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Abstract

The restricted Neyman-Pearson (NP) approach is studied for composite hypothesis-testing problems in the presence

of uncertainty in the prior probability distribution under the alternative hypothesis. A restricted NP decision rule aims

to maximize the average detection probability under the constraints on the worst-case detection and false-alarm

probabilities, and adjusts the constraint on the worst-case detection probability according to the amount of uncertainty

in the prior probability distribution. In this study, optimal decision rules according to the restricted NP criterion are

investigated. Also, an algorithm is provided to calculate the optimal restricted NP decision rule. In addition, it is

shown that the average detection probability is a strictly decreasing and concave function of the constraint on the

minimum detection probability. Finally, a detection example is presented to investigate the theoretical results, and

extensions to more generic scenarios are provided.

Index Terms– Hypothesis-testing, Neyman-Pearson, max-min, composite hypothesis, restricted Bayes.

I. INTRODUCTION

Bayesian and minimax hypothesis-testings are two common approaches for the formulation of testing [1, pp. 5-22],

[2], [3]. In the Bayesian approach, all forms of uncertainty are represented by a prior probability distribution, and

the decision is made based on posterior probabilities. On the other hand, no prior information is assumed in the

minimax approach, and a minimax decision rule minimizes the maximum of risk functions defined over the parameter

space [1, pp. 13-22], [4]. The Bayesian and minimax frameworks can be considered as two extreme cases of prior

information. In the former, perfect (exact) prior information is available whereas no prior information exists in the

latter. In practice, having perfect prior information is a very exceptional case [5]. In most cases, prior information

is incomplete and only partial prior information is available [5], [6]. Since the Bayesian approach is ineffective in

the absence of exact prior information, and since the minimax approach, which ignores the partial prior information,

can result in poor performance due to its conservative perspective, there have been various studies that take partial

prior information into account [5]-[11], which can be considered as a mixture of Bayesian and frequentist approaches

[12]. The most prominent of these approaches are the empirical Bayes, Γ-minimax, restricted Bayes and mean-max
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approaches [5]-[7], [11], [13]. As a solution to the impossibility of complete subjective specification of the model

and the prior distribution in the Bayesian approach, the robust Bayesian analysis has been proposed [12], [14, pp.

195-214]. Although the robust Bayesian analysis is considered purely in the Bayesian framework in general, it also

has strong connections with the empirical Bayes, Γ-minimax and restricted Bayes approaches [12], [14, pp. 215-235].

Among the decision rules that take partial prior information into account, the restricted Bayes decision rule

minimizes the Bayes risk under a constraint on the individual conditional risks [15, p. 15]. Depending on the value

of the constraint, which is determined according to the amount of uncertainty in the prior information, the restricted

Bayes approach covers the Bayes and minimax approaches as special cases [6]. An important characteristic of the

restricted Bayes approach is that it combines probabilistic and non-probabilistic descriptions of uncertainty, which

are also called measurable and unmeasurable uncertainty [16], [17, Part III, Chapter VII], because the calculation of

the Bayes (average) risk requires uncertainty to be measured and imposing a constraint on the conditional risks is a

non-probabilistic description of uncertainty. In this study, the focus is on the application of the notion of the restricted

Bayes approach to the Neyman-Pearson (NP) framework, in which probabilistic and non-probabilistic descriptions

of uncertainty are combined [6].

In the NP approach for deciding between two simple hypotheses, the aim is to maximize the detection probability

under a constraint on the false-alarm probability [1, pp. 22-29], [18, pp. 33-24]. When the null hypothesis is composite,

it is common to apply the false-alarm constraint for all possible distributions under that hypothesis [19], [20]. On

the other hand, various approaches can be taken when the alternative hypothesis is composite. One approach is

to search for a uniformly most powerful (UMP) decision rule that maximizes the detection probability under the

false-alarm constraint for all possible probability distributions under the alternative hypothesis [1, pp. 34-38], [18, pp.

86-92]. However, such a decision rule exists only under special circumstances [1]. Therefore, a generalized notion

of the NP criterion, which aims to maximize the misdetection exponent uniformly over all possible probability

distributions under the alternative hypothesis subject to the constraint on the false-alarm exponent, is employed

in some studies [21]-[24]. Another approach is to maximize the average detection probability under the false-alarm

constraint [12], [25]-[27]. In this case, the problem can be formulated in the same form as an NP problem for a simple

alternative hypothesis (by defining the probability distribution under the alternative hypothesis as the expectation of

the conditional probability distribution over the prior distribution of the parameter under the alternative hypothesis).

Therefore, the classical NP lemma can be employed in this scenario. Hence, this max-mean approach for composite

alternative hypotheses can be called as the “classical” NP approach. One important requirement for this approach

is that a prior distribution of the parameter under the alternative hypothesis should be known in order to calculate

the average detection probability. When such a prior distribution is not available, the max-min approach addresses

the problem. In this approach, the aim is to maximize the minimum detection probability (the smallest power) under

the false-alarm constraint [19], [20]. The solution to this problem is an NP decision rule corresponding to the least-

favorable distribution of the unknown parameter under the alternative hypothesis. It should be noted that considering

the least-favorable distribution is equivalent to considering the worst-case scenario, which can be unlikely to occur.



Therefore, the max-min approach is quite conservative in general. Some modifications to this approach are proposed

by employing the interval probability concept [28], [29].1

In this study, a generic criterion is investigated for composite hypothesis-testing problems in the NP framework,

which covers the classical NP (max-mean) and the max-min criteria as special cases. Since this criterion can be

regarded as an application of the restricted Bayes approach (Hodges-Lehmann rule) to the NP framework [6], [15],

it is called the restricted NP approach in this study (in order to emphasize the considered NP framework). The

investigation of the restricted NP criterion is intended to provide the signal processing community with an illustration

of the Hodges-Lehmann rule in the NP framework. A restricted NP decision rule maximizes the average detection

probability (average power) under the constraints that the minimum detection probability (the smallest power) cannot

be less than a predefined value and that the false-alarm probability cannot be larger than a significance level. In

this way, the uncertainty in the knowledge of the prior distribution under the alternative hypothesis is taken into

account, and the constraint on the minimum (worst-case) detection probability is adjusted depending on the amount

of uncertainty.

II. PROBLEM FORMULATION AND MOTIVATION

Consider a family of probability densities pθ(x) indexed by parameter θ that takes values in a parameter set Λ,

where x ∈ RK represents the observation (data). A binary composite hypothesis-testing problem can be stated as

H0 : θ ∈ Λ0 , H1 : θ ∈ Λ1 (1)

where Hi denotes the ith hypothesis and Λi is the set of possible parameter values under Hi for i = 0, 1 [1].

Parameter sets Λ0 and Λ1 are disjoint, and their union forms the parameter space, Λ = Λ0 ∪ Λ1. It is assumed

that the probability distributions of parameter θ under H0 and H1, denoted by w0(θ) and w1(θ), respectively, are

known with some uncertainty (see [16] and [17, Part III, Chapter VII] for discussions on the concept of uncertainty).

For example, these distributions can be obtained as probability density function (p.d.f.) estimates based on previous

decisions (experience). In that case, uncertainty is related to estimation errors, and higher amount of uncertainty is

observed as the estimation errors increase.

In the NP framework, the aim is to maximize (a function of) the detection probability under a constraint on

the false-alarm probabilities [1]. For composite hypothesis-testing problems in the NP framework, it is common to

consider the conservative approach in which the false-alarm probability should be below a certain constraint for all

possible values of parameter θ in set Λ0 [19], [20]. In this case, whether the probability distribution of the parameter

under H0, w0(θ), is known completely or with uncertainty does not change the problem formulation (see Section

V for extensions). On the other hand, the problem formulation depends heavily on the amount of knowledge about

the probability distribution of the parameter under H1, w1(θ).2 In that respect, two extreme cases can be considered.

1The generalized likelihood ratio test (GLRT) is another approach for composite hypothesis-testing, which can be used to test a null hypothesis

against an alternative hypothesis [1, p. 38], [18, pp. 92-96].
2In accordance with these observations, the term uncertainty will be used to refer to uncertainties in w1(θ) unless stated otherwise.



In the first case, there is no uncertainty in w1(θ). Then, the average detection probability can be considered, and

the classical NP approach can be employed to obtain the detector that maximizes the average detection probability

under the given false-alarm constraint [12], [25]-[27]. In the second case, there is full uncertainty in w1(θ), meaning

that the prior distribution under H1 is completely unknown. Then, maximizing the worst-case (minimum) detection

probability can be considered under the false-alarm constraint, which is called as the max-min criterion or the

“generalized” NP criterion [19], [20]. In fact, these two extreme cases, complete knowledge and full uncertainty of

the prior distribution, are rarely encountered in practice. In most practical cases, there exists some uncertainty in

w1(θ), and the classical NP and the max-min approaches do not address those cases. The main motivation behind this

study is to investigate a criterion that takes various amounts of uncertainty into account, and covers the approaches

designed for the complete knowledge and the full uncertainty scenarios as special cases [6].

In practice, the prior distribution w1(θ) is commonly estimated based on previous observations, and there exists

some uncertainty in the knowledge of w1(θ) due to estimation errors. Therefore, the amount of uncertainty depends

on the amount of estimation errors. If the average detection probability is calculated based on the estimated prior

distribution and the maximization of that average detection probability is performed based on the classical NP

approach, it means that the estimation errors (hence, the uncertainty related to the prior distribution) are ignored.

In such cases, very poor detection performance can be observed when the estimated distribution differs significantly

from the correct one. On the other hand, if the max-min approach is used and the worst-case detection probability is

maximized, it means that the prior information (contained in the prior distribution estimate) about the parameter is

completely ignored, and the decision rule is designed as if there existed no prior information. Therefore, this approach

does not utilize the available prior information at all and employs a very conservative perspective. In this study, we

focus on a criterion that aims to maximize the average detection probability, calculated based on the estimated prior

distribution, under the constraint that the minimum (worst-case) detection probability stays above a certain threshold,

which can be adjusted depending on the amount of uncertainty in the prior distribution. In this way, both the prior

information in the distribution estimate is utilized and the uncertainty in this estimate is considered. This criterion is

referred to as the restricted NP criterion in this study, since it can be considered as an application of the restricted

Bayes criterion (Hodges-Lehmann rule) to the NP framework [6]. The restricted NP criterion generalizes the classical

NP and max-min approaches and covers them as special cases.

In order to provide a mathematical formulation of the restricted NP criterion, we first define the detection and

false-alarm probabilities of a decision rule for given parameter values as follows:

PD(φ; θ) ,
∫

Γ
φ(x) pθ(x) dx , for θ ∈ Λ1 (2)

PF (φ; θ) ,
∫

Γ
φ(x) pθ(x) dx , for θ ∈ Λ0 (3)

where Γ represents the observation space, and φ(x) denotes a generic decision rule (detector) that maps the data

vector into a real number in [0, 1], which represents the probability of selecting H1 [1]. Then, the restricted NP



problem can be formulated as the following optimization problem:

max
φ

∫

Λ1

PD(φ; θ) w1(θ) dθ (4)

subject to PD(φ; θ) ≥ β , ∀θ ∈ Λ1 (5)

PF (φ; θ) ≤ α , ∀θ ∈ Λ0 (6)

where α is false-alarm constraint, and β is the design parameter to compensate for the uncertainty in w1(θ). In other

words, a restricted NP decision rule maximizes the average detection probability, where the average is performed

based on the prior distribution estimate w1(θ), under the constraints on the worst-case detection and false-alarm

probabilities. Parameter β in (5) is defined as β , (1 − ε)ζ for 0 ≤ ε ≤ 1, with ζ denoting the max-min detection

probability. Namely, ζ is the maximum worst-case detection probability that can be obtained as follows:

ζ = max
φ

min
θ∈Λ1

PD(φ; θ)

subject to PF (φ; θ) ≤ α , ∀θ ∈ Λ0 . (7)

From the definition of β, it is observed that β ranges from zero to ζ. In the case of full uncertainty in w1(θ), ε is

set to zero (i.e., β = ζ), which reduces the restricted NP problem in (4)-(6) to the max-min problem in (7). On the

other hand, in the case of complete knowledge of w1(θ), ε can be set to 1, and the restricted NP problem reduces

to the classical NP problem, specified by (4) and (6), which can be expressed as

max
φ

P avg
D (φ)

subject to PF (φ; θ) ≤ α , ∀θ ∈ Λ0 (8)

where P avg
D (φ) ,

∫
Λ1

PD(φ; θ) w1(θ) dθ is the average detection probability. Therefore, the max-min and the classical

NP approaches are two special cases of the restricted NP approach.

III. ANALYSIS OF RESTRICTED NEYMAN-PEARSON APPROACH

In this section, the aim is to investigate the optimal solution of the restricted NP problem in (4)-(6). For this

purpose, the definitions in (2) and (3) can be used to reformulate the problem in (4)-(6) as follows:

max
φ

∫

Γ
φ(x) p1(x) dx (9)

subject to min
θ∈Λ1

∫

Γ
φ(x) pθ(x) dx ≥ β (10)

max
θ∈Λ0

∫

Γ
φ(x) pθ(x) dx ≤ α (11)

where p1(x) ,
∫
Λ1

pθ(x)w1(θ) dθ defines the p.d.f. of the observation under H1, which is obtained based on the prior

distribution estimate w1(θ). In addition, an alternative representation of the problem in (9)-(11) can be expressed as

max
φ

λ

∫

Γ
φ(x) p1(x) dx + (1− λ) min

θ∈Λ1

∫

Γ
φ(x) pθ(x) dx (12)

subject to max
θ∈Λ0

∫

Γ
φ(x) pθ(x) dx ≤ α (13)

where 0 ≤ λ ≤ 1 is a design parameter that is selected according to β.



A. Characterization of Optimal Decision Rule

Based on the formulation in (12) and (13), the following theorem provides a method to characterize the optimal

solution of the restricted NP problem under certain conditions.

Theorem 1: Define a p.d.f. v(θ) as v(θ) , λw1(θ) + (1− λ) µ(θ), where µ(θ) is any valid p.d.f. If φ∗ is the NP

solution for v(θ) under the false-alarm constraint and satisfies
∫

Γ
φ∗(x)

∫

Λ1

pθ(x) µ(θ) dθ dx = min
θ∈Λ1

∫

Γ
φ∗(x) pθ(x) dx , (14)

then it is a solution of the problem in (12) and (13).

Proof: Please see Appendix A.

Theorem 1 states that if one can find a p.d.f. µ(θ) that satisfies the condition in (14), then the NP solution

corresponding to λw1(θ) + (1− λ) µ(θ) is a solution of the restricted NP problem in (12) and (13). Also it should

be noted that Theorem 1 is an optimality result; it does not guarantee existence or uniqueness. However, in most

cases, the optimal solution proposed by Theorem 1 exists, which can be proven as in [6] based on some assumptions

on the interchangeability of supremum and infimum operators, and on the existence of a probability distribution (a

decision rule) that minimizes (maximizes) the maximum (minimum) average detection probability (see Assumptions

1-3 in [6]). In fact, those assumptions hold when a set of conditions specified in [30, pp. 191-205] are satisfied.

From a practical perspective, the assumptions hold, for example, when the probability distributions are discrete or

absolutely continuous (i.e., have cumulative distributions function that are absolutely continuous with respect to the

Lebesgue measure), the parameter space is compact, and the problem is non-sequential [6]. More specifically, for the

problem formulation in this study, all the assumptions are satisfied when pθ(x), ∀θ ∈ Λ, is discrete, or cumulative

distributions corresponding to pθ(x), ∀θ ∈ Λ, are absolutely continuous (with respect to the Lebesgue measure), and

the parameter space Λ is compact.

Remark 1: In Theorem 1, the meaning of φ∗ being the NP solution for v(θ) under the false-alarm constraint is

that φ∗ solves the following optimization problem:

max
φ

∫

Γ
φ(x)

∫

Λ1

pθ(x) v(θ) dθ dx

subject to max
θ∈Λ0

∫

Γ
φ(x) pθ(x) dx ≤ α (15)

where v(θ) = λw1(θ) + (1− λ) µ(θ). Based on the NP lemma [1, pp. 22-29], it can be shown that the solution of

(15) is in the form of a likelihood ratio test (LRT); that is,3

φ∗(x) =





1 , if
∫
Λ1

pθ(x) v(θ) dθ > η pθ̃0
(x)

κ(x) , if
∫
Λ1

pθ(x) v(θ) dθ = η pθ̃0
(x)

0 , if
∫
Λ1

pθ(x) v(θ) dθ < η pθ̃0
(x)

(16)

3The proof follows from the observation that (φ∗(x) − φ(x))
�R

Λ1
pθ(x) v(θ) dθ − η pθ̃0

(x)
�
≥ 0, ∀x, for any decision rule φ due

to the definition of φ∗ in (16). Then, the approach on page 24 of [1] can be used to prove that
R
Γ

φ∗(x)
R
Λ1

pθ(x) v(θ) dθ dx ≥R
Γ

φ(x)
R
Λ1

pθ(x) v(θ) dθ dx for any decision rule φ that satisfies PF (φ; θ) ≤ α, ∀θ ∈ Λ0.



where η ≥ 0 and 0 ≤ κ(x) ≤ 1 are such that max
θ∈Λ0

PF (φ∗; θ) = α, and θ̃0 is defined as

θ̃0 = arg max
θ∈Λ0

PF (φ∗; θ) . (17)

Therefore, the solution of the restricted NP problem in (12) and (13) can be expressed by the LRT specified in (16)

and (17), once a p.d.f. µ(θ) and the corresponding decision rule φ∗ that satisfy the constraint in (14) are obtained

(see Section III-B). It should also be noted that having multiple solutions for θ̃0 does not present a problem since it

can be shown that the same average detection probability is achieved for all the solutions.

The following corollary is presented in order to show the equivalence between the formulation in (12) and (13)

and that in (4)-(6).

Corollary 1: Under the conditions in Theorem 1, φ∗ solves the optimization problem in (4)-(6) when

min
θ∈Λ1

∫
Γ φ∗(x) pθ(x) dx = β.

Proof: According to Theorem 1, φ∗ achieves the maximum value of the objective function in (12). That is, for

any α-level decision rule φ (i.e., for any φ that satisfies (13)),

λ

∫

Γ
φ(x)

∫

Λ1

pθ(x) w1(θ) dθ dx + (1− λ) min
θ∈Λ1

∫

Γ
φ(x) pθ(x) dx

≤ λ

∫

Γ
φ∗(x)

∫

Λ1

pθ(x) w1(θ) dθ dx + (1− λ) min
θ∈Λ1

∫

Γ
φ∗(x) pθ(x) dx (18)

is satisfied. Since min
θ∈Λ1

∫
Γ φ(x) pθ(x) dx ≥ β due to (5) and min

θ∈Λ1

∫
Γ φ∗(x) pθ(x) dx = β as stated in the corollary,

∫
Γ φ(x)

∫
Λ1

pθ(x) w1(θ) dθ dx should be smaller than or equal to
∫
Γ φ∗(x)

∫
Λ1

pθ(x) w1(θ) dθ dx in order for the

inequality in (18) to hold. Equivalently,
∫
Λ1

PD(φ; θ) w1(θ) dθ ≤ ∫
Λ1

PD(φ∗; θ) w1(θ) dθ for any α-level decision

rule φ, which proves that φ∗ solves the optimization problem in (4)-(6). ¤
Corollary 1 states that when the decision rule φ∗ specified in Theorem 1 satisfies the constraint in (10) with

equality, it also provides a solution of the restricted NP problem specified in (9)-(11); equivalently, in (4)-(6). In

other words, the average detection probability can be maximized when the minimum of the detection probabilities

for all possible parameter values θ ∈ Λ1 is equal to the lower limit β. It should also be noted that Corollary 1

establishes a formal link between parameters λ and β. For any λ, β can be calculated through the equation in the

corollary.

Another property of the optimal decision rule φ∗ described in Theorem 1 is that it can be defined as an NP solution

corresponding to the least-favorable distribution v(θ) specified in Theorem 1. In other words, among a family of

p.d.f.s, v(θ) is the least-favorable one since it minimizes the average detection probability. This observation is similar,

for example, to the fact that the minimax decision rule is the Bayes rule corresponding to the least-favorable priors

[1, pp. 15-16]. In the following theorem, an approach similar to that in [6] is taken in order to show that v(θ) in

Theorem 1 corresponds to a least-favorable distribution.

Theorem 2: Under the conditions in Theorem 1, v(θ) = λw1(θ) + (1− λ) µ(θ) minimizes the average detection

probability among all prior distributions in the form of

ṽ(θ) = λ̃ w1(θ) + (1− λ̃) µ̃(θ) (19)



for λ̃ ≥ λ, where θ ∈ Λ1 and µ̃(θ) is any probability distribution. Equivalently,
∫

Γ
φ∗(x)

∫

Λ1

pθ(x) v(θ) dθ dx ≤
∫

Γ
φ?(x)

∫

Λ1

pθ(x) ṽ(θ) dθ dx

for any ṽ(θ) described above, where φ∗ and φ? are the α-level NP decision rules corresponding to v(θ) and ṽ(θ),

respectively.

Proof: Please see Appendix B.

Although Theorem 2 provides a definition of the least-favorable distribution in a family of prior distributions in

the form of ṽ(θ) = λ̃ w1(θ) + (1− λ̃) µ̃(θ) for λ̃ ≥ λ, only the case λ̃ = λ is of interest in practice since λ in (12)

is commonly set as a design parameter depending on the amount of uncertainty in the prior distribution. Therefore,

in calculating the optimal decision rule according to the restricted NP criterion, the special case of Theorem 2 for

λ̃ = λ will be employed in the next section.

B. Calculation of Optimal Decision Rule

The analysis in Section III-A reveals that a density µ(θ) and a corresponding NP rule (as specified in Remark 1)

that satisfy the constraint in Theorem 1 need to be obtained for the solution of the restricted NP problem. To this

aim, the condition in Theorem 1 can be expressed based on (2) as
∫

Λ1

µ(θ) PD(φ∗; θ) dθ = min
θ∈Λ1

PD(φ∗; θ) . (20)

This condition requires that µ(θ) assigns non-zero probabilities only to the values of θ that result in the the global

minimum of PD(φ∗; θ). First, assume that PD(φ∗; θ) has a unique minimizer that achieves the global minimum (the

extensions in the absence of this assumption will be discussed as well). Then, µ(θ) can be expressed as

µ(θ) = δ(θ − θ1) (21)

which means that θ = θ1 with probability one under this distribution. Based on this observation, the following

algorithm can be proposed to obtain the optimal restricted NP decision rule.

Algorithm

1) Obtain PD(φ∗θ1
; θ) for all θ1 ∈ Λ1, where φ∗θ1

denotes the α-level NP decision rule corresponding to v(θ) =

λw1(θ) + (1− λ) δ(θ − θ1) as described in (16) and (17).

2) Calculate θ∗1 = arg min
θ1∈Λ1

f(θ1) (22)

where f(θ1) , λ

∫

Λ1

w1(θ )PD(φ∗θ1
; θ) dθ + (1− λ) PD(φ∗θ1

; θ1) . (23)

3) If PD(φ∗θ∗1 ; θ
∗
1) = min

θ∈Λ1

PD(φ∗θ∗1 ; θ), output φ∗θ∗1 as the solution of the restricted NP problem; otherwise, the

solution does not exist.

It should be noted that f(θ1) in (23) is the average detection probability corresponding to v(θ) = λw1(θ) + (1−
λ) δ(θ − θ1).4 Since Theorem 2 (for λ̃ = λ) states that the optimal restricted NP solution corresponds to the least-

favorable prior distribution, which results in the minimum average detection probability, the only possible solution is

4It should be noted that λ is related to the design parameter β in (5) through Corollary 1. In addition, the fact that as λ increases (decreases),

β decreases (increases) can be used to adjust the corresponding parameter value.



the NP decision rule corresponding to θ∗1 in (22), φ∗θ∗1 . Therefore, only that rule is considered in the last step of the

algorithm, and the optimality condition is checked. If the condition is satisfied, the optimal restricted NP solution

is obtained. Although not common in practice, the optimal solution may not exist in some cases since Theorem 1

does not guarantee existence. Also, it should be noted that there may be multiple solutions of (22), and in that case

any solution of (22) satisfying the third condition in the algorithm is an optimal solution according to Theorem 1.

Therefore, one such solution can be selected for the optimal restricted NP solution.

In order to extend the algorithm to the cases in which PD(φ∗; θ) has multiple values of θ that achieve the global

minimum, express µ(θ) as

µ(θ) =
N∑

l=1

νl δ(θ − θl) (24)

where νl ≥ 0,
∑N

l=1 νl = 1, and N is the number of θ values that minimize PD(φ∗; θ). For simplicity of notation, let

ϑ denote the vector of unknown parameters of µ(θ); that is, ϑ = [θ1 · · · θN ν1 · · · νN ]. Based on (24), the calculations

in the algorithm should be updated as follows:

ϑ∗ = arg min
ϑ

f(ϑ) (25)

where

f(ϑ) , λ

∫

Λ1

w1(θ )PD(φ∗ϑ; θ) dθ + (1− λ)
N∑

l=1

νl PD(φ∗ϑ; θl) (26)

with φ∗ϑ denoting the NP solution corresponding to v(θ) = λw1(θ) + (1− λ)
∑N

l=1 νl δ(θ− θl). Then, the condition

PD(φ∗ϑ∗ ; ϑ
∗) = min

ϑ
PD(φ∗ϑ∗ ; ϑ) is checked to verify the optimal solution as φ∗ϑ∗ . It is noted from (25) that

the computational complexity can increase significantly when the detection probability is minimized by multiple θ

values. In such cases, global optimization algorithms, such as particle-swarm optimization (PSO) [31], [32], genetic

algorithms and differential evolution [33], can be used to calculate ϑ∗.

Finally, if the global minimum of PD(φ∗; θ) is achieved by infinitely many θ values, then all possible µ(θ) need

to be considered, which can have prohibitive complexity in general. In order to obtain an approximate solution in

such cases, Parzen window density estimation [34, pp. 161-168] can be employed as in [35]. Specifically, µ(θ) is

expressed approximately by a linear combination of a number of window functions as

µ(θ) ≈
Nw∑

l=1

ξl ϕl(θ − θl) , (27)

and the unknown parameters of µ(θ) such as θl and ξl can be collected into ϑ as for the discrete case above. Then,

(25) and (26) can be employed in the algorithm by replacing νl and N with ξl and Nw, respectively, and by defining

φ∗ϑ as the NP solution corresponding to v(θ) = λw1(θ) + (1− λ)
∑Nw

l=1 ξl ϕl(θ − θl).

In Section IV, an example is provided to illustrate how to calculate the optimal restricted NP solution based on the

techniques discussed in this section. Since the number of minimizers of PD(φ∗; θ) may not be known in advance,

a practical approach can be taken as follows. First, it is assumed that there is only one value of θ that achieves the

global minimum, and the algorithm is applied based on this assumption (see (22) and (23)). If the condition in Step



3 is satisfied, then the optimal solution is obtained. Otherwise, it is assumed that there are two (or, more) θ values

that achieve the global minimum, and the algorithm is run based on (25) and (26). In this way, the complexity of

the solution can be increased gradually until a solution is obtained.

Considering the computational complexity of the three-step algorithm proposed in this section, the first step involves

the derivation of a generic NP decision rule as a function of θ1. In this derivation, the threshold of the test is obtained

based on the likelihood ratio and the false-alarm constraint. Then, the expression for the detection probability can

be obtained as a function of θ1. The exact number of operations in this step depends on the form of the probability

density function of the observation. For example, in the simplest case, the likelihood ratio test can be reduced to a

single threshold test. Then, the false-alarm and detection probabilities can be expressed in terms of the cumulative

distribution functions (CDFs) of the observation under H0 and H1, respectively. In the second step of the algorithm,

a minimization problem needs to be solved in order to obtain the parameters of a candidate solution. The complexity

of this step depends on the number of point masses of the optimal solution (i.e., the number of minimizers of the

detection probability PD(φ∗; θ) over θ ∈ Λ1). If a one point mass solution exists, a simple one-dimensional search

leads to the candidate parameter for the optimal solution. However, if the solution has multiple, say N , point masses,

then a linearly constrained minimization problem over a 2N dimensional space needs to be solved (see (25)). For

convex cost functions, the solution can be obtained by interior-point methods, which are polynomial time in the worst

case, and are very fast in practice. However, for nonconvex cost functions, global optimization techniques, such as

PSO, need to be employed in order to obtain a solution. In that case, the computational complexity depends on the

number of particles and iterations of the algorithm. Finally, the third step of the algorithm involves checking the

minimum detection probability for the candidate solution obtained in the second step. This condition can be checked

either by calculating the minimum value directly, or by first obtaining the possible minimum points via first order

necessary conditions (taking first-order derivatives) and then by evaluating the detection probability at those points.

C. Properties of Average Detection Probability in Restricted NP Solutions

In the restricted NP approach, the average detection probability is maximized under some constraints on the worst-

case detection and false-alarm probabilities (see (4)-(6)). On the other hand, the classical NP approach in (8) does not

consider the constraint on the worst-case detection probability, and maximizes the average detection probability under

the constraint on the worst-case false-alarm probability only. Therefore, the average detection probability achieved

by the classical NP approach is larger than or equal to that of the restricted NP approach; however, its worst-case

detection probability is smaller than or equal to that of the restricted NP solution. Considering the max-min approach

in (7), the aim is to maximize the worst-case detection probability under the constraint on the worst-case false-alarm

probability. Therefore, the worst-case detection probability achieved by the max-min decision rule is larger than or

equal to that of the restricted NP decision rule, whereas the average detection probability of the max-min approach

is smaller than or equal to that of the restricted NP solution.

In order to express the relations above in mathematical terms, let φβ
r , φm and φc denote the solutions of the restricted



NP, max-min and classical NP problems in (4)-(6), (7) and (8), respectively. In addition, let L , min
θ∈Λ1

PD(φc; θ)

and U , min
θ∈Λ1

PD(φm; θ) define the worst-case detection probabilities of the classical NP and max-min solutions,

respectively. It should be noted that, in the restricted NP approach, the constraint β on the worst-case detection

probability (see (5)) cannot be larger than U , since the max-min solution provides the maximum value of the worst-

case detection probability as discussed before. On the other hand, when β is selected to be smaller than L in the

restricted NP formulation, the worst-case detection probability constraint becomes ineffective; hence, the restricted

NP and the classical NP approaches become identical. Therefore, β in the restricted NP formulation is defined over

the interval [L,U ] in practice. As a special case, when L = U = β, the restricted NP, the max-min and the classical

NP solutions all become equal.

For the restricted NP solution φβ
r , the average detection probability can be calculated as

P avg
D (φβ

r ) =
∫

Λ1

PD(φβ
r ; θ) w1(θ) dθ . (28)

The discussions above imply that P avg
D (φβ

r ) is constant and equal to the average detection probability of the classical

NP solution for β ≤ L. In order to characterize the behavior of P avg
D (φβ

r ) for β ∈ [L,U ], the following theorem is

presented.

Theorem 3: The average detection probability of the restricted NP decision rule, P avg
D (φβ

r ), is a strictly decreasing

and concave function of β for β ∈ [L,U ].

Proof: Please see Appendix C.

Theorem 3 implies that the average detection probability can be improved monotonically as β decreases towards

L. In other words, by considering a less strict constraint (i.e., smaller β) on the worst-case detection probability, it is

possible to increase the average detection probability. However, it should be noted that β should be selected depending

on the amount of uncertainty in the prior distribution; namely, smaller β values are selected as the uncertainty

decreases. Therefore, Theorem 3 implies that the reduction in the uncertainty can always be used to improve the

average detection probability. Another important conclusion from Theorem 3 is that there is a diminishing return in

improving the average detection probability by reducing β due to the concavity of P avg
D (φβ

r ). In other words, a unit

decrease of β results in a smaller increase in the average detection probability for smaller values of β. Fig. 1 in

Section IV provides an illustration of the results of Theorem 3.

IV. NUMERICAL RESULTS

In this section, a binary hypothesis-testing problem is studied in order to provide practical examples of the results

presented in the previous sections. The hypotheses are defined as

H0 : X = V , H1 : X = Θ + V (29)

where X ∈ R, Θ is an unknown parameter, and V is symmetric Gaussian mixture noise with the following p.d.f.

pV (v) =
∑Nm

i=1 ωi ψi(v−mi), where ωi ≥ 0 for i = 1, . . . , Nm,
∑Nm

i=1 ωi = 1, and ψi(x) = 1/(
√

2π σi) exp
(−x2/(2σ2

i )
)

for i = 1, . . . , Nm. Due to the symmetry assumption, ml = −mNm−l+1, ωl = ωNm−l+1 and σl = σNm−l+1 for



l = 1, . . . , bNm/2c, where byc denotes the largest integer smaller than or equal to y. Note that if Nm is an odd

number, m(Nm+1)/2 should be zero for symmetry.

Parameter Θ in (29) is modeled as a random variable with a p.d.f. in the form of

w1(θ) = ρ δ(θ −A) + (1− ρ) δ(θ + A) (30)

where A is exactly known, but ρ is known with some uncertainty. With this model, the detection problem in (29)

corresponds to the detection of a signal that employs binary modulation, namely, binary phase shift keying (BPSK).

It should be noted that prior probabilities of symbols are not necessarily equal (i.e., ρ may not be equal to 0.5) in

all communications systems [36]; hence, ρ should be estimated based on (previous) measurements in practice. In the

numerical examples, the possible errors in the estimation of ρ are taken into account in the restricted NP framework.

For the problem formulation above, the parameter sets under H0 and H1 can be specified as Λ0 = {0} and

Λ1 = {−A,A}, respectively. In addition, the conditional p.d.f. of X for a given value of Θ = θ is expressed as

pθ(x) =
Nm∑

i=1

ωi√
2π σi

exp
(−(x− θ −mi)2

2σ2
i

)
. (31)

In order to obtain the optimal restricted NP decision rule for this problem, the algorithm in Section III-B is

employed. First, it is assumed that µ(θ) can be expressed as in (21); namely, µ(θ) = δ(θ−θ1), where θ1 ∈ {−A,A},

and the algorithm is applied based on (22) and (23). When the condition in the third step of the algorithm is satisfied,

then the optimal solution is obtained. Otherwise, µ(θ) is represented as µ(θ) = γ̃ δ(θ − A) + (1 − γ̃) δ(θ + A) for

γ̃ ∈ [0, 1], and the algorithm is run based on this model (consider (24) with N = 2, ν1 = 1 − ν2 = γ̃, and

θ1 = −θ2 = A). Note that this model includes all possible p.d.f.s since Λ1 = {−A,A}. As there is only one

unknown variable, γ̃, in µ(θ), the algorithm can be employed to find the value of γ̃ that minimizes the average

detection probability (see (25) and (26) with ϑ = γ̃). Then, the condition in the third step of the algorithm is

checked in order to obtain the optimal decision rule.

In the numerical results, symmetric Gaussian mixture noise with Nm = 4 is considered, where the mean values of

the Gaussian components in the mixture noise are specified as [0.1 0.95 − 0.95 − 0.1] with corresponding weights

of [0.35 0.15 0.15 0.35]. In addition, for all the cases, the variances of the Gaussian components in the mixture noise

are assumed to be the same; i.e., σi = σ for i = 1, . . . , Nm.

In Fig. 1, the average detection probabilities of the classical NP, restricted NP, and max-min decision rules are

plotted against β, which specifies the lower limit on the minimum (worst-case) detection probability. Various values

of ρ in (30) are considered, and A = 1, σ = 0.2, and α = 0.2 (see (6)) are used. As discussed in Section III-C,

the restricted NP decision rule reduces to the classical NP decision rule when β is smaller than or equal to the

worst-case detection probability of the classical NP decision rule.5 On the other hand, the restricted NP and the

max-min decision rules become identical when β is equal to the worst-case detection probability of the max-min

decision rule. For the restricted NP decision rule, β is equal to the minimum detection probability (see (63)); hence,

5Although the classical NP decision rule can be regarded as a special case of the restricted NP decision rule for β ≤ L, the “restricted NP

decision rule” term is used only for β ∈ [L, U ] in the following discussions (see Section III-C).



0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

β

A
ve

ra
ge

 D
et

ec
tio

n 
P

ro
ba

bi
lit

y 

 

 
ρ=0.9
ρ=0.8
ρ=0.7

Max−min

Classical
     NP

Classical NP

Classical NP

Fig. 1. Average detection probability versus β for the classical NP, restricted NP, and max-min decision rules for ρ = 0.7, ρ = 0.8 and

ρ = 0.9, where A = 1, σ = 0.2, and α = 0.2.

the x-axis in Fig. 1 can also be considered as the minimum detection probability except for the constant parts of the

lines that correspond to the classical NP. As expected, the highest average detection probabilities are achieved by the

classical NP decision rule; however, it also results in the lowest minimum detection probabilities, which are 0.453,

0.431 and 0.389 for ρ = 0.7, ρ = 0.8 and ρ = 0.9, respectively. Conversely, the max-min decision rule achieves

the highest minimum detection probabilities, but its average detection probabilities are the worst. On the other hand,

the restricted NP decision rules provide tradeoffs between the average and the minimum detection probabilities, and

cover the classical NP and the max-min decision rules as the special cases. It is also observed from the figure that

as ρ decreases, the difference between the performance of the classical NP and the max-min decision rules reduces.

In fact, for ρ = 0.5, the restricted NP, the max-min, and the classical NP decision rule all become equal, since it can

be shown that w1(θ) in (30) becomes the least-favorable p.d.f. for ρ = 0.5. Fig. 1 can also be used to investigate

the results of Theorem 3. It is observed that the average detection probability is a strictly decreasing and concave

function of β for the restricted NP decision rule, as claimed in the theorem. Finally, we would like to mention that

Fig. 1 can provide guidelines for the designer to choose a β value by observing the corresponding average detection

probability for each β. Therefore, in practice, instead of setting a prescribed β directly, Fig. 1 can be used to choose

a β value for the problem.

For the scenario in Fig. 1, the least-favorable distributions are investigated for the restricted NP decision rule, and

they are compared against the least-favorable distribution for the max-min decision rule. For the max-min criterion,

the least-favorable distribution wlf(θ) in this example can be calculated as wlf(θ) = 0.5 δ(θ − 1) + 0.5 δ(θ + 1).

Table I shows the least-favorable distributions, expressed in the form of v(θ) = γ δ(θ − 1) + (1 − γ) δ(θ + 1), for

the restricted NP solution for various parameters. The corresponding average and minimum detection probabilities

are also listed. As the minimum detection probability increases, the least-favorable distribution gets closer to that of

the max-min decision rule. It is also noted that the least-favorable distributions are the same for all the ρ values in



TABLE I

PARAMETER γ FOR LEAST-FAVORABLE DISTRIBUTION v(θ) = γ δ(θ − 1) + (1− γ) δ(θ + 1) CORRESPONDING TO RESTRICTED NP

DECISION RULES. “NA” MEANS THAT THE GIVEN MINIMUM DETECTION PROBABILITY CANNOT BE ACHIEVED BY A RESTRICTED NP

DECISION RULE.

Average Detection Prob. for ρ = 0.9 / ρ = 0.8 / ρ = 0.7 Minimum Detection Prob. γ

0.7997 / 0.7597 / NA 0.4398 0.765

0.7915 / 0.7556 / 0.7197 0.4687 0.63

0.7635 / 0.7360 / 0.7086 0.5166 0.54

0.7301 / 0.7115 / 0.6930 0.5629 0.522

0.7034 / 0.6920 / 0.6806 0.6007 0.513

0.6724 / 0.6688 / 0.6652 0.6398 0.504
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Fig. 2. Average and minimum detection probabilities of the restricted NP decision rules versus λ for ρ = 0.7, ρ = 0.8 and ρ = 0.9, where

A = 1, α = 0.2 and σ = 0.2.

this example.

Fig. 2 plots the average and minimum detection probabilities of the restricted NP decision rules versus λ in (12)

for ρ = 0.7, ρ = 0.8 and ρ = 0.9, where A = 1, σ = 0.2 and α = 0.2 are used. It is observed that the average and the

minimum detection probabilities are the same when 0 ≤ λ ≤ 0.555 for ρ = 0.9, when 0 ≤ λ ≤ 0.625 for ρ = 0.8,

and when 0 ≤ λ ≤ 0.714 for ρ = 0.7. In these cases, the restricted NP decision rule is equivalent to the max-min

decision rule. On the other hand, for λ = 1, the restricted NP decision rule reduces to the classical NP decision rule.

These observations can easily be verified from (12) and (13). Another observation from Fig. 2 is that the max-min

solution equalizes the detection probabilities for θ ∈ Λ1 = {−1, 1} values. Therefore, the average and the minimum

detection probabilities are equal for the max-min solutions. On the other hand, the classical NP solution maximizes

the average detection probability at the expense of reducing the worst-case (minimum) detection probability. For this

reason, the difference between the average and the minimum detection probabilities increases with λ. Finally, Fig. 2

shows that the difference between the average and the minimum detection probabilities increases as ρ increases.

Fig. 3 compares the performances of the restricted NP, the max-min, the classical NP decision rules for various
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Fig. 3. Average and minimum detection probabilities of the classical NP, max-min, and restricted NP (for λ = 0.6 and λ = 0.8) decision

rules versus σ for A = 1, α = 0.2, and ρ = 0.9.

standard deviation values σ, where A = 1, α = 0.2 and ρ = 0.9 are used. The restricted NP decision rules are

calculated for λ = 0.6 and λ = 0.8, where the weight λ is as specified in (12). For each decision rule, both the

average detection probability and the minimum (worst-case) detection probability are obtained. As expected, the

classical NP decision rule achieves the highest average detection probability and the lowest minimum detection

probability for all values of σ. On the other hand, the max-min decision rule achieves the highest minimum detection

probability and the lowest average detection probability. It is noted that the max-min decision rule equalizes the

detection probabilities for various parameter values, and results in the same average and the minimum detection

probabilities. Another observation from Fig. 3 is that the restricted NP decision rule gets closer to the classical NP

decision rule as λ increases, and to the max-min decision rule as λ decreases. The restricted NP decision rule provides

various advantages over the classical NP and the max-min decision rules when both the average and the minimum

detection probabilities are considered. For example, the restricted NP decision rule for λ = 0.8 has very close average

detection probabilities to those of the classical NP decision rule; however, it achieves significantly higher minimum

detection probabilities. Therefore, even if the prior distribution is known perfectly, it can be advantageous to use

the restricted NP decision rule when both the average and the minimum detection probabilities are considered as

performance metrics.6 Of course, when there are uncertainties in the knowledge of the prior distribution, the actual

average probabilities achieved by the classical NP approach can be significantly lower than those shown in Fig. 3,

which can get as low as the lowest curve. In such scenarios, the restricted NP approach has a clear performance

advantage. Compared to the max-min decision rule, the advantage of the restricted NP decision is to utilize the prior

information, which can include uncertainty, in order to achieve higher average detection probabilities.

Finally, in Fig. 4, the average and the minimum detection probabilities of the restricted NP (for λ = 0.6 and

6In this problem, for ρ > 0.5, the minimum detection probability corresponds to θ = −1, which occurs with probability 1− ρ. Therefore,

the minimum detection probability may be considered as an important performance metric along with the average detection probability.
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Fig. 4. Average and minimum detection probabilities of the classical NP, max-min, and restricted NP (for λ = 0.6 and λ = 0.8) decision

rules versus α for A = 1, σ = 0.2, and ρ = 0.9.

λ = 0.8), the max-min, and the classical NP decision rules are plotted versus α for A = 1, σ = 0.2, and ρ = 0.9.

As expected, larger detection probabilities are achieved as α increases. In addition, similar tradeoffs to those in the

previous scenario are observed from the figure.

V. ALTERNATIVE FORMULATION

Although the formulation in (4)-(6) takes into account uncertainties in w1(θ) only, it is possible to extend the results

in order to impose a similar constraint also on w0(θ). In other words, knowledge on w0(θ) can also be incorporated

into the problem formulation. Therefore, in this section we provide an alternative formulation that incorporates both

the uncertainties in w0(θ) and w1(θ), and provides an explicit model for the prior uncertainties.

Consider an ε-contaminated model [37] and express the true prior distribution as wtr
i (θ) = (1− εi)wi(θ)+ εihi(θ)

for i = 0, 1, where wi(θ) denotes the estimated prior distribution and hi(θ) is any unknown probability distribution.

In other words, the prior distributions are known as w0(θ) and w1(θ) with some uncertainty, and the amount of

uncertainty is controlled by ε0 and ε1. For example, w0(θ) and w1(θ) can be p.d.f. estimates based on previous

decisions (experience), and ε0 and ε1 can be determined depending on certain metrics of the estimators, such as the

variances of the parameter estimators. Let Wi denote the set of all possible prior distributions wtr
i (θ) according to

the ε-contaminated model above. Then, the following problem formulation can be considered:

max
φ

min
wtr

1 (θ)∈W1

∫
PD(φ; θ) wtr

1 (θ) dθ

subject to max
wtr

0 (θ)∈W0

∫
PF (φ; θ) wtr

0 (θ) dθ ≤ α . (32)



Based on the ε-contaminated model, the problem in (32) can also be expressed from (2) and (3) as

max
φ

(1− ε1)
∫ ∫

φ(x)pθ(x)w1(θ) dθ dx + ε1 min
h1(θ)

∫ ∫
φ(x)pθ(x)h1(θ) dθ dx

subject to max
h0(θ)

(1− ε0)
∫ ∫

φ(x)pθ(x)w0(θ) dθ dx + ε0

∫ ∫
φ(x)pθ(x)h0(θ) dθ dx ≤ α . (33)

Let pi(x) =
∫

pθ(x)wi(θ) dθ for i = 0, 1. In addition, since min
h1(θ)

∫ ∫
φ(x)pθ(x)h1(θ) dθ dx = min

θ∈Λ1

∫
φ(x)pθ(x) dx

and max
h0(θ)

∫ ∫
φ(x)pθ(x)h0(θ) dθ dx = max

θ∈Λ0

∫
φ(x)pθ(x) dx, (33) becomes

max
φ

(1− ε1)
∫

φ(x)p1(x) dx + ε1 min
θ∈Λ1

∫
φ(x)pθ(x) dx (34)

subject to max
θ∈Λ0

∫
φ(x) [(1− ε0)p0(x) + ε0pθ(x)] dx ≤ α . (35)

It is noted from (12)-(13) and (34)-(35) that the objective functions are in the same form but the constraints are

somewhat different in the optimization problems considered in Section III and in this section. Since the proof of

Theorem 1 focuses on the maximization of the objective function considering only the NP decision rules that satisfy

the false-alarm constraint (see Appendix A), the same proof applies to the problem in (34)-(35) as well if we consider

the NP decision rules under the constraint in (35) and define v(θ) = (1− ε1)w1(θ) + ε1µ(θ). Therefore, Theorem 1

is valid in this scenario when the NP solution for v(θ) under the false-alarm constraint is updated as follows (see

Remark 1):

φ∗(x) =





1 , if
∫
Λ1

pθ(x) v(θ) dθ > η
[
(1− ε0)p0(x) + ε0pθ̃0

(x)
]

κ(x) , if
∫
Λ1

pθ(x) v(θ) dθ = η
[
(1− ε0)p0(x) + ε0pθ̃0

(x)
]

0 , if
∫
Λ1

pθ(x) v(θ) dθ < η
[
(1− ε0)p0(x) + ε0pθ̃0

(x)
]

(36)

where η ≥ 0 and 0 ≤ κ(x) ≤ 1 are such that max
θ∈Λ0

∫
φ∗(x) [(1− ε0)p0(x) + ε0pθ(x)] dx = α, and θ̃0 is defined as

θ̃0 = arg max
θ∈Λ0

∫
φ∗(x) [(1− ε0)p0(x) + ε0pθ(x)] dx . (37)

Hence, the solution of the problem in (34) and (35) can be expressed by the LRT specified in (36) and (37), once a

p.d.f. µ(θ) and the corresponding decision rule φ∗ that satisfy the condition in Theorem 1 are obtained.

The problem formulation in (32) can also be regarded as an application of the Γ-minimax approach [12] to

the Neyman-Pearson framework, or as Neyman-Pearson testing under interval probability [28], [29]. Although the

mathematical approach in obtaining the optimal solution is similar to that of the restricted NP approach investigated

in the previous sections, there exist significant differences between these approaches. For the approach in this section,

uncertainty needs to be modeled by a class of possible prior distributions, then the prior distribution that minimizes

the detection probability is considered for the alternative hypothesis7. On the other hand, the restricted NP approach

in (4)-(6) focuses on a scenario in which one has a single prior distribution (e.g., a prior distribution estimate from

previous experience) but can only consider decision rules whose detection probability is constrained by a lower limit.

In other words, the main idea is that “one can utilize the prior information, but in a way that will be guaranteed

7Similarly, the prior distribution that maximizes the false alarm probability is considered for the null hypothesis.



to be acceptable to the frequentist who wants to limit frequentist risk” (detection probability in this scenario) [12].

Therefore, there is no model assumption in the restricted NP approach; hence, no efforts are required to find the

best model. The two performance metrics, the average and the minimum detection probabilities, can be investigated

in order to decide the best value of β. As stated in [38], it can be challenging to represent some uncertainty types

via certain mathematical models such as the ε-contaminated class. Therefore, the restricted NP approach can also be

useful in such scenarios.

VI. CONCLUDING REMARKS AND EXTENSIONS

In this study, a restricted NP framework has been investigated for composite hypothesis-testing problems in the

presence of prior information uncertainty. The optimal decision rule according to the restricted NP criterion has been

analyzed and an algorithm has been proposed to calculate it. In addition, it has been observed that the restricted

NP decision rule can be specified as a classical NP decision rule corresponding to the least-favorable distribution.

Furthermore, the average detection probability achieved by the restricted NP approach has been shown to be a strictly

decreasing and concave function of the constraint on the worst-case detection probability. Finally, numerical examples

have been presented in order to investigate and illustrate the theoretical results.

Similar to the extensions of the restricted Bayesian approach in [6], the notion of a restricted NP decision rule

can be extended to cover more generic scenarios. Consider sets of distribution families Υ0, Υ1, . . . ,ΥM such that

Υ0 ⊂ Υ1 · · · ⊂ ΥM . Suppose we are certain that the prior distribution under the alternative hypothesis lies in ΥM ;

that is, w1(θ) ∈ ΥM . However, we get less sure that it lies in Υi as i decreases. In this scenario, the restricted NP

formulation in (9)-(11) can be extended as follows:

max
φ

min
w1(θ)∈Υ0

∫

Γ
φ(x)

∫
pθ(x)w1(θ) dθ dx (38)

subject to min
w1(θ)∈Υi

∫

Γ
φ(x)

∫
pθ(x)w1(θ) dθ dx ≥ βi , i = 1, . . . ,M (39)

max
θ∈Λ0

∫

Γ
φ(x)pθ(x) dx ≤ α (40)

where β1 > · · · > βM specify the constraints on the worst-case detection probabilities in sets Υ1, . . . ,ΥM ,

respectively. For this problem, the proof of Theorem 1 can be extended in a straightforward manner in order to

obtain the following result:

Theorem 4: Suppose that there exists a density v(θ) =
∑M

i=0 λi µi(θ), with λi ≥ 0,
∑M

i=0 λi = 1, and µi(θ) ∈ Υi,

such that an α-level NP decision rule φ∗ for v(θ) satisfies
∫

Γ
φ∗(x)

∫
pθ(x) µi(θ) dθ dx = min

w1(θ)∈Υi

∫

Γ
φ∗(x)

∫
pθ(x)w1(θ) dθ dx = βi for i = 1, 2, . . . , M (41)

and
∫

Γ
φ∗(x)

∫
pθ(x) µ0(θ) dθ dx = min

w1(θ)∈Υ0

∫

Γ
φ∗(x)

∫
pθ(x)w1(θ) dθ dx . (42)

Then φ∗ solves the optimization problem in (38)-(40).

Acknowledgments: We would like to thank the anonymous reviewers for their insightful comments, and also for

suggesting the alternative formulation in Section V.



APPENDIX

A. Proof of Theorem 1

The proof is similar to the proof of Theorem 1 in [6]. Let φ be any α-level decision rule. Then,

λ

∫

Γ
φ(x)

∫

Λ1

pθ(x)w1(θ) dθ dx + (1− λ) min
θ∈Λ1

∫

Γ
φ(x)pθ(x) dx (43)

≤ λ

∫

Γ

∫

Λ1

φ(x)pθ(x)w1(θ) dθ dx + (1− λ)
∫

Λ1

∫

Γ
φ(x)pθ(x)µ(θ) dx dθ (44)

since the second term in (43) is smaller than or equal to that in (44) due to the minimum operator. The expression

in (44) can also be stated as
∫

Γ

∫

Λ1

φ(x)pθ(x) [λw1(θ) + (1− λ) µ(θ)] dθ dx =
∫

Γ

∫

Λ1

φ(x)pθ(x)v(θ) dθ dx (45)

based on the definition of v(θ) in the theorem. Since φ∗ is the NP decision rule for v(θ) under the false-alarm

constraint in (13), the expression in (45) must be smaller than or equal to
∫

Γ

∫

Λ1

φ∗(x)pθ(x)v(θ) dθ dx =
∫

Γ

∫

Λ1

φ∗(x)pθ(x) [λw1(θ) + (1− λ)µ(θ)] dθ dx (46)

(see Remark 1). After some manipulation, (46) can be expressed as

λ

∫

Γ

∫

Λ1

φ∗(x)pθ(x)w1(θ) dθ dx + (1− λ)
∫

Λ1

∫

Γ
φ∗(x)pθ(x)µ(θ) dx dθ (47)

= λ

∫

Γ
φ∗(x)

∫

Λ1

pθ(x)w1(θ) dθ dx + (1− λ) min
θ∈Λ1

∫

Γ
φ∗(x)pθ(x) dx (48)

where the condition in (14) is employed in obtaining (48) from (47).

The arguments above indicate that the expression in (43) is always smaller than or equal to that in (48). Therefore,

φ∗ maximizes the objective function in (12) among all possible decision rules that satisfy the constraint in (13). ¤

B. Proof of Theorem 2

In order to prove that v(θ) is the least-favorable distribution, we need to show that the average detection probability

corresponding to v(θ) is smaller than or equal to that corresponding to ṽ(θ) for any ṽ(θ) specified in the theorem.

The average detection probability corresponding to v(θ) is the average detection probability achieved by decision

rule φ∗ in Theorem 1, which can be expressed as
∫

Γ
φ∗(x)

∫

Λ1

pθ(x)v(θ) dθ dx = λ

∫

Γ
φ∗(x)

∫

Λ1

pθ(x)w1(θ) dθ dx + (1− λ)
∫

Λ1

∫

Γ
φ∗(x)pθ(x)µ(θ) dx dθ (49)

= λ

∫

Γ
φ∗(x)

∫

Λ1

pθ(x)w1(θ) dθ dx + (1− λ) min
θ∈Λ1

∫

Γ
φ∗(x)pθ(x) dx (50)

where the condition (14) in Theorem 1 is used to obtain (50) from (49). Since
∫
Γ φ∗(x)

∫
Λ1

pθ(x)w1(θ) dθ ≥



min
θ∈Λ1

∫
Γ φ∗(x)pθ(x) dx, the following relations can be obtained for any λ̃ ≥ λ :

∫

Γ
φ∗(x)

∫

Λ1

pθ(x)v(θ) dθ dx ≤ λ̃

∫

Γ
φ∗(x)

∫

Λ1

pθ(x)w1(θ) dθ dx + (1− λ̃) min
θ∈Λ1

∫

Γ
φ∗(x)pθ(x) dx (51)

≤ λ̃

∫

Γ
φ∗(x)

∫

Λ1

pθ(x)w1(θ) dθ dx + (1− λ̃)
∫

Λ1

µ̃(θ)
∫

Γ
φ∗(x)pθ(x) dx dθ (52)

=
∫

Γ

∫

Λ1

φ∗(x)pθ(x)
[
λ̃ w1(θ) + (1− λ̃) µ̃(θ)

]
dθ dx (53)

=
∫

Γ

∫

Λ1

φ∗(x)pθ(x)ṽ(θ) dθ dx (54)

≤
∫

Γ

∫

Λ1

φ?(x)pθ(x)ṽ(θ) dθ dx (55)

where φ? is the α-level NP solution corresponding to ṽ(θ). It should be noted that the inequality between (51) and

(52) is valid for any probability distribution µ̃(θ). In addition, (55) is larger than or equal to (54) since φ? is the

α-level NP solution for ṽ(θ) (see Remark 1).

From (51)-(55), it is observed that the average detection probability corresponding to v(θ) is smaller than or equal

to that corresponding to ṽ(θ) = λ̃ w1(θ) + (1− λ̃) µ̃(θ) for any µ̃(θ) and λ̃ ≥ λ . ¤

C. Proof of Theorem 3

Based on the definition of the restricted NP problem in (4)-(6), P avg
D (φβ

r ) in (28) is a non-increasing function of

β since larger β values result in a smaller feasible set of decision rules for the optimization problem. In order to use

this observation in proving the concavity of P avg
D (φβ

r ), define a new decision rule as a randomization [1], [6] of two

restricted NP decision rules as follows:

φ , ς φβ1
r + (1− ς) φβ2

r (56)

where 0 ≤ β1 < β2 ≤ U and 0 < ς < 1. From the definition of φ, the following equations can be obtained for the

detection and false-alarm probabilities of φ for specific parameter values:

PD(φ; θ) = ς PD(φβ1
r ; θ) + (1− ς) PD(φβ2

r ; θ) , θ ∈ Λ1 (57)

PF (φ; θ) = ς PF (φβ1
r ; θ) + (1− ς) PF (φβ2

r ; θ) , θ ∈ Λ0 . (58)

The relation in (58) can be used to show that φ is an α-level decision rule. That is,

max
θ∈Λ0

PF (φ; θ) ≤ ς max
θ∈Λ0

PF (φβ1
r ; θ) + (1− ς)max

θ∈Λ0

PF (φβ2
r ; θ) ≤ α (59)

where (6) is used to obtain the second inequality.

Based on (56) and (57), the average detection probability of φ can be calculated as

P avg
D (φ) =

∫

Λ1

PD(φ; θ) w1(θ) dθ = ς P avg
D (φβ1

r ) + (1− ς) P avg
D (φβ2

r ) . (60)

Also, from (57), the worst-case detection probability of φ can be upper bounded as follows:

min
θ∈Λ1

PD(φ; θ) ≥ ς min
θ∈Λ1

PD(φβ1
r ; θ) + (1− ς) min

θ∈Λ1

PD(φβ2
r ; θ) ≥ ς β1 + (1− ς) β2 . (61)



Defining β , min
θ∈Λ1

PD(φ; θ) and β∗ , ς β1 + (1 − ς)β2, the relations in (60) and (61) can be used to obtain the

following inequalities:

P avg
D (φβ∗

r ) ≥ P avg
D (φβ

r ) ≥ P avg
D (φ) = ς P avg

D (φβ1
r ) + (1− ς) P avg

D (φβ2
r ) (62)

where the first inequality follows from the non-increasing property of P avg
D (φβ

r ) explained at the beginning of the

proof (since β ≥ β∗ as shown in (61)), and the second inequality is obtained from the fact that the restricted NP

decision rule φβ
r maximizes the average detection probability under a given constraint β on the worst case detection

probability (among all α-level decision rules). Thus, the concavity of P avg
D (φβ

r ) is proven.

In order to prove the strictly decreasing property, it is first shown that for any L < β < U

min
θ∈Λ1

PD(φβ
r ; θ) = β . (63)

Assume that min
θ∈Λ1

PD(φβ
r ; θ) > β. Then, there exists an α-level classical NP decision rule φc and 0 < ς < 1 such that

an α-level decision rule φ can be defined as φ , ς φc + (1− ς)φβ
r , which satisfies min

θ∈Λ1

PD(φ; θ) = β. It should be

noted that φc achieves a smaller minimum detection probability and a higher average detection probability than φβ
r for

any L < β < U by definition. Therefore, the average detection probability of φ satisfies P avg
D (φ) > P avg

D (φβ
r ), which

contradicts with the definition of the restricted NP. Hence, min
θ∈Λ1

PD(φβ
r ; θ) > β cannot be true, which proves the

result in (63). Next, let L < β1 < β2 < U and suppose that P avg
D (φβ1

r ) = P avg
D (φβ2

r ). Obviously, this implies that φβ2
r

is also a solution corresponding to β1, which contradicts with the result in (63). Therefore, P avg
D (φβ1

r ) > P avg
D (φβ2

r )

must hold. Hence, P avg
D (φβ

r ) is a strictly decreasing function of β. ¤
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