodput increase as a function of the number of burstifiers for TCP Sack

� (µs) M Destination

1–4 5–8 9–12 13–16 17–20 Avg.

50 4 39.41 8.47 8.79 5.43 0.38 4.91
50 2 19.72 4.76 3.73 3.15 0.04 3.03
100 4 48.81 54.93 13.05 10.35 0.62 6.33
100 2 26.21 25.25 6.09 8.68 0.46 2.72
200 4 44.79 57.58 45.30 6.91 0.46 24.45
200 2 25.43 25.01 26.07 4.74 0.00 4.35
500 4 47.83 38.83 48.91 54.20 1.29 37.88
500 2 24.76 17.81 25.86 25.44 0.73 8.07

cannot achieve very large congestion windows. The satura-
tion of the average burst sizes coupled with the additional
assembly delay causes the drop in the average goodput for
flows destined for D1–D4 as the assembly timeout increases.
On the other hand, the TCP flows destined for D17–D20

can achieve very large congestion windows and the resulting
burst sizes increase with the assembly timeout. The correla-
tion benefit achieved by having longer bursts is partially com-
pensated by the delay penalty, and the average TCP goodput
does not significantly change as the burst assembly timeout
is increased.

We also observe from Figs. 12 and 13 that the flows des-
tined for D17–D20 achieve much higher goodputs compared
with the flows destined for D1–D4. Although the flows des-
tined for D17–D20 experience larger delays, their much
smaller loss probability results in higher goodput.

The comparison of Figs. 12 and 13 also reveal that the
maximum goodput for the flows destined for D1–D4 are
achieved at smaller values of the burst assembly timeout
compared with the flows destined for D17–D20. In fact, the
maximum goodput is achieved before the burst size satu-
rates for the flows destined for D1–D4. This is due to the
fact that the loss probability increases significantly as the
burst size increases for the flows destined for D1–D4 as
shown in Fig. 11. Although the correlation gain is increas-
ing with the burst size, the burst-length dependent nature of
the burst losses causes the average goodput to start decreasing
before the average burst size reaches its maximum. A similar

behavior is not observed in Fig. 13 since the burst losses are
independent of the burst size for the flows destined to D17–
D20.

The performance improvement in the maximum average
goodputs achieved by using M = 2 and M = 4 with respect
to M = 1 for TCP Reno and TCP Sack are shown in Tables 2
and 3, respectively. The results show that the improvement
in the average goodput is maximum for the flows destined
for closer egress nodes, and the average goodput improve-
ment generally increases with the increasing nodal process-
ing delay �. The improvements are in the range of 17–35%
for the closest nodes and the average goodput improvement
over all destinations is 6–37% for TCP Reno with M = 4.
For the case of M = 2, the average goodput increases are in
the range of 3–10% compared to M = 1. The performance
improvements for TCP Sack are slightly larger compared to
TCP Reno.

4.2 Variable size short-lived TCP flows

In this section, the infinite FTP flows of Sect. 4.1 are replaced
by flows that mimic the Internet traffic. The heavy tail and
large variance in flow sizes of typical Internet flows are
modeled with Bounded Pareto distribution [20] while flows
arrive according to a Poisson process with rate λ′. A Bounded
Pareto distribution is denoted by tail heaviness α, minimum
flow size k, and maximum flow size p. The probability
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Fig. 14 Average goodput with timer-based assembly for N = 10, M = 1, 2, 4
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density function f (x), cumulative density function F(x), and
the n-th moment mn are given as follows [20]:

f (x) = αkα

1 − (k/p)α
x−α−1, k ≤ x ≤ p, 0 ≤ α ≤ 2

F(x) = 1

1 − (k/p)α
[1 − (k/x)α], k ≤ x ≤ p,

0 ≤ α ≤ 2

mn = α

(n − α)(pα − kα)
(pnkα − kn pα)

Each IP router S1–S20 is assigned with a flow generator,
which produces TCP Reno flows with Bounded Pareto size
distribution and Poisson arrival pattern. The flows assigned
to S1–S20 send their segments to the respective destination
D1–D20. For each flow generator, Bounded Pareto param-
eters are α = 1.2, k = 10 MBytes, p = 1 GBytes, and
flow arrival rate is λ′ = 0.1 arrivals/s. TCP flow IDs are uni-
formly distributed in {0, 1, 2, 3}, and M ∈ {1, 2, 4}. In our
simulations, the background burst generator is operated with
1/µ = 200 µs, 1/λ = 2 ms, and the nodal processing delay
is taken as � = 50 µs.

The average goodput of the TCP flows is shown in Fig. 14
for each egress node. Once again, it is confirmed that increas-
ing the number of assembly buffers improves the TCP per-
formance. The goodputs of further egress nodes are relatively
high compared to the goodputs of closer egress nodes since
the drop probability is lower for bursts with higher residual
offsets. For the egress nodes D1–D4, the drop probability
is so high that the DFL gain cannot compensate the delay
penalty as the assembly timeout is increased; therefore, the
goodput constantly decreases with the burstification delay.
When we look at further egress nodes, it can be seen that the
effect of DFL gain becomes dominant and for the egress of
D17–D20, the decrease in goodput for increasing assembly
timeout is minimal even for large burstification delays.

The average goodput increase in percentage for all flows
as a function of the number of burstifiers is given in Table 4.
The results show that the improvement is most significant for
the nearest egress node (more than 30% for M = 4), while
the improvement decreases for the further egress nodes and
using M = 2.

Table 4 Percentage goodput increase as a function of the number of
burstifiers

M Destination

D1–D4 D5–D8 D9–D12 D13–D16 D17–D20

4 30.52 19.33 12.03 16.40 17.21
2 15.46 8.82 6.45 9.34 7.43

5 Conclusion

The performance of TCP over OBS networks is studied in
this paper in terms of the number of burstifiers used at the
edge routers. Increasing the number of burst assemblers per
destination reduces the negative effects of synchronization
between TCP flows occurring as a result of lost bursts con-
taining packets belonging to multiple TCP flows. We show
that TCP goodput is increased significantly when edge rou-
ters with multiple burstifiers per destination are used, and
the goodput increases as the number of burstifiers increases.
This conclusion holds for different TCP versions and differ-
ent burst loss models. We recommend that the edge router
architecture be designed with multiple burst assemblers per
egress but with less burstifiers than per-flow burstification,
i.e., 1 < M < N , in order to reduce the complexity of man-
aging large number of buffers while achieving nearly the
maximum TCP goodput.
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