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Abstract

In this letter, optimal additive noise is characterized for parameter estimation based on quantized observations.

First, optimal probability distribution of noise that should be added to observations is formulated in terms of a

Cramer-Rao lower bound (CRLB) minimization problem. Then, it is proven that optimal additive “noise” can be

represented by a constant signal level, which means that randomization of additive signal levels is not needed for

CRLB minimization. In addition, the results are extended to the cases in which there exists prior information about

the unknown parameter and the aim is to minimize the Bayesian CRLB (BCRLB). Finally, a numerical example is

presented to explain the theoretical results.

Index Terms– Estimation, quantization, Cramer-Rao lower bound, noise enhanced estimation.

I. INTRODUCTION

Although noise commonly degrades the performance of a system, some nonlinear systems can benefit from

addition of noise to their inputs or from increased noise levels [1], [2]. Advantages of additive noise are investigated

also for parameter estimation problems. In the frequency estimation problem studied in [3], it is observed that, under

certain conditions, the mean-squared error (MSE) of the optimal Bayesian estimator can reduce when the noise

level is raised. Similarly, [4] considers Bayesian estimation and provides examples of when increased noise levels

result in improved MSE performance. In [3] and [4], 1-bit quantizers are employed and noise benefits are observed

due to the nonlinear structure of the quantizers. In addition, [5] studies parameter estimation based on 1-bit dithered

quantization and proposes an estimator that does not require any information about the dither signal and the noise

distribution. In another noise enhanced estimation study [6], the first and the second moments of an estimator and

a Bayesian cost function are used as performance criteria and the general form of the optimal noise probability

density function (p.d.f.) is derived.
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For some noise enhanced parameter estimation problems, asymptotical behaviors of the estimators make the

Cramer-Rao lower bound (CRLB), equivalently the Fisher information, an appealing metric for the quantification

of performance improvements via additive noise. For example, maximization of the Fisher information for parameter

estimation based on quantized observations is studied in [7] by optimizing quantization intervals. In addition, the

dependence of the MSE of a mean estimator on the probability distribution of observation noise is investigated in

[8] and theoretical lower bounds are provided. In [9], parameter estimation based on observations from a multi-bit

quantizer is considered and additive controlled perturbation of the quantizer thresholds is investigated. In particular,

[9] shows that random dithering can significantly reduce the CRLB for the mean estimation problem with 1-

bit precision sampling. Moreover, it is shown in [10] that the variance of an estimator that uses 1-bit quantizer

outputs can be made quite close to the variance of a clairvoyant estimator that uses unquantized observations by

an appropriate choice of the quantizer threshold. Furthermore, addition of noise to quantized measurements can

provide enhancement of the Fisher information for the estimation of the suprathreshold input signals [11]. Finally,

maximization of the Fisher information by both an appropriate choice of the quantizer threshold and additive noise

is studied in [12].

Although the effects of additive noise on CRLBs have been investigated in [9], [11] and [12], the optimal p.d.f.

of additive noise that minimizes the CRLB for parameter estimation based on quantized observations has not been

obtained before. In this letter, a parameter estimation problem based on quantized observations is studied, where

the aim to find the optimal p.d.f. of noise that should be added to the observations before the quantizer in order

to minimize the CRLB for estimating the unknown parameter (cf. Fig. 1). Unlike the previous studies, an explicit

CRLB minimization problem is formulated in terms of the additive noise p.d.f., the quantization function, and

the p.d.f. of the original observation. In addition, the quantizer is modeled by a generic multi-bit quantizer with

arbitrary quantization levels. It is first shown, for a given value of the parameter, that optimal additive “noise” can be

represented by a specific constant value. In addition, the results are extended to the cases in which there exists prior

information about the unknown parameter, and it is shown that the Bayesian Cramer-Rao lower bound (BCRLB) is

minimized when the additive “noise” is represented by a constant value. Therefore, for both the CRLB and BCRLB

criteria, adding the optimal “noise” to the observation is shown to be equivalent to shifting the threshold levels of

the quantizer. Also, a numerical example is presented in order to investigate the theoretical results.



Fig. 1. Block diagram of the system, where n denotes the additive noise that is independent of the original observation x.

II. PROBLEM FORMULATION

Consider a system in which a quantized version of observation x is used to estimate an underlying parameter

θ . Let pX(x; θ) represent the p.d.f. of the observation, and ϕ(·) denote the quantizer. Instead of using observation

x, a noise modified version of the observation, x + n, can be used as in Fig. 1 in order to improve the estimation

accuracy of the system, where the additive noise n is independent of the observation x. The aim is to obtain the

p.d.f. of n, denoted by pN(·), that maximizes the estimation accuracy of the system in Fig. 1. It is noted that this

noise enhanced parameter estimation problem can also be regarded as a dynamic bias control problem as in [9],

when n represents the control input for the quantizer bias.

Suppose that quantizer ϕ(·) is an M -level quantizer that generates the quantized observation vector y based on

the noise modified input observation as follows:

y = ϕ(x + n) , (1)

where y = [y1 y2 · · · yL], x = [x1 x2 · · ·xL], n = [n1 n2 · · ·nL], and the quantizer levels are determined by

thresholds τ1, τ2, . . . , τM−1. Specifically, the relation between the input and the output of the quantizer is described,

for l = 1, 2, . . . , L, as

yl = i , if τi < xl + nl ≤ τi+1 , (2)

for i = 0, 1, . . . , M − 1, where τ0 , −∞ and τM , ∞ are used for the simplicity of the expressions.

Let pY(· ; θ) represent the probability mass function (p.m.f.) of the quantizer output for a given value of θ. From

(2), it can be obtained as

pY(i ; θ) =
∫

RL

P(τi1 − n1 < X1 ≤ τi1+1 − n1, . . . , τiL
− nL < XL ≤ τiL+1 − nL) pN(n) dn (3)

for i ∈ I , {0, 1, . . . , M − 1}L, where il represents the lth component of i.

The additive noise component n in Fig. 1 is optimized according to the CRLB in this study; that is, the optimal

noise p.d.f. that minimizes the CRLB is sought for. The CRLB on the MSE of unbiased estimators θ̂ of θ is stated



as

MSEθ

{
θ̂
} ≥ J−1

θ =

(
E

{(
∂ log pY(y; θ)

∂θ

)2
})−1

, (4)

where MSEθ

{
θ̂
}

= E
{
(θ̂(y)− θ)2

}
, Jθ is defined as the Fisher information [13], and pY(· ; θ) is as in (3). Since

the CRLB imposes a lower limit on the MSE of an unbiased estimator and since some estimators, such as the

maximum likelihood estimator, can (asymptotically) achieve the CRLB under certain conditions [13], the aim in

this study is to obtain the optimal p.d.f. of the additive noise that minimizes the CRLB specified by (4).

As the CRLB is the inverse of the Fisher information, the optimal additive noise p.d.f. can be formulated, from

(4), as the solution of the following optimization problem:

popt
N (n) = arg max

pN(·)
E

{(
∂ log pY(y; θ)

∂θ

)2
}

. (5)

Since Y is equal to i with probability pY(i ; θ) as defined in (3), the problem in (5) can be expressed as

popt
N (n) = arg max

pN(·)

∑

i∈I

1
pY(i ; θ)

(
∂pY(i ; θ)

∂θ

)2

. (6)

As a special case of the generic problem formulation in (6), when both X and N consist of independent

components, it can be shown that the components of the optimal additive noise can be calculated separately; i.e.,

popt
Nl

(n) = arg max
pNl

(·)

M−1∑

i=0

1
pYl

(i ; θ)

(
∂pYl

(i ; θ)
∂θ

)2

, (7)

for l = 1, . . . , L, where pNl
(·) represents the marginal p.d.f. of the lth component of the additive noise, and pYl

(i ; θ)

denotes the probability that Yl is equal to i for i = 0, 1, . . . , M − 1. In addition, if Y1, . . . , YL are independent

and identically distributed (i.i.d.); that is, if pYl
(i ; θ) = pY (i ; θ) for l = 1, . . . , L, the optimization problems in (7)

become identical. In other words, in the i.i.d. case, the same optimal noise value is added to each component of

the original observation x.

III. STATISTICAL CHARACTERIZATION OF OPTIMAL ADDITIVE NOISE

In order to investigate the statistical properties of the optimal additive noise in (6), we first introduce the following

functions:

Hθ
i (n) , P(τi1 − n1 < X1 ≤ τi1+1 − n1, . . . , τiL

− nL < XL ≤ τiL+1 − nL) , (8)

Gθ
i(n) , ∂Hθ

i (n)
∂θ

. (9)



It is noted from (3) that 0 ≤ Hθ
i (n) ≤ 1, ∀n, and that

∑
i∈I Hθ

i (n) = 1. Based on the definitions in (8)

and (9), the p.m.f. in (3) and its derivative with respect to θ can be expressed as pY(i ; θ) = E{Hθ
i (N)} and

∂pY(i ; θ)/∂θ = E{Gθ
i(N)} . Then, the optimization problem in (6) becomes

popt
N (n) = arg max

pN(·)

∑

i∈I

(
E

{
Gθ

i(N)
})2

E
{
Hθ

i (N)
} · (10)

In order to obtain the solution of (10), the following lemma is presented first.

Lemma 1: For the real-valued functions defined in (8) and (9),

∑

i∈I

(
E{Gθ

i(N)})2

E{Hθ
i (N)} ≤ max

n

{∑

i∈I

(
Gθ

i(n)
)2

Hθ
i (n)

}
(11)

is satisfied for all θ and all possible p.d.f.s pN(·) of N.

Proof:1 Consider a function of two variables defined as f(Z) = Z2
1/Z2, where Z = [Z1 Z2]. After some

manipulation, the Hessian of f(Z) can be shown to be positive semidefinite; hence, f(Z) is convex, for Z2 ≥ 0.

Therefore, Jensen’s inequality implies that (E{Z1})2/E{Z2} ≤ E
{
Z2

1/Z2

}
, for Z2 ≥ 0, which, upon the definition

of Z1 , Gθ
i(N) and Z2 , Hθ

i (N), becomes
(
E{Gθ

i(N)})2
/E{Hθ

i (N)} ≤ E
{(

Gθ
i(N)

)2
/Hθ

i (N)
}

for all pN(·),

θ and i, since Hθ
i (n) ≥ 0, ∀n, i, θ, by definition (cf. (8)). As this inequality is valid for all i’s, we obtain

∑

i∈I

(
E{Gθ

i(N)})2

E{Hθ
i (N)} ≤ E

{∑

i∈I

(
Gθ

i(N)
)2

Hθ
i (N)

}
, (12)

for all pN(·) and θ. Finally, as the expression on the right-hand-side of (12) is never larger than max
n

{∑
i∈I (Gθ

i(n))2/Hθ
i (n)

}
,

the result in the lemma is obtained. ¤

Lemma 1 states that for each possible noise p.d.f. pN(n), the Fisher information
∑

i∈I
(
E{Gθ

i(N)})2
/E{Hθ

i (N)}

can never be larger than the maximum of
∑

i∈I (Gθ
i(n))2/Hθ

i (n) over all possible noise values, n. In other words,

Lemma 1 states that randomization among different noise values cannot improve (increase) the objective function

in (10). This result leads to the following proposition.

Proposition 1: The optimal noise p.d.f. in (10) can be expressed as popt
N (n) = δ(n − no) , where no =

arg max
n

∑
i∈I

(
Gθ

i(n)
)2/

Hθ
i (n) .

Proof: Since the result in Lemma 1 holds for any pN(·), the following inequality can be obtained:

max
pN(·)

{∑

i∈I

(
E{Gθ

i(N)})2

E{Hθ
i (N)}

}
≤ max

n

{∑

i∈I

(
Gθ

i(n)
)2

Hθ
i (n)

}
. (13)

1The authors thank the reviewer who suggested the approach in the proof.



Therefore, the maximum value of the objective function in (10) can never be larger than the expression on the

right-hand-side of (13). However, this upper bound is achievable for pN(n) = δ(n − no), where no is defined as

in the proposition. Hence, the optimal additive noise can be expressed as in the proposition. ¤

Proposition 1 states that for any additive noise that has a p.d.f. with multiple mass points, there always exists a

corresponding constant “noise” level that provides an equal or smaller CRLB. In addition, it is noted from Lemma

1 and Proposition 1 that a constant additive “noise” component is optimal irrespective of the number of quantization

levels (M ) and the dimension of the observation vector (L). In addition, no assumption is imposed on the p.d.f. of

the original observation, x.

For the special case in which X and N consist of independent components, the formulation in (7) leads to

popt
Nl

(n) = δ(n− nl) with nl = arg max
n

∑M−1
i=0

(
Gθ

l,i(n)
)2

/Hθ
l,i(n), for l = 1, . . . , L, where Hθ

i,l(n) , P(τi− n <

Xl ≤ τi+1 − n) and Gθ
i,l(n) , ∂Hθ

i,l(n)/∂θ. Namely, optimal additive noise can be calculated for each component

separately in that case.

IV. OPTIMAL ADDITIVE NOISE IN THE PRESENCE OF PRIOR INFORMATION

In Section III, the optimal additive noise is calculated for a given value of θ. Although the value of θ is unknown

in practice, the theoretical analysis in the previous section is useful in two aspects. First, it provides theoretical

performance limits for unbiased estimators that perform parameter estimation based on quantized observations.

Second, the theoretical results in the previous section form a basis for more practical results, and the ideas can be

extended to the cases of unknown parameters. In the following, it is assumed that the exact value of θ is unknown,

but its p.d.f., denoted by w(θ), is known a priori. Then, it is shown that the results in Lemma 1 and Proposition

1 can be extended to characterize the optimal additive noise.

In the presence of prior p.d.f. w(θ) for the unknown parameter θ, the Bayesian CRLB (BCRLB), also known as

the posterior CRLB [14], imposes a lower bound on the MSE of any estimator θ̂ as [13]

MSE
{
θ̂
}

= E
{
(θ̂(y)− θ)2

} ≥ (JD + JP)−1 , (14)

where JD and JP represent the information obtained from the data (observations) and from the prior knowledge,

respectively, and are given by

JD = E

{(
∂ log pY(y; θ)

∂θ

)2
}

, JP = E

{(
∂ log w(θ)

∂θ

)2
}

. (15)



It is important to note that the expectations in (14) are over both y and θ, whereas those in (4) are over y only.

In addition, the squares of the first-order derivatives in (15) can also be expressed as the negatives of second-order

derivatives as in [14] under mild conditions regarding the interchange of integration and differentiation (cf. [15],

pp. 169–171).

Since JP depends only on the prior p.d.f., it is independent of the additive noise component. Therefore, the

optimal additive noise p.d.f. is defined to be the one that maximizes JD. Then, similar to (5) and (6), the optimal

additive noise p.d.f. can be formulated as

popt
N (n) = arg max

pN(·)

∫
w(θ)

∑

i∈I

1
pY(i ; θ)

(
∂pY(i ; θ)

∂θ

)2

dθ . (16)

In other words, the aim now becomes maximizing the average of Fisher information Jθ (cf. (4)-(6)) for different

parameter values. Since pY(i ; θ) = E{Hθ
i (N)} and ∂pY(i ;θ)

∂θ = E{Gθ
i(N)} as defined in Section III, (16) can also

be expressed as

popt
N (n) = arg max

pN(·)

∫
w(θ)

∑

i∈I

(
E

{
Gθ

i(N)
})2

E
{
Hθ

i (N)
} dθ . (17)

Then, the following proposition presents the p.d.f. of the optimal additive noise.

Proposition 2: The optimal noise p.d.f. in (17) can be expressed as popt
N (n) = δ(n− no) , where

no = arg max
n

∫
w(θ)

∑

i∈I

(
Gθ

i(n)
)2

Hθ
i (n)

dθ . (18)

Proof: Consider the inequality in (12), which is valid for all θ and pN(·). Since it holds for all θ values, the follow-

ing inequality can be obtained:
∫

w(θ)
∑

i∈I
(
E{Gθ

i(N)})2
/E{Hθ

i (N)} dθ ≤ E
{ ∫

w(θ)
∑

i∈I
(
Gθ

i(N)
)2

/Hθ
i (N) dθ

}

for all pN(·). Therefore, the maximum value of the objective function in (17) can be bounded from above as

max
pN(·)

∫
w(θ)

∑

i∈I

(
E{Gθ

i(N)})2

E{Hθ
i (N)} dθ

≤ max
pN(·)

E

{∫
w(θ)

∑

i∈I

(
Gθ

i(N)
)2

Hθ
i (N)

dθ

}
. (19)

Since the upper bound in (19) is always smaller than or equal to max
n

{ ∫
w(θ)

∑
i∈I (Gθ

i(n))2/Hθ
i (n) dθ

}
, the in-

equality max
pN(·)

∫
w(θ)

∑
i∈I

(
E{Gθ

i(N)})2
/E{Hθ

i (N)} dθ ≤ ∫
w(θ)

∑
i∈I

(
Gθ

i(no)
)2

/Hθ
i (no) dθ can be obtained,

where no is as defined in (18). Since the upper bound in this inequality can be achieved for pN(n) = δ(n− no),

the result in the proposition is obtained. ¤
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Fig. 2. CRLB versus additive “noise” n for θ = 1 and θ = 3 (top); BCRLB versus n when θ is Gaussian distributed with unit mean and
variance (bottom).

Proposition 2 states that among all possible p.d.f.s for the additive noise components, a p.d.f. with a single mass

point (that is, a constant “noise” component) minimizes the BCRLB. Therefore, adding the optimal noise to the

observation is equivalent to shifting the threshold levels of the quantizer, which is a simple operation since no

randomization among different noise values is needed.

V. NUMERICAL RESULTS AND CONCLUSIONS

In order to provide an example of the results in the previous sections, consider a scalar observation x in Fig.

1 with a Gaussian mixture p.d.f. given by pX(x; θ) = 0.5γ(x;−θ, σ2) + 0.5γ(x; θ, σ2), where γ(x; θ, σ2) ,

exp
{−(x− θ)2/(2σ2)

}
/(
√

2π σ). Then, Hθ
i (n) in (8) can be expressed as Hθ

i (n) = FX(τi+1−n; θ)−FX(τi−n; θ),

for i = 0, 1, . . . , M −1, where the cumulative distribution function (c.d.f.) of X for a given value of θ is calculated

as FX(n; θ) = 0.5Q (−(n− θ)/σ) + 0.5Q (−(n + θ)/σ), with Q(a) = (2π)−0.5
∫∞
a e−0.5t2dt denoting the Q-

function. Also, Gθ
i (n) in (9) can be calculated as the derivative of Hθ

i (n) with respect to θ. In addition, the

quantizer in (2) is modeled as a 4-level quantizer (i.e., M = 4) specified by thresholds τ1 = −3, τ2 = 0 and

τ3 = 3.

First, optimal additive noise is investigated for given values of θ. Since Proposition 1 states that optimal additive

noise n in Fig. 1 can be represented by a constant, the top plot in Fig. 2 investigates the CRLB versus constant

“noise” levels for θ = 1 and θ = 3, where σ = 1 is used. Specifically, the inverse of the objective function in (10)

is plotted against the additive “noise” level, n. It is observed for θ = 3 that the optimal additive “noise” value is

equal to zero, which means that the additive “noise” cannot reduce the CRLB of the system in that case. However,

for θ = 1, the minimum CRLB is achieved for n = ±1.496, which shows that additive “noise” n can result in
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Fig. 3. CRLB versus θ for various values of additive “noise” n.

TABLE I
UNIFORM DITHERING VERSUS OPTIMAL ADDITIVE “NOISE”.

ε = 1 ε = 0.5 ε = 0.25 ε = 0 Optimal
CRLB (θ = 1) 6.566 7.302 7.575 7.675 1.924
CRLB (θ = 3) 2.146 1.705 1.604 1.571 1.571

BCRLB 0.842 0.833 0.831 0.830 0.709

a smaller CRLB. In addition, Fig. 3 plots the CRLB versus θ for various values of the additive “noise”, n. It is

observed that the minimum CRLB is achieved by different n values over different ranges of parameter θ. It is also

concluded that if a rough estimate of θ is available, an n value that is optimal around that estimate can be selected

as a (close-to) optimal additive “noise” component for the given estimation problem.

Next, for the problem setting described above, it is assumed that the prior p.d.f. of θ is specified as w(θ) =

exp
{−(θ − µθ)2/(2σ2

θ)
}

/(
√

2π σθ), where µθ = σθ = 1. From (15), it can be shown that JP = σ−2
θ = 1. In Fig.

2, the BCRLB is plotted versus n, where the BCRLB is calculated as (JP + JD)−1, with JP = 1 and JD denoting

the value of the objective function in (18) for various values of n. It is observed from the figure that the minimum

BCRLB is achieved at n = ±1.46. In addition, since there exists prior information in this scenario, the theoretical

limits are lower than those in the previous scenario in which no prior information on θ exists.

Finally, for the scenarios in Fig. 2, the lower bounds achieved by optimal additive noise are compared to those

obtained via uniform dithering, which employs uniform additive noise between −ε and ε. The results in Table I

reveal that uniform dithering can result in larger BCLRB values. For a given θ, it can decrease or increase the

CRLB, as observed for θ = 1 and θ = 3, respectively. In all cases, uniform dithering can never achieve smaller

lower bounds than optimal additive noise in accordance with the theoretical results.

Since Propositions 1 and 2 state that optimal additive “noise” can be represented by a constant signal level,



it is concluded that the CRLB (BCRLB) is minimized by shifting the original observation, which corresponds to

shifting the thresholds of the quantizer by a constant value (cf. (2)). That is, among all possible p.d.f.s for the

additive noise in Fig. 1, the ones with a single mass point, i.e., constant “noise” levels, can be used to achieve the

minimum CRLB (BCRLB).
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