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Abstract—This paper addresses the problem of positioning
multiple target nodes in a cooperative wireless sensor network
in the presence of unknown turn-around times. In this type of
cooperative networks, two different reference sensors, namely,
primary and secondary nodes, measure two-way time-of-arrival
(TW-TOA) and time-difference-of-arrival (TDOA), respectively.
Motivated by the role of secondary nodes, we extend the role
of target nodes such that they can be considered as pseudo
secondary nodes. By modeling turn-around times as nuisance
parameters, we derive a maximum likelihood estimator (MLE)
that poses a difficult global optimization problem due to its
nonconvex objective function. To avoid drawbacks in solving
the MLE, we linearize the measurements using two different
techniques, namely, nonlinear processing and first-order Taylor
series, and obtain linear models based on unknown parameters.
The proposed linear estimator is implemented in three steps. In
the first step, a coarse position estimate is obtained for each
target node, and it is refined through steps two and three. To
evaluate the performance of different methods, we derive the
Cramér-Rao lower bound (CRLB). Simulation results show that
the cooperation technique provides considerable improvements in
positioning accuracy compared to the noncooperative scenario,
especially for low signal-to-noise-ratios.

Index Terms– Wireless sensor network, cooperative posi-
tioning, time-of-arrival (TOA), two-way time-of-arrival (TW-
TOA), time-difference-of-arrival (TDOA), linear estimator, MLE,
CRLB.

I. INTRODUCTION

NOWADAYS wireless sensor networks (WSNs) have been
considered for many civil and military applications.

Position information is one of the critical requirements for
a WSN that can be carried out by the network itself [1]–[3].
Most studies in the literature assume that there are a number
of reference nodes, also called anchor nodes, that can be used
to estimate the position of an unknown target node [4]–[6].
In one viewpoint, positioning algorithms can be categorized
based on measurement types such as time-of-arrival (TOA),
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time-difference-of-arrival (TDOA), received signal strength,
and angle-of-arrival [1], [7].

Positioning algorithms based on TOA (or TDOA) need a
synchronized network [1] that can be handled using different
synchronization techniques [8]–[12]. The process of synchro-
nizing the sensor nodes is a cumbersome and costly task.
Alternatively, two-way TOA (TW-TOA) has been considered
as an effective approach in the literature (e.g., [13], [14]) and
has been standardized [15], [16], mainly because of its rela-
tively high accuracy and lack of synchronization requirements.
In this approach, a reference node sends a signal to a target
node, and waits for a response from it. The round-trip delay
time between the reference node and the target node gives
an estimate of the distance between them. As the number
of reference nodes in a WSN increases, the position of the
target node can be estimated more accurately via TW-TOA
estimation.

Since, in practice, there are some limitations on increasing
the number of reference nodes due to power and complexity
constraints, the idea of cooperation between reference nodes
was proposed in [17] to decrease the number of transmis-
sions, and its theoretical analysis was presented in [14]. In
this method, some reference nodes, called primary reference
nodes (PRNs), initiate range estimation by sending a signal.
The target node replies to received signals by sending an
acknowledgement after a processing delay called the turn-
around time. It is assumed that there are some other reference
nodes, which can listen to both signals, and these are called
as the secondary reference nodes (SRNs). It has been shown
that SRNs can help PRNs estimate the target node position
more accurately [14]. In fact, it is possible to get the same
performance with fewer PRNs when measurements from SRNs
are involved in the positioning process. It is assumed that
SRNs are able to receive signals from both a target node and
PRNs [14]; therefore, SRNs are able to measure the TDOA
between the target node’s signal and the signals of the PRNs.
Indeed a hybrid set of TW-TOA and TDOA measurements is
available to estimate the position of a target node. Positioning
of a single target using cooperative primary and secondary
sensors is studied in [14], [18], and [19]. In the previous
studies, it was assumed that either an estimate of the turn-
around time is available [14] or it is extremely small such that
it can be neglected [18], [19]. The model considered in this
study is based on cooperation between primary and secondary
reference nodes, which is different from targets cooperation in
traditional cooperative networks [20]. It should also be noted
that the idea of employing listening nodes was previously
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considered in bistatic radars in a different context [21].
In this paper, we consider target nodes as ordinary sensors

that can measure the TOA of the received signals. Motivated
by the role of the secondary nodes, we extend the model
of a single target node positioning to multiple target nodes
positioning where for every target node the remaining target
nodes play the role of pseudo secondary nodes with unknown
positions. We further assume that no a priori knowledge of
the turn-around time is available and it is modeled as a de-
terministic unknown parameter. To derive different algorithms
for position estimation in cooperative networks, we model the
turn-around times at different targets as nuisance parameters
that can be jointly estimated with targets’ positions. Moreover,
assuming known probability distribution for TOA errors as
Gaussian random variables, we derive a maximum likelihood
estimator (MLE) to solve the positioning problem. However,
the MLE poses a difficult global optimization problem due to
the nonconvex nature of its objective function. Therefore, we
need to resort to numerical methods, e.g., an iterative search
algorithm with a good initial point. Generally, in the posi-
tioning literature, to cope with difficulty in solving an MLE,
different techniques such as convex relaxation techniques,
e.g., semidefinite and second order cone programming [22]–
[27], set theoretic approach [28]–[32], and linearization tech-
niques [33]–[36] are employed.

In this current work, in order to avoid drawbacks in solving
the MLE, we employ linearization techniques to obtain a
linear estimator for the positioning problem considered in this
study. The linear estimator that we obtain is implemented
in three steps: In the first step, assuming small variances of
measurement errors and using a nonlinear pre-processing on
measurements, a linear model based on target node’s position
and turn-around time is obtained. The linear (weighted) least
squares method is employed to solve the problem. Since the
linear estimator is a suboptimal estimator for the positioning
problem [37], a number of techniques such as correction
techniques can be used to improve the performance of the esti-
mator [33], [36]. We employ a modified correction technique,
inspired by the work in [35], to enhance the performance
of the linear estimator. Note that in the first step, a coarse
position estimate is obtained for every target node. In the
second step, considering measurements between target nodes
and using the first step estimation, the turn-around time is
estimated using a simple linear estimator. And finally, in the
third step, using the first-order Taylor series expansion, a new
linear model is obtained and then we apply a regularization
technique, namely, the Tikhonov regularization approach [38],
to solve the problem. Note that the step one and step two of
the linear estimator can be locally performed in target nodes
while the step three of the linear estimator and the MLE need
centralized processing. Moreover, to evaluate the performance
of different methods, we derive the Cramér-Rao lower bound
(CRLB) for this problem. Simulation results confirm that for
sufficiently large signal-to-noise-ratios (SNRs), the proposed
estimator can get very close to the CRLB.

Note that the measurement errors can be non-Gaussian, e.g.,
in non-line-of-sight (NLOS) scenarios. However, we consider
the Gaussian assumption in this study for the following

purposes:
1) closed-form expressions can be obtained for the theoreti-

cal limits and the proposed estimator under the Gaussian
model;

2) the cooperative positioning scenario studied in this
manuscript has not been investigated before in the lit-
erature, even for Gaussian error models. Therefore, this
study can be considered as a first step in the investigation
of such scenarios, and non-Gaussian error models can
be considered as future studies;

3) the model/estimators studied in this paper can be ex-
tended to cover NLOS scenarios if the errors can be
modeled as Gaussian random variables with positive
means [39].

In summary, the main contributions of this study are:
1) a new model for multiple target nodes positioning in

cooperative networks in which for every target node the
other target nodes play the role of pseudo secondary
nodes;

2) a joint turn-around time and position estimation idea for
the TW-TOA;

3) derivation of the MLE and the CRLB for the cooperative
networks considered in this study;

4) a novel three step linear estimator based on linearizing
the measurements using two different techniques: non-
linear processing and first-order Taylor series.

The remainder of the paper is organized as follows. Sec-
tion II explains the system model and the problem formulation
considered in this paper. The optimal estimator and theoretical
limits are derived in Section III. In Section IV, a three-step
linear estimator is obtained. Simulation results are discussed
in Section VI. Finally, Section VII makes some concluding
remarks.

Notation: The following notations are used in this pa-
per. Lowercase Latin/Greek letters, e.g., a, b, β, denote scalar
values and bold lowercase Latin/Greek letters show vectors.
Matrices are shown by bold uppercase Latin/Greek letters. 1M

and 0 denote the vector of M ones and the vector (matrix) of
all zeros, respectively. IM is the M by M identity matrix.
The operators Tr(·) and E{·} are used to denote the trace
of a square matrix and the expectation of a random variable
(or vector), respectively. The Euclidian norm of a vector is
denoted by ‖ · ‖. For a matrix A ∈ R

n×m, the Frobenius
norm of A, i.e., ‖A‖F , is defined as ‖A‖F = (Tr(AT A))1/2.
The (blk)diag(X1, . . . , XN ) is a (block) diagonal matrix with
diagonal elements (blocks) X1, . . . , XN and |X | shows the
cardinality of the set X . d·e denotes the ceiling function and
d(a, b) is the Euclidian norm of a − b, i.e., ‖a − b‖. The
function mod(m,n) denotes the modulo operation that gives
the remainder of division of m by n.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Let us consider a two-dimensional network 1 with N +
M +L sensor nodes. Suppose that the first N +M reference

1The generalization to a three-dimensional scenario is straightforward, but
is not explored in this paper.
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nodes are located at known positions ai = [ai,1 ai,2]
T ∈ R

2,
i = 1, ..., N +M and the remaining L target nodes are placed
at unknown positions x` = [x`,1 x`,2]

T ∈ R
2, ` = N +

M + 1, . . . , N +M + L. For simplicity, we assume that the
first N sensors are the PRNs and the next M sensors are the
SRNs. Suppose that the PRNs are used to measure the TW-
TOA between the PRNs and the L target nodes and that M
SRNs are able to listen and measure signals transmitted by
both the PRNs and the target nodes.

Let us define IP := {1, . . . , N}, IS := {N + 1, . . . , N +
M}, and IT := {N +M + 1, . . . , N +M +L} as the set of
indices of primary, secondary, and target nodes, respectively.
Let C` := {(i, j)| PRN i ∈ IP can communicate with target
node ` ∈ IT and SRN j ∈ IS can receive both signals
transmitted by PRN i and target node `} as the set of all
pairs with one primary node and one secondary node that are
connected to each other and also connected to target node `.
We also define T` := {(i, j)| PRN i ∈ IP can communicate
with target node ` ∈ IT and target node j ∈ IT , j 6= `, can
receive both signals transmitted by PRN i and target node `} as
the set of all pairs with one primary node and one target node
that are connected to each other and also connected to target
node `. For notational convenience, let us order the elements of
sets C` and T`, and write C` := I`

P1
×I`

S and T` := I`
P2

×I`
T ,

where

I`
P1

:= {i1, i2, . . . , iP1(`)} ⊆ IP , i1 < i2 < . . . < iP1(`),

I`
P2

:= {i′1, i′2, . . . , i′P2(`)} ⊆ IP , i′1 < i′2 < . . . < i′P2(`)
,

I`
S := {j1, j2, . . . , jS(`)} ⊆ IS , j1 < j2 < . . . < jS(`),

I`
T := {p1, p2, . . . , pT (`)} ⊆ IT , p1 < p2 < . . . < pT (`).

(1)

To simplify later calculations, we further assume that the SRNs
and targets connected to target ` are connected to the same set
of primary nodes, i.e.,

I`
P1

= I`
P2

= I`
P := {i1, i2, . . . , iP (`)} ⊆ IP ,

i1 < i2 < . . . < iP (`). (2)

The TW-TOA measurement between primary node i and
target node ` can be written as [14]

t̂i,` =
d(ai, x`)

c
+
T ar

i,`

2
+
ñ`,i

2
+
ñi,`

2
, i ∈ I`

P , ` ∈ IT ,

(3)

where c is the speed of propagation, d(ai, x`) is the Euclidian
distance between PRN i and the point x`, T ar

i,` is the turn-
around time in response to the signal transmitted by the ith
PRN at target node `, ñi,` is the TOA estimation error at
target node ` for the signal transmitted by the ith PRN,
and ñ`,i is the TOA estimation error at the ith PRN for
the signal received from target node `. The estimation errors
are modeled as zero mean Gaussian random variables with
variances σ2

`,i/c
2 and σ2

i,`/c
2; i.e., ñ`,i ∼ N (0, σ2

`,i/c
2) and

ñi,` ∼ N (0, σ2
i,`/c

2) [6], [14].
Suppose that SRNs and other target nodes are able to

measure the TOA of the received signal from target node `
and PRN i connected to target node `. The TOA estimates
of the signal received from the ith PRN, during the TW-TOA

measurement with target node `, at SRN j and at target node
p are

t̂i,`,j = T `
oi

+
d(ai, aj)

c
+ ñi,`,j , (i, j) ∈ C`, ` ∈ IT , (4a)

t̂i,`,p = T `
oi

+
d(ai, xp)

c
+ ñi,`,p, (i, p) ∈ T`, ` ∈ IT , (4b)

where the ith PRN sends its signal at time instant T `
oi

to target
node `, which is unknown to SRN j and to target node p,
d(ai, aj) and d(ai, xp) are the distances between PRN i to
SRN j and to target node p, respectively, ñi,`,j and ñi,`,p

are modeled as zero mean Gaussian random variables with
variances σ2

i,`,j/c
2 and σ2

i,`,p/c
2, i.e., ñi,`,j ∼ N (0, σ2

i,`,j/c
2)

and ñi,`,p ∼ N (0, σ2
i,`,p/c

2).
Suppose that the response signal from target node ` to this

signal is also received at SRN j and at target node p as well.
The TOA estimates for these signals at SRN j and at target
node p are given by

t̂ji,` = T `
oi

+
d(ai, x`)

c
+
d(x`, aj)

c
+ T ar

i,` + ñi,` + ñ`,j ,

(i, j) ∈ C`, ` ∈ IT , (5a)

t̂pi,` = T `
oi

+
d(ai, x`)

c
+
d(x`, xp)

c
+ T ar

i,` + ñi,` + ñ`,p,

(i, p) ∈ T`, ` ∈ IT . (5b)

Having two measurements in SRN j, namely, measurements
in (4a) and in (5a), we are able to measure the TDOA between
PRN i and target node ` corresponding to the distance from
PRN i to target node ` plus two additional distances; distance
from target node ` to SRN j and a distance due to the unknown
turn-around time, i.e., T ar

i,`, at target node `.
To gain some insight into the problem, let us consider Fig. 1

and Fig. 2, where one PRN (PRN 1) performs the TW-TOA
estimation with Target 4. Namely, PRN 1 sends a signal to
Target 4 at time instant T 4

o1
, and Target 4 replies to this signal

after T ar
1,4, see Fig. 2. Suppose that three other nodes, SRN 2,

SRN 3, and Target 5, listen to both signals. Since the distances
between the reference nodes are known, it is possible in the
secondary node to estimate the time reference T 4

o1
from (4a),

e.g., SRN 2 in Fig. 2; Hence, SRNs are able to estimate the
overall distance from PRN i to target node ` and target node
` to SRN j plus the additional distance due to the delay T ar

i,`,
assuming that T ar

i,` is positive, as follows:

zj
i,` = c (t̂ji,` − T̂ `

oi
) = d(ai, x`) + d(aj , x`) + c T ar

i,`

+ n`,j + ni,` − ni,`,j , (i, j) ∈ C`, ` ∈ IT , (6)

where T̂ `
oi

is an estimate of T `
oi

at the jth SRN, e.g., T̂ `
oi

=
t̂i,`,j − d(ai, aj)/c = T `

oi
+ ñi,`,j , n`,j = c ñj,`, ni,` = c ñi,`,

and ni,`,j = c ñi,`,j .
Similar to the process for the SRNs, other target nodes that

receive both signals from PRN i and target node ` can play
the role of secondary nodes, e.g., Target 5 in Fig. 1 and Fig. 2.
Subtracting (5b) from (4b) and then multiplying with c yields

zp
i,` = c (t̂pi,` − t̂i,`,p) = d(ai, x`) + d(x`, xp) − d(ai, xp)

+ c T ar
i,` + n`,p + ni,` − ni,`,p, (i, p) ∈ T`, ` ∈ IT , (7)
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Target 4

Target 5

PRN 1

SRN 2

SRN 3

C4 = {(1, 2), (1, 3)}

T4 = {(1, 5)} IT = {4, 5}

I4
P = {1} I4

S = {2, 3}

Fig. 1. A cooperative network consisting of one primary node, three
secondary nodes, and two target nodes. Here the primary node initiates the
TW-TOA measurement with Target 4. Both signals transmitted by PRN 1 and
Target 4 are received at SRN 2, SNR 3, and Target 5.

PSfrag replacements

Target 4

Target 5

PRN 1

SRN 2

T 4
o1

T̂ 4
o1

T ar
1,4

t̂1,4

t̂1,4,2

t̂21,4

t̂1,4,5 t̂51,4

TDOA

TDOA

TW-TOA

Fig. 2. The primary node 1 transmits a signal at T 4

o1
and Target 4 responses

to the received signal after T ar
1,4. SNR 2 and Target 5 receive both signals

transmitted by PRN 1 and Target 4, and compute TDOA measurement.

where n`,p = c ñ`,p and ni,`,p = c ñi,`,p.
In Eq. (6), parameters of target node `, i.e., x` and T ar

i,`,
are unknown, while in Eq. (7) besides the parameters of target
node `, the position of unknown target node p, i.e., xp, is
also present. Note that target node p cannot make an estimate
of T `

oi
since the distance between PRN i and target node p

is known in advance. From Eq. (3), the distance estimate to
target node ` in the ith PRN plus additional distance due to
the unknown turn-around time T ar

i,` is expressed as

zi,` = c t̂i,` = d(ai, x`) + c
T ar

i,`

2
+
ni,`

2
+
n`,i

2
, i ∈ I`

P ,

` ∈ IT , (8)

where ni,` = c ñi,` and n`,i = c ñ`,i. Let us define the vector
of measurement z as

z = [zT
N+M+1 . . . zT

N+M+L]T , (9)

where

z` =
[

zi1,` . . . ziP (`),` z
j1
i1,` . . . z

jS(`)

ip(`),`
zp1

i1,` . . . z
pT(`)

iP (`),`

]T

,

(in, jm) ∈ C`, (in, pm) ∈ T`, ` ∈ IT . (10)

The goal of a positioning algorithm is to find the position of
L target nodes based on the position of the N + M known
sensor nodes and measurements made in (9).

In the positioning literature, it is commonly assumed that
either an estimate of T ar

i,` is available [14] or it is extremely
small such that it can be neglected [18], [19]. Since the esti-
mation of the turn-around time needs an accurate calibration,
it may generally increase the complexity. In this paper, we
assume that no a priori knowledge of the turn-around time
T ar

i,` is available. Since the turn-around time depends on the
processing time at a target node, it is then reasonable to assume
a constant value for it. Here we assume that for every target
node, the turn-around time is unknown but fixed for all links,
i.e., T ar

i,` = T ar
` , i ∈ I`

P , ` ∈ IT .

III. OPTIMAL ESTIMATOR AND THEORETICAL LIMITS

In this section, we first derive the MLE for the positioning
problem and in the sequel a theoretical lower bound on the
variance of any unbiased estimator is obtained. To derive the
MLE, we consider turn-around times as nuisance parameters
that can be estimated along with target nodes’ positions.

A. Maximum likelihood estimator

To find the MLE, we need to find the probability distribu-
tion function (PDF) of the measurement vector z in (9). In
Appendix A, the PDF of measurement vector z, i.e., fZ(z; ξ),
is computed. The MLE then can be obtained by the following
optimization problem:

ξ̂ := argmax
ξ

fZ(z; ξ), (11)

where ξ is defined in (58). The expression for the MLE is
given by

ξ̂ := argmin
ξ

∑

`∈IT

∑

i∈I`
P

{(

4

ae
`,iσ

4
`,i

− 2

σ2
`,i

)

α2
i,`(x`)

+
∑

j∈I`
S

(
αj

i,`(x`)
)2

2(σ2
`,j + σ2

i,`,j)
+
∑

m∈I`
T

(

ᾱm
i,`(x`, xm)

)2

2(σ2
`,m + σ2

i,`,m)

− 4αi,`(x`)

ae
`,iσ

2
`,i

(
∑

j∈I`
S

αj
i,`(x`)

σ2
`,j + σ2

i,`,j

+
∑

m∈I`
T

ᾱm
i,`(x`, xm)

σ2
`,m + σ2

i,`,m

)

− 1

ae
`,i

∑

j∈I`
S

∑

m∈I`
T

αj
i,`(x`)ᾱ

m
i,`(x`, xm)

2(σ2
`,j + σ2

i,`,j)(σ
2
`,m + σ2

i,`,m)

− 1

ae
`,i

(
∑

m∈I`
T

ᾱm
i,`(x`, xm)

2(σ2
`,m + σ2

i,`,m)

)2

− 1

ae
`,i

(
∑

j∈I`
S

αj
i,`(x`)

2(σ2
`,j + σ2

i,`,j)

)2
}

(12)

where ae
`,i, αi,`, αj

i,`, and ᾱm
i,` are given in Appendix A, i.e.,

Eq. (60) and Eq. (64).
As can be seen, the MLE forces a difficult global opti-

mization problem due to nonlinearity and nonconvexity issues.
Therefore, we need to resort to the numerical methods, e.g., an
iterative search algorithm with a good initial point. To avoid
drawbacks in solving the MLE, in the next section we derive
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a three-step linear estimator that approaches the CRLB for
sufficiently high SNRs.

Note that for a single target node and a known turn-around
time, expression in (12) changes to the MLE derived in [14]. It
is also observed that when σi,`,j → ∞ and σi,`,m → ∞, i.e., a
noncooperative scenario (conventional network) where T` = ∅,
the MLE reduces to the well-known weighted nonlinear least
squares estimator

ξ̂ := argmin
ξ

∑

`∈IT

∑

j∈I`
S

{(

4

ae
`,iσ

4
`,i

− 2

σ2
`,i

)

α2
i,`(x`)

}

.

(13)

B. Cramér-Rao lower bound

Since the TOA errors are Gaussian random variables, z
in (9) is modeled as a Gaussian random vector with mean
µ and covariance matrix C, i.e., z ∼ N (µ,C), where mean
vector µ and covariance matrix C are as computed in Ap-
pendix B.

Considering the measurement vector in (9) with mean µ
and covariance matrix C, which are given by (65) and (67),
respectively, the Fisher information matrix can be computed
as [40]:

[J]nm =

[
∂µ

∂ψn

]T

C−1

[
∂µ

∂ψm

]

, n = 1, . . . , 3L

m = 1, . . . , 3L,

where

ψi =







x`,1, if i ≤ 2L, mod(i, 2) = 1, ` = (N +M) + d i
2e

x`,2, if i ≤ 2L, mod(i, 2) = 0, ` = (N +M) + d i
2e

T ar
` , if 2L < i ≤ 3L, ` = (N +M) + i− 2L.

(14)

Based on (66), ∂µ/∂ψn can be obtained as follows:

[
∂µ

∂ψn

]

=

[

∂µT
N+M+1

∂ψn
. . .

∂µT
N+M+L

∂ψn

]T

n=1,...,3L

∂µ`

∂ψn
=

[

∂µi1,`

∂ψn
. . .

∂µiP (`),`

∂ψn

∂µj1
i1,`

∂ψn
. . .

∂µ
jS(`)

iP (`),`

∂ψn

∂µp1

i1,`

∂ψn
. . .

∂µ
pT (`)

iP (`),`

∂ψn

]T

, (in, jm) ∈ C`, (in, pm) ∈ T`, ` ∈ IT , (15)

where

∂µi,`

∂ψn
=







x`,1−ai,1

d(ai,x`)
, if mod(n, 2) = 1, ` = N +M + dn

2 e
x`,2−ai,2

d(ai,x`)
, if mod(n, 2) = 0, ` = N +M + dn

2 e
c
2 , if ` = N +M + n− 2L

0, otherwise

i ∈ I`
P , ` ∈ IT , (16)

∂µj
i,`

∂ψn
=







x`,1−ai,1

d(ai,x`)
+

x`,1−aj,1

d(x`,aj)
, if mod(n, 2) = 1, ` = N +M + dn

2 e
x`,2−ai,2

d(ai,x`)
+

x`,2−aj,2

d(x`,aj)
, if mod(n, 2) = 0, ` = N +M + dn

2 e
c, if ` = N +M + n− 2L

0, otherwise

(i, j) ∈ C`, ` ∈ IT , (17)

∂µp
i,`

∂ψn
=







x`,1−ai,1

d(ai,x`)
+

x`,1−xp,1

d(x`,xp) , if mod(n, 2) = 1, ` = N +M + dn
2 e

x`,2−ai,2

d(ai,x`)
+

x`,2−xp,2

d(x`,xp) , if mod(n, 2) = 0, ` = N +M + dn
2 e

c, if ` = N +M + n− 2L
xp,1−x`,1

d(x`,xp) − xp,1−ai,1

d(ai,xp) , if mod(n, 2) = 1, p = N +M + dn
2 e

xp,2−x`,2

d(x`,xp) − xp,2−ai,2

d(ai,xp) , if mod(n, 2) = 0, p = N +M + dn
2 e

0, otherwise

(i, p) ∈ T`, ` ∈ IT . (18)

The CRLB, which is a lower bound on the variance of any
unbiased estimator, can be obtained as

E{‖x̂` − x`‖2} ≥
([

J−1
]

(j−1)(j−1)
+
[
J−1
]

jj

)
∣
∣
∣

j=2(`−(N+M))

,

` ∈ IT . (19)

For the single target node, the CRLB in (19) reduces to

E{‖x̂1 − x1‖2}

≥ J33(J22 + J11) − (J2
32 + J2

13)

J33(J11J22 − J2
12) + (2J31J23J12 − J22J2

13 − J11J2
23)

=
J33 − (J2

32 + J2
13)(J22 + J11)

−1

J33Υ + (2J31J23J12 − J22J2
13 − J11J2

23)(J22 + J11)
−1

(20)

where Jij = [J]ij and Υ−1 = J22+J11

J11J22−J2
12

is a lower bound
on the variance of any unbiased estimator when the perfect
knowledge of the turn-around time is available [14]. For the
perfect knowledge of the turn-around time, i.e., Ji3 → 0, i =
1, 2, 3, Eq. (20) tends to Υ−1.

Note that all results obtained here and in the previous
section can also be applied to conventional networks in which
there are only primary nodes.

IV. LINEAR ESTIMATOR

In this section, using linearization techniques, we obtain a
linear estimator to solve the positioning problem for cooper-
ative networks. In the proposed estimator, we first obtain a
coarse estimate for the position of the target nodes, and then
refine them in the next steps.
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A. First step

One way to obtain a linear model versus the target node’s
position is to apply a nonlinear pre-processing on measure-
ments [34], [41], [42]. Suppose that the level of noise is small.
Lets move the term cT ar

` /2, recalling that T ar
i,` = T ar

` , in (8)
to the left-hand-side. Now squaring both sides, after dropping
the small term, yields

z2
i,` − c zi,`T

ar
` + c2

(
T ar

`

)2

4
≈ ‖x`‖2 − 2aT

i x` + ‖ai‖2

+ 2d(ai, x`)ϑi,`, i ∈ I`
P , ` ∈ IT , (21)

where ϑi,` = ni,`/2+n`,i/2. A linear model can be obtained
as follows:

z̃i,` = z2
i,` − ‖ai‖2 =

[
−2aT

i zi,` 1
]
ψ` + 2d(ai, x`)ϑi,`,

i ∈ I`
P , ` ∈ IT , (22)

where ψ` =
[
xT

` cT ar
` ‖x`‖2 − (cT ar

` )2/4
]T .

For the TDOA measurement at the jth SRN, i.e., Eq. (6),
we first arrange a new set of measurements as

z̃j
i,` = zj

i,` − zi,` = d(x`, aj) + c
T ar

`

2
+ ε`i,j , (i, j) ∈ C`,

` ∈ IT , (23)

where ε`i,j = n`,j + ni,`/2 − n`,i/2 − ni,`,j . Now similar to
Eq. (21), we can linearize Eq. (23) to get
(

z̃j
i,`

)2

− c z̃j
i,`T

ar
` + c2

(T ar
` )2

4
≈ ‖x`‖2 − 2aT

j x` + ‖aj‖2

+ 2d(x`, aj)ε
`
i,j , (i, j) ∈ C`, ` ∈ IT . (24)

Again a linear model based on unknown parameters is ob-
tained as follows:

¯̃rj
i,` =

(

z̃j
i,`

)2

− ‖aj‖2 =
[

−2aT
j z̃j

i,` 1
]

ψ` + 2d(x`, aj)ε
`
i,j ,

(i, j) ∈ C`, ` ∈ IT .

The linear set of equations can be written as

d` = A`ψ` + ν`, ` ∈ IT , (25)

where

d` =
[

z̃i1,` . . . z̃iP (`),`
¯̃rj1
i1,` . . . ¯̃r

jS(`)

iP (`),`

]T

, (26a)

A` =














−2aT
i1 zi1,` 1

...
...

...
−2aT

iP (`)
ziP (`),` 1

−2aT
j1

z̃j1
i1,` 1

...
...

...
−2aT

jS(`)
z̃

jS(`)

iP (`),`
1














, (26b)

ν` = 2
[

d(ai1 , x`)ϑi1 ,` . . . d(aiP (`)
, x`)ϑiP (`),` d(x`, aj1)ε

`
i1,j1

. . . d(x`, ajS(`)
)ε`iP (`),jS(`)

]T

, (in, jm) ∈ C`, (in, pm) ∈ T`.

(26c)

Using the least squares criterion [40, Ch. 8], a closed-
form solution to Eq. (25) can be obtained as ψ̂` =
(AT

` C−1
ν`

A`)
−1AT

` C−1
ν`

d`. If matrix A` is ill-conditioned, we
can use the regularization technique [38, Ch. 6] to get

ψ̂` = (AT
` C−1

ν`
A` + λ`I4)−1AT

` C−1
ν`

d`, ` ∈ IT , (27)

where parameter λ` defines the tradeoff between ‖d`−A`ψ`‖2

and ‖ψ`‖2, and the covariance matrix Cν`
of the zero mean

noise vector ν` is as computed in Appendix C.
We here show for a large network, matrix A` in (26b) is

ill-conditioned, i.e., has a large condition number (CN). To
that aim, we first find a lower bound on the CN of the matrix
A`.

Lemma 4.1: Let F be an n by m matrix with ordered
singular values δ1 ≥ δ2 ≥ . . .. Let Fr denote a submatrix
of F derived by deleting a total of r rows/or columns from F.
Suppose the ordered singular values of Fr are δ̃1 ≥ δ̃2 ≥ . . ..
Then

δk ≥ δ̃k ≥ δk+r , k = 1, . . . ,min{n,m}, (28)

where for a p by q matrix H we set δj = 0 if j > min{p, q}.
Proof: Please see Corollary 3.1.3 in [43, Ch. 3].

Proposition 4.2: (Sufficient condition) Let A`,4 ∈ R
Q×3,

where Q = I`
P (1 + I`

S), be a submatrix of the A` ∈ R
Q×4

in (26b) derived by deleting the last column (the 4th column)
of matrix A`. If ‖A`,4‖F >>

√
Q (e.g., this is the case for a

large network where some entries of matrix A`,4 have large
values), then the CN of matrix A` is large and the matrix is
ill-conditioned.

Proof: Suppose that matrix A` = [τ 1 τ 2 τ 3 τ 4]Q×4 has
full column-rank, i.e., Q ≥ 4, where Q is the number of rows
of matrix A` and τ i, i = 1, 2, 3, 4, are column vectors, e.g.,
τ 4 = 1Q. Let δ1 ≥ δ2 ≥ δ3 ≥ δ4 > 0 be the singular values
of matrix A`. Then, one can write [44]

Tr(AT
` A`) =

3∑

i=1

‖τ i‖2 +Q = ‖A`,4‖2
F +Q =

4∑

i=1

δ2i .

Therefore, a lower bound on the largest δ1 of the matrix A`,
although not very tight, can be found as

δ1 ≥

√

Tr(AT
` A`)

4
=

√

‖A`,4‖2
F +Q

4
. (29)

Now we find a simple upper bound on the smallest singular
value δ4. Suppose that we delete all the columns except the
column 4. Then, using Lemma 4.1, we can write

δ4 ≤ ‖1Q‖ =
√

Q. (30)

According to (29) and (30), a lower bound on the CN of the
matrix A` in (26b) can be obtained as

CN of matrix A` =
δ1
δ4

≥
√

‖A`,4‖2
F +Q

4Q
. (31)

Although the lower-bound in (31) is not very tight, it is
sufficient to show that, for large networks, when matrix A`,4
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has ‖A`,4‖2
F >> Q, then it is ill-conditioned. In fact,

lim
‖A`,4‖2

F
Q

→∞

CN =
δ1
δ4

→ ∞.

This condition is sufficient and it does not claim that if the
entries of the matrix A` are small, the CN is consequently
small.

Similar matrices have appeared in the positioning literature
when the least squares approach is employed to solve the
problem, e.g., see [33]–[36], [45]. Therefore, if large networks
are considered, those matrices are ill-conditioned.

Let us decompose the positive semidefinite matrix
AT

` C−1
ν`

A` using singular value decomposition as UT
∆U

where U and ∆ are orthogonal and diagonal matrices, re-
spectively. Considering UT U = I4, we can compute the bias
of the estimator as,

E{ψ̂`} −ψ`

= UT
∆

−1
λ`

∆Uψ` −ψ` = UT
(
∆

−1
λ`

−∆
−1
)
∆Uψ`, (32)

where ∆λ`
= ∆ + λ`I4. It is observed that the estimator in

(27) is biased in general. However, it can be shown that for
high SNRs, the estimator tends to be an unbiased estimator.
The covariance matrix of ψ̂ can be computed as

cov(ψ̂`) =

(AT
` C−1

ν`
A` + λ`I4)−1AT

` C−1
ν`

AT
` (AT

` C−1
ν`

A` + λ`I4)−1.
(33)

To compute the covariance matrix Cν`
, the real distances

between reference nodes to the target ` is required. Since in
practice, the real distances are not available, we instead use the
estimated distances. To do this, first we can compute (27) by
replacing Cν`

with the identity matrix and then we can obtain
the distance estimate from reference nodes to the target. It
has been shown in [41] that the degradation of replacing the
estimated distances instead of the real distances is negligible.

Since the elements of estimated parameters in (27) are
dependent, one method to improve the estimation accuracy,
called correction technique [33], [35], [36], is to take this
relation between elements of ψ̂ into account. Here we extend
the correction technique to our problem. Suppose each element
of (27) can be written as

[ψ̂`]1 = x`,1 + e1,

[ψ̂`]2 = x`,2 + e2,

[ψ̂`]3 = cT ar
` + e3,

[ψ̂`]4 = ‖x`‖2 − 1

4

(
cT ar

`

)2
+ e4, ` ∈ IT . (34)

where ε = [e1 e2 e3 e4]
T is the error of estimation ε =

ψ̂` −ψ`. Let the errors on estimation be considerably small.
Therefore, squaring both sides of the first three elements of
(34) yields

[ψ̂`]
2

1 ' x2
`,1 + 2x`,1e1,

[ψ̂`]
2

2 ' x2
`,2 + 2x`,2e2,

[ψ̂`]
2

3 '
(
cT ar

`

)2
+ 2cT ar

` e3, ` ∈ IT . (35)

Hence, the relation between the estimated elements in (27) can
be written, using (35), as

b` = Bφ` + ζ`, (36)

where

b` =
[

[ψ̂`]
2

1 [ψ̂`]
2

2 [ψ̂`]
2

3 [ψ̂`]4

]T

,

ζ` =
[
2x`,1e1 2x`,2e2 2cT ar

` e3 e4
]T

φ` =
[

x2
`,1 x

2
`,2

(
cT ar

`

)2
]

,

B =







1 0 0
0 1 0
0 0 1
1 1 − 1

4






. (37)

The least squares approximation of φ` is obtained from (36)
as

φ̂` = (BT C−1
ζ`

B)−1BT C−1
ζ`

b`, (38)

where covariance matrix C−1
ζ can be computed as

Cζ`
= E{(b` − Bφ)(b` − Bφ`)

T } = Λ` cov (ψ̂`)Λ`, (39)

where Λ` = diag(2x`,1, 2x`,2, 2cT
ar
` , 1).

To compute the covariance matrix Λ`, since the exact value
of the unknown vector φ` is not available, the estimated one
from (27) is replaced. The covariance matrix of φ̂` is given
by

cov(φ̂`) = (BT C−1
ζ`

B)−1. (40)

Finally, the target position can be obtained as follows:

x̃`,j =

∣
∣[ψ̂`]j

∣
∣

[ψ̂`]j

√
∣
∣[φ̂`]j

∣
∣, j = 1, 2, ` ∈ IT . (41)

The estimate x̃` = [x̃`,1 x̃`,2]
T obtained in (41) is a coarse

estimate and it is refined in step three.
The covariance matrix of the estimator in (41) can be

computed similar to [35] as follows. Suppose that the estimate
in (38) can be written as

φ̂` = φ` + ζ̃, (42)

where ζ̃ = [ζ̃1 ζ̃2] is the error of estimation in (38). Using
the first-order Taylor-series expression, assuming small error
ζ̃, we get

x̃`,j =

∣
∣[ψ̂`]j

∣
∣

[ψ̂`]j

(

|x`,j | +
1

2|x`,j |
ζ̃j

)

, j = 1, 2. (43)

Hence, the covariance matrix of x̃` can be computed as

cov(x̃`) = B̃`

[

cov (φ̂`)
]

(1:2,1:2)
B̃`, (44)

where B̃` = 1
2diag

(

|x`,1|−1
, |x`,2|−1

)

and [Z](1:n,1:m) de-
notes the upper left n×m part of matrix Z.



8

B. Second step

In this step, we consider the measurements taken in (7)
between target nodes that were not involved in the first
step. Since the turn-around time is linearly dependent on the
measurements in (7), we derive a simple estimator for the
turn-around time estimation.

For a small error of estimation, let us apply the first-order
Taylor-series expansion for the measurements in (7) about (41)
(considering x̃` = [x̃`,1 x̃`,2]

T , ` ∈ IT ) as follows:

zp
i,` ' d(ai, x̃`) + d(x̃`, x̃p) − d(ai, x̃p) +

(x̃` − ai)
T

d(ai, x̃`)
(x` − x̃`)

+
(x̃` − x̃p)

T

d(x̃`, x̃p)
(x` − x̃`) −

(x̃p − ai)
T

d(ai, x̃p)
(xp − x̃p) + c T ar

`

+
(x̃p − x`)

T

d(x̃`, x̃p)
(xp − x̃p) + np,` + ni,` − ni,`,p

= d(ai, x̃`) +

(
x̃` − ai

d(ai, x̃`)
+

x̃` − x̃p

d(x̃`, x̃p)

)T

(x̃` − x̃`)

− d(ai, x̃p) +

(
x̃p − x̃`

d(x̃`, x̃p)
− x̃p − ai

d(ai, x̃p)

)T

(xp − x̃p)

+ d(x̃`, x̃p) + cT ar
` + np,` + ni,` − ni,`,p, (i, p) ∈ T`,

` ∈ IT , (45)

If the distribution of random vector ∆x` = x`−x̃` is known,
it is possible to derive the MLE for the turn-around time T ar

` .
For high SNRs, the estimator obtained in the last section is
approximately an unbiased estimator, i.e., E{x`−x̃`} ≈ 0, ` ∈
IT . Instead of deriving the MLE, an estimator based on the
least squares criterion can be obtained and we can estimate
the turn-around time T ar

` as

T̃ ar
` =

1

c|T`|
∑

(i,p)∈T`

(

zp
i,` − d(ai, x̃`) − d(x̃`, x̃p) + d(ai, x̃p)

)

.

(46)

A more accurate estimation can be obtained considering the
weighting matrix based on the covariance matrix of the noise.
We leave it here since the simple averaging estimator works
well as we observed through simulations.

C. Third step

In the final step, the estimate of target nodes’ positions is
refined. The difference between this step and two previous
steps is that here all target nodes’ positions are corrected
simultaneously while in the two last steps, every estimation
parameter, i.e., the position of the target node or the turn-
around time, is updated one by one. Based on the estimation
in the step one and two, namely estimation in (41) and (46),
let us apply the first-order Taylor series expansion to whole
measurements. For target node `, we get

zi` ' d(ai, x̃`) +
(x̃` − ai)

T

d(ai, x̃`)
(x` − x̃`) + c

T̃ ar
`

2
+
ni,`

2
+
n`,i

2
,

i ∈ I`
P , ` ∈ IT , (47a)

zj
i,` ' d(ai, x̃`) +

(
x̃` − ai

d(ai, x̃`)
+

x̃` − aj

d(x̃`, aj)

)T

(x` − x̃`)

+ d(x̃`, aj) + cT̃ ar
` + nj,` + ni,` − ni,`,j , (i, j) ∈ C`, ` ∈ IT ,

(47b)

zp
i,` ' d(ai, x̃`) +

(
x̃` − ai

d(ai, x̃`)
+

x̃` − x̃p

d(x̃`, x̃p)

)T

(x` − x̃`)

+ cT̃ ar
` +

(
x̃p − x̃`

d(x̃`, x̃p)
− x̃p − ai

d(ai, x̃p)

)T

(xp − x̃p) + d(x̃`, x̃p)

− d(xi, x̃p) + np,` + ni,` − ni,`,p, (i, p) ∈ T`, ` ∈ IT .
(47c)

Therefore, from (47a), (47b), and (47c) a new linear model
based on the error of estimation 4x can be derived as

h = G4x + ν, (48)

where 4x =
[
4xT

N+M+1 . . . 4xT
N+M+L

]T and 4x` = x`−
x̃`, and vector h =

[
hT

N+M+1 . . . hT
N+M+L

]T
is obtained as

follows:

h` =
[

hi1,` . . . hiP (`),` h
j1
i1,` . . . h

jS(`)

iP (`),`
hp1

i1,` . . . h
pT (`)

iP (`),`

]T

,

(in, jm) ∈ C`, (in, pm) ∈ T`, ` ∈ IT , (49)

where

hi,` = zi,` − d(ai, x̃`) − c
T̃ ar

`

2
, hj

i,` = zj
i,` − d(ai, x̃`)

− d(x̃`, aj) − c T̃ ar
` ,

hp
i,` = zp

i,` − d(ai, x̃`) − d(x̃`, x̃p) + d(ai, x̃p) − cT̃ ar
` ,

i ∈ I`
P , (i, j) ∈ C`, (i, p) ∈ T`, ` ∈ IT . (50)

Let matrix G be written as

G =
[

GT
N+M+1 . . . GT

N+M+L

]T

, (51)

where submatrix G` is obtained as

G` =
[

gi1,` . . . giP (`),`
gj1

i1,` . . . g
jS(`)

iP (`),`
gp1

i1,` . . . g
pT (`)

iP (`),`

]T

,

(in, jm) ∈ C`, (in, pm) ∈ T`, ` ∈ IT , (52)

and vectors gi,` ∈ R
2L×1, gm

n,` ∈ R
2L×1, and gq

p,` ∈ R
2L×1

are obtained as

gi,` =

[

0 . . .
(x̃` − ai)

T

d(ai, x̃`)
︸ ︷︷ ︸

`th

. . . 0

]T

,

gj
i,` =

[

0 . . .
(x̃` − ai)

T

d(ai, x̃`)
+

(x̃` − aj)
T

d(x̃`, aj)
︸ ︷︷ ︸

`th

. . . 0

]T

,

[gp
i,`]k =







0 if k 6= `, p
(x̃`−x̃p)T

d(x̃`,x̃p) + (x̃`−ai)
T

d(ai,x̃`)
, if k = `

(x̃p−x̃`)
T

d(x̃`,x̃p) − (x̃p−ai)
T

d(ai,x̃p) , if k = p.

(53)

To solve (48), we note that the new linear model is derived
assuming small errors of estimation. Hence, to obtain the
estimation error from (48), i.e., 4x, to be small enough (if
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possible), we solve a regularized least squares problem as
follows:

minimize
4x

‖h − G4x‖2
C−1 + γ ‖4x‖2, (54)

where the regularization parameter γ > 0 determines the
tradeoff between ‖h−G4x‖2

C−1 and ‖4x‖2, and ‖α‖2
P stands

for the weighted norm αT Pα. The solution to (54), Tikhonov
regularization problem, is given by [38, Ch. 6]

4̃x =
(
GT C−1G + γI2L)−1GT C−1h, (55)

where the covariance matrix C is given by (67) in Appendix B.
Finally, the updated estimate in this step is

¯̃x` = x̃` + 4̃x`, ` ∈ IT . (56)

It is noticed that step three can be repeated for a number of
updates; however, as observed in the simulations, one round
of update is sufficient to get very close to the CRLB. Note
that similar procedures can be derived for the conventional
networks.

V. COMPLEXITY ANALYSIS

In this section we evaluate the complexity of the estimators
considered in this study based on the total number of the
floating-point operations or flops. We assume that an addition,
subtraction, multiplication, division, or square root operation
in the real domain can be computed by one flop. We calculate
the total number of the flops for every method and express it
as a polynomial of the free parameters [46]. To simplify the
expression, we keep only the leading term of the complexity
expression.

A. The maximum likelihood estimator

As previously mentioned, the MLE is nonlinear and non-
convex. The complexity of the MLE highly depends on the
solution method. Moreover, for every method we may have
a number of parameters that affect the complexity, e.g., the
number of iterations, the initial point, or the solution accuracy.
We leave the complexity analysis of methods that may be
used to solve the MLE and instead we compute the cost of
evaluating the objective function of the MLE (12) for a certain
point. To do that we first compute the cost of each element
in (12) separately. We need 6 flops to compute a distance. For
computing αi,`(x`), α

j
i,`(x`), and ᾱm

i,`(x`, xm), we require 9,
15, and 22 flops, respectively (we consider c T ar

` as a single
variable). Similarly, 1/ae

`,i needs 6 + 5(|I`
s | + |I`

T |) flops to
compute. Then the total number of flops for evaluating the
MLE at a point can be computed as

MLE flops '
∑

`∈IT

|I`
P |
(
74 + 13(|I`

S | + |I`
T |) + 3|I`

S ||I`
T |
)
.

Therefore, for dense networks the leading term is

MLE flops ' 3
∑

`∈IT

|I`
P ||I`

S ||I`
T |.

B. The linear estimator

For the linear estimator, we compute the complexity for
each step. Hence, the total cost is the sum of the complexity of
three steps. There are a number of ways to find the complexity
of a linear estimator, e.g., see [47], [48]. Here, we derive
the complexity for the worst case without any attempt to
optimize computations to take advantage of, e.g., the structure
of matrices.

1) First step: We first compute the complexity of comput-
ing C−1

ν`
. Cν`

can be computed by |I`
P |(25 + 13|I`

S|+ |I`
S |2)

flops. Now we compute the positive definite matrix C−1
ν`

by
(
|I`

P |(1 + |I`
S |)
)3

+
(
|I`

P |(1 + |I`
S |)
)2

+ |I`
P |(1 + |I`

S |) flops.
The matrix multiplication AT

` C−1
ν`

requires 8
(
|I`

P |(1+ |I`
S |)
)2

flops. Therefore, the total complexity of Eq. (27) can be
computed as:

First step flops

' 3|I`
P |(1 + |I`

S |) + |I`
S |

︸ ︷︷ ︸

cost of computing d`

+ |I`
P |(25 + 13|I`

S| + |I`
S |2)

︸ ︷︷ ︸

cost of computing Cν`

+
(
|I`

P |(1 + |I`
S |)
)3

+
(
|I`

P |(1 + |I`
S |)
)2

+ |I`
P |(1 + |I`

S |)
︸ ︷︷ ︸

cost of computing C−1
ν`

+ 8
(
|I`

P |(1 + |I`
S |)
)2

︸ ︷︷ ︸

cost of AT
`

C−1
ν`

+ 32|I`
P |(1 + |I`

S) + 8 + 64 + 16 + 4
︸ ︷︷ ︸

cost of (AT
`

C−1
ν`

A`+λ`I4)−1

+ 8|I`
P |(1 + |I`

S |) + 32
︸ ︷︷ ︸

cost of (AT
`

C−1
ν`

A`+λ`I4)−1AT
`

C−1
ν`

d`

.

Similarly, we can find the complexity of the correction tech-
nique. It can be verified that the complexity of the correction
technique is negligible compared to the cost of Eq. (27)
since the most complex part, i.e., Eq. (33), has been already
computed. Then, for every target we can define the complexity
by getting the leading term as

First step flops ' |I`
P ||I`

S |2 + |I`
P |3|I`

S |3 + 3|I`
P |3|I`

S |2

+ 9|I`
P |2|I`

S |2.
The total cost for all targets can be computed as

Total cost of the first step '
∑

`∈IT

|I`
P ||I`

S |2 + |I`
P |3|I`

S |3

+ 3|I`
P ||I`

S |2 + 10|I`
P |2|I`

S |2.
2) Second step: The cost of the turn-around time estimation

for target node ` can be computed as

Second step flops ' 12|I`
P | + 6|I`

T | + 3|I`
P ||I`

T | + 2.

Then considering the leading terms, the total cost for all targets
can be computed as

Total cost of the second step '
∑

`∈IT

3|I`
P ||I`

T |.

3) Third step: From the first step, we can compute the
matrix C−1 with a little modification. Hence, when computing
the overall cost for an algorithm that involves both step one
and three, we can disregard the cost for computing C−1

when formulating the cost for step three. We will follow this
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approach here, and the complexity of the estimation in (55),
remembering block diagonal nature of the matrix C−1, can be
computed as follows:

Total cost of the third step

'
∑

`∈IT

|I`
P |(|I`

S | + |I`
T |) + |I`

P | + |I`
S | + |I`

T |
︸ ︷︷ ︸

cost of computing G

+ 4L2
∑

`∈IT

|I`
P |(1 + |I`

S | + |I`
T |)

︸ ︷︷ ︸

cost of computing GT C−1

+ 4L2
∑

`∈IT

(|I`
P | + |I`

S | + |I`
T |) + 4L

︸ ︷︷ ︸

cost of GT C−1G+γI2L

+ 4L
∑

`∈IT

|I`
P | + |I`

S | + |I`
T |

︸ ︷︷ ︸

cost of GT C−1h

+ 8L3 + 4L2 + 6L
︸ ︷︷ ︸

cost (GT C−1G+γI2L)−1

+ 2L
︸︷︷︸

cost of (56)

.

Table I shows the cost of different approaches (considering
the leading terms) for a fully connected network.

VI. SIMULATIONS RESULTS

In this section, computer simulations are performed to
evaluate the performance of the different approaches. To
compare different methods, we consider the root-mean-square-
error (RMSE) for target node ` defined as

RMSE =
√

E(‖x̂` − x`‖2). (57)

The network deployment shown in Fig.3(a) consists of four
PRNs (sensor nodes 1, 2, 3, and 4), four SNRs (sensor nodes
5, 6, 7, and 8), and six targets (sensor nodes 9, 10, 11, 12,
13, and 14). The connectivity matrix for the network is shown
in Fig. 3(b), where every target is connected to a number of
PRNs, SRNs, and other targets. For instance target node 9 is
connected to primary nodes 1, 2, and 4, to secondary nodes 5
and 8, and to targets 10, 11, 13, and 14. In every realization for
a target node, the turn-around time is randomly drawn from
[10, 1000] ns. We also assume that σi,` = σ`,i = σi,`,j = σ.
In all simulations, joint estimation of the turn-around time
and the position is considered unless stated otherwise. In
addition, no attempt is taken to choose the optimum value
for the regularization parameters and we simply set λ` = 0.3
and γ = 0.0002. To compute the MLE, we employ Matlab’s
function lsqnonlin [49] initialized with the true values of the
positions and turn-around times of targets. In the simulations,
we consider targets 9, 12, 13, and 14.

A. Effects of the turn-around time

In this section, we study the effects of involving turn-around
times in the estimation process for different scenarios. In
the conventional network (Conv.), the measurements in PRNs
are used to jointly estimate the position of a target and its
turn-around time. For the cooperative network, we distinguish

between involving only SRNs (Coop. 1) and involving both
SRNs and target nodes (Coop. 2) in the estimation process.

In Fig. 4, we illustrate the CRLBs of position estimation for
different networks. For every network, the CRLB is plotted for
two cases; the perfect knowledge of the turn-around time and
the joint estimation of the turn-around time and the position. It
is observed that estimating the turn-around time as a nuisance
parameter can deteriorate the accuracy of the position estima-
tion. For target nodes 9 and 12, the difference between two
cases is negligible, while there is a more noticeable difference
for target nodes 13 and 14, especially for target node 14. For
target node 14 for the conventional network, the gap between
the two curves increases as the standard deviation of noise
increases while for the cooperative networks (Coop. 1 and
Coop. 2) the CRLB of the joint estimation of the turn-around
time and the target position is very close to the CRLB of the
case in which the perfect knowledge of the turn-around time is
available. It is clear from the figure that the cooperation idea
improves the performance of the estimator especially for high
values of the standard deviation of noise. It is concluded that
involving target nodes as pseudo secondary nodes improves
the performance as well.

For further investigations, we study the case when the partial
knowledge of the turn-around time is available. This informa-
tion can be obtained by, for instance, calibrating a target node
with a fixed sensor node. The target node can estimate its turn-
around time using loopback test and then transmit it to other
sensor nodes [13], [14]. Let us model the turn-around time of
target node ` as a Gaussian random variable with mean µT ar

`

and variance σ2
T ar

`
, i.e., T ar

` ∼ N (µT ar
`
, σ2

T ar
`
).

Fig. 5 shows the CRLBs of target node 9 and 14 in various
scenarios when partial knowledge of the turn-around time
is available in different sensor nodes. We fix the standard
deviation of the TOA estimation error (σ) to be equal to 10 and
30 meters and plot the CRLB versus standard deviation σT ar

`
.

It is again observed that the cooperative networks outperform
the conventional network. Based on Fig. 4 and Fig. 5, we can
obtain a benchmark to specify the values of σ and σT ar

`
for

which the joint estimation of position and turn-around time
outperforms to the case in which the partial knowledge of
the turn-around time is available. For instance for target 14,
Coop. 1 for σ = 30 m has better performance compared to the
case in which partial knowledge of the turn-around time with
σT ar

9
≥ 12 is available.

B. Performance of estimators

As mentioned in Section IV-A, matrix A` in (26b) has a
large CN if a large network is considered. For the network
considered in the simulations, we plot the cumulative distri-
bution function (CDF) of the CN of matrix A` for target 9 and
14 in Fig. 6 for 3000 realizations of noise for different values
of σ. It can be observed that the CN of matrix A` is large;
hence, the regularization technique is one option in order to
solve the linear model in (25).

Fig. 7 shows the RMSEs of the MLE, the CLRB, and the
linear estimator for the cooperative network (Coop.2) for target
nodes 9 and 14. It is observed that the linear estimator in step
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TABLE I
COST OF DIFFERENT APPROACHES FOR A FULLY CONNECTED NETWORK, |I`

P | = N, |I`
S | = M, AND |I`

T | = L − 1.

Method Flops
Evaluation of the MLE at a point 3LNM(L − 1)
First step L(NM2 + N3M3 + 3N3M2 + 9N2M2)
Second step 3LN(L − 1)
Third step LN(M + L) + 4L3N(N + L) + 4L3(N + M + L) + 8L3
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Fig. 3. (a) The network deployment used in the simulation (b) The connectivity matrix: the x-marker shows which nodes are connected.
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three attains the CRLB for sufficiently high SNRs. It is also
seen that removing step two and considering a two step linear
estimator, i.e., a linear estimator consisting of step one and step
three, deteriorates the performance for low σ (high SNR). For
high SNRs, it seems that the estimation of the turn-around
time in the first step is more accurate than the one in the
second step. Then, the estimation of the target position in step
three can be affected by the accuracy of the turn-around time
estimation. Note that we do not attempt to obtain the optimum
regularization parameters in the simulations.

VII. CONCLUSIONS

In this paper, we have studied the multi-target positioning
problem in cooperative sensor networks using TW-TOA and
TDOA measurements performed by primary and secondary
nodes, respectively. We have assumed that there is no a priori
knowledge of the turn-around time at target nodes and we
have modeled them as nuisance parameters that can be jointly
estimated with the position of the targets. We have proposed a
new model for multiple target nodes positioning where target
nodes can play the role of secondary nodes. Then, we have
derived an MLE that forces a difficult global optimization
problem due to the nonconvex nature of its cost function. To
cope with the difficulty in solving the MLE, we have used two
different linearization techniques to obtain linear estimators.
The proposed estimator is implemented in three steps: In the
first step, a coarse estimate is obtained; and in the second
and third steps, the estimates are refined. The advantage of
the proposed linear estimator is that it can get very close to
the CRLB for sufficiently high SNRs. For future studies, we
can focus on situations in which some target nodes are just
connected to a number of other target nodes. One approach
for this scenario is to consider the TW-TOA measurements
between the targets. Moreover, positioning in NLOS scenarios
and designing robust algorithms, e.g., based on a projection
approach, are of great interest for future studies. Finally, the
effects of non-Gaussian measurement errors on the proposed
linear estimator can be investigated based on practical TOA
measurements.
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APPENDIX A
PDF OF MEASUREMENTS

Since measurements in (10) are correlated, due to the term
ni,` in (6), (7), and (8), we first perform conditioning on
correlated terms, i.e., nT = [nT

T1
. . . nT

TL
]T and then compute

fZ|NT
(z|nT ; ξ), where

nTk
=
[
ni1,` . . . niP (`),`

]T

im∈I`
P

, `=N+M+k
,

ξ =
[
xT

N+M+1 . . . xT
N+M+L T ar

N+M+1 . . . T ar
N+M+L

]T
.

(58)

In (58), ξ is an unknown vector of positions and turn-around
times of target nodes. From (8), (6), and (7) for given nT , we
can write

fZ|NT
(z|nT ; ξ) = K1

∏

`∈IT

∏

i∈I`
P

exp

{

−2
(
αi,`(x`) − ni,`

2

)2

σ2
`,i

}

∏

j∈I`
S

exp







−

(

αj
i,`(x`) − ni,`

)2

2(σ2
`,j + σ2

i,`,j)







∏

m∈I`
T

exp







−

(

ᾱm
i,`(x`, xm) − ni,`

)2

2(σ2
`,m + σ2

i,`,m)







, (59)

where K1 = (2π)−0.5 NL(M+L−1) and

αi,`(x`) = zi,` − d(ai, x`) − c
T ar

`

2
,

αj
i,`(x`) = zj

i,` − d(ai, x`) − d(x`, aj) − c T ar
` ,

ᾱm
i,`(x`, xm) = zm

i,` − d(ai, x`) − d(x`, xm) + d(ai, xm) − cT ar
` .

(60)

The PDF of the noise vector nT can be computed as (due to
independent samples)

fNT
(nT ) = K2

∏

`∈IT

∏

i∈IP

exp

{

−
n2

i,`

2σ2
i,`

}

(61)

where K2 = (2π)−0.5 NL. Having the conditional PDF (59)
and the PDF of the noise vector nT , i.e., (61), we can obtain
the PDF of the vector z as follows:

fZ(z; ξ) =

∫ ∞

−∞

. . .

∫ ∞

−∞

fZ|NT
(z|nT ; ξ)fNT

(nT )dnT

= K
∏

`∈IT

∏

i∈IP

∫ ∞

−∞

exp

{

− 2

σ2
`,i

(

αi,`(x`) −
ni,`

2

)2

−
∑

m∈T `
T

(

ᾱm
i,`(x`, xm) − ni,`

)2

2(σ2
`,m + σ2

i,`,m)

−
∑

j∈I`
S

(

αj
i,`(x`) − ni,`

)2

2(σ2
`,j + σ2

i,`,j)
−

n2
i,`

2σ2
i,`

}

dni,`, (62)

where K = K1K2.

Using
∫∞

−∞
exp−

(
ax2 + 2bx+ c

)
dx =

√
π
a exp

(
b2−4ac

4a

)
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for a > 0, the PDF of the measurements can be computed as:

fZ(z; ξ)

= K
∏

`∈IT

∏

i∈I`
P

√

π

ae
`,i

exp

{

−
{( 4

ae
`,iσ

4
`,i

− 2

σ2
`,i

)

α2
i,`(x`)

+
∑

j∈I`
S

(
αj

i,`(x`)
)2

2(σ2
`,j + σ2

i,`,j)
+
∑

m∈I`
T

(

ᾱm
i,`(x`, xm)

)2

2(σ2
`,m + σ2

i,`,m)

− 1

ae
`,i

(
∑

m∈I`
T

ᾱm
i,`(x`, xm)

2(σ2
`,m + σ2

i,`,m)

)2

− 4αi,`(x`)

ae
`,iσ

2
`,i

(
∑

j∈I`
S

αj
i,`(x`)

σ2
`,j + σ2

i,`,j

+
∑

m∈I`
T

ᾱm
i,`(x`, xm)

σ2
`,m + σ2

i,`,m

)

− 1

ae
`,i

∑

j∈T `
S

∑

m∈I`
T

αj
i,`(x`)ᾱ

m
i,`(x`, xm)

2(σ2
`,j + σ2

i,`,j)(σ
2
`,m + σ2

i,`,m)

− 1

ae
`,i

(
∑

j∈I`
S

αj
i,`(x`)

2(σ2
`,j + σ2

i,`,j)

)2}
}

(63)

where

1

ae
`,i

=
1

2σ2
`,i

+
1

2σ2
i,`

+
∑

j∈I`
S

1

2(σ2
`,j + σ2

i,`,j)

+
∑

m∈I`
T

1

2(σ2
`,m + σ2

i,`,m)
. (64)

APPENDIX B
MEAN VECTOR AND COVARIANCE MATRIX OF

MEASUREMENTS

The mean µ can be computed as

µ = [µT
N+M+1 . . . µT

N+M+L]T , (65)

where

µ` =
[

µi1,` . . . µiP (`),` µ
j1
i1,` . . . µ

jS(`)

iP (`),`
µp1

i1,` . . . µ
pT (`)

iP (`),`

]T

,

(in, jm) ∈ C`, (in, pq) ∈ T`, ` ∈ IT , (66a)

µi,` = d(ai, x`) + c
T ar

`

2
, µj

i,` = d(ai, x`) + d(x`, xj) + c T ar
` ,

µq
i,` = d(ai, x`) + d(x`, xq) − d(ai, xq) + c T ar

` ,

(i, j) ∈ C`, (i, q) ∈ T`, ` ∈ IT . (66b)

Suppose that the covariance matrix C is expressed as

C = E
{(

z − µ
)(

z − µ
)T}

=








C11 C12 . . . C1L

C21 C22 . . . C2L

...
...

...
...

CL1 CL2 . . . CLL







.

(67)

It can then be shown that Ckm = 0 for k 6= m. To compute
Ckk = E

{
(zN+M+k − µN+M+k)(zN+M+k − µN+M+k)T

}
,

first consider the following expressions:

E

{(
zi,` − µi,`

)(
zj,` − µj,`

)}

=

{

0, i 6= j
σ2

i,`+σ2
`,i

4 , i = j,
,

i ∈ I`
P , ` ∈ IT , (68a)

E

{(
zi,` − µi,`

)(
zj

m,` − µj
m,`

)}

=

{

0, i 6= m
σ2

i,`

2 , i = m,
,

(i, j) ∈ C` ∪ T`, ` ∈ IT (68b)

E

{(
zj

i,` − µj
i,`

)(
zp

m,` − µp
m,`

)}

=







0, i 6= m

σ2
i,`, i = m, j 6= p

σ2
i,` + σ2

`,j + σ2
i,`,j , i = m, j = p

,

(i, j) ∈ C` ∪ T`, ` ∈ IT . (68c)

The matrix Ckk can be written as

Ckk =

[
Ck

11 Ck
12

Ck
21 Ck

22

]

. (69)

where matrices Ck
11 ∈ R

|I`
P |×|I`

P |,Ck
12 =

(
Ck

21

)T ∈ R
|I`

P |×|I`
P |(I`

S |+|I`
T |), and Ck

22 ∈
R

|I`
P |(I`

S|+|I`
T |)×|I`

P |(I`
S|+|I`

T |) are obtained as follows,
assuming ` = N +M + k

Ck
11 = diag

((

σ2
i1,`

4
+
σ2

`,i1

4

)

, . . . ,

(
σ2

iP (`),`

4
+
σ2

`,iP (`)

4

))

,

(70)

Ck
12 =

[

Ck
S Ck

T

]

(71)

with

Ck
S =








σ2
i1,`

2 1T
|I`

S
| . . . 0

...
. . .

...

0 . . .
σ2

iP (`),`

2 1T
|I`

S
|







,

Ck
T =








σ2
i1,`

2 1T
|I`

T
| . . . 0

...
. . .

...

0 . . .
σ2

iP (`),`

2 1T
|I`

T
|







,
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Ck
22 =

















M`,1 0 . . . 0 B`,1 0 . . . 0
0 M`,2 . . . 0 0 B`,2 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . M`,|I`

P
| 0 0 . . . B`,|I`

P
|

BT
`,1 0 . . . 0 T`,1 0 . . . 0
0 BT

`,2 . . . 0 0 T`,2 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . BT

`,|I`
P
| 0 0 . . . T`,|I`

P
|


















M`,i = diag
(

σ2
`,j1 + σ2

i,`,j1 , . . . , σ
2
`,jS(`)

+ σ2
i,`,jS(`)

)

+ σ2
i,`1T

|I`
S
|1

T
|I`

S
|, B`,i = σ2

i,`1|I`
T
|1

T
|I`

T
|

T`,i = diag
(

σ2
`,p1

+ σ2
i,`,p1

, . . . , σ2
`,p`

+ σ2
i,`,pT (`)

)

+ σ2
i,`1|I`

T
|1

T
|I`

T
|, (i, jk) ∈ C`, (i, pk) ∈ C`, ` ∈ IT . (72)

APPENDIX C
COVARIANCE MATRIX IN THE FIRST STEP ESTIMATION

Let us express the covariance matrix of zero mean random
vector ν in (26c) as

Cν`
= E{ν`ν

T
` } =

[
Cν`11

Cν`12

Cν`21
Cν`22

]

, (73)

where matrices Cν`11
∈ R

|I`
P |×|I`

P |, Cν`12
= CT

ν`21
∈

R
|I`

P |×|I`
P ||I`

S|, and Cν`22
∈ R

|I`
P ||I`

S|×|I`
P ||I`

S| are given by

d(aiP (`)
, x`)

2(σ2
`,iP (`)

+ σ2
iP (`),`

)
)

, ik ∈ I`
P , ` ∈ IT , (74a)

Cν`12
=








c`
1 0 . . . 0

0 c`
2 . . . 0

...
...

...
...

0 0 . . . c`
|I`

P
|







,

c`
i =

(
σ2

i,` + σ2
i,`

)
d(ai, x`)

[
d(aj1 , x`) . . . d(ajS(`)

, x`)
]
,

(i, jt) ∈ C`, ` ∈ IT , (74b)

Cν`22
= blkdiag

(

D1,D2, . . . ,D|I`
P
|

)

,

Di =
(
σ2

`,i + σ2
i,`

)






d(aj1 , x`)
...

d(ajS(`)
, x`)











d(aj1 , x`)
...

d(ajS(`)
, x`)






T

+ 4diag
(
d2(x`, aj1)

(
σ2

`,j1 + σ2
i,`,j1

)
, . . . ,

d2(x`, ajS(`)
)
(
σ2

`,jS(`)
+ σ2

i,`,jS(`)

))
, (i, j) ∈ C`, ` ∈ IT .

(74c)
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