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1. Introduction

In this paper, we propose measurement cost minimization
problems under various constraints on estimation accuracy for a
system characterized by a linear input–output relationship subject
to Gaussian noise. For the measurement cost, we employ the re-
cently proposed measurement device model in [1], and present
a detailed treatment of the proposed measurement cost mini-
mization problems. Although the statistical estimation problem in
the presence of Gaussian noise is by far the most widely known
and well-studied subject of estimation theory [2], approaches that
consider the estimation performance jointly with system-resource
constraints have become popular in recent years. Distributed de-
tection and estimation problems took the first step by incorpo-
rating bandwidth and energy constraints due to data processing at
the sensor nodes, and data transmission from sensor nodes to a fu-
sion node in the context of wireless sensor networks (WSNs) [3–7].
Since then, the majority of the related studies have addressed the
costs arising from similar system-level limitations with a relatively
weak emphasis on the measurement costs due to amplitude reso-
lution and dynamic range of the sensing apparatus. To begin with,
we summarize the main aspects of the research that has been car-
ried out in recent years to unfold the relationship between estima-
tion capabilities and aforementioned costs of the sensing devices.

In [3], detection problems are examined under a constraint on
the expected cost resulting from measurement and transmission
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stages. It is found out that optimal detection performance can
be achieved by a randomized on–off transmission scheme of the
acquired measurements at a suitable rate. The distributed mean-
location parameter estimation problem is considered in [4] for
WSNs based on quantized observations. It is shown that when
the dynamic range of the estimated parameter is small or com-
parable with the noise variance, a class of maximum likelihood
(ML) estimators exists with performance close to that of the sam-
ple mean estimator under stringent bandwidth constraint of one
bit per sensor. When the dynamic range of the estimated parame-
ter is comparable to or large than the noise variance, an optimum
value for the quantization step results in the highest estimation
accuracy possible for a given bandwidth constraint. In [5], a power
scheduling strategy that minimizes the total energy consumption
subject to a constraint on the worst mean-squared-error (MSE) dis-
tortion is derived for decentralized estimation in a heterogeneous
sensing environment. Assuming an uncoded quadrature amplitude
modulation (QAM) transmission scheme and uniform randomized
quantization at the sensor nodes, it is stated that depending on
the corresponding channel quality, a sensor is either on or off
completely. When a sensor is active, the optimal values for trans-
mission power and quantization level for the sensor can be deter-
mined analytically in terms of the channel path losses and local
observation noise levels.

In [6], distributed estimation of an unknown parameter is dis-
cussed for the case of independent additive observation noises
with possibly different variances at the sensors and over non-
ideal fading wireless channels between the sensors and the fusion
center. The concepts of estimation outage and estimation diver-
sity are introduced. It is proven that the MSE distortion can be
minimized under sum power constraints by turning off sensors
transmitting over bad channels adaptively without degrading the
diversity gain. In addition, performance decrease is reported when
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individual power constraints are also imposed at each sensor. In
[7], the distributed estimation of a deterministic parameter im-
mersed in uncorrelated noise in a WSN is targeted under a total
bit rate constraint. The number of active sensors is determined
together with the quantization bit rate of each active sensor in
order to minimize the MSE. The problem of estimating a spatially
distributed, time-varying random field from noisy measurements
collected by a WSN is investigated under bandwidth and energy
constraints on the sensors in [8]. Using graph-theoretic techniques,
it is shown that the energy consumption can be reduced by con-
structing reduced order Kalman–Bucy filters from only a subset of
the sensors. In order to prevent degradation in the root-mean-
squared (RMS) estimation error performance, efficient methods
employing Pareto optimality criterion between the communication
costs and RMS estimation error are presented. A power allocation
problem for distributed parameter estimation is investigated un-
der a total network power constraint for various topologies in [9].
It is shown that for the basic star topology, the optimal solution
assumes either of the sensor selection, water-filling, or channel
inversion forms depending on the measurement noise variance,
and the corresponding analytical expressions are obtained. Asymp-
totically optimal power allocation strategies are derived for more
complex branch, tree, and linear topologies assuming amplify-and-
forward and estimate-and-forward transmission protocols. The de-
centralized WSN estimation is extended to incorporate the effects
of imperfect data transmission from sensors to fusion center under
stringent bandwidth constraints in [10].

Important results are also obtained for the sensor selection
problem under various constraints on the system cost and esti-
mation accuracy. The problem of choosing a set of k sensor mea-
surements from a set of m available measurements so that the
estimation error is minimized is addressed in [11] under a Gaus-
sian assumption. It is shown that the combinatorial complexity of
the solution can significantly be reduced without sacrificing much
from the estimation accuracy by employing a heuristic based on
convex optimization. In [12], a similar sensor selection problem is
analyzed in a target detection framework when several classes of
binary sensors with different discrimination performance and costs
are available. Based on the conditional distributions of the obser-
vations at the fusion center, the performance of the corresponding
optimal hypothesis tests is assessed using the symmetric Kullback–
Leibler divergence. The solution of the resulting constrained max-
imization problem indicates that the sensor class with the best
performance-to-cost ratio should be selected.

As outlined above, not much work has been performed, to the
best of our knowledge, in the context of jointly designing the mea-
surement stage from a cost-oriented perspective while perform-
ing estimation up to a predetermined level of accuracy. In other
words, the trade-offs between measurement associated costs and
estimation errors remain, to a large extent, undiscovered in the
literature. On the other hand, if adopted, such an approach will
inevitably require a general and reliable method of assessing the
cost of measurements applicable to any real world phenomenon
under consideration as well as an appropriate means of evaluat-
ing the best achievable estimation performance without reference
to any specific estimator structure. For the fulfillment of the first
requirement, a novel measurement device model is suggested in
[1], where the cost of each measurement is determined by the
number of amplitude levels that can reliably be distinguished. As a
consequence, higher resolution (less noisy) measurements demand
higher costs in accordance with the usual practice. Although the
proposed model may lack in capturing the exact relationship be-
tween the cost and inner workings of any specific measurement
hardware, it encompasses a sufficient amount of generality to re-
main useful under a multitude of circumstances. Based on this
measurement model, an optimization problem is formulated in
[13] in order to calculate the optimal costs of measurement devices
that maximize the average Fisher information for a scalar parame-
ter estimation problem.

Although the optimal cost allocation problem is studied for the
single parameter estimation case in [13], and the signal recovery
based on linear minimum mean-squared-error (LMMSE) estimators
is discussed under cost-constrained measurements using a linear
system model in [1], no studies have analyzed the implications of
the proposed measurement device model in a more general setting
by considering both random and nonrandom parameter estimation
under various estimation accuracy constraints and uncertainty in
the linear system model. The main contributions of our study in
this paper extend far beyond a multivariate analysis of the discus-
sion in [13], and can be summarized as follows:

• Formulated new convex optimization problems for the min-
imization of the total measurement cost by employing con-
straints on various estimation accuracy criteria (i.e., different
functionals of the eigenvalues of the Fisher information ma-
trix (FIM)) assuming a linear system model1 in the presence
of Gaussian noise.

• Studied system matrix uncertainty both from a general per-
spective and by employing a specific uncertainty model.

• Obtained closed form solutions for two of the proposed convex
optimization problems in the case of invertible system matrix.

• Extended the results to the Bayesian estimation framework by
treating the unknown estimated parameters as Gaussian dis-
tributed random variables.

In addition to the items listed above, simulation results are
presented to discuss the theoretical results. Namely, we compare
the performance of various estimation quality metrics through nu-
merical examples using optimal and suboptimal cost allocation
schemes, and simulate the effects of system matrix uncertainty.
We also examine the behavior of the optimal solutions returned
by various estimation accuracy criteria under scaling of the system
noise variances, and identify the most robust criterion to variations
in the average system noise power via numerical examples. The re-
lationship between the number of effective measurements and the
quality of estimation is also investigated under scaling of the sys-
tem noise variances.

The rest of this paper is organized as follows: In Section 2, we
pose the optimal cost allocation problem as a convex optimiza-
tion problem under various information criteria for nonrandom
parameter vector estimation. In Section 3, we modify the proposed
optimization problems to handle the worst-case scenarios under
system matrix uncertainty. Next, we take a specific but neverthe-
less practical uncertainty model, and discuss how the optimization
problems are altered while preserving convexity. In Section 4, we
focus on two optimization problems proposed in Section 2, and
simplify them to obtain closed form solutions in the case of in-
vertible system matrix. In Section 5, we provide several numerical
examples to illustrate the results presented in this paper. Exten-
sions to Bayesian estimation with Gaussian priors are discussed in
Section 6, and we conclude in Section 7.

2. Optimal cost allocation under estimation accuracy constraints

Consider a discrete-time system model as in Fig. 1 in which
noisy measurements are obtained at the output of a linear system,
and then the measurements are processed to estimate the value of
a nonrandom parameter vector θ . The observation vector x at the

1 Such linear models have a multitude of application areas, a few examples of
which are channel equalization, wave propagation, compressed sensing, and Wiener
filtering problems [14,15].
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Fig. 1. Measurement and estimation systems model block diagram for a linear system with additive noise.
output of the linear system can be represented by x = HT θ + n,
where θ ∈ R

L denotes a vector of parameters to estimate, n ∈ R
K

is the inherent random system noise, and x ∈ R
K is the observa-

tion vector at the output of the linear system. The system noise n
is assumed to be a Gaussian distributed random vector with zero-
mean, independent but not necessarily identical components, i.e.,
n ∼N (0,Dn), where Dn = diag{σ 2

n1
, σ 2

n2
, . . . , σ 2

nK
} is a diagonal co-

variance matrix, and 0 denotes the all-zeros vector of length K .
We also assume that the number of observations is at least equal
to the number of estimated parameters (i.e., K � L) and the sys-
tem matrix H is an L × K matrix with full row rank L so that the
columns of H span R

L .
Noisy measurements of the observation vector x are made by

K measurement devices at the output of the linear system, and
then the measured values in vector y ∈ R

K are processed to es-
timate the parameter vector θ . It is assumed that each measure-
ment device is capable of sensing the value of a scalar physi-
cal quantity with some resolution in amplitude according to the
measurement model yi = xi + mi , where mi denotes the measure-
ment noise associated with the ith measurement device. In other
words, measurement devices are modeled to introduce additive
random measurement noise which can be expressed as y = x + m.
It is also reasonable to assume that measurement noise vector
m is independent of the inherent system noise n. In addition,
the noise components introduced by the measurement devices
(the elements of m) are assumed to be zero-mean independent
Gaussian random variables with possibly distinct variances,2 i.e.,
m ∼N (0,Dm), where Dm is a diagonal covariance matrix given by
Dm = diag{σ 2

m1
, σ 2

n2
, . . . , σ 2

mK
}. Based on the outputs of the mea-

surements devices, unknown parameter vector θ is estimated.
In practical scenarios, a major issue is the cost of performing

measurements. The cost of a measurement device is primarily as-
sessed with its resolution, more specifically with the number of
amplitude levels that the device can reliably discriminate. Intu-
itively, as the accuracy of a measurement device increases so does
its cost. Therefore, it may not always be possible to make high res-
olution measurements with a limited budget. In a recent work [1],
a novel measurement device model is proposed where the cost
of each device is expressed quantitatively in terms of the num-
ber of amplitude levels that can be resolved reliably. In this model,
the amplitude resolution of the measurement devices solely de-
termines the cost of each measurement. The dynamic range or
scaling of the input to the measurement device is assumed to have
no effect on the cost as long as the number of resolvable levels
stays the same. More explicitly, in [1], the cost associated with
measuring the ith component of the observation vector x is given
by Ci = 0.5 log2(1 + σ 2

xi
/σ 2

mi
), where σ 2

xi
denotes the variance of

the ith component of observation vector x (i.e., the variance of
the input to the ith measurement device), and σ 2

mi
is the vari-

ance of the ith component of m (i.e., the variance of the noise
introduced by the ith measurement device).3 Notice that σ 2

xi
= σ 2

ni
,

2 Since Gaussian distribution maximizes the differential entropy over all distri-
butions with the same variance, the assumption that the errors introduced by the
measurement devices are Gaussian distributed handles the worst-case scenario.

3 For an in-depth discussion on the plausibility of this measurement device model
and its relation to the number of distinguishable amplitude levels, we refer the
reader to [1].
∀i ∈ {1,2, . . . , K }, since θ is a deterministic parameter vector. Then,
the overall cost of measuring all the components of the observa-
tion vector x is expressed as

C =
K∑

i=1

Ci =
K∑

i=1

1

2
log2

(
1 + σ 2

ni

σ 2
mi

)
. (1)

A closer look into (1) reveals that it is a nonnegative, mono-
tonically decreasing and convex function of σ 2

mi
, ∀σ 2

ni
> 0 and

∀σ 2
mi

> 0. It is also noted that a measurement device has a higher
cost if it can perform measurements with a lower measurement
variance (i.e., with higher accuracy). Such an approach brings great
flexibility by enabling to work with variable precision over the ac-
quired measurements. After formulating the measurement device
model as outlined above, our objective is to minimize the total cost
of the measurement devices under a constraint on estimation ac-
curacy. In other words, we are allowed to design the noise levels of
the measurement devices such that the overall cost is minimized
under a constraint on the minimum acceptable estimation perfor-
mance.

In nonrandom parameter estimation problems, the Cramer–Rao
bound (CRB) provides a lower bound on the mean-squared errors
(MSEs) of unbiased estimators under some regularity conditions
[16]. Specifically, the CRB on the estimation error for an arbitrary
unbiased estimator θ̂(y) is expressed as

E
{
(θ̂ − θ)(θ̂ − θ)T }

� J−1(y, θ) � CRB, (2)

where J(y, θ) is the Fisher information matrix (FIM) of the mea-
surement y relative to the parameter vector θ , which is defined
as

J(y, θ) �
∫

1

pθ
y(y)

(
∂ pθ

y(y)

∂θ

)(
∂ pθ

y(y)

∂θ

)T

dy, (3)

where ∂/∂θ denotes the gradient (i.e., a column vector of partial
derivatives) with respect to parameters θ1, . . . , θK . Or, equivalently,
the elements of the FIM can be calculated from [16]

J i j = −Ey|θ
{

∂2 log pθ
y(y)

∂θi∂θ j

}
. (4)

The symbol � between nonnegative definite matrices in (2) rep-
resents the inequality with respect to the positive semidefinite
matrix cone. Specifically, it indicates that the difference matrix ob-
tained by subtracting the right-hand side of the inequality from
the left-hand side is nonnegative definite. Assuming independent
Gaussian distributions for n and m, it can be shown that the CRB
is given as follows [17]

CRB = J−1(y, θ) = (
H Cov−1(n + m)HT )−1

, (5)

where Cov(·) denotes the covariance matrix of the random vec-
tor n + m and Cov(n + m) = Dn + Dm = diag{σ 2

n1
+σ 2

m1
, σ 2

n2
+σ 2

m2
,

. . . , σ 2
nK

+ σ 2
mK

} due to independence. Then, D � Cov−1(n + m) =
diag{1/(σ 2

n1
+ σ 2

m1
),1/(σ 2

n2
+ σ 2

m2
), . . . ,1/(σ 2

nK
+ σ 2

mK
)}, where

Cov−1(·) represents the inverse of the covariance matrix. Notice
that the CRB can actually be attained in this case by employing
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the maximum likelihood (ML) estimator (also the best linear unbi-
ased estimator (BLUE) in this case), θ̂(y) = (HDHT )−1HDy, where
the efficiency of the estimator follows from linearity of the system
and due to the assumption of Gaussian distributions [16]. Specifi-
cally, the covariance matrix of the estimator equals the inverse of
the FIM, i.e., Cov(θ̂(y)) = (HDHT )−1.

Remark. When non-Gaussian distributions are assumed, we can
utilize the preceding observation to obtain an upper bound on the
CRB. To see this, a few preliminaries are needed. First, the FIM of a
random vector z with respect to a translation parameter is defined
as follows [17]

J(z) � J(θ + z, θ) =
∫

1

pz(z)

(
∂ pz(z)

∂z

)(
∂ pz(z)

∂z

)T

dz, (6)

where pz(z) is the probability density function of z that is inde-
pendent of θ . A well-known property of the FIM under translation
is J(z) � Cov−1(z) with equality if and only if z is Gaussian [17].

Based on these preliminaries, for linear models in the form of
Fig. 1 but with arbitrary probability distributions for n and m, it
can be shown that J(y, θ) = HJ(n+m)HT , where J(n+m) indicates
the FIM under a translation parameter of random vector n + m
[17]. In order to upper bound the CRB, it is first observed that
J(n + m) � Cov−1(n + m). Using the properties of nonnegative def-
inite matrices, we have

CRB = J−1(y, θ) = (
HJ(n + m)HT )−1

�
(
H Cov−1(n + m)HT )−1

, (7)

which naturally indicates that the difference matrix obtained by
subtracting the CRB from the covariance matrix of the linear es-
timator θ̂(y) must be nonnegative definite. Correspondingly, it is
also possible to lower bound the CRB for independent random vec-
tors n and m. To that aim, we can revert to the Fisher Information
Inequality (FII) [18]. FII states that J−1(n + m) � J−1(n) + J−1(m)

with equality if and only if n and m are Gaussian. Therefore,

CRB = J−1(y, θ) �
(
H

(
J−1(n) + J−1(m)

)−1
HT )−1

. (8)

As a result, a lower bound on the CRB can also be obtained in
terms of the FIMs under translation parameters (6) of random vec-
tors n and m with arbitrary probability distributions. �

Returning to our case of independent Gaussian system noise
and measurement noise, the CRB is equal to the covariance ma-
trix (i.e., estimation error covariance) of the ML estimator θ̂(y) =
(HDHT )−1HDy as mentioned in the paragraph following (5). Fur-
thermore, when the system and measurement noise distributions
are not restricted to Gaussian, the covariance matrix of the linear
estimator θ̂(y) can also be used as an upper bound to the CRB as
shown in (7). For this reason, in the following analysis we employ
several performance metrics based on the CRB given in (5) in or-
der to assess the quality of estimation. In other words, we propose
measurement cost minimization formulations under various esti-
mation accuracy constraints based on the CRB expression in (5).
However, before that analysis, we first express the CRB in a more
familiar form in the optimization theoretic sense

CRB = J−1(y, θ) =
(

K∑
i=1

1

σ 2
ni

+ σ 2
mi

hih
T
i

)−1

, (9)

and the corresponding ML estimator that achieves this bound be-
comes
θ̂(y) = (
HDHT )−1

HDy

=
(

K∑
i=1

1

σ 2
ni

+ σ 2
mi

hih
T
i

)−1 K∑
i=1

yi

σ 2
ni

+ σ 2
mi

hi . (10)

2.1. Average mean-squared error

The diagonal components of the CRB provide a lower bound on
the MSE while estimating the components of parameter θ . Specifi-
cally,

Ey|θ
{∥∥θ̂(y) − θ

∥∥2
2

}
� tr

{
J−1(y, θ)

}
,

where tr{·} denotes the trace operator [16]. In other words, the
harmonic average of the eigenvalues of the FIM is taken as the
performance metric. Based on this metric, the following measure-
ment cost minimization problem is proposed:

min
{σ 2

mi
}K

i=1

1

2

K∑
i=1

log2

(
1 + σ 2

ni

σ 2
mi

)

subject to tr

{(
K∑

i=1

1

σ 2
ni

+ σ 2
mi

hih
T
i

)−1}
� E, (11)

where E denotes a constraint on the maximum allowable av-
erage estimation error. Due to the inevitable intrinsic system
noise, the design criterion E must satisfy E > tr{(HD−1

n HT )−1} =
tr{(∑K

i=1
hi hT

i

σ 2
ni

)−1}. Substituting μi = 1/(σ 2
ni

+ σ 2
mi

), (11) becomes

max
{μi}K

i=1

1

2

K∑
i=1

log2
(
1 − σ 2

ni
μi

)

subject to tr

{(
K∑

i=1

μihih
T
i

)−1}
� E. (12)

It is noted that the objective function is smooth and concave for
∀μi ∈ [0,1/σ 2

ni
). Since the constraint is also a convex function of

μi ’s for ∀μi � 0, this is a convex optimization problem [19, Sec-
tion 7.5.2]. Consequently, it can be efficiently solved in polynomial
time using interior point methods and the numerical convergence
is assured. It is also possible to express this optimization problem
using linear matrix inequalities (LMIs) as follows:

max
{zi}L

i=1, {μi}K
i=1

1

2

K∑
i=1

log2
(
1 − σ 2

ni
μi

)

subject to

[ ∑K
i=1 μihihT

i e j

eT
j zi

]
� 0,

j = 1, . . . , L,

K∑
i=1

zi � E, (13)

where e j denotes the column vector of length L with a 1 in the
jth coordinate and 0’s elsewhere. Or equivalently,

max
Z∈SL , {μi}K

i=1

1

2

K∑
i=1

log2
(
1 − σ 2

ni
μi

)

subject to

[
Z I
I

∑K
i=1 μihihT

i

]
� 0, tr(Z) � E, (14)

where SL denotes the set of symmetric L × L matrices.
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2.2. Shannon information

An alternative measure of the estimation accuracy considers the
Shannon (mutual) information content between the unknown pa-
rameter vector θ and the measurement vector y. More explicitly,
the interest is to place a constraint on the log volume of the η-
confidence ellipsoid which is defined as the minimum ellipsoid
that contains the estimation error with probability η [19, Sec-
tion 7.5.2]. As shown in [11], the η-confidence ellipsoid is given by

εα = {
z
∣∣ zT J(y, θ)z � α

}
, (15)

where α = F −1
χ2

K
(η) is obtained from the cumulative distribution

function of a chi-squared random variable with K degrees of
freedom. Then, the log volume of the η-confidence ellipsoid is
obtained as4

log vol(εα) = β − 1

2
log det

(
K∑

i=1

1

σ 2
ni

+ σ 2
mi

hih
T
i

)
,

where β = n

2
log(απ) − log

(
Γ

(
n

2
+ 1

))
, (16)

with Γ denoting the Gamma function. Notice that the design cri-
terion is related to the geometric mean of the eigenvalues of the
FIM. Based on this metric, the following measurement cost opti-
mization problem can be obtained:

max
{μi}K

i=1

1

2

K∑
i=1

log2
(
1 − σ 2

ni
μi

)

subject to log det

(
K∑

i=1

μihih
T
i

)
� 2(β − S), (17)

where μi is as defined in (12) and S is a constraint on the
log volume of η-confidence ellipsoid satisfying S > β − 0.5 log det

(HD−1
n HT ) = β−0.5 log det(

∑K
i=1

hi hT
i

σ 2
ni

). Since log det(
∑K

i=1 μihihT
i )

is a smooth concave function of μi for μi � 0, the resulting op-
timization problem is convex [19, Section 3.1.5]. The smoothness
property of the problem is also very helpful for obtaining the so-
lution via numerical methods.

By introducing a lower triangular nonsingular matrix L and uti-
lizing Cholesky decomposition of positive definite matrices, it is
possible to rewrite the constraint in terms of a lower bound. To
that aim, let

∑K
i=1 μihihT

i � LLT . Then, the optimization problem
can be expressed equivalently as

max
L∈UL , {μi}K

i=1

1

2

K∑
i=1

log2
(
1 − σ 2

ni
μi

)

subject to

[
I LT

L
∑K

i=1 μihihT
i

]
� 0,

L∑
i=1

log Li,i � (β − S),

(18)

where UL denotes the set of lower triangular nonsingular L × L
square matrices, Li,i represents the ith diagonal coefficient of L,
and L is the dimension of L.

2.3. Worst-case error variance

When the primary concern shifts from accuracy requirements
towards robust behavior, it may be more desirable to have a con-
straint on the worst-case variance of the estimation error, which

4 We use ‘log’ without a subscript to denote the natural logarithm.
is associated with the maximum (minimum) eigenvalue of the
CRB (FIM) [11,20–22]. The corresponding optimization problem is
stated as follows:

max
{μi}K

i=1

1

2

K∑
i=1

log2
(
1 − σ 2

ni
μi

)

subject to λmin

{
K∑

i=1

μihih
T
i

}
� Λ, (19)

where λmin{·} represents the minimum eigenvalue of its argument,
and Λ is a predetermined lower bound on the minimum eigen-

value of the FIM satisfying Λ < λmin{HD−1
n HT } = λmin{∑K

i=1
hi hT

i

σ 2
ni

}.

Since the constraint can be represented in the form of an LMI, this
problem can equivalently be expressed as

max
{μi}K

i=1

1

2

K∑
i=1

log2
(
1 − σ 2

ni
μi

)

subject to
K∑

i=1

μihih
T
i � ΛI, (20)

where I is the L × L identity matrix. The resulting problem is also
convex [19, Section 7.5.2].

2.4. Worst-case coordinate error variance

Another variation of the worst-case error criteria can be ob-
tained by placing a constraint on the maximum error variance
among all the individual estimator components, i.e., restricting the
largest diagonal entry of the CRB. Using this performance criterion,
we have the following optimization problem

max
{μi}K

i=1

1

2

K∑
i=1

log2
(
1 − σ 2

ni
μi

)

subject to max
j=1,...,K

((
K∑

i=1

μihih
T
i

)−1)
j, j

� �, (21)

where � is a constraint on the maximum allowable diagonal en-
try of the CRB (estimation error covariance matrix) satisfying � >

max j=1,...,K ((HD−1
n HT )−1) j, j = max j=1,...,K ((

∑K
i=1

hi hT
i

σ 2
ni

)−1) j, j . This

problem can equivalently be expressed as

max
{μi}K

i=1

1

2

K∑
i=1

log2
(
1 − σ 2

ni
μi

)

subject to

[
� eT

j

e j
∑K

i=1 μihihT
i

]
� 0, j = 1, . . . , L, (22)

where e j denotes the column vector of length L with a 1 in the jth
coordinate and 0’s elsewhere. This is also a convex optimization
problem [19, Section 7.5.2].

3. Extensions to cases with system matrix uncertainty – robust
measurement

It may also be the case that there exists some uncertainty con-
cerning the elements in the system matrix H [11]. Suppose that
the system matrix H can take values from a given finite set H.
In the robust measurement problem, we consider the optimization
over the worst-case scenario. Specifically, we choose the matrix
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from the family of system matrices H resulting in the worst esti-
mation accuracy constraint, and perform the optimization accord-
ingly. Recalling that the infimum (supremum) preserves concavity
(convexity), it is possible to restate the measurement cost opti-
mization problems given in Section 2, and still maintain convex
optimization problems. Then, the resulting optimization problems
with respect to each criterion are expressed as follows.

3.1. Average mean-squared error

max
{μi}K

i=1

1

2

K∑
i=1

log2
(
1 − σ 2

ni
μi

)

subject to sup
H∈H

tr

{
K∑

i=1

μihih
T
i

}−1

� E, (23)

or equivalently,

max
Z∈SL , {μi}K

i=1

1

2

K∑
i=1

log2
(
1 − σ 2

ni
μi

)

subject to

[
Z I
I

∑K
i=1 μihihT

i

]
� 0 for all H ∈ H,

tr(Z) � E. (24)

3.2. Shannon information

max
{μi}K

i=1

1

2

K∑
i=1

log2
(
1 − σ 2

ni
μi

)

subject to inf
H∈H log det

{
K∑

i=1

μihih
T
i

}
� 2(β − S), (25)

or equivalently,

max
L∈UL , {μi}K

i=1

1

2

K∑
i=1

log2
(
1 − σ 2

ni
μi

)

subject to

[
I LT

L
∑K

i=1 μihihT
i

]
� 0 for all H ∈ H,

L∑
i=1

log Li,i � (β − S). (26)

3.3. Worst-case error variance

max
{μi}K

i=1

1

2

K∑
i=1

log2
(
1 − σ 2

ni
μi

)

subject to
K∑

i=1

μihih
T
i � ΛI for all H ∈ H. (27)

3.4. Worst-case coordinate error variance

max
{μi}K

i=1

1

2

K∑
i=1

log2
(
1 − σ 2

ni
μi

)

subject to sup
H∈H

max
j=1,...,K

({
K∑

i=1

μihih
T
i

}−1)
j, j

� �. (28)

When the set H is finite, the problem can be solved using
standard arguments from convex optimization. However, the set
H is in general not finite, and the solutions of the above opti-
mization problems require general techniques from semi-infinite
convex optimization such as those explained in [23,24]. In the fol-
lowing, a specific uncertainty model is considered where it is pos-
sible to further simplify the optimization problems given in (26)
and (27) by expressing the constraints as LMIs. To that aim, let
H ∈ H = {H̄ + �: ‖�T ‖2 � ε}, where ‖ · ‖2 denotes the spectral
norm (i.e., the square root of the largest eigenvalue of the positive
semidefinite matrix ��T ). It is possible to express this constraint
as an LMI, ��T � ε2I. Suppose also that μ is defined as the fol-
lowing diagonal matrix μ � diag{μ1,μ2, . . . ,μK }, and W � LLT is
a symmetric positive definite matrix. Then, the constraint in (26)
can be expressed in terms of H̄ and � as

W � H̄μH̄T + H̄μ�T + �μH̄T + �μ�T ,

for all ��T � ε2I. (29)

Similarly, the constraint in (27) is given by

ΛI � H̄μH̄T + H̄μ�T + �μH̄T + �μ�T ,

for all ��T � ε2I. (30)

In [25, Theorem 3.3], a necessary and sufficient condition is de-
rived for quadratic matrix inequalities in the form of (29) and (30)
to be true. In the light of this theorem, (29) holds if and only if
there exists t � 0 such that[

H̄μH̄T − W − tI H̄μ

μH̄T μ + t
ε2 I

]
� 0, (31)

and (30) holds if and only if there exists t � 0 such that[
H̄μH̄T − (Λ + t)I H̄μ

μH̄T μ + t
ε2 I

]
� 0. (32)

Notice that (31) and (32) are both linear in μ,W and t . Hence,
under this specific uncertainty model, we can express the opti-
mization problem in (26) as

max
t,W∈sL++, {μi}K

i=1

1

2

K∑
i=1

log2
(
1 − σ 2

ni
μi

)

subject to

[
H̄μH̄T − W − tI H̄μ

μH̄T μ + t
ε2 I

]
� 0,

log det(W) � 2(β − S), t � 0, (33)

where sL++ denotes symmetric positive-definite L × L matrices.
Similarly, it is possible to write the optimization problem in (27)
as

max
t,{μi}K

i=1

1

2

K∑
i=1

log2
(
1 − σ 2

ni
μi

)

subject to

[
H̄μH̄T − (Λ + t)I H̄μ

μH̄T μ + t
ε2 I

]
� 0, t � 0. (34)

4. Special case – invertible system matrix H

When the system matrix H is a K × K invertible matrix mean-
ing that the number of unknown parameters is equal to the num-
ber of observations, it is possible to obtain closed-form solutions
of the optimization problems stated in (11) and (17). Moreover, for
the solution of (11), it is not necessary to assume that the compo-
nents of the system noise n are independent; it is sufficient to have
n as a Gaussian distributed random vector with zero-mean and
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arbitrary covariance matrix (possibly colored), i.e., n ∼ N (0,�n)

with {σ 2
n1

, σ 2
n2

, . . . , σ 2
nK

} constituting the diagonal components of
�n , and 0 denoting the all-zeros vector of length K as before. To
that aim, assuming independent Gaussian distributions for n and
m, and square H with full-rank (invertible), it is observed that

CRB = J−1(y, θ) = (
H Cov−1(n + m)HT )−1

= (
H−1)T

Cov(n + m)H−1

= (
H−1)T

�nH−1 + (
H−1)T

DmH−1, (35)

where the first part of the CRB, (H−1)T �nH−1 is a known quan-
tity, and the second part (H−1)T DmH−1 will be subject to design
while assessing the quality of the estimation. Similar to the previ-
ous discussion, CRB can be achieved in this case by employing the
corresponding linear unbiased estimator which turns out simply
to be a multiplication of the measurement vector with the inverse
of the system matrix, i.e., θ̂(y) = (H−1)T y. Returning to two com-
monly used performance metrics introduced in Section 2, we next
examine the closed-form solutions of the corresponding cost min-
imization problems.

4.1. Average mean-squared error

Due to the CRB, it is known that the average MSE while esti-
mating the components of the parameter θ is bounded from below
as

Ey|θ
{∥∥θ̂(y) − θ

∥∥2
2

}
� tr

{
J−1(y, θ)

}
= tr

{(
H−1)T

�nH−1} + tr
{(

H−1)T
DmH−1},

where the last equality follows from the linearity of the trace op-
erator and the invertibility of H. Since (H−1)T �nH−1 is known,
let t = tr{(H−1)T �nH−1}. When the aim is to minimize the mea-
surement cost subject to a constraint on the lower bound for the
average MSE (achievable in the case of Gaussian distributions), the
optimization problem can be expressed similarly to (11) as follows:

min
{σ 2

mi
}K

i=1

1

2

K∑
i=1

log2

(
1 + σ 2

ni

σ 2
mi

)

subject to tr
{(

H−1)T
DmH−1} � E − t, (36)

where E denotes a constraint for the overall average estimation er-
ror suggested by the CRB (achievable in this case), and t represents
the unavoidable estimation error due to intrinsic system noise n.
Notice that for consistency, the design parameter E should be se-
lected as E > t .

From the independence of the measurement noise components,
Dm = diag{σ 2

m1
, σ 2

m2
, . . . , σ 2

mK
} is a diagonal covariance matrix with

σ 2
mi

> 0, ∀i ∈ {1,2, . . . , K }. In the view of this observation, it is
possible to simplify the objective function further by defining
F � (H−1)T = [f1 f2 . . . fK ], where fi represents the ith row of the
inverse of the system matrix H. Let f i � ‖fi‖2

2 denote the square of
the Euclidean norm of the vector fi , that is, the sum of squares of
the elements in fi . It is noted that f i is always positive for invert-
ible H, and is constant for fixed H. Then the optimization problem
in (36) can be expressed as follows:

min
{σ 2

mi
}K

i=1

1

2

K∑
i=1

log2

(
1 + σ 2

ni

σ 2
mi

)

subject to
K∑

i=1

f iσ
2
mi

� E − t, σ 2
mi

� 0, ∀i ∈ {1,2, . . . , K }.
(37)
From (37), it is noted that the constraint function is linear in σ 2
mi

’s,
the objective function is convex, and both functions are contin-
uously differentiable which altogether indicate that Slater’s con-
dition holds. Therefore, Karush–Kuhn–Tucker (KKT) conditions are
necessary and sufficient for optimality. Then, the optimal measure-
ment noise variances can be calculated from

σ 2
mi

= −σ 2
ni

2
+

√
σ 4

ni

4
+ γ

σ 2
ni

f i
, (38)

where γ > 0 is obtained by substituting (38) into the average MSE
constraint, that is

∑K
i=1 f iσ

2
mi

= E − t .
Special case: When the inverse of the system matrix has nor-

malized rows, i.e., f i = 1, and the components of the system
noise are independent zero-mean Gaussian random variables, the
optimal measurement noise variances should satisfy

∑K
i=1 σ 2

mi
=

E − ∑K
i=1 σ 2

ni
. If identical system noise components are assumed

as well, i.e., σ 2
ni

= σ 2
n , i = 1, . . . , K , then the optimal solution re-

sults in σ 2
mi

= σ 2
m , i = 1, . . . , K , where σ 2

m = E/K − σ 2
n is obtained

from the average MSE constraint. The corresponding optimal cost
is given by (K/2) log2(E/(E − Kσ 2

n )). This is an increasing function
of K for fixed E. Furthermore, the derivatives of all orders with
respect to K exist, and are positive for K < E/σ 2

n . Therefore, esti-
mating more parameters under an average error constraint based
on the CRB requires even more accurate measurement devices with
higher costs as long as K < E/σ 2

n is satisfied.

4.2. Shannon information

Another measure of estimation accuracy that results in a closed
form solution in the case of invertible system matrix H is the
Shannon information criterion. Using this metric as the constraint
function, we are effectively restricting the log volume of the η-
confidence ellipsoid to stay below a predetermined value S. Using
similar arguments to Section 2.2 and the invertibility of H,

log det
(
H Cov−1(n + m)HT )

= log
(
det H · det

(
Cov−1(n + m)

) · det HT )
= 2 log |det H| −

K∑
i=1

log
(
σ 2

ni
+ σ 2

mi

)
, (39)

where the second equality follows the properties of the deter-
minant and logarithm, i.e., det H = det HT , det(Cov−1(n + m)) =
1/det(Cov(n + m)), and Cov(n + m) = Dn + Dm = diag{σ 2

n1
+ σ 2

m1
,

σ 2
n2

+σ 2
n2

, . . . , σ 2
nK

+σ 2
mK

} due to Gaussian distributed independent
system and measurement noises with independent components.
Since the system matrix H is known, let α � log |det H|. Under
these conditions, the optimization problem in (17) can be stated
as

min
{σ 2

mi
}K

i=1

1

2

K∑
i=1

log2

(
1 + σ 2

ni

σ 2
mi

)

subject to
K∑

i=1

log
(
σ 2

ni
+ σ 2

mi

)
� 2(S + α − β), (40)

where S and β are as defined in (17).
Notice that although the objective in (40) is a convex function

of σ 2
mi

’s, the constraint is not a convex set. In fact, the constraint
set is what is left after the convex set

C =
{
σ 2

m � 0:
K∑

log
(
σ 2

ni
+ σ 2

mi

)
> 2(S + α − β)

}

i=1
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is subtracted from {σ 2
m � 0}. Since the global minimum of the un-

constrained objective function is achieved for σ 2
m = ∞ which is

contained in set C and the objective function is convex, it is con-
cluded that the minimum of the objective function has to occur at
the boundary, i.e.,

∑K
i=1 log(σ 2

ni
+σ 2

mi
) = 2(S+α−β) must be satis-

fied [26]. Therefore, we can take the constraint as equality in (40).
This is a standard optimization problem that can be solved using
Lagrange multipliers. Hence, by defining � � 2(S + α − β), we can
write the Lagrange functional as

J
(
σ 2

m1
, . . . , σ 2

mK

) = 1

2

K∑
i=1

log2

(
1 + σ 2

ni

σ 2
mi

)

+ λ

(
K∑

i=1

log
(
σ 2

ni
+ σ 2

mi

) − �

)
, (41)

and differentiating with respect to σ 2
mi

, we have the following as-
signment of the noise variances to the measurement devices

σ 2
mi

= (
γ 1/K − 1

)
σ 2

ni
, where γ = 2�∏K

j=1 σ 2
n j

. (42)

For consistency, the design parameter S should be selected as
� = 2(S + α − β) >

∑K
i=1 log(σ 2

ni
) since the intrinsic system noise

puts a lower bound on the minimum attainable volume of the con-
fidence ellipsoid. Some properties of the obtained solution can be
summarized as follows:

• For given �, K and σ 2
ni

’s, the minimum achievable cost is

(K/2) log2(
γ 1/K

γ 1/K −1
), where γ is computed as in (42).

• For a fixed value of K (available number of observations), re-
laxing the constraint on the volume of the η-confidence el-
lipsoid (increasing the value of �) results in smaller measure-
ment device costs with a limiting value of 0, as expected.

• If the observation variances are equal; that is, σ 2
ni

= σ 2
n , i =

1, . . . , K , employing identical measurement devices for all the
observations; that is, σ 2

mi
= σ 2

m , i = 1, . . . , K , is the optimal
strategy. From (42), the optimal value of the measurement
noise variances is calculated as σ 2

m,opt = e�/K − σ 2
n , and the

corresponding minimum total measurement cost is given as
�/(2 log 2) − (K/2) log2(e�/K − σ 2

n ) which is an increasing
function of K for � > K logσ 2

n . Intuitively, this result as well
indicates that estimating more parameters under a fixed con-
straint on the volume of the ellipsoid containing the estima-
tion errors requires a higher total measurement device cost.

5. Numerical results

In this section, we present an example that illustrates several
theoretical results developed in the previous section. To that aim,
a discrete-time linear system as depicted in Fig. 1 is considered

y = HT θ + n + m, (43)

where θ is a length-20 vector containing the unknown param-
eters to be estimated, H is a 20 × 100 system matrix with full
row rank, the intrinsic system noise n and the measurement noise
m are length-100 Gaussian distributed random vectors with in-
dependent components. The entries of the system matrix H are
generated from a process of i.i.d. uniform random variables in the
interval [−0.1,0.1]. Also, the components of the system noise vec-
tor n are independently Gaussian distributed with zero mean, and
it is assumed that their variances come from a uniform distribution
defined in the interval [0.05,1]. The implication of this assump-
tion is that the observations at the output of the linear system
possess uniformly varying degrees of accuracy. In other words,
it is assured that observations corrupted by weak, moderate and
strong levels of Gaussian noise are available with similar propor-
tions for the estimation stage. In the following, we look into the
problem of optimally assigning costs to measurement devices un-
der various estimation accuracy constraints when the variances of
the intrinsic system noise components are uniformly distributed
as explained above. Note that our results obtained in the previ-
ous section are still valid for Gaussian system noise processes with
arbitrary diagonal covariance matrices (i.e., the nonzero compo-
nents of the diagonal covariance matrix need not be uniformly dis-
tributed as in this example). In obtaining the optimal solutions for
the convex optimization problems stated above, fmincon method
from MATLAB’s Optimization Toolbox and the CVX software [27]
are used.

5.1. Performance of various estimation quality metrics under perfect
system state information

First, we investigate the cost assignment problem under perfect
information on the system matrix and intrinsic noise variances. Re-
call that four different performance constraints are proposed for
that purpose in Section 2. In the following four experiments, we
analyze the behavior of the total measurement cost while each
constraint metric is varied between its extreme values. The to-
tal cost is measured in bits by taking logarithms with respect to
base 2. The constraint metric is expressed as the ratio of its cur-
rent value to the value it attains for the limiting case when zero
measurement noise variances are assumed. As an example, for av-
erage mean-squared-error criterion, the total measurement cost C
will be tabulated versus E/ tr{(HD−1

n HT )−1}.
In addition to the optimal cost allocation scheme proposed in

this paper, we also consider two suboptimal cost allocation strate-
gies:

• Equal cost to all measurement devices: In this strategy, it is as-
sumed that a single set of measurement devices with iden-
tical costs is employed for all observations so that Ci = C,
i = 1,2, . . . , K . This, in turn, implies that the ratio of the mea-
surement noise variance to the intrinsic system noise vari-
ance, x � σ 2

mi
/σ 2

ni
, is constant for all measurement devices.

Then, the total cost can be expressed in terms of x as C =
0.5K log2(1 + 1/x), and similarly the FIM becomes J(y, θ) =
HD−1

n HT

x+1 = 1
x+1

∑K
i=1

hi hT
i

σ 2
ni

. Using this observation, the constraint

functions provided for different performance metrics in the
optimization problems (11), (17), (19), and (21) can be al-
gebraically solved for equality to determine the value of x
without applying any convex optimization techniques, and the
corresponding measurement variances and cost assignments
can be obtained.

• Equal measurement noise variances: In this case, measurement
devices are assumed to introduce random errors with equal
noise variances, that is, σ 2

mi
= σ 2

m, i = 1,2, . . . , K . In other
words, all observations are assumed to be corrupted with
identical noise processes, and the best measurement noise
variance value that minimizes the overall measurement cost
while satisfying the estimation accuracy constraint is selected.
Accordingly, the objective function in the proposed optimiza-
tion problems simplifies to C = 0.5

∑K
i=1 log2(1 + σ 2

ni
/σ 2

m) and
the FIM employed in the constraint functions takes the form

J(y, θ) = ∑K
i=1

hi hT
i

σ 2
ni

+σ 2
m

. By substituting these expressions into

the various optimization approaches provided in Section 2,
these problems can be solved rapidly over a single parame-
ter σ 2

m using the tools of convex analysis, and the optimal cost
allocations can be obtained for the case of equal measurement
noise variances.
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Fig. 2. Total cost versus normalized average MSE constraint.

5.1.1. Average mean-squared-error criterion
In this experiment, we study the effects of the average MSE

constraint on the total measurement device cost. Starting from
the minimum achievable value for the average MSE due to intrin-
sic system noise (i.e., tr{(HD−1

n HT )−1}), we increase the constraint
up to 100 times this minimal value, as depicted in Fig. 2. Three
curves are presented corresponding to the optimal cost allocation
strategy and two suboptimal strategies, one employing equal cost
and the other employing equal noise variance among the measure-
ment devices. It is noted that the optimal strategy results in the
minimum cost for all values of the MSE constraint as expected.
Its performance is followed by the equal cost assignment scheme,
and the worst performing strategy is the one that assigns equal
measurement noise variances to all the devices. When the aver-
age MSE criterion is stringent (for smaller values of E), all the
strategies require increasingly more accurate measurements (hence
higher costs) to satisfy the constraint. As the MSE constraint is re-
laxed (i.e., for larger values of E), the measurement costs of three
different strategies start to drop down to zero but become less re-
sponsive as they move along.

5.1.2. Shannon information criterion
This experiment aims to discover the relationship between

Shannon information constraint and total measurement device
cost. Since the constraint is expressed as a ‘greater than’ inequality,
we begin with the maximum attainable value of log det(HD−1

n HT )

and loosen the constraint by decreasing towards the negative mul-
tiples of this quantity as shown in Fig. 3. When the constraint
is very restrictive (corresponding to high values of 2(β − S)), the
differences among the performances of optimal and suboptimal
strategies disappear. As the constraint is relaxed away from the
maximum attainable value, it is observed that the decrease in the
total cost is less responsive with respect to the average MSE. How-
ever, as the relaxation continues we see that the drop in the total
cost for the Shannon information criterion maintains its pace for
a longer time while the drop in the average MSE criterion seems
to saturate. Again similar to the previous case, the performance
of the optimal strategy is superior to the equal measurement de-
vice cost strategy, and the worst performance belongs to the equal
measurement variance scheme.

5.1.3. Worst-case error variance
In this experiment, we investigate the effects of the worst-case

error variance criterion on the total measurement device cost un-
Fig. 3. Total cost versus normalized Shannon information constraint.

Fig. 4. Total cost versus normalized worst-case error variance constraint.

der different cost allocation strategies. Similar conclusions to the
previous experiments can be drawn by examining Fig. 4.

5.1.4. Worst-case coordinate error variance
This experiment focuses on the relationship between the con-

straint on the largest diagonal entry of the CRB and the total
measurement device costs achievable via different cost allocation
strategies. The results are illustrated in Fig. 5. It is noted that the
plots depicted in Fig. 2 embody a large degree of resemblance to
those given in Fig. 5. This similarity is anticipated and can be at-
tributed to the fact that the former criterion puts a constraint on
the average of the diagonal entries of the CRB whereas the latter
places a similar constraint on their maximum.

Finally, we can stress a few more points. It is necessary that the
intrinsic system noise variances and the system matrix are jointly
evaluated to compute the optimal measurement noise variances
and the corresponding cost allocations. In other words, in order to
assign more cost to a specific observation, it is not sufficient to just
know that the particular observation is reliable (i.e., has smaller
variance) but we also need to know its intrinsic combinations with
the other observations due to linear system matrix. Furthermore,
the performance figures are quite useful in the sense that they
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Fig. 5. Total cost versus normalized worst-case coordinate error variance constraint.

provide the minimum cost necessary to obtain a desired level of
estimation accuracy.

5.2. Performance comparison of estimation quality metrics under
scaling of the system noise variances

In this section, we devise a new experiment in order to jointly
assess the performance of the proposed optimal cost assignment
strategies under different estimation quality metrics. Using the
same set of system noise variances employed in the previous ex-
periments, we scale them with a factor c that varies inside the
interval [0.1,1] with 0.01 increments. Specifically, σ̂ 2

ni
= cσ 2

ni
, i =

1, . . . , K , where c ∈ {0.1 : 0.01 : 1}. For such a comparison to make
sense, the constraints on the estimation quality metrics are se-
lected so that the optimal total measurement costs returned by
the various approaches are equal for a certain value of the scale
parameter c. Then, using the same value as the constraint, we eval-
uate the performance of each optimal cost allocation strategy for
the rest of the scale parameter values.

Two examples are constructed for this case.In the first one, the
performances of the optimal schemes under four different per-
formance metrics are equated for c = 0.5, producing an optimal
total cost of 40.11. The corresponding constraint function values
are E = 23.1371 for the average MSE criterion, 2(β − S) = 1.9389
for Shannon information criterion, Λ = 0.4364 for the worst-case
error variance criterion and � = 1.3646 for the worst-case coordi-
nate error variance criterion. The results are illustrated in Fig. 6.
Intuitively, as the intrinsic system noise variances are increased,
more reliable measurements (higher costs) are required to sat-
isfy the same level of accuracy. Comparing the performances in
Fig. 6, where all the costs are equated for c = 0.5, we observe
that the average MSE criterion results in the least (i.e., the best)
optimal cost score for increasing values of the scale parameter c.
Its performance is followed by the Shannon information criterion,
next by the worst-case coordinate error variance criterion, and fi-
nally by the worst-case error variance criterion. In other words,
the effects of increasing system noise variances are much more
pronounced for the worst-case error variance criterion, which op-
erates by setting a constraint on the minimum eigenvalue of the
FIM, than the remaining criteria. If the noise scale parameter c
is decreased below 0.5, it is observed that the Shannon informa-
tion criterion produces the lowest measurement cost followed by
the worst-case coordinate error variance criterion, worst-case error
variance criterion, and finally average MSE criterion in the order
Fig. 6. The performance of various optimal cost allocation strategies under scaling
of the system noise variances. All costs are equal for c = 0.5.

of increasing costs. It is noted that, except for the average MSE
criterion, the performance of the remaining three metrics stays
in the same order for values of c above and below 0.5. Another
important observation is that among the four estimation quality
metrics, the performance of the MSE criterion is the one that is
least susceptible to changes in the system noise variance. That is,
as c is increased beyond 0.5 and decreased below 0.5, the least
varying performance metric corresponds to the average MSE crite-
rion. Therefore, in applications where the level of the system noise
variance are likely to fluctuate around a nominal value and a pre-
determined value of the estimation accuracy has to be satisfied,
the average MSE criterion provides the most robust alternative in
terms of the measurement device selection. However, even in this
case, a small change of order 0.01 in the value of the scale param-
eter disturbs the total cost by more than 1 bit for the average MSE
metric.

In the second example, the performances of the estimation
quality metrics are equated for c = 1, resulting in a total cost
score of 320.8. We employ the same constraint value (E = 23.1371)
for the average MSE criterion, and the adjustments are applied to
the remaining metrics. The corresponding constraint function val-
ues are calculated as 2(β − S) = 0.66 for the Shannon information
criterion, Λ = 0.3664 for the worst-case error variance criterion,
and � = 1.5519 for the worst-case coordinate error variance crite-
rion. The results are illustrated in Fig. 7. In accordance with the
observations for high values of c in the previous example, the
worst-case error variance metric quickly responds to the drop in
the level of the system noise variance values. Hence, the low-
est cost is provided by the worst-case error variance criterion for
c < 1. On the other hand, the optimal cost value for the average
MSE criterion exhibits the slowest descent for decreasing values
of c. Also noted from the figure is that the performance curve for
the Shannon information criterion down-crosses the curve corre-
sponding to the worst-case coordinate error variance criterion at
around c = 0.21.

5.3. The relationship between the number of effective measurements
and the quality of estimation under scaling of the system noise variances

In this experiment we discuss the relationship between the
number of effective measurements Keff and various estimation
quality metrics under scaling of the system noise variances. A mea-
surement is assessed as effective whenever the cost of that mea-
surement exceeds a certain fraction of the optimal value of the
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Fig. 7. The performance of various optimal cost allocation strategies under scaling of
the system noise variances. All costs are equal for c = 1.

total measurement cost. More specifically, we require that Ci >

p(C/K ) where K represents the total number of measurements.
With this construction, it is assured that the total cost of the
effective measurements is greater than (1 − p)C, from which a
suitable value for p can be determined [1]. For small values of
p, we can safely assume that the remaining measurements do
not cause a significant change on the total cost or provide any
significant contribution to the estimation accuracy. Similar to the
study in [1], p = 0.125 is selected. The same constraint values
as in Fig. 7 are employed for the estimation accuracy metrics.
Since the performances of all four estimation accuracy criteria
are fixed to a high cost score of 320.8 for c = 1, it is noted
from Fig. 8 that most of the observations are utilized at this
value of the scale parameter in order to satisfy the strict con-
straints. As the average system noise power is reduced by as-
signing smaller values to the system noise variance multiplier c,
the number of effective measurements decreases for all the four
cases in accordance with decreasing measurement costs. In other
words, lower noise variances result in looser constraints which can
be achieved by using fewer number of high resolution (costly)
measurements. For small values of c, the worst-case error vari-
ance requires the largest number of measurements followed by
the average MSE criterion, the worst-case coordinate error vari-
ance criterion, and finally the Shannon information criterion. For
higher values of c, the situation is reversed apart from the average
MSE criterion which requires the largest number of effective mea-
surements. When c � 0.56, a relatively small number of accurate
measurements is sufficient to conduct a reliable estimation using
the Shannon information criterion with respect to the remaining
criteria.

5.4. Effects of system matrix uncertainty

So far, we have assumed that the system matrix is known per-
fectly at the measurement stage. In this experiment, we consider
the case in which the measurement system can only have partial
knowledge about the system matrix according to the specific un-
certainty model introduced in Section 3. That is, the system matrix
is represented as the sum of a known matrix plus a random distur-
bance matrix H ∈ H = {H̄ + �: ‖�T ‖2 � ε}, where the degree of
uncertainty is controlled with the spectral norm of the disturbance
matrix �. Below, we present the results concerning the effects
of system uncertainty on the optimal cost allocation problem for
Fig. 8. Number of effective measurements under the scaling of the system noise
variances for various estimation accuracy metrics.

Fig. 9. Effects of system matrix uncertainty on the total measurement cost for Shan-
non information criterion.

the Shannon information and the worst-case error variance crite-
ria in Fig. 9 and Fig. 10, respectively. For both cases, it is observed
that the total cost increases as the amount of uncertainty in the
system matrix increases for a given value of the constraint. The
increase in the system matrix uncertainty also leads to smaller val-
ues of the maximum attainable estimation accuracy measures (the
asymptotes where the total cost increases unboundedly).

6. Extension to Bayesian framework

In Section 2, parameter θ is modeled as a deterministic un-
known parameter. Whenever prior information is available about
the distribution of the unknown parameter, this additional infor-
mation can be utilized at the estimation stage. As a result, a more
refined metric to assess the quality of the estimator performance is
employed which is commonly known as the Bayesian CRB (BCRB)
and expressed as follows:

E
{
(θ̂ − θ)(θ̂ − θ)T }

� (JD + JP)−1 � BCRB, (44)

where JD represents data information matrix and JP represents
prior information matrix, whose elements are [16]
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Fig. 10. Effects of system matrix uncertainty on the total measurement cost for
worst-case error variance criterion.

J Dij = −Ey,θ

{
∂2 log pθ

y(y)

∂θi∂θ j

}
= Eθ

{
J(y, θ)

}
and

J Pi j = −Eθ

{
∂2 log w(θ)

∂θi∂θ j

}
, (45)

where J(y, θ) is the standard Fisher information matrix defined
in (3).

When the prior probability of the parameter is Gaussian with
θ ∼N (0,�θ ), under the same assumptions regarding the indepen-
dence of n ∼N (0,Dn) and m ∼N (0,Dm), the BCRB for the linear
system given in Fig. 1 can be obtained as

BCRB =
(

K∑
i=1

1

σ 2
ni

+ σ 2
mi

hih
T
i + �−1

θ

)−1

. (46)

Correspondingly, the total cost function should be restated to in-
corporate the change in the variance of the input to each mea-
surement noise device as follows:

C =
K∑

i=1

Ci =
K∑

i=1

1

2
log2

(
1 + σ 2

xi

σ 2
mi

)
, (47)

where σ 2
xi

is the ith diagonal entry of the observation covariance
matrix Cov(x) = HT �θ H + Dn .

Based on these expressions, all the proposed cost minimization
formulations in Section 2 can be modified accordingly to obtain
the optimal cost assignment strategies in the presence of prior in-
formation. Specifically, the CRB is replaced with the BCRB, and the
cost function stated in (47) is substituted as the objective function
inside the optimization problems given in (14), (18), (20), and (22).
However, the modified optimization problems are not necessarily
convex. It is also noted that the problem formulation constructed
by employing the LMMSE estimator in [1] is equivalent to the dual
of the Bayesian estimation case under the average MSE criterion
given in (11) when Gaussian priors are assumed.

7. Conclusion

In this paper, we have studied the measurement cost mini-
mization problem for a linear system in the presence of Gaussian
noise based on the measurement device model introduced in [1].
By considering the nonrandom parameter estimation case, novel
convex optimization problems have been obtained under various
estimation accuracy constraints. Uncertainty in the system matrix
has been modeled both under general terms and by using a spe-
cific uncertainty model. It has been indicated that the convexity
properties of the proposed optimization problems are preserved
under uncertainty. When the system matrix is invertible, closed
form expressions have been presented for two different estima-
tion accuracy metrics which enable a quick assessment of the
corresponding cost allocation strategies analytically or via simpler
numerical techniques. It has been shown that the prior informa-
tion can be incorporated into the optimization problems but the
resulting problems need no longer be convex. Through numerical
examples, the relationships among various criteria have been ana-
lyzed in depth.
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