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Abstract— In an ultra wideband (UWB) impulse radio (IR)
system, a number of pulses, each transmitted in an interval called
a “frame”, is employed to represent one information symbol.
Conventionally, a single type of UWB pulse is used in all frames
of all users. In this paper, IR systems with multiple types of UWB
pulses are considered, where different types of pulses can be used
in different frames by different users. Both stored-reference (SR)
and transmitted-reference (TR) systems are considered. First,
the spectral properties of a multi-pulse IR system with polarity
randomization is investigated. It is shown that the average power
spectral density is the average of the spectral contents of different
pulse shapes. Then, approximate closed-form expressions for the
bit error probability of a multi-pulse SR-IR system are derived
for RAKE receivers in asynchronous multiuser environments.
The effects of both inter-frame interference (IFI) and multiple-
access interference (MAI) are analyzed. The theoretical and
simulation results indicate that SR-IR systems that are more
robust against IFI and MAI than a “conventional” SR-IR system
can be designed with multiple types of ultra-wideband pulses.
Finally, extensions to multi-pulse TR-IR systems are briefly
described.

Index Terms—Ultra-wideband (UWB), multi-pulse impulse
radio (IR), stored-reference (SR), transmitted-reference (TR),
performance analysis.

I. I NTRODUCTION

Ultra-wideband (UWB) technology holds great promise
for a variety of applications such as short-range high-speed
data transmission and precise location estimation. Commonly,
impulse radio (IR) systems, which transmit very short pulses
with a low duty cycle, are employed to implement UWB
systems ([1]-[4]). In an IR system, a numberNf of pulses
are transmitted per symbol, and information is usually carried
by the polarity of the pulses in a coherent system, or by the
difference in the polarity of the pulses in a differentially-
modulated system. In the former case, it is assumed that
received pulse structure is known at the receiver and channel
estimation can be performed; hence, RAKE receivers can be
used to collect energy from different multipath components.
Since the incoming signal structure is correlated by a locally
stored reference (template) signal in this case, such a system is
called astored-reference(SR) system [5]. In the latter case, out
of the Nf pulses transmitted per information symbol, half of
them are used as reference pulses, whereas the remaining half
are used as data pulses. The relative polarity of the reference
and the data pulses carries the information. Since the reference
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pulses to be used in the demodulation are transmitted to the
receiver, such a system is called atransmitted-reference(TR)
system [4]. In a TR system, there is no need for channel
estimation since the reference and the data pulses are effected
by the same channel, assuming that the channel is constant
for a sufficiently long time interval, which is usually the case
for UWB systems. On the other hand, a lower throughput is
expected since half of the energy is used for non-information
carrying pulses. Also since the transmitted reference is used
as a noisy template at the receiver, more effective noise terms
are generated.

Considering a conventional SR-IR system, a single type
of UWB pulse is transmitted in all frames of all users [1].
In asynchronous multiuser environments, the autocorrelation
function of the pulse becomes an important factor in determin-
ing the effects of inter-frame interference (IFI) and multiple-
access interference (MAI) [6]. In order to reduce those effects,
UWB pulses with fast decaying autocorrelation functions are
desirable. However, such an autocorrelation function also
results in a considerable decrease in the desired signal part
of the receiver output in the presence of timing jitter [7].
Moreover, when there is an exact overlap between a pulse and
an interfering pulse, the interference is usually very significant.
Hence, there is not much flexibility in choosing the pulse shape
in order to combat against interference effects. However, in
SR-IR systems with multiple types of UWB pulses, the effects
of interference can be mitigated by using different types of
UWB pulses with good cross-correlation properties. Multi-
pulse SR-IR systems have recently been proposed in [8]. How-
ever, there has been no theoretical analysis of such systems,
in terms of their spectral properties and bit error probability
(BEP) performance, and no quantitative investigation of the
gains that can be obtained by multiple types of UWB pulses.
In this paper, we consider this problem in an asynchronous
multiuser environment and analyze the BEP performance of
a generic RAKE receiver over frequency-selective channels.
The results are valid for arbitrary numbers of UWB pulse
types, and hence cover the single-pulse system as a special
case. Moreover, we also briefly describe possible extensions of
multi-pulse approach to TR-IR systems. However, no detailed
analysis is given due to space limitations.

In addition to the performance analysis of the multi-pulse IR
systems, the average power spectral density (PSD) of a generic
multi-pulse IR signal is derived and a simple relationship
between the Fourier transforms of the UWB pulses and the
average PSD of the transmitted signal is obtained.

The remainder of the paper is organized as follows. Section
II describes a generic transmitted signal model, which reduces
to SR- and TR-IR systems as special cases. Then, Section
III analyzes the spectral properties of this generic IR signal
structure. After describing the received signal in Section IV,
the performance of multi-pulse SR-IR systems employing
RAKE receivers is analyzed in Section V and simulation
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results are given in Section VI. The concluding remarks are
made and possible extensions are discusses in the last section.

II. T RANSMITTED SIGNAL MODEL

The transmitted signal from thekth user in a multi-pulse
UWB-IR system can be expressed as

s(k)(t) =
1√
Nf

∞∑

i=−∞

Np−1∑
n=0

s
(k)
i,n(t), (1)

whereNf is the number of pulses transmitted per information
symbol,Np is the number of different pulse types, ands

(k)
i,n(t)

represents the UWB pulses of typen transmitted for theith
information symbol of userk. Note that the signal model in
(1) can also represent cases in which the number of pulse
types is less thanNp, by using the same pulses for different
pulse indices. Also different users can have different ordering
of the pulses in one period, which can be useful for reducing
the effects of MAI. The number of pulses per symbol,Nf ,
is assumed to be an even multiple ofNp for simplicity of
notation ands(k)

i,n(t) is expressed as follows:

s
(k)
i,n(t) =

(i+1)
Nf
2Np

−1∑

j=iNf /(2Np)

{
b
(k)
1,j d

(k)
2jNp+n p(k)

n

(
t− (2jNp + n)Tf

− c
(k)
2jNp+nTc

)
+ b

(k)
2,j d

(k)
(2j+1)Np+n p(k)

n

(
t− (2jNp + n)Tf

− T (k)
n − c

(k)
(2j+1)Np+nTc

)}
. (2)

In (2), p
(k)
n (t) is the UWB pulse of typen for user k, Tf

is the frame interval,Tc is the chip interval, andT (k)
n is the

distance between the two pulses in a pair of typen for thekth
user, considering the pulses from a given type being grouped
into pairs as shown in Figure 1. The time-hopping (TH) code
for user k is denoted byc(k)

j , which is an integer taking
values in the set{0, 1, . . . , Nc−1}, with Nc being the number
of chips per frame, which prevents catastrophic collisions
between different users. The polarity, or the spreading, code,
d
(k)
j ∈ {−1, +1}, changes the polarity of the pulses, which

smoothes the PSD of the transmitted signal [9] and provides
robustness against MAI [10]. The information is represented
by b

(k)
1,j andb

(k)
2,j , which carry the same information for an SR

system, and carry the information in the difference between
their values for a TR system.

The general signal model in (2) can represent SR and TR
systems as special cases:

A. Stored Reference Impulse Radio

For the SR system,b(k)
1,j = b

(k)
2,j = b

(k)
b2Npj/Nfc, T

(k)
n = NpTf

∀n, k, and each frame has independent TH and polarity codes.

B. Transmitted Reference Impulse Radio

For the TR system,b(k)
1,j = 1 and b

(k)
2,j = b

(k)
b2Npj/Nfc. In

other words, the first pulse in (2) is the reference pulse and
the second one is the data pulse. As shown in Figure 1, this
results in a structure in which the firstNp pulses are the
reference pulses, the nextNp pulses are the data pulses, and
which follows this alternating structure.

Note thatT (k)
n can be chosen to be larger thanNpTf for

the TR system if the TH sequence is constrained to a set

Fig. 1. Transmitted signal from a multi-pulse TR-IR system, whereNf = 12,

Nc = 4, T
(k)
n = ∆Tc for n = 0, 1, 2 with ∆ = 12, and the TH sequence is

{3, 2, 0, 3, 2, 0, 1, 1, 2, 1, 1, 2}. For simplicity, no polarity codes are shown
(that is,d(k)

j = 1 ∀j), andb
(k)
1,j = 1 andb

(k)
2,j = −1.

{0, 1, . . . , Nh−1} with Nh < Nc. In this case, different values
from the set[NpTf , (Np + 1)Tf − NhTc] can be chosen for
different users and/or different pulse types in order to provide
extra robustness against the effects of interference.

Also each reference-data pulse pair has the same TH
and polarity codes in order to facilitate simple delay and
multiplication operation at the receiver. In other words,
d
(k)
2jNp+n = d

(k)
(2j+1)Np+n, and c

(k)
2jNp+n = c

(k)
(2j+1)Np+n,

for j = iNf/(2Np), . . . , (i + 1)Nf/(2Np) − 1, ∀ i, n =
0, 1, . . . , Np − 1.

III. PSD OF MULTI -PULSEUWB-IR SYSTEMS

In order to evaluate the spectral properties of the transmitted
signal, the (average) PSD of the signal must be calculated.
Therefore, we first calculate the autocorrelation function of
s(t) as follows4:

φss(t + τ, t) = E{s(t + τ)s(t)}

=
1

Nf

∞∑

i=−∞

Np−1∑
n=0

E{si,n(t + τ)si,n(t)}, (3)

where we employ the fact that the polarity codes are i.i.d. for
different bit and pulse indices.

From (2), E{si,n(t+τ)si,n(t)} can be calculated, after some
manipulation, as

E{si,n(t + τ)si,n(t)} =

(i+1)
Nf
Np
−1∑

j=iNf /Np

E
{

pn

(
t + τ − (jNp + n)Tf

− cjNp+nTc

)
pn

(
t− (jNp + n)Tf − cjNp+nTc

)}
. (4)

From (3) and (4), it is observed thats(t) is not wide-
sense stationary (WSS) since the autocorrelation function is
not independent oft. However, note thats(t) is a zero mean
cyclostationary process sinceφss(t + τ, t) is periodic with
a period ofNpTf [11]. Therefore, we can obtain the time-
average autocorrelation function as

φ̄ss(τ) =
1

NpTf

∫ NpTf

0

φss(t + τ, t)dt

=
1

NpTfNf

Np−1∑
n=0

∫ ∞

−∞
pn(t + τ)pn(t)dt, (5)

the Fourier transform of which gives the average PSD as
follows:

Φss(f) =
1

NpTs

Np−1∑
n=0

|Wn(f)|2, (6)

4We drop the user indexk in this section, for notational convenience.
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whereWn(f) is the Fourier transform ofpn(t).
Note from (6) that the average PSD of the signal is the aver-

age value of the squares of the Fourier transforms of the pulses.
The dependence on the pulse spectra only is a consequence
of the pulse-based polarity randomization, as considered for
impulse radio systems in [9] and [12]. Moreover, we note that
the multi-pulse system can have more flexibility in shaping
the PSD by proper choice of the UWB pulses.

IV. CHANNEL MODEL AND RECEIVED SIGNAL

We consider the following channel model for userk:

h(k)(t) =
L−1∑

l=0

α
(k)
l δ(t− τ

(k)
l ), (7)

where α
(k)
l and τ

(k)
l are, respectively, the fading coefficient

and the delay of thelth path for userk.
Using the channel model in (7) and the transmitted signal

in (1), the received signal can be expressed as

r(t) =
K∑

k=1

√
Ek

Nf

∞∑

i=−∞

Np−1∑
n=0

(i+1)
Nf
2Np

−1∑

j=
iNf
2Np

{
b
(k)
1,j d

(k)
2jNp+nu(k)

n

(
t−

(2jNp + n)Tf − c
(k)
2jNp+nTc − τ

(k)
0

)
+ b

(k)
2,j d

(k)
(2j+1)Np+nu(k)

n

(
t−

(2jNp + n)Tf − T (k)
n − c

(k)
(2j+1)Np+nTc − τ

(k)
0

)}
+ σn(t),

(8)

with

u(k)
n (t) =

L−1∑

l=0

α
(k)
l w(k)

n (t− τ
(k)
l + τ

(k)
0 ), (9)

wherew
(k)
n (t) is the received UWB pulse of typen for userk,

Ek determines the received energy from userk, andn(t) is a
zero mean white Gaussian process with unit spectral density.

V. A NALYSIS OF RAKE RECEIVERS FORMULTI -PULSE
SR-IR

Since b
(k)
1,j = b

(k)
2,j = b

(k)
b2Npj/Nfc, and each frame has

independent TH and polarity codes for the SR-IR system, the
received signal in (8) can be expressed, after some manipula-
tion, as

r(t) =
K∑

k=1

√
Ek

Nf

∞∑

j=−∞
b
(k)
bj/Nfc d

(k)
j u

(k)
j

(
t− jTf

− c
(k)
j Tc − τ

(k)
0

)
+ σn(t), (10)

with u
(k)
j (t) given by (9). For the indices of the pulse types,

such as in (9), themodulo Np operation is implicitly assumed.
In other words, for anyn ∈ {0, 1, . . . , Np − 1}, wn(t) =
wn+kNp(t) for all integersk.

We consider a generic RAKE receiver that can represent
different combining schemes, such as equal gain or maximal
ratio combining. It can be expressed as the correlation of the
received signal in (8) with the following template signal, where
we consider the0th bit of user1 without loss of generality:

s
(1)
temp(t) =

Nf−1∑

j=0

d
(1)
j v

(1)
j (t− jTf − c

(1)
j Tc), (11)

with

v
(1)
j (t) =

L−1∑

l=0

βlw
(1)
j (t− τ

(1)
l ), (12)

where βl denotes the RAKE combining coefficient for the
lth path. We assume thatτ (1)

0 = 0, and τ
(k)
0 ∈ [0, NfTf ),

for k = 2, . . . , K, again without loss of generality. Note that
for a partial or selective RAKE receiver [13], the combining
coefficients for those paths that are not used are set to zero.

We assume that the delay spreads of the channels are not
larger than one frame interval; that isτ

(k)
L−1 ≤ Tf , ∀k. In other

words, the frame interval is chosen to be sufficiently large so
that the pulses in one frame can interfere only with those in
the adjacent frames.

Using (10) and (11), the decision variable for detecting the
0th bit of user1 can be obtained as:

Y = b
(1)
0

√
E1

Nf

Nf−1∑

j=0

φ
u

(1)
j v

(1)
j

(0) + I + M + N, (13)

with

φ
u

(k)
i v

(l)
j

(x) =
∫

u
(k)
i (t− x)v(l)

j (t)dt, (14)

where the first term in (13) is the desired signal part of the
output,I is the IFI,M is the MAI, andN is the output noise.
For simplicity of notation, bit indices are not shown.

A. Inter-frame Interference
The IFI occurs when a pulse of the desired user, user1, in a

given frame spills over to an adjacent frame due to multipath
and consequently interferes with the pulse in that frame. The
IFI for the 0th symbol can be expressed, using (10), (11) and
(14), as the sum of the IFI to each frame of the template signal:

I =

√
E1

Nf

Nf−1∑

j=0

Îj , (15)

where

Îj = d
(1)
j

X
m∈{±1}

d
(1)
j+mb

(1)�
j+m
Nf

�φ
u
(1)
j+mv

(1)
j

�
mTf + (c

(1)
j+m − c

(1)
j )Tc

�
.

(16)

Note that due to the assumption on the delay spreads of the
channels, the IFI occurs only between adjacent frames.

The asymptotic distribution of the IFI in (15) is given by
the following proposition:

Proposition 5.1:Consider a random TH SR-IR system with
pulse-based polarity randomization, which employsNp > 1
different UWB pulses. Then, the IFI at the output of the RAKE
receiver, expressed by (13), is asymptotically distributed as

I ∼ N

0 ,

E1

NpN2
c

Np−1∑
n=0

[
σ2

IFI,1(n) + 2σ2
IFI,2(n)

]

 , (17)

as Nf

Np
−→∞, where

σ2
IFI,1(n) =

Nc∑

l=1

l

(
φ2

u
(1)
n+1v

(1)
n

(lTc) + φ2

u
(1)
n−1v

(1)
n

(−lTc)
)

,

σ2
IFI,2(n) =

Nc∑

l=1

l φ
u

(1)
n+1v

(1)
n

(lTc)φu
(1)
n v

(1)
n+1

(−lTc). (18)
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Proof: See Appendix A.
Due to the FCCs regulation on peak to average ratio (PAR),

Nf cannot be chosen very small in practice. Since we transmit
a certain amount of energy in a constant symbol interval, as
Nf gets smaller, the signal becomes peakier [7]. Therefore,
the approximation for largeNf/Np can be quite accurate for
real systems depending on the number of pulse types and the
other system parameters.

From Proposition 5.1, the following result for a double-
pulse system can be obtained.

Corollary 5.1: Consider a random TH SR-IR system with
pulse-based polarity randomization, where the UWB pulses
w0(t) andw1(t), which are both even functions, are transmit-
ted alternately. For this system, the IFI in (13) is approximately
distributed as follows for largeNf :

I ∼ N
(

0 ,
E1

N2
c

Nc∑

l=1

l
[
φ

u
(1)
0 v

(1)
1

(−lTc) + φ
u

(1)
0 v

(1)
1

(lTc)
]2

)
.

(19)
The distribution of the IFI for the case where a single UWB

pulsew0(t) is used in all the frames is given by [14]

I ∼ N
(

0 ,
E1

N2
c

Nc∑

l=1

l
[
φ

u
(1)
0 v

(1)
0

(−lTc) + φ
u

(1)
0 v

(1)
0

(lTc)
]2

)
.

(20)

Note that in an IFI-limited scenario, the autocorrelation
function of the UWB pulse is the determining factor for
a single-pulse system. However, for the system using mul-
tiple types of UWB pulses, the IFI is determined by the
cross-correlations of different pulses. Note that it is possible
to design the pulses so that they are orthogonal and their
cross-correlations decay quickly, e.g. modified Hermite pulses
(MHPs) [15]. However, the autocorrelation function always
causes large values when there is an exact overlap of the
multipath components. Also a rapidly decaying autocorrelation
function, which is good for combatting the IFI, may not be
very desirable since small timing jitter in the system could
result in a significant loss in the desired signal part of the
decision variable. Therefore, the multi-pulse IR system is
expected to have better IFI rejection capability than the single-
pulse system. For example, for a system withNf = 20,
Nc = 30 and L = 20, the power of the IFI is reduced by
about30% by using the4th and5th order MHPs instead of
using the4th order MHP only.

B. Multiple-Access Interference

Consider the MAI termM in (13), which is the sum of
the interference terms from(K − 1) users; that is,M =∑K

k=2 M (k), where M (k) can be expressed asM (k) =√
Ek

Nf

∑Nf−1
j=0 M̂

(k)
j , with M̂

(k)
j denoting the MAI from user

k to thejth frame of the first user. From (10), (11) and (14),
M̂

(k)
j can be expressed as

M̂
(k)
j = d

(1)
j

∞∑
m=−∞

d(k)
m b

(k)
bm/Nfcφu

(k)
m v

(1)
j

(
(m− j)Tf

+(c(k)
m − c

(1)
j )Tc + τ

(k)
0

)
, (21)

whereτ
(k)
0 denotes the amount of asynchronism between user

k and the user of interest, user1, since we assumeτ (1)
0 = 0.

For a given value ofτ (k)
0 , the distribution of the MAI from

user k can be obtained approximately from the following
proposition:

Proposition 5.2:Consider a random TH SR-IR system with
pulse-based polarity randomization, which employsNp differ-
ent types of UWB pulses. Then, the MAI from userk, M (k),
given τ

(k)
0 , is asymptotically distributed as follows

M (k)|τ (k)
0 ∼ N


0 ,

Ek

NpN2
c

Np−1∑
n=0

σ2
MAI,k(n, τ

(k)
0 )


 , (22)

as Nf

Np
−→∞, where

σ2
MAI,k(n,τ

(k)
0 ) =

∑

m∈A

Nc−1∑

l=−(Nc−1)

(Nc − |l|)

× φ2

u
(k)
m v

(1)
n

(
((m− n)Nc + l) Tc + τ

(k)
0

)
, (23)

withA =
{⌈

n− 2 + 1
Nc
− τ

(k)
0
Tf

⌉
, . . . ,

⌊
n + 2− 1

Nc
− τ

(k)
0
Tf

⌋}
.

Proof: The proof is similar to that of Proposition 5.1, and
is omitted due to space limitations.

Note that the Gaussian approximation in Proposition 5.2
is different from the standard Gaussian approximation (SGA)
used in analyzing a system with many users ([17]-[19]).
Proposition 5.2 states that when the number ofpulsesper in-
formation symbol is large compared to the number of different
pulse types, the MAI from an interfering user is approximately
distributed as a Gaussian random variable. This idea is similar
to the improved Gaussian approximation approach in [16],
where the large processing gain of a CDMA system leads
to normally distributed MAI conditioned on some systems
parameters.

Denote the amount of asynchronism between userk and
user1 asτ

(k)
0 = bτ (k)

0 /TccTc + εk, whereεk ∈ [0, Tc). When
a single type of UWB pulse is employed in the system, it can
be shown from Proposition 5.2 that the distribution ofM (k)

is given by the following result:
Corollary 5.2: Consider a random TH SR-IR system with

pulse-based polarity randomization, where the UWB pulse
w0(t) is employed in all frames of all users. Then, the
conditional distribution of the MAI from userk is given by

M (k)|τ (k)
0 ∼ N

(
0 ,

Ek

Nc

Nc−1∑

l=−Nc

φ2

u
(k)
0 v

(1)
0

(lTc + εk)

)
. (24)

Note from Corollary 5.2 that the distribution ofM (k)

depends onεk, instead ofτ (k)
0 , for a single-pulse system. This

is because the probability that a given pulse of the desired user
collides with the pulses of userk is the same for all delays
τ

(k)
0 with identical εk values, due to the random TH codes,

and the same amount of average interference occurs when the
same pulses are used in all frames.

Denoteτ = [τ (2)
0 · · · τ (K)

0 ]. Then, givenτ , the distribution
of the total MAI M in (13) can be approximated by

M |τ ∼ N

0 ,

1
NpN2

c

K∑

k=2

Np−1∑
n=0

Ek σ2
MAI,k(n, τ

(k)
0 )


 ,

(25)

for large Nf/Np, whereσ2
MAI,k(n, τ

(k)
0 ) is as in (23). Note

that it is not necessary to have a large number of users, or equal
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energy interferers (perfect power control), for the expression
in (25) to be accurate. The only requirement is to have a large
ratio between the number of pulses per symbol and the number
of pulse types.

When the delays of the interferers are unknown and/or an
average performance measure is to be obtained, then each
interferer is assumed to have a uniformly distributed delay
with respect to the desired user; that is,τ

(k)
0 ∼ [0, NfTf ),

∀k. In this case, the performance measure, such as the BEP
expression, needs to be averaged over the distribution ofτ .

C. Output Noise

The output noise N in (13) is distributed as
N

(
0 , σ2

∫ |s(1)
temp(t)|2dt

)
. Using the expression in (11)

for s
(1)
temp(t), we can approximate the distribution ofN

for an SR-IR system with a single UWB pulsew0(t) as

N ∼ N
(
0 , Nfσ2φ

v
(1)
0

(0)
)

, for large values ofNf , where

φ
v
(k)
j

(x) =
∫

v
(k)
j (t − x)v(k)

j (t)dt is the autocorrelation

function of v(k)
j (t).

Similarly, for an SR-IR system employingNp types of
pulses, we obtain the approximate distribution ofN asN ∼
N

(
0 , σ2 Nf

Np

∑Np−1
n=0 φ

v
(1)
n

(0)
)

, for largeNf/Np.

D. Bit Error Probability
Using the results in the previous sections, we can obtain an

approximate BEP expression for the multi-pulse SR-IR system
as follows:

Pe(� ) ≈ Q

0BB@
q

E1
Np

PNp−1
n=0 φ

u
(1)
n v

(1)
n

(0)rPNp−1
n=0

h
σ2

IFI(n) + σ2
MAI(n, � ) + σ2φ

v
(1)
n

(0)
i
1CCA ,

(26)

for largeNf/Np, where

σ2
IFI(n) =

E1

NcN
[σ2

IFI,1(n) + 2σ2
IFI,2(n)], (27)

σ2
MAI(n, τ ) =

1
NcN

K∑

k=2

Ekσ2
MAI,k(n, τ

(k)
0 ), (28)

τ = [τ (2)
0 · · · τ (K)

0 ], N = NcNf is the total processing gain
of the system,σ2

IFI,1(n) and σ2
IFI,1(n) are as in (18) and

σ2
MAI,k(n, τ

(k)
0 ) is as in (23).

If we consider a synchronous scenario, whereτ
(k)
0 = 0,

for k = 1, 2, . . . , K, then the unconditional BEP is given by
P sync

e = Pe(0), with Pe(τ ) being given by (26).
For an asynchronous system, we assume thatτ

(2)
0 , . . . , τ

(K)
0

are i.i.d. distributed asU [0, Ts), whereTs = NfTf is the sym-
bol interval. Hence, the unconditional BEP can be obtained by

P async
e =

1
TK−1

s

∫ Ts

0

· · ·
∫ Ts

0

Pe(τ )dτ
(2)
0 . . . dτ

(K)
0 . (29)

Due to the periodicity of the pulse structure, we can show that
it is enough to average over an interval of lengthNpTf instead
of NfTf . Hence,P async

e can be expressed as

P async
e =

1
(NpTf )K−1

∫ NpTf

0

· · ·
∫ NpTf

0

Pe(τ )dτ
(2)
0 . . . dτ

(K)
0 .

(30)

In order to calculateP async
e , numerical techniques or Monte-

Carlo simulations can be used. For example, by generatingNm

vectors according to the uniform distribution in[0, NpTf )K−1,
we can approximateP async

e by Monte-Carlo simulations as
P async

e = 1
Nm

∑Nm

i=1 Pe(τ i), whereτ i denotes theith random
vector of interferer delays.

Note that the BEP expression in (30) becomes more accurate
as Nf/Np gets larger, without the need for large number of
users or equal energy interferers, which are needed for accurate
BEP using the SGA. The SGA directly calculates the average
value of the variance of the total MAI instead of averaging
over a conditional BEP expression in (26). In other words,
P async

e is approximated by the expression in (26) with the only
change of using 1

NpTf

∫ NpTf

0
σ2

MAI,k(n, τ
(k)
0 )dτ

(k)
0 instead of

σ2
MAI,k(n, τ

(k)
0 ). Of course, this expression is easier to evaluate

than the expression in (30), especially when there is a large
number of users. Therefore, in such a case, the SGA might
be preferred if the users’ power levels are not very different.
But for systems with small numbers of interferers, such as an
IEEE 802.15.3a personal area network (PAN), the expression
in (30) is not very difficult to evaluate and can result in more
accurate BEP evaluations.

Now consider the case in which a single type of UWB pulse
w0(t) is employed for all users. The BEP expression for this
scenario can be obtained from (13), (20), (24), and Section
V-C as

Pe(ε) ≈ Q




√
E1φu

(1)
0 v

(1)
0

(0)
√

σ2
IFI + σ2

MAI(ε) + σ2φ
v
(1)
0

(0)


 , (31)

for largeNf/Np, where

σ2
IFI =

E1

NcN

Nc∑

l=1

l
[
φ

u
(1)
0 v

(1)
0

(−lTc) + φ
u

(1)
0 v

(1)
0

(lTc)
]2

,

σ2
MAI(ε) =

1
N

K∑

k=2

Nc−1∑

l=−Nc

Ekφ2

u
(k)
0 v

(1)
0

(lTc + εk), (32)

and ε = [ε2 · · · εK ] characterizes the asynchronism between
the interfering users and the desired user inmodulo Tc

arithmetic. Similar to the multi-pulse case, the unconditional
BEP is given byP sync

e = Pe(0), with Pe(ε) being as in (31),
for the synchronous case, and by

P async
e ≈ 1

TK−1
c

∫ Tc

0

· · ·
∫ Tc

0

Pe(τ )dτ
(2)
0 . . . dτ

(K)
0 , (33)

for the asynchronous case.
From the closed-form BEP expressions for multi-pulse and

single-pulse systems, we can observe that the IFI and MAI
terms depend on the autocorrelation function of a single
pulse for single-pulse systems, whereas they depend also on
the cross-correlations of different pulse types for multi-pulse
systems, which suggests that more flexibility in combatting the
effects of the IFI and MAI is present in multi-pulse systems.
In other words, by design of UWB pulses with good cross-
correlation properties, it is possible to mitigate the IFI and
MAI to a larger extent, as will be investigated in the next
section.

VI. SIMULATION RESULTS

In this section, we compare the BEP performance of single-
pulse, double-pulse and a triple-pulse SR-IR systems. In the
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triple-pulse system, each user transmits the3rd, 4th and5th
order MHPs [8] alternately, whereas the double-pulse system
employs the3rd and 4th order MHPs. For the single-pulse
system, the3rd order MHP is transmitted in all the frames (see
Figure 2). The system parameters areK = 5 users,Nf = 18
frames per symbol,Nc = 30 chips per frame, andTc = 1
ns. We consider an MAI-limited scenario, where the received
energy of each interferer is18.75dB more than that of the
user of interest. All the channels haveL = 20 taps, which
are generated independently according to a channel model
with exponentially decaying (E{|αl|2} = Ω0e

−λl) log-normal
fading (|αl| ∼ LN (µl, σ

2)) channel amplitudes, random signs
for channel taps, and exponential distribution for the path
arrivals with a mean̂µ. The channel parameters areλ = 0.5,
σ2 = 1, and µ̂ = 1.5 ns, andµl can be calculated from
µl = 0.5

[
ln( 1−e−λ

1−e−λL )− λl − 2σ2
]
, for l = 0, 1, . . . , L− 1.

Figure 3 shows the BEP performance of all-RAKE receivers
[13] for the single, double and triple-pulse systems. Both the
theoretical and the simulation results are shown, which are in

quite good agreement. From the figure, the effects of multiple
pulse types on reducing the interference, hence the BEP, are
observed. As the number of pulse types increases, more gain
is obtained. Further gains can be obtained by using a larger
number of UWB pulse types and/or MHPs that are several
orders apart [8]. Also, the theoretical results are more accurate
for smaller number of pulse types,Np, since the asymptotic
results in Section V assume largeNf/Np values.

VII. C ONCLUSIONS ANDEXTENSIONS

In this paper, we have considered multi-pulse IR systems.
First, we have introduced a generic model for an IR signal,
which can represent an SR or a TR signal as special cases.
Using this model, we have investigated the average PSD of the
transmitted signal, which is important considering the power
limitations imposed by the FCC. Then, we have provided
a detailed BEP analysis for a multi-pulse SR-IR system,
considering the effects of both the IFI and the MAI, and
performed simulation studies to verify the theory.

The multi-pulse approach can be extended to TR-IR systems
as well in order to mitigate the effects of interference. In this
case, different pulse types can be transmitted next to each other
as shown in Figure 1. If the same delay between the reference
and data pulses is used for all pulse types, then a conventional
TR receiver can be employed [4]. If different delays between
reference and data pulses are employed for different pulse
types, the receiver needs to performNp parallel delay-and-
multiply operations and combine the outputs of different
branches. Theoretical and simulation studies are necessary to
quantify the possible improvements by the use of multiple
UWB pulses.

APPENDIX

A. Proof of Proposition 5.1
Let Nf = NrNp. Then, (15) can be expressed asI =√
E1
Nr

∑Nr−1
j=0 Ĩj , where Ĩj = 1√

Np

∑Np−1
n=0 ÎjNp+n with Îj

being given by (16). It can be shown, from (16), thatE{Ĩj} =
0, ∀j due to the i.i.d. random polarity codes. Also from the
Np ≥ 2 assumption in the proposition, it is straightforward to
show thatE{Ĩj Ĩj+l} = 0 for l ≥ 2, sinceĨj and Ĩj+l include
terms with polarity codes of different indices, which are
independent and zero mean by assumption. Hence,{Ĩj}Nr−1

j=0

forms a zero mean1-dependent sequence5.
We employ the following central limit argument for depen-

dent sequences to approximate the distribution of the IFI:
Theorem 1:[20] Consider a stationary d-dependent se-

quence of random variablesX1, X2, ... with E{X1} = 0
and E{|X1|3} < ∞. If Sn = X1 + . . . + Xn, then
Sn√

n
−→ N (0, σ2), as n −→ ∞, where σ2 = E{X2

1} +

2
∑d

k=1 E{X1X1+k}.
In order to apply the results of the theorem we first calculate

the variance of̃Ij :

E{Ĩ2
j } =

1
Np

Np−1∑
n1=0

Np−1∑
n2=0

E{ÎjNp+n1 ÎjNp+n2} (34)

=
1

Np

Np−1∑
n=0

E{Î2
jNp+n}+

∑

|n1−n2|=1

E{ÎjNp+n1 ÎjNp+n2},

5A sequence{Xn}n∈Z is called aD-dependent sequence, if all finite
dimensional marginals(Xn1 , ..., Xni ) and(Xm1 , ..., Xmj ) are independent
wheneverm1 − ni > D.
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where the second equality is obtained from (16) by using the
fact that the polarity codes form an i.i.d. sequence. Then, after
some manipulation,E{Î2

j } can be expressed as

E{Î2
j } =

1
N2

c

Nc∑

l=1

l

[
φ2

u
(1)
j−1v

(1)
j

(−lTc) + φ2

u
(1)
j+1v

(1)
j

(lTc)
]

,

(35)

andE{Îj Îj+1} can be expressed as

E{Îj Îj+1} =
1

N2
c

Nc∑

l=1

lφ
u

(1)
j+1v

(1)
j

(lTc)φu
(1)
j v

(1)
j+1

(−lTc). (36)

In obtaining (35) and (36), we have used the expression in (16)
and the facts that the polarity codes are randomly distributed
in {−1,+1} and the TH codes in{0, 1, . . . , Nc − 1}.

Now considering the correlation between the adjacent terms
of {Ĩj}Nr−1

j=0 , the following expression can be obtained:

E{Ĩj Ĩj+1} =
1

Np
E{Î(j+1)Np−1Î(j+1)Np

}. (37)

Theorem1 can be invoked for{Ĩj}Nr−1
j=0 , which results in

I ∼ N
(
0 , E1[E{Ĩ2

j }+ 2E{Ĩj Ĩj+1}]
)

. Then, from (34)-(37),
the distribution ofI can be approximated as in (17), asNr −→
∞.
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