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Abstract—Locations of target nodes in cooperative wireless
sensor networks can be confined to a number of feasible sets
in certain situations, e.g., when the estimated distances between
sensors are larger than the actual distances. Quantifying feasible
sets is often challenging in cooperative positioning. In this
letter, we propose an iterative technique to cooperatively outer
approximate the feasible sets containing the locations of the target
nodes. We first outer approximate a feasible set including a target

node location by an ellipsoid. Then, we extend the ellipsoid
with the measured distances between sensor nodes and obtain
larger ellipsoids. The larger ellipsoids are used to determine the
intersections containing other targets. Simulation results show
that the proposed technique converges after a small number of
iterations.

Index Terms—Wireless sensor network, outer approximation,
feasible sets, ellipsoid approximation, cooperative positioning.

I. INTRODUCTION

W IRELESS sensor networks (WSNs) rely on location

information to tag sensed data with a geographical

position [1]. In networks with a limited number of reference

nodes, cooperative positioning can considerably enhance the

quality of the location information [2]. Constraining the lo-

cation of target nodes to some closed sets (feasible sets),

can be incorporated into positioning algorithms, resulting in

more accurate and robust estimates [3]. Quantifying such

feasible sets is often a challenging task. The feasible region can

also provide valuable informationl for evaluation of different

services provided by WSNs and also for system design and

resource management.

For noncooperative networks, a number of researchers pro-

pose techniques to outer approximate the feasible sets [4],

[5]. For cooperative networks, [3], [6] employ a technique to

cooperatively estimate locations of target nodes using outer

approximation of feasible sets by discs (in 2D networks)

through a heuristic approach. The method introduced in [6]

has several drawbacks: first, the disc approximation of the

intersection is not an efficient way to capture the structure

of the intersection; second, the approach cannot easily be

extended to 3D networks.
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Fig. 1. A cooperative network with two targets and four reference nodes.

In this letter, in order to improve the outer approximation

of the intersection considered in [6] and also to generalize

the idea of outer approximation to 3D networks, we propose

a technique based on convex optimization to cooperatively

bound the feasible regions using ellipsoid approximations.

Simulation results show that the proposed technique converges

fast. Numerical results also confirm that the volumes of the

resulting ellipsoids in cooperative scenarios are considerably

smaller than the ones in noncooperative scenarios.

II. SYSTEM MODEL

We consider an m-dimensional network (m = 2 or 3) with

N +M nodes. Suppose that M targets are placed at unknown

positions xi ∈ R
m, i = 1, . . . ,M , and N reference nodes are

located at known positions aj ∈ R
m, j = M + 1, . . . ,M +

N . We define Ai = {j| reference node j can communicate

with target i} and Ci = {j| j 6= i, target j can communicate

with target i} as the sets of indices of all reference and target

nodes connected to target i (see Fig. 1 for an example). For

noncooperative networks, we set Ci = ∅. The range estimate

between sensor nodes is modeled as

d̂ij = d(xi, zj) + ǫij , j ∈ Ai ∪ Ci, i = 1, . . . ,M, (1)

where d(xi, zj) = ‖xi − zj‖2 is the Euclidian distance be-

tween xi and zj , ǫij is the measurement error, and zj = aj if

j ∈ Ai or zj = xj if j ∈ Ci. Different distributions have been

considered to model the measurement errors, e.g., Gaussian,

uniform, exponential, or Laplacian [6]–[8]. In some scenarios

the measured distances are larger than the actual distances,

meaning that the measurement noise is nonnegative [6]. The

nonnegative measurement assumption can be fulfilled in some

cases, such as in non-line-of-sight conditions. In recent ultra-

wide bandwidth measurements, it has been observed that the
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Fig. 2. For distance measurements with nonnegative errors, target nodes 1
and 2 for the network shown in Fig. 1 lie in closed bounded sets.

measurement noise tends to be positive [9]. In fact, time-

of-arrival-based ranging typically involves setting a threshold

such that false alarms (negative errors due to noise peaks) are

negligible. Hence, negative ranging errors can be considered

to occur very rarely, if at all. In this paper, we assume that

measurement errors are nonnegative, i.e., ǫij ≥ 0.

III. OUTER-APPROXIMATION OF FEASIBLE SETS

A. Implicit definition of feasible sets

Under the condition that the estimated distances are larger

than the actual distances (i.e., ǫij ≥ 0), we define the balls

Bij , i = 1, . . . ,M, centered at zj including the location of

target node i as follows:

Bij =
{

x ∈ R
m | ‖x− zj‖2 ≤ d̂ij

}

, j ∈ Ai ∪ Ci.
Hence, the location of target node i belongs to

xi ∈ Bi =
⋂

j∈Ai∪Ci

Bij , (2)

As an example, Fig. 2 shows how the feasible sets for

target nodes 1 and 2 derived from distance measurements with

nonnegative errors.We will assume that for every target i at

least one ǫij ≥ 0, so that the feasible set has a nonempty

interior. Our goal is to determine explicit expressions for Bi

in (2). Since Bi can be a complex convex set, we resort to

an ellipsoid outer approximation of Bi, described in the next

section.

Remark 1: It is observed that the volume of the intersection

in (2) depends on the geometry of the network. For example,

if a target lies outside the convex hull of its neighbors, the

intersection containing the target location, and hence also the

approximated intersection, can be large.

B. Ellipsoid outer approximation

In Section III-C, we will propose a technique to outer

approximate the feasible sets in a cooperative fashion. The

idea is that for every target we find a convex set (an ellipsoid)

guaranteed to contain the target location and then coopera-

tively shrink the ellipsoids. Before the detailed discussion in

the next section, we first review two representations of an

ellipsoid [10], [11]:

1) A quadratic form:

E = {x ∈ R
m : xT

Ax+ 2xT
b+ c ≤ 0}, (3)

where A ∈ S
m
+ , where Sm+ is the set of m by m symmetric

positive definite matrices, b ∈ R
m, and c ∈ R. It is also

required that bT
Ab− c > 0.

2) An image of the unit ball1 under an affine mapping:

E = {Px+ xc : ‖x‖2 ≤ 1, x ∈ R
m}, (4)

with xc ∈ R
m being the center of the ellipsoid and P ∈

S
m
+ .

To derive (3) from (4), we can write

A = P
−2, b = −P

−2
xc, c = x

T
c P

−2
xc − 1. (5)

The semi-axes of an ellipsoid are given by
√
λi, where λi

are the eigenvalues of the matrix A [10, Ch. 2]. To outer

approximate the intersection by an ellipsoid, we first find the

maximum volume ellipsoid contained in the intersection and

then expand it to cover the intersection.2

C. Proposed method

Consider the first representation in (3) for the |Ai ∪ Ci|
ellipsoids Bij in (2), the maximum volume ellipsoid contained

in the intersection Bi, expressed as (4), can be found by

solving the following convex optimization problem [10]

maximize
Pi,xci

,τ
log det Pi (6)

subject to Uj � 0, j = 1, . . . , |Ai ∪ Ci|, τ ≥ 0,

where Uj � 0 means that Uj is a positive semidefinite matrix,

and is given by

Uj =





−τj − cj + b
T
j A

−1
j bj 0 (xci +A

−1
j bj)

T

0 τjIN Pi

xci +A
−1
j bj Pi A

−1
j



 .

The solution to the optimization problem in (6) gives the

maximum volume ellipsoid (parametrized by Pi and xci)

contained in the intersection of a number of ellipsoids. It was

shown in [10, Ch. 8] that if we scale this ellipsoid around xci

by the dimension m, we obtain an ellipsoid that covers the

intersection. Moreover, if the intersection is a symmetric set

about a point, the scaling factor can be reduced to to
√
m [10].

In practice, the sets Bij for j ∈ Ci are not a priori available,

since the positions of neighboring targets are unknown. Setting

Bij = R
m for j ∈ Ci allows us to solve (6) based only on

information from reference nodes (i.e., without cooperation),

leading to an ellipsoid outer approximation parameterized

mP
(0)
i ,x

(0)
ci . We can now iteratively improve the outer ap-

proximations as follows. Suppose that at the k-th iteration the

ellipsoid outer approximation of the intersection (2) related to

target i is given by

E(k)
i =

{

P̄
(k)
i x+ x

(k)
ci

: ‖x‖2 ≤ 1
}

⊇ Bi, (7)

1A ball B = {x ∈ R
m

: ‖x − a‖2 ≤ R} is a structured ellipsoid with
A = I, b = −a, and c = ‖a‖2 − R in (3).

2The problem of finding the minimum volume ellipsoid covering the
intersection of a number of ellipsoids is not tractable in general [11].
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Fig. 3. Ellipsoid outer approximation of the intersection including target
node 1 can be expanded to determine an intersection for target node 2.

where P̄
(k)
i = mP

(k)
i . Now consider a target ℓ for which we

want to improve the outer approximation. Suppose i ∈ Cℓ, i.e.,

a neighbor node to the ℓ-th node. We first expand the ellipsoid

E(k)
i uniformly in every direction with d̂ℓi. This is achieved

by performing an eigenvalue decomposition of P̄
(k)
i as

P̄
(k)
i = ViΛiV

T
i (8)

and form

F
(k)
ℓi = Vi(Λi + d̂ℓiIm)VT

i . (9)

This leads to an expanded ellipsoid

F (k)
ℓi =

{

F
(k)
ℓi x+ x

(k)
ci

: ‖x‖2 ≤ 1
}

, (10)

which is guaranteed to contain xℓ as well as xi. This procedure

is applied to all neighbors of target ℓ, so that

xℓ ∈ S(k)
ℓ =

⋂

j∈Aℓ

Bℓj

⋂

i∈Cℓ

F (k)
ℓi . (11)

Observe that Bℓj is fixed, while F (k)
ℓi is updated at every

iteration. Node ℓ can find an outer approximation of S(k)
ℓ by

solving a convex optimization problem of the form (6). Fig. 3

graphically shows how the ellipsoid outer approximation for

target node 2 can be involved in determining the intersection

for target node 1.

This procedure continues for a number of iterations to

find ellipsoids covering the intersection for all target nodes.3

Updating for the ℓ-th target can be stopped after K iterations

if ‖[P̄(K)
ℓ x

(K)
cℓ ]− [P̄

(K−1)
ℓ x

(K−1)
cℓ ]‖F is small enough, where

‖ · ‖F denotes the Frobenius norm.

The updating procedure can be performed in a sequential

or parallel manner. In a sequential algorithm, once a target

node i determines an ellipsoid enclosing its intersection, it

immediately broadcasts the parameters of the i-th ellipsoid,

i.e., P
(k)
i and x

(k)
ci . Target nodes connected to node i form

new ellipsoids considering P
(k)
i , x

(k)
ci , and d̂ji. Algorithm 1

implements the sequential algorithm. Note that Algorithm 1

can be considered as a geometric positioning algorithm. It can

also provide geometric constraints to traditional positioning al-

gorithms (e.g., least squares) to improve positioning accuracy.
3The convergence proof needs further exploration in future studies.

Algorithm 1 Cooperative outer-approximation

1: Initialization: F (0)
ij = R

m, j ∈ Ci, i = 1, . . . ,M
2: for k = 0 until convergence (or predefined K) do

3: for i = 1, . . . ,M do

4: determine ellipsoid outer approximation (EOA) of

S(k+1)
i using (6)
(

x
(k+1)
ci

,P
(k+1)
i

)

:= EOA
{

⋂

j∈Ai

Bij

⋂

j∈Ci

F (k)
ij

}

5: form P̄
(k+1)
i = mP

(k+1)
i and decompose matrix

P̄
(k+1)
i (eigen decomposition) as P̄

(k+1)
i = ViΛiV

T
i

6: for ℓ = 1, . . . ,M do

7: if i ∈ Cℓ, then update the set F (k+1)
ℓi as

F
(k+1)
ℓi = Vi(Λi + d̂ℓiIm)VT

i ,

F (k+1)
ℓi =

{

F
(k+1)
ℓi x+ x

(k+1)
ci

: ‖x‖2 ≤ 1
}

,

8: end for

9: end for

10: end for

IV. SIMULATION RESULTS

We consider the same network as in [6] with 13 reference

nodes. For details of the network deployment please see [6].

A number of target nodes are randomly distributed inside the

area. We assume two nodes are connected if the distance

between them is equal to or smaller than Rmax. To evaluate

the volume of an ellipsoid, parametrized with matrix P,

we consider det(P). Measurement noise is drawn from an

exponential distribution [6] with a mean of 1 m. To solve the

optimization problems formulated in this study, we use the

CVX toolbox [12].

Fig. 4 illustrates an example in which the ellipsoid approx-

imation of the intersections containing the target nodes (black

stars), i.e., green ellipsoids, can be expanded to be involved

in determining the intersection containing another target node

(red triangle). We also plot the disc approximation from [6] of

the intersection in both noncooperative (black dashed circle)

and cooperative (black solid circle) modes. It is observed that

the volume of the approximated ellipsoid in the cooperative

mode (red solid ellipsoid) is considerably smaller than the

one in the noncooperative scenario (red dashed ellipsoid).

Moreover, the ellipsoid approximation approach results in a

smaller volume than the disc approximation technique. In the

simulations, the algorithm was run for 4 iterations, i.e., K = 4
in Algorithm 1.

Fig. 5 shows the average volumes of the ellipsoids covering

the intersections versus the iteration number k (outer loop

iteration in Algorithm 1) for different numbers of target nodes.

We observe that the algorithm converges quickly. It is also

concluded that as more target nodes are involved, the outer

approximation of the intersection gets smaller.

Finally to investigate the usefulness of the approximated

intersection in positioning, we compare the performance of

the semidefinite programming (SDP) relaxation technique [13]

with a constrained least squares (CNLS) that combines the
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least squares algorithm with the constraints from the inter-

section involving the target nodes. Note that we implement

both algorithms in a distributed fashion. That is, we first find

an estimate of a target location (using SDP or CNLS) and

consider the target node as a pseudo reference node in locating

other targets. We update both algorithms for 10 iterations.

Fig. 6 shows the cumulative distribution function (CDF) of

position errors for CNLS and SDP for two different values of

Rmax. As it is observed CNLS considerably outperforms the

distributed SDP. Note that the original SDP, which has very

good performance, is a centralized approach and an efficient

version of distributed SDP may need further considerations.

V. CONCLUSIONS

In this letter, we have considered cooperative positioning in

wireless networks in which the estimated distances are larger
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than the actual distances. As a result, targets’ locations can be

confined to feasible (convex) sets. We have studied cooperative

outer bounding of these feasible sets using ellipsoid outer ap-

proximations. The proposed approach can be implemented in

a distributed manner. Simulation results show fast convergence

of the proposed approach. One open problem for future studies

is to prove to the convergence of the algorithm developed in

this letter.
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[9] H. Wymeersch, S. Maranó, W. M. Gifford, and M. Z. Win, “A machine
learning approach to ranging error mitigation for UWB localization,”
IEEE Trans. Commun., vol. 60, no. 6, pp. 1719–1728, Jun. 2012.

[10] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[11] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix

Inequalities in Systems and Control Theory. SIAM, Philadelphia, PA,
June 1994, vol. 15 of Studies in Applied Mathematics.

[12] M. Grant and S. Boyd, “CVX: Matlab software for disciplined
convex programming, version 1.21,” Feb. 2011. [Online]. Available:
http://cvxr.com/cvx

[13] P. Biswas, T.-C. Lian, T.-C. Wang, and Y. Ye, “Semidefinite program-
ming based algorithms for sensor network localization,” ACM Trans.

Sens. Netw., vol. 2, no. 2, pp. 188–220, 2006.


