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Abstract

In this paper, stochastic signaling is studied for power-constrained scalar valued binary communications sys-

tems in the presence of uncertainties in channel state information (CSI). First, stochastic signaling based on

the available imperfect channel coefficient at the transmitter is analyzed, and it is shown that optimal signals

can be represented by a randomization between at most two distinct signal levels for each symbol. Then,

performance of stochastic signaling and conventional deterministic signaling is compared for this scenario,

and sufficient conditions are derived for improvability and nonimprovability of deterministic signaling via

stochastic signaling in the presence of CSI uncertainty. Furthermore, under CSI uncertainty, two different

stochastic signaling strategies, namely, robust stochastic signaling and stochastic signaling with averaging,

are proposed. For the robust stochastic signaling problem, sufficient conditions are derived for reducing

the problem to a simpler form. It is shown that the optimal signal for each symbol can be expressed as a

randomization between at most two distinct signal values for stochastic signaling with averaging, as well as

for robust stochastic signaling under certain conditions. Finally, two numerical examples are presented to

explore the theoretical results.

Keywords: Probability of error, stochastic signaling, channel state information, minimax.

1. Introduction

In binary communications systems over zero-mean additive white Gaussian noise (AWGN) channels

and under average power constraints in the form of E{|S i|2} ≤ A for i = 0, 1, the average probability of
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error is minimized when deterministic antipodal signals (S 0 = −S 1) are used at the power limit (|S 0|2 =

|S 1|2 = A) and a maximum a posteriori probability (MAP) decision rule is used at the receiver [2]. Also, for

vector observations, selecting the deterministic signals along the eigenvector of the covariance matrix of the

Gaussian noise corresponding to the minimum eigenvalue minimizes the average probability of error [2]. In

[3], optimal binary communications over AWGN channels are investigated for nonequal prior probabilities

under an average energy per bit constraint, and it is shown that the optimal signaling scheme is on-off keying

(OOK) for coherent detection when the signals have nonnegative correlation (also for envelope detection

for arbitrary signal correlation).

In [4], the convexity properties of the average probability of error in terms of signal and noise power are

investigated for binary-valued scalar signals over additive noise channels under an average power constraint.

First, it is shown that randomization of signal values (or, stochastic signaling) cannot improve the error

performance of a maximum likelihood (ML) detector at the receiver when the average probability of error

is a convex nonincreasing function of the signal power. Then, the problem of maximizing the average

probability of error is studied for an average power-constrained jammer, and it is shown that the optimal

solution can be obtained when the jammer randomizes its power between at most two power levels. In [5],

the results in [4] are generalized by exploring the convexity properties of the error rates for constellations

with arbitrary shape, order, and dimensionality for an ML detector in AWGN with no fading and with

frequency-flat slowly fading channels. Also, the investigations in [4] for optimum power/time sharing for a

jammer to maximize the average probability of error and the optimum transmission strategy to minimize the

average probability of error are extended to arbitrary multidimensional constellations for AWGN channels

[5].

While the optimal signaling structures are well-known in the presence of Gaussian noise (e.g., [2], [5]),

the noise can have significantly different probability distribution from the Gaussian distribution in some

cases due to effects such as interference and jamming [4], [6], [7]. When the noise is non-Gaussian, the

results in [4], [8]-[10] imply that signal randomization can provide performance improvements in terms of

average probability of error reduction compared to the conventional deterministic signaling. In [10], the

design of stochastic signals for each symbol is studied, and the improvements that can be achieved via this

stochastic signaling approach are investigated. For a given decision rule (detector) at the receiver, optimal
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stochastic signals are obtained under second and fourth moment constraints, and it is shown that an opti-

mal stochastic signal can be represented by a randomization among at most three distinct signal values for

each symbol [10]. Also, sufficient conditions are obtained to specify whether stochastic signaling provides

improvements over deterministic signaling. In [11], stochastic signaling is studied under an average power

constraint in the form of
∑2

i=1 πiE{|S i|2} ≤ A, where S i denotes the ith signal and πi denotes the prior prob-

ability of symbol i. Sufficient conditions are presented to determine performance improvements. Also, [12]

investigates the joint design of the optimal stochastic signals and the detector, and proves that the optimal

solution involves randomization between at most two signal values and the use of the corresponding MAP

detector. In addition, in [13], randomization between two deterministic signal pairs and the correspond-

ing MAP decision rules is studied, and significant performance improvements via power randomization

are observed. Finally, in some studies such as [14]-[19], time-varying or random signal constellations are

employed in order to improve error performance or to achieve diversity.

Although optimal stochastic signaling for power constrained communications systems has been studied

in [10]-[12], no studies have considered the effects of imperfect channel state information (CSI) on the

performance of stochastic signaling and the design of stochastic signals under CSI uncertainty. In this

study, we first investigate stochastic signaling based on imperfect CSI (considering generic noise probability

distributions and detector structures), and analyze the effects of imperfect CSI on stochastic signaling. After

the formulation of stochastic signaling under CSI uncertainty, we state that an optimal stochastic signal

involves randomization between at most two distinct signal levels. Then, we derive sufficient conditions

to specify when the use of stochastic signaling can or cannot provide improvements over conventional

signaling in the presence of imperfect CSI.

Secondly, we propose two different methods, namely, robust stochastic signaling and stochastic signal-

ing with averaging, for designing stochastic signals under CSI uncertainty. In robust stochastic signaling,

signals are designed for the worst-case channel coefficients, and the optimal signaling problem is formu-

lated as a minimax problem [2, 20]. Then, sufficient conditions under which the generic minimax problem

is equivalent to designing signals for the smallest possible magnitude of the channel coefficient are obtained.

In the stochastic signaling with averaging approach, the transmitter assumes a probability distribution for

the channel coefficient, and stochastic signals are designed by averaging over different channel coefficient
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values based on that probability distribution. It is shown that optimal signals obtained after this averaging

method and those for the equivalent form of the robust signaling method can be represented by randomiza-

tion between at most two distinct signal levels for each symbol. Solutions for the optimization problems

can be calculated by using global optimization techniques such as particle swarm optimization (PSO) [21],

or convex relaxation approaches can be employed as in [10], [22]-[25]. Finally, we perform simulations and

present two numerical examples to illustrate the theoretical results.

2. System Model and Motivation

Consider a binary communications system with scalar observations [4], [26], in which the channel effect

is modeled by a multiplicative term as in flat-fading channels [27], and the received signal is given by

Y = α S i + N , i ∈ {0, 1} , (1)

where S 0 and S 1 denote the transmitted signal values for symbol 0 and symbol 1 respectively, α is the

channel coefficient, and N is the noise component that is independent of S i and α. In addition, the prior

probabilities of the symbols, which are denoted by π0 and π1, are supposed to be known.

In (1), the noise term N is modeled to have an arbitrary probability distribution considering that it can in-

clude the combined effects of thermal noise, interference, and jamming. Hence, the probability distribution

of the noise component is not necessarily Gaussian [6].

A generic decision rule is considered at the receiver to determine the symbol in (1). For a given obser-

vation Y = y, the decision rule ϕ(y) is expressed as

ϕ(y) =


0 , y ∈ Γ0

1 , y ∈ Γ1

, (2)

where Γ0 and Γ1 are the decision regions for symbol 0 and symbol 1, respectively [2].

The aim is to design signals S 0 and S 1 in (1) in order to minimize the average probability of error for a
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given decision rule, which is calculated as

Pavg = π0P0(Γ1) + π1P1(Γ0) , (3)

with Pi(Γ j) denoting the probability of selecting symbol j when symbol i is transmitted. In practical systems,

there exists an average power constraint on each of the signals, which can be expressed as [2]

E{|S i|2} ≤ A , (4)

for i = 0, 1, where A is the average power limit. Therefore, in the stochastic signaling approach, the aim

becomes the calculation of the optimal probability density functions (PDFs) for signals S 0 and S 1 that

minimize the average probability of error in (3) under the average power constraint in (4) [10]. In other

words, in the stochastic signal design, the signals at the transmitter are modeled as random variables and

the optimal PDFs of these random variables are obtained.

Unlike stochastic signaling, in the conventional signal design, S 0 and S 1 are modeled as deterministic

signals and set to S 0 = −
√

A and S 1 =
√

A [2], [27]. Then, the average probability of error in (3) becomes

Pconv = π0

∫
Γ1

pN
(
y + α

√
A
)

dy + π1

∫
Γ0

pN
(
y − α

√
A
)

dy , (5)

where pN(·) is the PDF of the noise in (1).

As investigated in [10]-[12], stochastic signaling results in lower average probabilities of error than

conventional deterministic signaling in some cases in the presence of non-Gaussian noise. However, the

common assumption in the previous studies is that the channel coefficient α in (1) is known perfectly at

the transmitter, i.e., the CSI is available at the transmitter. In practice, the transmitter can obtain CSI via

feedback from the receiver, or by utilizing the reciprocity of forward and reverse links under time division

duplexing [28]. In both scenarios, it is realistic to model the CSI at the transmitter to include certain

errors/uncertainties. Therefore, the main motivation behind this study is to investigate stochastic signaling

under imperfect CSI; that is, to evaluate the performance of stochastic signaling in practical scenarios and

to develop different design methods for stochastic signaling under CSI uncertainty. In the next section, the
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effects of CSI uncertainties on the performance of stochastic signaling are examined.

Remark 1: The use of stochastic signaling can provide performance improvements for communications

systems that operate in the presence of non-Gaussian noise [10]. For example, stochastic signaling can

be employed for the downlink of a multiuser direct-sequence spread-spectrum (DSSS) system, in which

Gaussian mixture noise is observed at the receiver of each user due to the presence of multiple-access

interference and Gaussian background noise [29]. For practical implementation, the transmitter needs to

know the channel condition for each user, which can be sent via feedback to the transmitter. In addition,

stochastic signaling can be regarded as a signal randomization for each information symbol [10], which can,

for example, be implemented via time-sharing (i.e., sending different signal values for certain durations of

time). In that case, channel coefficients should be constant during the randomization operation; hence, slow

fading channels are well-suited for stochastic signaling. �

3. Effects of Channel Uncertainties on the Stochastic Signaling

3.1. Stochastic Signaling with Imperfect Channel Coefficients

In the stochastic signaling approach, signals S 0 and S 1 in (1) are modeled as random variables and their

optimal PDFs are searched for. Let pS 0(·) and pS 1(·) represent the PDFs of S 0 and S 1, respectively. Also

define Ŝ 0 , α S 0 and Ŝ 1 , α S 1, and denote their PDFs as pŜ 0
(·) and pŜ 1

(·), respectively. Then, from (3),

the average probability of error for the decision rule in (2) can be obtained as

Pstoc =

1∑
i=0

πi

∫ ∞

−∞
pŜ i

(t)
∫
Γ1−i

pN(y − t) dy dt . (6)

Since pŜ i
(t) can be obtained as pŜ i

(t) = (1/|α|) pS i(t/α) for i = 0, 1, (6) can be expressed, after a change of

variable (t = α x), as

Pstoc =

1∑
i=0

πi

∫ ∞

−∞
pS i(x)

∫
Γ1−i

pN(y − α x) dy dx . (7)

Since imperfect CSI is considered in this study, the transmitter has a distorted version of the correct

channel coefficient α. Let α̂ denote this distorted (noisy) channel coefficient at the transmitter. In this
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section, it is assumed that the transmitter uses α̂ in the design of stochastic signals. Then, the stochastic

signal design problem can be expressed as

min
pS 0 ,pS 1

1∑
i=0

πi

∫ ∞

−∞
pS i(x)

∫
Γ1−i

pN(y − α̂ x) dy dx subject to E{|S i|2} ≤ A , i = 0, 1. (8)

Note that there are also implicit constraints in the optimization problem in (8) because pS 0(·) and pS 1(·) need

to satisfy the conditions to be valid PDFs. Similarly to [10], this optimization problem can be expressed as

two separate optimization problems for S 0 and S 1. Namely, the optimal signal PDF for symbol 1 can be

obtained from the solution of the following optimization problem:

min
pS 1

∫ ∞

−∞
pS 1(x)

∫
Γ0

pN(y − α̂ x) dy dx subject to E{|S 1|2} ≤ A . (9)

If G(x, k) is defined as

G(x, k) ,
∫
Γ0

pN(y − k x) dy , (10)

(9) can also be written as

min
pS 1

E{G(S 1, α̂)} subject to E{|S 1|2} ≤ A , (11)

where the expectations are taken over S 1. Note that G(S 1, α̂) is only a function of S 1 for a given value of α̂.

In some previous studies, such as [10], [13], and [30], the optimization problems in the same form as that in

(11) have been explored thoroughly. If G(S 1, α̂) in (11) is a continuous function of S 1, and S 1 takes values

in [−γ, γ] for some finite positive γ, then the optimal solution of (11) can be represented by a randomization

between at most two distinct signal levels as a result of Carathéodory’s theorem [31]. Hence, the optimal

signal PDF for S 1 can be expressed as

p S 1(s) = λ1 δ(s − s11) + (1 − λ1) δ(s − s12) , λ1 ∈ [0, 1] . (12)

A similar optimization problem can also be formulated for S 0. After obtaining the optimal signal PDFs
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for S 0 and S 1, the corresponding average probability of error can be calculated. Since the optimization

problems are similar for S 0 and S 1, we focus on the design of S 1 in the remainder of this section.

3.2. Stochastic Signaling versus Conventional Signaling

It is known that, in the presence of perfect CSI at the transmitter, conventional signaling, which sets

S 1 =
√

A [that is, pS 1(x) = δ(x −
√

A)], can or cannot be optimal under certain sufficient conditions as

discussed in [10]. In this section, we explore the conditions under which the use of stochastic signaling

instead of deterministic signaling can or cannot result in improved average probability of error performance

in the presence of imperfect CSI.

In the presence of imperfect CSI, let the transmitter have the channel coefficient information as α̂. Then,

the transmitter obtains the optimal stochastic signal S 1 from (11). Let p α̂S 1
(·) denote the solution of (11) for

a given value of α̂. Then, the corresponding conditional probability of error for symbol 1 is given by

Pα̂e =
∫ ∞

−∞
p α̂S 1

(x) G(x, α) dx , (13)

where G(x, α) is as defined in (10). Note that G(x, α) specifies the probability of choosing symbol 0 for a

given signal value x for symbol 1 when the channel coefficient is equal to α. Therefore, when the stochastic

signal for symbol 1 is specified by the PDF p α̂S 1
(x), the corresponding conditional probability of error for

symbol 1 is obtained as in (13).

Suppose that α̂ can be modeled as a random variable with a generic PDF pα̂(·). In order to improve

the performance of conventional signaling for symbol 1 via stochastic signaling, we need to have Pe <

G(
√

A , α), where G(
√

A , α) is the conditional probability of error for conventional signaling, i.e., for S 1 =

√
A (see (5) and (10)), and Pe is the average conditional probability of error for stochastic signaling based

on imperfect CSI, which can be calculated as

Pe =

∫ ∞

−∞
pα̂(a) Pa

e da , (14)

with Pa
e being given by (13).

In order to derive sufficient conditions for the improvability and nonimprovability of conventional sig-
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naling via stochastic signaling, assume that the channel coefficient information at the transmitter is specified

as α̂ = α + η, where η is a zero-mean Gaussian noise with standard deviation ε; that is, η ∼ N(0, ε2). Al-

though the Gaussian error model is employed for the convenience of the analysis, the results are valid also

for non-Gaussian error models, as will be discussed at the end of this section. In addition, it is assumed

that α is a positive number without loss of generality.1 Then, the following proposition presents sufficient

conditions on the improvability and nonimprovability of conventional signaling via stochastic signaling.

Proposition 1: Assume that G(x, k) in (10) and Pα̂e in (13) have the following properties:

• G(x, k) is a strictly decreasing function of x for any fixed positive k, and G(x, k) = 1 −G(−x, k).

• There exist κ1, κ2, γth, θth, and βth such that Pα̂e < κ1 when α̂ > γth > 0; Pα̂e < κ2 < κ1 when

α > α̂ > θth > γth; and Pα̂e = G(
√

A, α) when α̂ > βth > α.

Then, stochastic signaling performs worse than conventional signaling if the standard deviation ε of the

channel coefficient error satisfies following inequality

(
1
2
− κ1

)
Q

(
α + γth

ε

)
+ (κ1 − κ2)

(
Q

(
2α
ε

)
− Q

(
α + θth
ε

))
+

1
2

Q
(
α

ε

)
+ Q

(
βth − α
ε

)
G(
√

A, α) ≥ G(
√

A, α) , (15)

and stochastic signaling performs better than conventional signaling if ε satisfies following inequality2

1
2

(
κ1 + κ2 + Q

(
α

ε

))
+

(
1
2
− κ1

)
Q

(
α − γth

ε

)
− κ1Q

(
βth − α
ε

)
+ (κ1 − κ2) Q

(
α − θth
ε

)
+

(
Q

(
βth − α
ε

)
− Q

(
α + βth

ε

))
G(
√

A, α) ≤ G(
√

A, α) . (16)

Proof: Please see Appendix A.1.

Although the results in Proposition 1 are presented for channel coefficient errors with a zero-mean Gaus-

sian distribution, they can easily be extended for any type of probability distribution as well. For example,

consider a generic PDF for the channel coefficient error, which is denoted by pη(·). The corresponding

1If it is negative, one can redefine function G in (10) by using pN(y + kx) instead of pN(y − kx).
2Note that the choice of parameters in the conditions of Proposition 1 is important to satisfy the inequalities in (15) and (16).

Also, the Q-function is defined as Q(x) = (
∫ ∞

x
e−t2/2dt)/

√
2π.

9



cumulative distribution function (CDF) Fη(·) can be expressed as Fη(x) =
∫ x
−∞ pη(t) dt. Then, the results in

Proposition 1 are valid when Q(x/ε) (15) and (16) are replaced by 1 − Fη(x).

As discussed before, G(x, k) can be inferred as the probability of deciding symbol 0 instead of symbol

1, when the value of the channel coefficient is k, and S 1 = x. In general, for a specific channel coefficient,

when a larger signal value is employed, a lower probability of error can be obtained; hence, G(x, k) is usually

a decreasing function of x in practice. Moreover, G(x, k) = 1 −G(−x, k) can be satisfied when the channel

noise has a symmetric PDF, i.e., pN(x) = pN(−x), and the decision regions of the detector at the receiver

are symmetric (Γ0 = −Γ1). In fact, the channel noise is symmetric in most practical scenarios, and some

receivers such as the sign detector or the optimal MAP detector for symmetric signaling under symmetric

channel noise will have symmetric decision regions. All in all, the first condition in the proposition is

expected to hold in many practical scenarios. The details of how the second condition is satisfied and how

the parameters in the proposition are selected will be investigated in Section 5.

4. Design of Stochastic Signals Under CSI Uncertainty

First, suppose that pα(·) denotes the PDF of the actual channel coefficient α, where each instance of the

channel coefficient resides in a certain setΩ. In this section, we propose two different methods for designing

the stochastic signals under CSI uncertainty in the transmitter, and evaluate the performance of each method

in Section 5.

4.1. Robust Stochastic Signaling

In this part, a robust design of optimal stochastic signals is presented under CSI uncertainty at the

transmitter. Suppose that Ω is given by Ω = [α0, α1], that is, the channel coefficient α takes values in

the interval of [α0, α1], where α0 < α1. It is assumed that the transmitter has the knowledge of set Ω.

Note that this can be realized, for example, via feedback from the receiver to the transmitter. In robust

stochastic signaling, signals are designed in such a way that they minimize the average probability of error

for the worst-case channel coefficient, that is, the one which maximizes the average probability of error for

the transmitted signals. For this design criterion, the optimal stochastic signaling problem in (8) can be
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expressed as a minimax problem as follows:

min
pS 0 ,pS 1

max
α∈[α0,α1]

1∑
i=0

πi

∫ ∞

−∞
pS i(x)

∫
Γ1−i

pN(y − α x) dy dx subject to E{|S i|2} ≤ A . (17)

The problem in (17) can be difficult to solve in general. In the following, it is shown that in most

practical scenarios, this problem can be reduced to a simpler form and the optimal signal PDFs can be

obtained by solving a simpler optimization problem:

Proposition 2: The minimax problem in (17) is equivalent to the stochastic signaling problem for

channel coefficient α0, that is,

min
pS 0 ,pS 1

1∑
i=0

πi

∫ ∞

−∞
pS i(x)

∫
Γ1−i

pN(y − α0 x) dy dx subject to E{|S i|2} ≤ A (18)

when the following conditions are satisfied:

• G(x, α) is a strictly decreasing function of x for any α ∈ [α0 α1].

• G(x, α) is a strictly decreasing (increasing) function of α for all x > 0 (x < 0).

Proof: Please see Appendix A.2.

Proposition 2 states that, under certain sufficient conditions, the robust design of stochastic signals

becomes equivalent to the stochastic signal design for the smallest magnitude of the channel coefficient in

set Ω. (It is important to note that this conclusion is not true in general if the conditions in the proposition

are not satisfied; that is, in some cases, a larger channel coefficient may have worse performance than a

smaller channel coefficient in the presence of non-Gaussian noise.) The simplified problem in (18) has a

well-known structure, which was investigated for example in [10]. The problem can be solved separately

for S 0 and S 1 by expressing the problem as two decoupled optimization problems. Then it can be shown

that if G(S i, α0) is a continuous function of S i and S i takes values in [−γ, γ] for some finite positive γ, then

each optimal signal PDF pS i can be represented by a randomization between at most two signal levels as in

(12) [10, 31].

It is also noted that if [α0, α1] is a positive interval, then the two conditions in Proposition 2 can be

reduced to a single condition. Suppose that u = α x . Then, G(x, α) can be written as G(u) =
∫
Γ0

pN(y−u) dy.
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Therefore, if α is positive, then the conditions in Proposition 2 are equivalent to that G(u) is a decreasing

function of u.

After obtaining the optimal signal PDFs pS 0 and pS 1 by solving (18), the conditional average probability

of error for a given α ∈ Ω can be calculated as

Pαrobu =

1∑
i=0

πi

∫ ∞

−∞
pS i(x)

∫
Γ1−i

pN(y − α x) dy dx . (19)

Finally, the average probability of error for robust stochastic signaling can be calculated as

Probu =

∫
Ω

pα(a) Pa
robu da . (20)

Note that while calculating the conditional average probability of error for a given α, the same signal

PDF is used for all α values, since the optimal signal PDFs do not depend on the value of the actual channel

coefficient α, but only depend on the lower boundary point of the set Ω in the robust stochastic signaling

approach under the conditions in Proposition 2.

4.2. Stochastic Signaling with Averaging

In robust stochastic signaling, signal PDFs are designed for the worst-case channel coefficient, which

belongs to a certain set Ω. In this section, an alternative way of designing stochastic signals under CSI

uncertainty is discussed. In this method, the transmitter assumes that the channel coefficient is distributed

according to a PDF p̂α(·) .3 Then, optimal signal PDFs are designed in such a way that the average proba-

bility of error is minimized for this assumed CSI statistics under the average power constraints. This can be

formulated as follows:

min
pS 0 ,pS 1

∫ ∞

−∞
p̂α(a)

1∑
i=0

πi

∫ ∞

−∞
pS i(x)

∫
Γ1−i

pN(y − ax) dy dx da subject to E{|S i|2} ≤ A . (21)

Specifically, by using the statistical information about the CSI at the transmitter, we aim to obtain the

optimal stochastic signals that minimize the expected value of the error probability over the distribution of

3Note that this will not be the actual PDF of the channel coefficient in general due to CSI uncertainty at the transmitter.
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the imperfect channel coefficient. As mentioned in Remark 1, we consider slow fading channels so that the

statistical information about the CSI is constant for a number of bit durations.

It is noted that the problem in (21) is separable over S 0 and S 1 as well. Therefore, one can consider the

optimal signals for symbol 0 and symbol 1 separately. Specifically, the optimal signal PDF for symbol 1

can be obtained by solving the following problem:

min
pS 1

∫ ∞

−∞
p̂α(a)

∫ ∞

−∞
pS 1(x)

∫
Γ0

pN(y − ax) dy dx da subject to E{|S 1|2} ≤ A . (22)

Changing the order of the first and the second integrals in (22), the following formulation can be obtained:

min
pS 1

∫ ∞

−∞
pS 1(x)

∫ ∞

−∞
p̂α(a) G(x, a) da dx subject to E{|S 1|2} ≤ A (23)

where G(x, a) is as defined in (10). In addition, if H(x) is defined as H(x) ,
∫ ∞
−∞ p̂α(a)G(x, a) da =

E{G(x, a)}, where the expectation is over the assumed PDF of the channel coefficient, then (23) becomes

min
pS 1

E{H(S 1)} subject to E{|S 1|2} ≤ A . (24)

For this problem, it can be concluded that, under most practical scenarios, the optimal signal PDF can be

characterized by a randomization between at most two distinct signal levels similarly to the previous results.

Also, the optimal signal PDF for symbol 0 can be obtained similarly.

In the stochastic signaling with averaging approach, the transmitter assigns different weights to different

values of the channel coefficient and designs signals based on this averaging operation over possible channel

coefficient values. For example, instead of directly using the distorted channel coefficient α̂ in the signal

design as in Section 3.1, the transmitter may assume a legitimate PDF around α̂ for the channel coefficient

and design the stochastic signals. The performance of this approach and the other approaches is compared

in the next section.

Remark 2: In practice, the proposed approaches can be applied to communications systems that operate

in slow fading channels as follows. First, the transmitter sends a number of training bits to the receiver for

synchronization and channel estimation purposes. During this phase, the receiver estimates the channel
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coefficient α, and sends it to the transmitter via feedback. (If there is two-way communication via time-

division multiplexing, the reciprocity of the channel can be utilized and the transmitter can obtain the

channel coefficient information without feedback [28].) Next, the transmitter performs stochastic signal

design according to one of the proposed approaches, and obtains the parameters of the optimal stochastic

signals. Then, the stochastic signaling approach can be implemented via time-sharing. For example, if

symmetric signaling is used (i.e., S 0 = −S 1) and the stochastic signal for bit 1 is represented by pS 1(s) =

0.5 δ(s − 1.2) + 0.5 δ(s − 0.75), then signal amplitude 1.2 is transmitted for half of bit 1’s and 0.75 is

transmitted for the remaining half (similarly, −1.2 and −0.75 for bit 0’s).

Depending on the previous knowledge and the channel estimation technique, one of the robust stochastic

signaling or stochastic signaling with averaging approaches can be employed. When the channel estimation

error is known to be bounded, an interval of [α0, α1] can be specified as in Section 4.1. Otherwise, a distri-

bution can be assumed for the channel coefficient error, which is commonly modeled by a Gaussian random

variable (e.g., [32], [33]), and the approach in this section can be used. The robust stochastic signaling ap-

proach takes a conservative approach and performs the design for the worst-case channel coefficient value

under the conditions in Proposition 2. However, the stochastic signaling with averaging approach performs

the design based on the available probability distribution of the channel coefficient. �

Remark 3: The following observations can be made when the design techniques in Section 3.1 and Sec-

tion 4 are compared. The approach in Section 3.1 directly employs the noisy channel coefficient information

at the transmitter, α̂, in the design of stochastic signals (see (8)). On the other hand, the robust stochastic

signaling and stochastic signaling with averaging approaches in Section 4 perform the design based on the

worst-case channel coefficient value and on an average channel coefficient distribution, respectively. These

approaches assume that some additional information is available about the noisy channel estimate such as

bounds on the estimation error, or its probability distribution. For cases in which the estimation error is not

expected to be higher than a certain amount, the channel coefficient can be modeled to lie in an interval such

as [α0, α1], which can be obtained by using the channel estimate and the upper and lower bounds on the

estimation error. Then, robust stochastic signaling performs a design for the worst-case channel coefficient,

α0. When such upper and lower bounds are not available or when the conservative approach of perform-

ing a design for the worst-case channel coefficient is not desirable, the stochastic signaling with averaging
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approach can be utilized by assuming a probability distribution p̂α for the noisy channel coefficient, such

as the Gaussian distribution [32], [33]. The robust stochastic signaling and stochastic signaling with av-

eraging approaches in Section 4 reduce to the approach in Section 3.1 that directly uses the noisy channel

estimate in the stochastic signal design if α0 = α1 = α̂ for robust stochastic signaling (see Section 4.1)

and p̂α(a) = δ(a − α̂) for stochastic signaling with averaging (see the beginning of this section), where α̂

is the noisy channel coefficient information at the transmitter. Since the channel coefficient information

can include large errors in some cases, the design of stochastic signals based directly on the noisy channel

coefficient can result in large errors as observed in the next section. Hence, the approaches in Section 4 are

commonly more preferable. �

5. Performance Evaluation

In this section, two numerical examples are presented in order to investigate the theoretical results

in the previous sections. In the first numerical example, we compare the performance of conventional

signaling and stochastic signaling in the presence of channel coefficient errors and observe the effects of CSI

uncertainty on stochastic signaling. In the second example, we evaluate the performance of the proposed

design methods in Section 4. In both of the examples, a binary communications system with equally likely

symbols are considered (π0 = π1 = 0.5), the average power limit in (4) is set to A = 1, and the decision rule

at the receiver is specified by Γ0 = (−∞, 0] and Γ1 = [0,∞) (i.e., the sign detector). Also the noise in (1) is

modeled by a Gaussian mixture noise [6] with its PDF being given by pN(n) = (
√

2πσ)−1 ∑L
l=1 vl exp{−(n−

µl)2/(2σ2)}. Gaussian mixture noise is encountered in practical systems in the presence of interference [6].

For the channel noise and the detector structure as described above, G(x, k) in (10) can be calculated as

G(x, k) =
L∑

l=1

vl Q
(
k x + µl

σ

)
. (25)

In the first example, the mass points µl are located at µ = [−1.013 − 0.275 − 0.105 0.105 0.275 1.013]

with corresponding weights v = [0.043 0.328 0.129 0.129 0.328 0.043]. Also each component of the

Gaussian mixture noise has the same variance σ2 and the average power of the noise can be calculated as

E{n2} = σ2 + 0.1407.
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Figure 1: Average probability of error versus A/σ2 for conventional signaling and stochastic signaling with various ε values.

The channel coefficient information at the transmitter is modeled as α̂ = α + η, where α = 1 and η is

a zero-mean Gaussian random variable with standard deviation ε. Due to the symmetry of the problem,

the conditional probability of error expression in (14) also provides the average probability of error in this

scenario. In order to evaluate that expression, 100 realizations are obtained for α̂. Then, the optimization

problem in (11) is solved for each realization and the optimal signal PDFs that are in the form of (12) are

obtained by using the PSO algorithm [34]. For the details of the PSO parameters employed in this study,

please refer to [12].

In Fig. 1, the average probabilities of error are plotted versus A/σ2 for conventional signaling, stochastic

signaling with no channel coefficient errors (ε = 0), and stochastic signaling with various levels of channel

coefficient errors (see (11)). It is noted that the average probability of error increases as A/σ2 increases

after a certain value for conventional signaling and stochastic signaling with channel coefficient errors. This

seemingly counterintuitive result is because of the facts that the average probabilities of error are related to

the area under the shifted noise PDFs as in (5), (13) and (14), and that the noise has a multimodal PDF [12].4

4Since signals are designed according to noisy channel coefficients in stochastic signaling with channel coefficient errors, noise
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Figure 2: Pα̂e versus α̂ for A/σ2 = 40 dB. The second condition in Proposition 1 is satisfied for κ1 = 0.04354, κ2 = 0.01913,
γth = 0.1135, θth = 0.8, βth = 1.038, and G(

√
A, α) = 0.03884.

Also, it is observed that for high A/σ2 values, the best performance is obtained by stochastic signaling with

perfect CSI and the performance of stochastic signaling gets worse as the variance of the channel coefficient

error increases. Another observation is that for low values of ε, stochastic signaling still performs better

than conventional signaling for high A/σ2 values and their performance is similar for high σ2, i.e., when

A/σ2 is smaller than 15 dB. In fact, one can calculate the average probability of error analytically for low

A/σ2 values for each ε, as discussed in [1]. In addition, we can apply the conditions in Proposition 1 and

check if the conventional signaling is improvable or nonimprovable via stochastic signaling for given ε

values. Firstly, we examine the first condition in the proposition. G(x, k) is as expressed in (25) for this

example and it is a convex combination of Q functions. Therefore, G(x, k) is a strictly decreasing function

of x as Q(x) is a monotone decreasing function. Also, since Q(x) = 1 − Q(−x) and the components of

Gaussian mixture noise are symmetric, we have G(x, k) = 1 − G(−x, k) as well. Hence, the first condition

in Proposition 1 is satisfied. In order to check the second condition, the plot of Pα̂e versus α̂ is presented in

PDFs may not be shifted in an optimal way to minimize the area under the shifted PDFs. Therefore, that area may not be a
monotonic function of A/σ2, and can increase in some cases as A/σ2 increases.
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Fig. 2 for A/σ2 = 40 dB. It is observed that Pα̂e does not have a monotonic structure; that is, it increases,

decreases or remains the same as α̂ increases. However, it obeys the structure specified in the second

condition of Proposition 1. Specifically, when α̂ > γth = 0.1135, Pα̂e is less than κ1 = 0.04354, and when

θth = 0.8 < α̂ < α = 1, Pα̂e becomes less than κ2 = 0.01913, which is even smaller than κ1. Also, when

α̂ > βth = 1.038, Pα̂e becomes equal to G(
√

A, α) = 0.03884, which is the average probability of error for

conventional signaling. The values of κ1, κ2, γth, θth, and βth are illustrated in Fig. 2. Based on the specified

parameters, (15) becomes

0.45646 Q
(
1.1135
ε

)
+ 0.02441

(
Q

(
2
ε

)
− Q

(
1.8
ε

))
+ 0.5 Q

(
1
ε

)
+ 0.03884 Q

(
0.038
ε

)
≥ 0.03884.

For ε = 0.6, the left-hand-side of this inequality is calculated to be 0.0568; hence, the inequality is satisfied.

This means that when A/σ2 = 40 dB, if the standard deviation of the channel coefficient error is equal to

0.6, we can conclude that stochastic signaling is outperformed by conventional signaling. In fact, it can be

observed from Fig.1 that for A/σ2 = 40 dB and ε = 0.6, the performance of stochastic signaling is quite

worse than that of conventional signaling as Proposition 1 asserts. Also note that when ε = 0.5178 , ε∗,

(15) becomes an equality. Similarly, based on the selected parameters, it can be shown that (16) is satisfied

for ε = 0.3, 0.1, 0.01, meaning that conventional signaling is outperformed by stochastic signaling as a

result of Proposition 1 for these ε values [1]. This can also be observed from Fig. 1 when A/σ2 = 40 dB for

ε = 0.3, 0.1 , 0.01. Also, when ε = 0.3395 , ε̂, (16) turns out to be an equality.

In order to explore the performance of stochastic signaling in the presence of channel coefficient errors,

Fig. 3 is presented. As expected, the average probability of error for stochastic signaling increases with the

standard deviation of the channel coefficient error, ε. Therefore, in the presence of large channel coefficient

errors (i.e., large ε), using conventional deterministic signaling instead of stochastic signaling can be more

preferable, whereas for small channel coefficient errors, stochastic signaling can be employed to achieve

smaller average probabilities of error than conventional signaling. In Fig. 3, ε∗ and ε̂ are also illustrated,

together with the point εth at which the performance of stochastic signaling and conventional signaling

becomes the same. It is noted that the conditions in Proposition 1 are not necessary but only sufficient

conditions for the improvability and nonimprovability of conventional signal via stochastic signaling. In

18



0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

ε

A
ve

ra
ge

 P
ro

ba
bi

lit
y 

of
 E

rr
or

εth ε
∗

ε̂

Figure 3: Average probability of error versus ε for stochastic signaling. At εth = 0.413, stochastic signaling has the same average
probability of error as conventional signaling.

addition, it is observed that the performance of conventional deterministic signaling does not change with ε

since it always employs S 1 = −S 0 =
√

A irrespective of the channel state information.

In the second example, the mass points µl of the Gaussian mixture noise are located at µ = [−1.31 −

0.275 − 0.125 0.125 0.275 1.31] with corresponding weights v = [0.002 0.319 0.179 0.179 0.319 0.002].

Each component of the Gaussian mixture noise has the same variance σ2 and the average power of the noise

can be calculated as E{n2} = σ2 + 0.0607. For this example, α̂ is again modeled as α̂ = α + η, where η is a

zero-mean Gaussian random variable with variance ε2. We assume that the actual channel coefficient α has

a uniform distribution over set Ω = [0.8, 1.2]; i.e., α is distributed asU[0.8, 1.2].

First, we compare the average probability of error performance of different signaling strategies:

Stochastic-Perfect: It is assumed that the transmitter has the knowledge of the actual channel coeffi-

cient, which is used in the signal design. In the simulations, 100 realizations are generated for a uniformly

distributed α. The optimal signal PDFs and the corresponding probabilities of error are calculated for each

realization. Then, by averaging over the PDF of α, the average probabilities of error are obtained.

Conventional: The transmitter selects the signals as S 1 = −S 0 =
√

A = 1. For each realization of α,
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the corresponding probabilities of error are calculated and then their average is taken over the PDF of α.

Stochastic-Distorted: The transmitter has imperfect CSI and it uses a distorted (imperfect) channel

coefficient α̂ directly in the design of signals, as discussed in Section 3.1. In Fig. 4, average probabilities of

error are plotted for ε = 0.05 and ε = 0.1.

Stochastic-Average: The transmitter assumes that the PDF of the channel coefficient p̂α(a) is specified

by N(α̂,∆2). Then, by solving (24), the optimal signal PDF p α̂S 1
for signal 1 can be obtained for each α̂.

Next, the conditional probability of error for symbol 1 can be expressed as

Paver =
∫ ∞
−∞ pα(a)

∫ ∞
−∞ pα̂|α(â)

∫ ∞
−∞ p â

S 1
(x) G(x, a) dx dâ da , where pα̂|α(·) is the conditional PDF of α̂ for

a given α. Note that, due to the symmetry, the conditional probability of error is equal to the average

probability of error in this example as well. In Fig. 4, the average probabilities of error are plotted for

∆ = 0.01, ∆ = 0.05, and ∆ = 0.2, where ε = 0.05 in each case.

Stochastic-Robust: First, one can show that the conditions in Proposition 2 are satisfied for this exam-

ple. G(x, α) in (25) is a convex combination of Q functions, i.e., Q
(
α x+µl
σ

)
. Also, since α is always positive

(α ∈ [0.8, 1.2]), Q
(
α x+µl
σ

)
is a decreasing function of x. In addition, it is a decreasing function of α if x is

positive, and it increases with α when x is negative. In fact, since [0.8, 1.2] is a positive interval, we can

write u = α x and G(u) becomes a decreasing function of u as Q
(

u+µl
σ

)
decreases with u. Therefore, we can

apply the result in Proposition 2 in this example. That is, the optimal signal PDFs are obtained by solving

(17) with α0 = 0.8 since Ω = [0.8, 1.2]. Then, the average probabilities of error are calculated via (19) and

(20).

In Fig. 4, the average probabilities of error are plotted versus A/σ2 for conventional signaling, stochastic

signaling with perfect CSI, stochastic signaling with distorted channel coefficients, stochastic signaling with

averaging, and robust stochastic signaling. It is observed that for high σ2, specifically when A/σ2 is smaller

than 15 dB, all signaling strategies perform similarly, and for high A/σ2 values, stochastic signaling with

perfect CSI achieves the best performance. The second best performance is obtained by the stochastic

signaling with averaging method when the parameters are ε = ∆ = 0.05. Although conventional signaling

gives the worst performance for medium A/σ2 values, the worst performance is observed for stochastic

signaling with distorted channel coefficients for high A/σ2 values. Robust stochastic signaling performs

somewhere between stochastic signaling with perfect CSI and conventional signaling. Robust signaling
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Figure 4: Average probability of error versus A/σ2 for various signaling strategies.

performs better (worse) than stochastic signaling with averaging for ∆ = 0.2 (∆ = 0.05) at high or medium

A/σ2 values. When ε = 0.05, stochastic signaling with averaging for ∆ = 0.01 and stochastic signaling

with distorted channel coefficients performs very similarly and they achieve better performance than robust

signaling for medium A/σ2 values; however, their performance is worse than robust signaling for high A/σ2

values.

In order to investigate the effects of ∆ on the average probability of error performance of the stochastic

signaling with averaging method, Fig. 5 is presented. It can be observed that setting ∆ to 0.05 provides

the best performance. This means that the average probability of error performance is smaller when the

standard deviation of the assumed PDF of the channel coefficient ∆ gets closer to the standard deviation of

the channel coefficient error ε. As we increase or decrease the value of ∆ from 0.05, the average probability

of error increases. Therefore, choosing very small or very large ∆ values degrades the performance of the

stochastic signaling with averaging strategy. Note that ∆ = 0 corresponds to the stochastic signaling with

distorted channel coefficients method. It can be observed from Fig. 5 that if ∆ is less than 0.0078, con-

ventional signaling which has an average probability of error of 0.002 is better than this averaging strategy.

Also, if ∆ is less than 0.0236 or larger than 0.1684, robust stochastic signaling which has an average proba-
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Figure 5: Average probability of error versus∆ for stochastic signaling with averaging when A/σ2 = 40 dB and ε = 0.05. Stochastic
signaling with averaging performs the same as conventional signaling when ∆ = 0.0078. It has the same average probability of
error as robust stochastic signaling at ∆ = 0.0236 and ∆ = 0.1684.

bility of error of 0.00136 achieves better performance than stochastic signaling with averaging, whereas the

performance of stochastic signaling with averaging is better than robust signaling if 0.0236 < ∆ < 0.1684.

Therefore, it is concluded that if the variance of the channel coefficient error is estimated reasonably well,

the stochastic signaling with averaging approach outperforms the other approaches.

Furthermore, we investigate in Fig. 6 the average probability of error performance of conventional sig-

naling, stochastic signaling with perfect CSI, robust stochastic signaling, stochastic signaling with averaging

when ε = 0.05 and ∆ = 0.1 and when ε = ∆ = 0.05, and stochastic signaling with distorted channel coeffi-

cients when ε = 0.05 versus the actual value of the channel coefficient α at A/σ2 = 40 dB. We observe that

the average probability of error decreases as α increases for all strategies.5 For each value of the channel

coefficient, the lower bound for the probability of error is obtained by stochastic signaling with perfect CSI.

For small values of α, i.e., when α < 0.894, robust stochastic signaling is better than stochastic signaling

with averaging even for ∆ = ε. However, for larger α values, such as for α > 1.107, robust signaling

5Although it is not very clear in Fig. 6, the average probabilities of error for conventional signaling and robust signaling also
slightly decrease as α increases. The reason for the almost constant performance is that the designed signals for these approaches
around A/σ2 = 40 dB cannot mitigate the effect of the largest component of the Gaussian mixture noise, which is located at 1.31.
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Figure 6: Average probability of error versus α for various signaling strategies when A/σ2 = 40 dB.

performs worse than stochastic signaling with averaging and stochastic signaling with distorted channel

coefficients. This shows that since the signals are designed for α0 = 0.8 in robust stochastic signaling, when

the actual α is close to 0.8, robust signaling achieves improved performance. Performance of stochastic sig-

naling with averaging is better than conventional signaling and stochastic signaling with distorted channel

coefficients for every α value. Although conventional signaling yields larger average probabilities of error

than stochastic signaling with distorted channel coefficients for α > 0.9935, employing distorted channel

coefficients in the signal design results in the worst average probability of error performance when α has a

smaller value.

Finally, in order to provide additional explanations of the preceding results, Table 1 and Table 2 are

presented. In Table 1, the optimal signals for robust stochastic signaling and stochastic signaling for the

given channel coefficient value α are presented for various A/σ2 values. Note that in robust signaling the

actual value of α is irrelevant since all the signals are designed for α = 0.8. It is observed that when

A/σ2 = 10 dB, both strategies have the same solution as the conventional signaling. However, as A/σ2

increases, the randomization between two signal values becomes more effective and this may help reduce

the average probability of error. For example, when A/σ2 = 25 dB, the average probability of error for

23



Table 1: Optimal signal PDFs [in the form of pS 1 (s) = λ1 δ(s − s11) + (1 − λ1) δ(s − s12) ] for symbol 1 according to stochastic
signaling and robust stochastic signaling for various α.

Stochastic
A/σ2 (dB) α λ1 s11 s12

10 0.9 N/A 1 1
10 1.1 N/A 1 1
25 0.9 0.3254 1.5642 0.5496
25 1.1 0.5557 1.2798 0.4497
40 0.9 0.4211 1.4838 0.3546
40 1.1 0.6590 1.214 0.2901

Robust
A/σ2 (dB) α λ1 s11 s12

10 N/A N/A 1 1
25 N/A 0.2276 1.7597 0.6183
40 N/A 0.3200 1.6693 0.3989

Table 2: Optimal signal PDFs [in the form of pS 1 (s) = λ1 δ(s − s11) + (1 − λ1) δ(s − s12) ] for symbol 1 according to stochastic
signaling with averaging when A/σ2 = 40 dB.

Averaging
α̂ ∆ λ1 s11 s12

0.9 0.01 0.41 1.5016 0.3575
0.9 0.05 0.351 1.5922 0.4114
0.9 0.2 0.0698 1.3519 0.9684
1.1 0.01 0.6466 1.2247 0.2917
1.1 0.05 0.575 1.2892 0.323
1.1 0.2 0.476 1.2815 0.6453

robust signaling is 0.00155, whereas it is 0.00199 for conventional signaling. In Table 2, the optimal signals

for stochastic signaling with averaging when A/σ2 = 40 dB are presented. Note that the assumed PDF of the

channel coefficient in that strategy is N(α̂,∆2). It is observed that when ∆ is very small, i.e., ∆ = 0.01, the

optimal signal PDFs are close to the optimal signal PDFs of the stochastic signaling case given in Table 1.

Also, when α̂ = 0.9 and ∆ = 0.2, the optimal signal PDF is close to that for conventional signaling since

the optimal PDF has a mass point at 0.9684 with a weight of 0.9302.

6. Concluding Remarks

In this study, the effects of imperfect CSI on stochastic signaling and the design of stochastic signals in

the presence of CSI uncertainty have been investigated. Regarding the comparison between the proposed

stochastic signaling approaches, robust stochastic signaling requires less amount of statistical information
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about the channel coefficient error than stochastic signaling with averaging since the former uses only

the smallest channel coefficient value in the signal design while an estimate for the PDF of the channel

coefficient error is needed in the latter. However, the use of the smallest channel coefficient value in robust

stochastic signaling can result in poor performance when the probability of having very small channel

coefficients is nonzero. Therefore, in practice, it can be useful to consider only the channel coefficient values

with significant probabilities in determining the smallest channel coefficient. In addition, the numerical

examples have indicated that the stochastic signaling with averaging approach performs better than the other

practical approaches as long as the statistics of the channel coefficient error are estimated reasonably well.

However, its computational complexity is higher than that of robust stochastic signaling as an averaging

operation is performed over the channel coefficient.

Appendix A. Appendices

Appendix A.1. Proof of Proposition 1

In the following, lower and upper bounds for the expression in (14) are derived in order to prove the

statements in the proposition. We start by noticing the fact that the sign of the channel coefficient knowledge

at the transmitter is important. Suppose that pα̂S 1
is the optimal PDF obtained from (11) for a given α̂.

Therefore, if −α̂ is used instead of α̂, then p−α̂S 1
will be the optimal solution of (11) and the value of p−α̂S 1

(x)

will be equal to pα̂S 1
(−x). This observation can be utilized in (13), and also using the fact that G(x, k) =

1 −G(−x, k), Pα̂e= 1 − P−α̂e can be obtained as follows:

∫ ∞

−∞
p α̂S 1

(x)G(x, k)dx =
∫ ∞

−∞
p−α̂S 1

(−x)(1 −G(−x, k))dx =
∫ ∞

−∞
p−α̂S 1

(t)(1 −G(t, k))dt

= 1 −
∫ ∞

−∞
p−α̂S 1

(t)G(t, k)dt = 1 − P−α̂e . (A.1)

It is stated in the second condition of the proposition that Pα̂e < κ1 when α̂ > γth, and Pα̂e < κ2 < κ1 when

α > α̂ > θth. Therefore, if we insert −α̂ instead of α̂ in these conditions, we get P−α̂e < κ1 when −α̂ > γth

and P−α̂e < κ2 < κ1 when α > −α̂ > θth. Using the result in (A.1) and rearranging the terms yield Pα̂e > 1− κ1

when α̂ < −γth and Pα̂e > 1 − κ2 > 1 − κ1 when −α < α̂ < −θth. Also, since G(x, k) is a strictly decreasing

function of x when k is positive, then G(x, α̂) is a strictly increasing function of x if α̂ is negative. Therefore,
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for a given α̂ < 0, the optimal signal PDF p α̂S 1
assigns the weights on negative numbers instead of positive

ones since for each positive value of S 1, its negative can be used instead, which results in the same average

power value and a smaller E{G(S 1, α̂)}. Furthermore, since G(x, α) is a strictly decreasing function, and

G(x, α) = 1 −G(−x, α), we have G(x, α) > G(0, α) = 0.5 for x < 0. Thus, by using these two facts and the

expression in (13), we conclude that if α̂ < 0, then Pα̂e > 0.5 [and Pα̂e < 0.5, if α̂ > 0]. Now, one can find a

lower bound on Pe in (14) as follows:

Pe =

∫ ∞

−∞
pα̂(a)Pa

eda ≥
∫ −γth

−∞
pα̂(a)Pa

eda +
∫ 0

−γth

pα̂(a)Pa
eda +

∫ ∞

βth

pα̂(a)Pa
eda

> (1 − κ1)P(α̂ < −γth) + (κ1 − κ2)P(−α < α̂ < −θth) +
1
2

P(−γth < α̂ < 0) + P(βth < α̂)G(
√

A, α)

= (1 − κ1)P
(
η

ε
>
α + γth

ε

)
+ (κ1 − κ2)P

(
−2α
ε
<
η

ε
<
−α − θth
ε

)
+

1
2

P
(−α
ε
<
η

ε
<
−α − γth

ε

)
+ P

(
η

ε
>
βth − α
ε

)
G(
√

A, α)

= (1 − κ1)Q
(
α + γth

ε

)
+ (κ1 − κ2)

(
Q

(
2α
ε

)
− Q

(
α + θth
ε

))
+

1
2

(
Q

(
α

ε

)
− Q

(
α + γth

ε

))
+ Q

(
βth − α
ε

)
G(
√

A, α)

=

(
1
2
− κ1

)
Q

(
α + γth

ε

)
+ (κ1 − κ2)

(
Q

(
2α
ε

)
− Q

(
α + θth
ε

))
+

1
2

Q
(
α

ε

)
+ Q

(
βth − α
ε

)
G(
√

A, α) . (A.2)

Note that the first inequality follows from the fact that a positive term, namely,
∫ βth

0 pα̂(a)Pa
eda, is removed

from the initial expression
∫ ∞
−∞ pα̂(a)Pa

eda. Also, in obtaining the first and the second terms after the second

inequality, we use the fact that although Pα̂e > 1−κ1 when α̂ < −γth, the bound is tighter, that is, Pα̂e > 1−κ2,

when −α < α̂ < −θth < −γth. For a given ε, if the final expression in (A.2) is greater than or equal to

G(
√

A, α), then Pe > G(
√

A, α). Therefore, under the conditions in the proposition, if the inequality in (15)

is satisfied for a given value of the standard deviation ε of the channel coefficient error, it is sufficient to

conclude that conventional signaling performs better than stochastic signaling.

Next, the following upper bound on Pe in (14) can be obtained based on a similar approach to that in
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obtaining (A.2) (please see [1] for details):

Pe ≤
1
2

(
κ1 + κ2 + Q

(
α

ε

))
+

(
1
2
− κ1

)
Q

(
α − γth

ε

)
− κ1Q

(
βth − α
ε

)
+ (κ1 − κ2)Q

(
α − θth
ε

)
+

(
Q

(
βth − α
ε

)
− Q

(
α + βth

ε

))
G(
√

A, α) . (A.3)

For a given ε, if the expression in (A.3) is less than or equal to G(
√

A, α), then Pe < G(
√

A, α) is obtained.

Therefore, under the conditions in the proposition, if the inequality in (16) is satisfied for a given ε, it is

sufficient to conclude that stochastic signaling performs better than conventional signaling.

Appendix A.2. Proof of Proposition 2

The minimax problem in (17) can be expressed as follows:

min
pS 0 ,pS 1

max
α∈[α0,α1]

π1

∫ ∞

−∞
pS 1(x) G(x, α)dx + π0

∫ ∞

−∞
pS 0(x) (1 −G(x, α))dx subject to E{|S i|2} ≤ A .

Assume that S 1 is a nonnegative and S 0 is a nonpositive random variable. First, it is shown that this

assumption does not reduce the generality of the proof. Suppose that p∗S 1
is the PDF of S 1 which is a

nonnnegative random variable, and p∗S 0
is the PDF of S 0 which is any random variable (that is, its instances

can take both positive or negative values). In the minimax problem, for given p∗S 0
and p∗S 1

, we maximize

π1
∫ ∞
−∞ p∗S 1

(x) G(x, α)dx+π0
∫ ∞
−∞ p∗S 0

(x) (1−G(x, α))dx over α ∈ [α0, α1]. Now assume that p†S 1
is symmetric

with p∗S 1
, that is, p†S 1

is a PDF for a nonpositive random variable such that p∗S 1
(−x) = p†S 1

(x). Similarly,

for a given p∗S 0
and p†S 1

, we maximize π1
∫ ∞
−∞ p†S 1

(x) G(x, α)dx + π0
∫ ∞
−∞ p∗S 0

(x) (1 − G(x, α))dx over α ∈

[α0, α1]. Because of the first condition in the proposition, for every α ∈ [α0, α1],
∫ ∞
−∞ p∗S 1

(x) G(x, α)dx ≤∫ ∞
−∞ p†S 1

(x) G(x, α)dx, since G(x, α) is a strictly decreasing function of x; hence, the value of the maximum

for p∗S 1
will be less than or equal to that for p†S 1

, and both PDFs will yield the same average power value

because of the symmetry. Since it is a minimax problem, we look for the optimal signal PDFs pS 0 and pS 1

that minimize the value of the maximum. Thus, by using a nonnegative S 1, we achieve a lower maximum

value as compared to a nonpositive S 1. Similarly, a nonpositive S 0 will yield a smaller maximum value

as compared to a nonnegative S 0. Therefore, instead of considering all PDFs, one can just consider the

PDFs of a nonpositive S 0 and a nonnegative S 1 without loss of generality under the first condition in the
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proposition.

Based on this fact, for any given pS 0 and pS 1 , which are the PDFs of a nonpositive S 0 and a nonnegative

S 1, respectively, we maximize V(α) = π1
∫ ∞

0 pS 1(x) G(x, α)dx + π0
∫ 0
−∞ pS 0(x) (1 − G(x, α))dx over α ∈

[α0, α1]. Define V1(α) =
∫ ∞

0 pS 1(x) G(x, α)dx and V0(α) =
∫ 0
−∞ pS 0(x) G(x, α)dx. Then, we maximize

V(α) = π1 V1(α) − π0 V0(α) + π0 over α ∈ [α0, α1]. Under the second condition in the proposition, G(x, α)

is a strictly decreasing function of α, ∀x > 0, and a strictly increasing function of α, ∀x < 0.6 First, assume

that pS i(x) , δ(x) for i = 0, 1. Then, for every αi > α j, G(x, αi) < G(x, α j) if x > 0, and G(x, αi) >

G(x, α j) if x < 0. Since pS i(x) is always nonnegative,
∫ ∞

0 pS 1(x)G(x, αi)dx <
∫ ∞

0 pS 1(x)G(x, α j)dx; that

is, V1(αi) < V1(α j). Hence, V1 is a strictly decreasing function of α. Similarly,
∫ 0
−∞ pS 0(x)G(x, αi)dx >∫ 0

−∞ pS 0(x)G(x, α j)dx; that is, V0(αi) > V0(α j). So, V1 is a strictly increasing function of α. Then, it is

concluded that V(α) is a strictly decreasing function of α. Hence, for pS 0 and pS 1 , under the conditions in

the proposition, max
α∈[α0 α1]

V(α) = V(α0), meaning that the minimax problem can be reduced to the form in

(18). Note that, when pS i(x) = δ(x), then dVi(α)/dα = 0. If pS 1(x) = pS 0(x) = δ(x), then V(α) becomes

a constant function. Also, if one of pS 1(x) or pS 0(x) is not equal to δ(x), V(α) is still a strictly decreasing

function of α. Hence max
α∈[α0 α1]

V(α) = V(α0) holds for all possible pS 0 and pS 1 .
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