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Abstract— In this paper, noise enhanced detection is studied for M -
ary composite hypothesis-testing problems in the presence of partial
prior information. Optimal additive noise is obtained according to two
criteria, which assume a uniform distribution (Criterion 1) or the least-
favorable distribution (Criterion 2) for the unknown priors. The statistical
characterization of the optimal noise has been obtained for each criterion.
Specifically, it is shown that the optimal noise can be represented by
a constant signal level or by a randomization of a finite number of
signal levels according to Criterion 1 and Criterion 2, respectively. In
addition, the cases of unknown parameter distributions under some
composite hypotheses are considered, and upper bounds on the risks are
obtained. Finally, a detection example is provided in order to investigate
the theoretical results.

Index Terms– Detection, composite hypothesis-testing, Bayes risk, noise
enhanced detection.

I. INTRODUCTION

Although noise commonly degrades performance of a system,
outputs of some nonlinear systems can be enhanced by injecting
additive noise to their inputs, or by increasing the average power
of the noise [1]-[10]. These situations can be considered in the
framework of stochastic resonance (SR), which can be regarded as
the observation of noise benefits related to signal transmission in
nonlinear systems [10]-[13]. Benefits that can be obtained via SR
can be in various forms, such as an increase in output signal-to-noise
ratio (SNR) [1], [3], [4] or mutual information [5]-[8].

In detection problems, performance of some suboptimal detectors
can be enhanced by adding independent noise to their observations
[9], [10], [14]-[20]. Such noise enhanced detection phenomena have
been investigated according to the Bayesian [16]-[18], minimax [19],
[20] and Neyman-Pearson [9], [10], [14] criteria. In [16], it is shown
that the optimal noise that minimizes the probability of decision error
has a constant value, and a Gaussian mixture example is used to
illustrate the improvability of a detector. In [17], noise benefits are
investigated for threshold neural signal detection in terms of reducing
the probability of detection error, and various necessary and sufficient
conditions are presented to determine noise enhanced detection for
a wide range of signals and symmetric scale-family noise when
the detection threshold is suboptimal. In addition, an example is
studied in [14] to illustrate that detection performance of a suboptimal
detector can be improved by adding white Gaussian noise for the
problem of detecting a constant signal in Gaussian mixture noise. In
[9] and [10], the effects of additive noise on detection performance
are studied in the Neyman-Pearson framework, and it is shown that
the optimal additive noise can be represented by a randomization of at
most two different signal values. On the other hand, the studies in [19]
and [20] consider the minimax criterion and investigate the effects
of additive noise on suboptimal detectors. Finally, [18] considers a
nonlinear signal-noise mixture, where a non-Gaussian noise acts on
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Fig. 1. Independent noise n is added to observation x in order to improve
the performance of the detector, represented by φ(·).

the phase of a periodic signal, and illustrates that the performance
of an optimal detector can be improved (locally) by increasing the
noise level for optimal detection strategies according to the Bayesian,
Neyman-Pearson, and minimax criteria.

The Bayesian and minimax frameworks can be considered as two
extreme cases of prior information. In the former, perfect (exact)
prior information is available whereas no prior information exists
in the latter. In practice, having perfect prior information is a very
exceptional case [21]. In most cases, prior information is incomplete
and only partial prior information is available [21], [22]. Since
the Bayesian approach is ineffective in the absence of exact prior
information, and since the minimax approach, which ignores the
partial prior information, can result in poor performance due to
its conservative approach, there have been various studies that take
partial prior information into account [21]-[28]. The restricted Bayes,
Γ-minimax, empirical Bayes, robust Bayes and mean-max criteria are
the main approaches considering partial prior information [21]-[25].

In this paper, noise enhanced detection is studied in the presence of
partial prior information. Optimal additive noise has been formulated
according to two different criteria. In the first one, a uniform
distribution is assumed for the unknown priors, whereas in the second
one the worst-case distributions are considered for the unknown priors
by taking a conservative approach, which can be regarded as a Γ-
minimax approach. In both cases, the statistics of the optimal additive
noise are characterized. Specifically, it is shown that the optimal
additive noise can be represented by a constant signal level according
to the first criterion, whereas it can be represented by a discrete
random variable with a finite number of mass points according to
the second criterion (see Proposition 2 for the exact number of
mass points). Two other contributions of the study are to investigate
noise enhanced detection with partial prior information in the most
generic hypotheses formulation; that is, M -ary composite hypotheses,
and to employ a very generic cost function in the definition of the
conditional risks (see (7)). Therefore, it covers some of the previous
studies on noise enhanced detection as special cases. For example,
if simple1 binary hypotheses, uniform cost assignment (UCA), and
perfect prior information are assumed, the results reduces to those
in [16]. As another example, if simple M -ary hypotheses and no
prior information are assumed, the results reduces to those in [20].
Furthermore, for composite hypothesis-testing problems, the cases
of unknown parameter distributions under some hypotheses are also
considered, and upper bounds on the risks are obtained. Finally, a
detection example is presented to investigate the theoretical results.

1A simple hypothesis means that there is only one possible probability
distribution under the hypothesis, whereas a composite hypothesis corresponds
to multiple possible probability distributions.



II. PROBLEM FORMULATION

Consider the following M -ary composite hypothesis-testing prob-
lem:

Hi : pX
θ (x) , θ ∈ Λi , i = 0, 1, . . . , M − 1 , (1)

where Hi denotes the ith hypothesis and pX
θ (x) represents the

probability density function (PDF) of observation X for a given value
of Θ = θ. Each observation (measurement) x is a vector with K
components; i.e., x ∈ RK , and Λ0, Λ1, . . . , ΛM−1 form a partition
of the parameter space Λ. The distribution of the unknown parameter
Θ for hypothesis i is represented by wi(θ) for i = 0, 1, . . . , M − 1.
In addition, the prior probability of hypothesis Hi is denoted by
πi for i = 0, 1, . . . , M − 1. Composite hypothesis-testing problems
as in (1) are encountered in various problems, such as in non-
coherent communications receivers, pattern recognition, and time
series analysis [29], [30]. Note that when Λi’s consist of single
elements, the problem reduces to a simple hypothesis-testing problem.

A generic decision rule (detector) can be defined as

φ(x) = i , if x ∈ Γi , (2)

for i = 0, 1, . . . , M − 1, where Γ0, Γ1, . . . , ΓM−1 form a partition
of the observation space Γ. As shown in Fig. 1, the aim is to add
noise to the original observation x (which commonly consists of a
signal component and measurement noise) in order to improve the
performance of the detector according to certain criteria [31]. By
adding noise n to the original observation x, the modified observation
is formed as y = x + n, where n has a PDF denoted by pN(·), and
is independent of x. It should be noted that the additive noise can
cause both positive and negative shifts in the observations [16], [20].
As in [9] and [16], it is assumed that the detector φ , described by
(2), is fixed, and the only means for improving the performance of
the detector is to optimize the additive noise n (please see [20] for
motivations).

When all the prior probabilities π0, π1, . . . , πM−1 of the hypothe-
ses in (1) are known, the Bayesian approach can be taken, and
the optimal additive noise that minimizes the Bayes risk can be
sought for. This problem is studied in [16] for simple hypothesis-
testing problems under UCA. On the other hand, when none of the
prior probabilities are known, the minimax approach can be taken
to obtain the optimal additive noise that minimizes the maximum
conditional risk, which is investigated in [20] for simple hypothesis-
testing problems. In this study, we focus on a more generic sce-
nario by considering both composite hypotheses and partial prior
information, meaning that the prior probabilities of some hypotheses
and the probability distributions of the unknown parameters under
some hypotheses may be unknown. Such a generalization can be
important in practice since composite hypothesis-testing problems are
encountered in many applications, and the prior information may not
be available for all hypotheses (see Section VI for an example).

In order to introduce a generic problem formulation, define sets
S1, . . . ,SG that form a partition of set {0, 1, . . . , M − 1}. Suppose
that the prior probability πi of Hi is known if i ∈ S1 and it is
unknown otherwise, and assume that the size of set S1 is M−Nu. In
other words, S1 corresponds to M−Nu hypotheses with known prior
probabilities. In addition, assume that the hypotheses with unknown
prior probabilities are grouped into sets S2, . . . ,SG in such a way
that the sum of the prior probabilities of the hypotheses in set Sj is
known for j = 2, . . . , G. If no such information is available, then
G = 2 can be employed; that is, all the hypotheses with unknown
probabilities can be grouped together into S2.

In order to define the optimal additive noise, we consider the
following two criteria:

Criterion 1: For all the hypotheses with unknown prior proba-
bilities, assume uniform distribution of the prior probability in each
group Sj for j = 2, . . . , G, and the define the corresponding Bayes
risk as

r1(φ) =
X
i∈S1

πiRi(φ) +

GX
j=2

π̃j

|Sj |
X
i∈Sj

Ri(φ) , (3)

where Ri(φ) is the conditional risk of decision rule φ when hypoth-
esis i is true [29], |Sj | denotes the number of elements in set Sj ,
and π̃j ,

P
i∈Sj

πi defines the sum of the prior probabilities of the
hypotheses in Sj for j = 2, . . . , G. According to Criterion 1, the
optimal additive noise is defined as popt

N (n) = arg min
pN(n)

r1(φ),

where r1(φ) is given by (3). It should be noted that assuming
uniform distribution for the unknown priors is a very popular classical
approach [32].

Criterion 2: For the hypotheses with unknown prior probabilities,
the least-favorable distribution of the priors is considered in each
group, and the corresponding risk is defined as

r2(φ) =
X
i∈S1

πiRi(φ) +

GX
j=2

π̃j max
i∈Sj

Ri(φ) . (4)

In other words, a conservative approach is taken in Criterion 2, and
the worst-case Bayes risk is considered as the performance metric.
Such an approach can be considered in the framework of Γ-minimax
decision rules [21]. According to Criterion 2, the optimal additive
noise is calculated from popt

N (n) = arg min
pN(n)

r2(φ).

In Section III and Section IV, the optimal additive noise will
be investigated when the probability distributions of the unknown
parameters are known under all hypotheses (the prior probabilities can
still be unknown). Then, in Section V, the results will be extended
to the cases in which the probability distributions of the unknown
parameters are unknown under some hypotheses.

III. OPTIMAL ADDITIVE NOISE ACCORDING TO CRITERION 1

According to Criterion 1, the optimal additive noise is calculated
from

popt
N (n) = arg min

pN(n)

8<:X
i∈S1

πiRi(φ) +

GX
j=2

π̃j

|Sj |
X
i∈Sj

Ri(φ)

9=; .

(5)

Since Ri(φ) is the conditional risk for hypotheses i, it can be
expressed as

Ri(φ) =

Z
Λ

Rθ(φ)wi(θ) dθ , (6)

where Rθ(φ) denotes the conditional risk that is defined as the
average cost of decision rule φ for a given θ ∈ Λ [29]. The
conditional risk can be calculated from

Rθ(φ) = E{C[φ(Y), Θ] |Θ = θ} =

Z
Γ

C[φ(y), θ] pY
θ (y) dy , (7)

where pY
θ (y) is the PDF of the noise modified observation for a

given value of Θ = θ, and C[j, θ] ≥ 0 is the cost of deciding Hj

when Θ = θ, for θ ∈ Λ [29].
Since the additive noise is independent of the original observation,

pY
θ (y) =

R
RK pX

θ (y− n) pN(n) dn. Then, the expression in (6) for
the conditional risk of hypotheses i can be manipulated from (7) as



follows:

Ri(φ) =

Z
Λ

Z
Γ

Z
RK

C[φ(y), θ] pX
θ (y − n) pN(n) wi(θ) dn dy dθ

=

Z
RK

pN(n)

�Z
Λ

Z
Γ

C[φ(y), θ]pX
θ (y − n) wi(θ) dy dθ

�
dn

,
Z
RK

pN(n) fi(n) dn = E{fi(N)} (8)

where

fi(n) ,
Z

Λ

Z
Γ

C[φ(y), θ] pX
θ (y − n) wi(θ) dy dθ . (9)

Note that fi(n) ≥ 0 ∀n since the cost function is non-negative by
definition; that is, C[j, θ] ≥ 0 .

Based on (8), the optimization problem in (5) can be expressed as

popt
N (n) = arg min

pN(n)
E

8<:X
i∈S1

πifi(N) +

GX
j=2

π̃j

|Sj |
X
i∈Sj

fi(N)

9=;
, arg min

pN(n)
E {f(N)} , (10)

where f(n) is defined as f(n) ,
P

i∈S1
πifi(n) +PG

j=2

π̃j

|Sj |
P

i∈Sj
fi(n). From (10), the optimal noise PDF

can be obtained by assigning all the probability to the minimizer of
f(n); i.e.,

popt
N (n) = δ(n− n0) , n0 = arg min

n
f(n) . (11)

In other words, the optimal additive noise according to Criterion 1
can be expressed as a constant corresponding to the minimum value
of f(n). Of course, when f(n) has multiple minima, then the optimal
noise PDF can be represented as popt

N (n) =
PL̃

i=1 λiδ(n−n0i), for
any λi ≥ 0 such that

PL̃
i=1 λi = 1, where n01, . . . ,n0L̃ represent

the values corresponding to the minimum values of f(n) .
The main implication of the result in (11) is that among all PDFs

for the additive independent noise N, the ones that assign all the
probability to a single noise value can be used as the optimal additive
signal components in Fig. 1. In other words, in this scenario, addition
of independent noise to observations corresponds to shifting the
decision region of the detector.

Based on the expressions in (10), a detector is called improv-
able according to Criterion 1 if there exists noise N that satisfies
E{f(N)} < f(0), where f(0) represents the Bayes risk in (3)
in the absence of additive noise. For example, if there exists a
noise component n∗ that satisfies f(n∗) < f(0), the detector can
be classified as an improvable one according to Criterion 1. In
the following, sufficient conditions are provided to determine the
improvability of a detector without actually solving the optimization
problem in (11).

Proposition 1: Assume that f(x) in (10) is second-order continu-
ously differentiable around x = 0 . Let f denote the gradient of f(x)
at x = 0. Then, the detector is improvable

• if f 6= 0 ; or,
• if f(x) is strictly concave at x = 0 .

Proof: Please see Appendix A.
Although Proposition 1 may not be very crucial for scalar ob-

servations (since it can be easy to find the optimal solution from
(11) directly), it can be useful for vector observations by providing
simple sufficient conditions to check if the detector can be improved
via additive noise.

IV. OPTIMAL ADDITIVE NOISE ACCORDING TO CRITERION 2

According to Criterion 2, the optimal additive noise is calculated
from

popt
N (n) = arg min

pN(n)

(X
i∈S1

πiRi(φ) +

GX
j=2

π̃j max
l∈Sj

Rl(φ)

)
,

(12)

which can also be expressed as

popt
N (n) = arg min

pN(n)

(X
i∈S1

πiRi(φ) + max
l∈S̃

GX
j=2

π̃j Rlj (φ)

)
,

(13)

where l , [l2 · · · lG], and S̃ , S2 × · · · × SG is the Cartesian
product of sets S2, . . . ,SG.

From (8), the optimization problem in (13) can be stated as

popt
N (n) = arg min

pN(n)
max
l∈S̃

E

(X
i∈S1

πifi(N) +

GX
j=2

π̃j flj (N)

)
, arg min

pN(n)
max
l∈S̃

E {fl(N)} , (14)

where fi(·) and flj (·) are as defined in (9), and fl(N) ,P
i∈S1

πifi(N) +
PG

j=2 π̃j flj (N) .
Although the optimization problem in (14) seems quite difficult to

solve in general, the following proposition states that the optimization
can be performed over a significantly reduced space as the optimal
solution can be characterized by a discrete probability distribution
under certain conditions. To that aim, assume that all possible additive
noise values satisfy a ¹ n ¹ b for any finite a and b; that is, nj ∈
[aj , bj ] for j = 1, . . . , K, which is a reasonable assumption since
additive noise cannot have infinitely large amplitudes in practice.
Then, the following proposition states the discrete nature of the
optimal additive noise.

Proposition 2: If fl(·) in (14) are continuous functions, the PDF
of optimal additive noise can be expressed as

pN(n) =

|S̃|X
j=1

λj δ(n− nj) , (15)

where |S̃| denotes the number of elements in set S̃ (equivalently,
|S̃| = |S2| · · · |SG| ), with

P|S̃|
j=1 λj = 1 and λj ≥ 0 for j =

1, 2, . . . , |S̃| .
Proof: The proof is omitted since the result can be proven similarly

to [9], [20]. The assumption a ¹ n ¹ b is used to guarantee the
existence of the optimal solution [20]. ¤

Proposition 2 implies that optimal additive noise can be represented
by a randomization of no more than |S̃| different signal levels.
Therefore, the solution of the optimization problem in (14) can be
obtained from the following:

min
{nj ,λj}|S̃|l=1

max
l∈S̃

|S̃|X
j=1

λj fl(nj)

subject to
|S̃|X
j=1

λj = 1 , λj ≥ 0 , j = 1, . . . , |S̃| . (16)

Although (16) is significantly simpler than (14), it can still be
a nonconvex optimization problem. Therefore, global optimization
techniques, such as particle-swarm optimization (PSO) [33], genetic
algorithms, and differential evolution [34] can be employed to obtain
the optimal additive noise PDF. Alternatively, a convex relaxation
approach can be taken as in [20] in order to obtain an approximate
solution.



V. UNKNOWN PARAMETER DISTRIBUTIONS FOR SOME

HYPOTHESES

In the previous formulations, it is assumed that the distribution of
the unknown parameter for hypothesis i, denoted by wi(θ), is known
for i = 0, 1, . . . , M−1 (see (6)).2 If this information is not available
for certain hypotheses, an approach similar to that in [25] can be
taken, and the conditional risks for those hypotheses can be defined as
the worst-case conditional risks; that is, Ri(φ) = sup

θ∈Λi

Rθ(φ), where

Rθ(φ) is as in (7). In other words, for hypotheses with unknown
parameter distributions, the maximum conditional risk is set by taking
a conservative approach. On the other hand, for hypotheses with
known parameter distributions, the average conditional risk in (6) can
still be obtained. Therefore, the definition of Ri(φ) can be extended
as

Ri(φ) =

8<:
R
Λ

Rθ(φ)wi(θ) dθ , if wi(θ) is known
sup
θ∈Λi

Rθ(φ) , if wi(θ) is unknown , (17)

for i = 0, 1, . . . , M − 1. Then, Criterion 1 in (3) and Criterion 2 in
(4) can still be used in evaluating the performance of detectors.

Remark: Instead of considering the worst-case conditional risks
as in (17), another approach is to assume a uniform distribution of
parameter θ over Λi when wi(θ) is unknown. In that case, all the
results in Section III and Section IV are still valid. Hence, we focus
on the approach in (17) in this section.

When the parameter distributions for some hypotheses are un-
known and the extended definition of Ri(φ) in (17) is used, the
discrete structures of the probability distributions of optimal additive
noise (see (11) and Proposition 2) may not be guaranteed anymore.
In other words, the optimal additive noise may also have continuous
probability distributions in that scenario. Therefore, in order to obtain
the (approximate) PDF of the optimal additive noise, the approach in
[35] can be taken in order to search over possible PDFs in the form
of pN(n) =

P
l ζl ψ(n−nl), where ζl ≥ 0,

P
l ζl = 1, and ψl(·) is

a window function that satisfies ψl(x) ≥ 0, ∀x and
R

ψl(x)dx = 1,
∀l.

Since the computational complexity of searching over possible
additive noise PDFs in the form of pN(n) =

P
l ζl ψ(n − nl) can

be high in some cases, it becomes important to specify theoretical
upper bounds on r1(φ) in (3) and r2(φ) in (4) (with Ri(φ) being
given by (17)), which can be achieved under certain scenarios. The
following lemma presents such upper bounds.

Lemma 1: When the conditional risk Ri(φ) is defined as in (17),
r1(φ) in (3) and r2(φ) in (4) are upper bounded as follows:

r1(φ) ≤ E

8<:X
i∈S1

πif̃i(N) +

GX
j=2

π̃j

|Sj |
X
i∈Sj

f̃i(N)

9=; (18)

r2(φ) ≤ max
l∈S̃

E

(X
i∈S1

πif̃i(N) +

GX
j=2

π̃j f̃lj (N)

)
(19)

for any additive noise PDF pN(·), where

f̃i(n) ,

8<:fi(n) , if wi(θ) is known
sup
θ∈Λi

R
Γ

C[φ(y), θ] pX
θ (y − n) dy , if wi(θ) is unknown

(20)

Proof: The conditional risk in (7) can be expressed as Rθ(φ) =R
Γ

R
RK C[φ(y), θ] pX

θ (y − n) pN(n) dn dy , which is equal to

2Note that this assumption is not needed for simple hypotheses since there
is only one possible parameter value.

Rθ(φ) = E
�R

Γ
C[φ(y), θ] pX

θ (y −N) dy
	

. Based on this expres-
sion, Ri(φ) in (17) becomes equal to

Ri(φ) =

8>>>><>>>>:
E
�R

Λ

R
Γ

C[φ(y), θ] pX
θ (y −N) wi(θ) dy dθ

	
= E{fi(N)} , if wi(θ) is known
sup
θ∈Λi

E
�R

Γ
C[φ(y), θ] pX

θ (y −N) dy
	

,

if wi(θ) is unknown

,

(21)

where fi(N) is as in (9). When the expression in (21) is inserted
into (3), and the fact that

sup
θ∈Λi

E

�Z
Γ

C[φ(y), θ] pX
θ (y −N) dy

�
≤ E

�
sup
θ∈Λi

Z
Γ

C[φ(y), θ] pX
θ (y −N) dy

�
(22)

is employed, it can be shown that r1(φ) is upper bounded as in (18)
and (20). Similarly, the expression in (13) can be manipulated to
obtain the upper bound specified by (19) and (20). ¤

Note that when all the wi(θ)’s are known, the terms on the right-
hand-sides of (18) and (19) reduce to the objective functions in the
minimization problems in (10) and (14), respectively. Therefore, they
become equal to r1(φ) and r2(φ), respectively (since popt

N (n) =
arg min

pN(n)
r1(φ) in (10) and popt

N (n) = arg min
pN(n)

r2(φ) in (14) by

definition); hence the upper bounds in Lemma 1 are achieved. Also,
in the absence of additive noise (that is, pN(n) = δ(n) and Y = X),
(3), (4), (20) and (21) can be used to show that the upper bounds
in (18) and (19) are achieved again. Specifically, in the absence of
noise, the expectation operators are removed and f̃i(N) terms are
replaced by f̃i(0) terms for the upper bounds in (18) and (19). Also,
Ri(φ) in (21) becomes equal to f̃i(0) in the absence of noise (see
(20)). Therefore, the definitions of r1(φ) in (3) and r2(φ) in (4) can
be used to show that the upper bounds are achieved in this scenario.
In addition, it can be shown that any additive noise component that
improves (i.e., reduces) the upper bounds on r1(φ) or r2(φ) with
respect to the case without additive noise also improves the detector
performance over the noiseless case according to Criterion 1 or
Criterion 2, respectively. In order to verify this claim, let rX

1 (φ)
and rX

2 (φ) denote, respectively, the performance metrics r1(φ) and
r2(φ) when no additive noise is employed. As stated before, the
upper bounds are achieved in the absence of additive noise (that is,
rX
1 (φ) and rX

2 (φ) are equal to the corresponding upper bounds in the
absence of additive noise). Next, suppose that noise with PDF p

(1)
N (n)

or p
(2)
N (n) is added to the original observation x, which results in

a reduction of the corresponding upper bound; that is, the upper
bounds become strictly less than rX

1 (φ) and rX
2 (φ), respectively.

On the other hand, since r1(φ) and r2(φ) are always smaller than
or equal to the specified upper bounds due to Lemma 1, they also
become strictly less than rX

1 (φ) and rX
2 (φ), respectively. Hence,

the detector performance is improved via additive noise specified
by p

(1)
N (n) and p

(2)
N (n) according to Criterion 1 and Criterion 2,

respectively, relative to the case without additive noise. Therefore,
if an additive noise component reduces the upper bound in (18) (in
(19)) compared to the case without additive noise, it also improves
the detection performance according to Criterion 1 (Criterion 2) over
the noiseless case.

The additive noise components that minimize the upper bounds in
(18) and (19) can be represented by discrete probability distributions
as specified by (11) and Proposition 2 since the upper bounds are in
the same form as the objective functions in the minimization problems
in (10) and (14). Specifically, the PDF that minimizes the upper bound
on r1(φ) can be represented by a constant signal value, and the PDF



that minimizes the upper bound on r2(φ) can be represented by a
randomization of no more than |S̃| different signal values. It should
also be noted that although these additive noise PDFs minimize the
upper bounds in Lemma 1, they may not be the optimal additive noise
PDFs for the original problem in general. The optimal solution needs
to be calculated based on some PDF approximations as discussed
before. However, the approach based on Lemma 1 can still be useful
to obtain certain improvability conditions and to achieve performance
improvements with low complexity solutions in some cases.

VI. A DETECTION EXAMPLE AND CONCLUSIONS

In this section, a 4-ary hypothesis-testing problem is studied in
order to provide an example of the results presented in the previous
sections. The hypotheses H0, H1, H2 and H3 are defined as

H0 : x = −3
√

A + v , H1 : x = −
√

A + v ,

H2 : x =
√

A + v , H3 : x = 3
√

A + v , (23)

where x ∈ R1, A > 0 is a known scalar value, and v is symmetric
Gaussian mixture noise with the following PDF

pV (x) =

MX
i=1

wi ψi(x− µi) , (24)

where wi ≥ 0 for i = 1, . . . , M ,
PM

i=1 wi = 1, and ψi(x) =
1√

2π σi
exp

�
−x2

2 σ2
i

�
for i = 1, . . . , M . Due to the symmetry as-

sumption, µi = −µM−i+1, wi = wM−i+1 and σi = σM−i+1 for
i = 1, . . . , bM/2c. In addition, the detector is described by

φ(y) =

8>>><>>>:
0 , y ≤ −2

√
A

1 , −2
√

A < y ≤ 0

2 , 0 < y ≤ 2
√

A

3 , 2
√

A < y

, (25)

where y = x+n, with n representing the independent additive noise
term.

The hypothesis-testing problem in (23) is the form of pulse
amplitude modulation (PAM); that is, the information is carried in
the signal amplitude. The Gaussian mixture noise specified above can
be encountered in PAM communications systems in the presence of
interference or jamming [36]. In the following example, four different
amplitudes corresponding four different underlying hypotheses are
transmitted using the PAM technique above over such a communi-
cation environment. It is assumed that only the prior probability of
H1, π1, is known. Such a scenario can be encountered in practice
when previous measurements can successfully discriminate between
the underlying hypotheses for H1 and the other hypotheses (H0,
H2 and H3), whereas it is difficult to specify reliably which of
the underlying hypotheses for H0, H2 and H3 is actually true.
For instance, if we assume four fish species with three of them
(corresponding to H0, H2 and H3) having similar characteristics,
we cannot assume a known prior for each of those species (as we do
not have reliable information from measurements); however, we can
regard π0 +π2 +π3 (equivalently, π1) as a known value, since these
three fish species can be distinguished easily from the other one.3

Since only the prior probability of H1 is known, there are two
groups (G = 2), S1 = {1} and S2 = {0, 2, 3} (see (3)-(4)).
Also, UCA is assumed in the following calculations. Based on
the expressions in (9), (10) and (14), f(n) and fl(n) can be
obtained, and the optimization problems in (11) and (16) can be

3Consider a scenario in which a device measures some parameters of the
fish (such as their length or color), and this information is transmitted to a
data processing center using PAM.
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Fig. 2. Bayes risks of the original and noise modified detectors versus σ for
A = 1 according to both criteria.

TABLE I
OPTIMAL ADDITIVE NOISE PDF,

pN (n) = λ1δ(n− n1) + λ2δ(n− n2) + λ3δ(n− n3), ACCORDING TO

CRITERION 2.

λ1 λ2 λ3 n1 n2 n3

σ = 0 0.2521 0.2264 0.5215 0.3011 -0.1898 -0.1495
σ = 0.05 0.1195 0.2715 0.6090 -0.3207 -0.1913 0.1913
σ = 0.1 0.1549 0.8451 0 0.5208 -0.1634 –

solved. Specifically, f(n) in (10) can be calculated as f(n) = 1 −
1
3

PM
i=1 wi

h
(1−π1)Q

�
−√A+n+µi

σi

�
+(2+π1)Q

�
−√A−n−µi

σi

�
−

(1 + 2π1)Q
�√

A−n−µi
σi

� i
for n = n ∈ R, and similarly fl(n)

in (14) becomes fl(n) = 1 − PM
i=1 wi

h
π1Q

�
−√A−n−µi

σi

�
−

π1Q
�√

A−n−µi
σi

�
+ (1 − π1)Q

�
−√A−cl2n−µi

σi

�
− ml2(1 −

π1)Q
�√

A−n−µi
σi

� i
for l = l2 ∈ S2, where Q(x) =

1√
2π

R∞
x

e−t2/2dt denotes the Q-function, c2 = c3 = 1, c0 = −1,
m0 = m3 = 0, and m2 = 1. For the simulation results, symmetric
Gaussian mixture noise with M = 6 is considered, where the
mean values of the Gaussian components in the mixture noise in
(24) are specified as ±[0.01 0.7 1.1] with corresponding weights of
[0.35 0.1 0.05]. In addition, the variances of the Gaussian components
in the mixture noise are assumed to be the same; i.e., σi = σ for
i = 1, . . . , M .

Fig. 2 illustrates the Bayes risks for the modified and original
detectors for various values of σ when A = 1 and π1 = 0.25.
From the figure, it is observed that the use of additive noise can
significantly improve the performance according to both criteria.
Also, as σ increases the improvement ratio decreases, and after
some value of σ there is no improvement. In addition, as expected,
Criterion 1, which considers uniform distribution for the unknown
priors, has smaller risks than Criterion 2, which considers the worst
case scenario. However, it should be noted that when the priors are
actually different from uniform, the additive noise obtained according
to Criterion 1 can be quite suboptimal in terms of minimizing the true
Bayes risk,

P3
i=0 πiRi(φ). On the other hand, Criterion 2 considers

the worst-case scenario and obtains the additive noise that minimizes
the Bayes risk for the least-favorable distribution of the priors.

In order to investigate the result in Proposition 2, Table I shows the
optimal noise PDFs for various values of σ according to Criterion
2. In accordance with the proposition, the optimal noise PDFs are
expressed as randomization of three or fewer mass points.



APPENDIX

A. Proof of Proposition 1

A sufficient condition for improvability is the existence of n∗
such that f(n∗) < f(0). Consider an infinitesimally small noise
component, n∗ = ε∗. Then, f(ε∗) can be approximated by using
the Taylor series expansion as f(0) + εT

∗ f + 0.5 εT
∗Hε∗, where H

and f are the Hessian and the gradient of f(x) at x = 0. Therefore,
f(n∗) < f(0) requires

εT
∗Hε∗ + 2εT

∗ f < 0 . (26)

Let ε∗ = ρ∗ z , where ρ∗ is an infinitesimally small real number,
and z is a K-dimensional real vector. Then, (26) can be simplified,
after some manipulation, as

zT Hz +
2

ρ∗
zT f < 0 . (27)

For the first part of the proposition, if f 6= 0, then ρ∗ and z
satisfying (27) can always be found. For the second part of the
proposition, if f(x) is strictly concave at x = 0 , which means that
H is negative definite, then ρ∗ and z satisfying (27) always exist. ¤
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