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Abstract—In this paper, we study the convexity properties for the
problem of detecting the presence of a signal emitted from a power
constrained transmitter in the presence of additive Gaussian noise under
the Neyman-Pearson (NP) framework. It is proved that the detection
probability corresponding to the α−level likelihood ratio test (LRT) is
either strictly concave or has two inflection points such that the function is
strictly concave, strictly convex and finally strictly concave with respect
to increasing values of the signal power. In addition, the analysis is
extended from scalar observations to multidimensional colored Gaussian
noise corrupted signals. Based on the convexity results, optimal and near-
optimal time sharing strategies are proposed for average/peak power
constrained transmitters and jammers. Numerical methods with global
convergence are also provided to obtain the parameters for the proposed
strategies.

Index Terms– Detection, Neyman-Pearson (NP), Gaussian noise, con-
vexity, stochastic signaling, jamming, time sharing, power constraint.

I. I NTRODUCTION

In coherent detection applications, despite the ubiquitous restric-
tions on the transmission power, there is often some flexibility in the

choice of signals transmitted over the communications medium [1].

Due to crosstalk limitation between adjacent wires and frequency

blocks, wired systems require that the signal power should be

carefully controlled [2]. A more pronounced example from wireless

systems dictates the signal power to be limited both to conserve

battery power and to meet restrictions by regulatory bodies. It is well-

known that the performance of optimal binary detection in Gaussian

noise is improved by selecting deterministic antipodal signals along

the eigenvector of the noise covariance matrix corresponding to the
minimum eigenvalue [1]. Further insights are obtained by studying

the convexity properties of error probability in [3] for theoptimal

detection of binary-valued scalar signals corrupted by additive noise

under an average power constraint. It is shown that the errorprobabil-

ity is a nonincreasing convex function of the signal power when the

channel has a continuously differentiable unimodal noise probability

density function (PDF) with a finite variance. This discussion is

extended from binary modulations to arbitrary signal constellations

in [4] by concentrating on the maximum likelihood (ML) detection

over additive white Gaussian noise (AWGN) channels. The symbol

error rate (SER) is shown to be always convex in signal-to-noise
ratio (SNR) for 1-D and 2-D constellations, but nonconvexity in
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Fig. 1. Illustrative example demonstrating the benefits viatime sharing
between two power levels under an average power constraint.

higher dimensions at low to intermediate SNRs is possible, while

convexity is always guaranteed at high SNRs with an odd number of
inflection points in-between. When the transmitter is average-power

constrained, this result suggests the possibility of improving the error

performance in high dimensional constellations through time sharing

of the signal power, as opposed to the case for low dimensions

(1-D and 2-D). The convexity properties of the SER with respect

to jamming power (i.e., multiplicative reciprocal of SNR) are also

addressed in the same study.

Fig. 1 depicts how time sharing helps improve the error proba-

bility under an average power constraint via a simple illustration.

Suppose that the average power constraint is denoted withSavg.

It is seen that the average probability of error can be reduced by

time sharing between power levelsS1 and S2 with respect to the

constant power transmission withSavg. More precisely, time sharing

exploits the nonconvexity of the plot of error probability versus

signal power. With the advent of the optimization techniques, there

has been a renewed interest in designing time sharing schemes

that improve/degrade (jamming problem) the error performance of
communications systems operating under signal power constraints.

Since performance gains in AWGN channels due to such stochastic

approaches are restricted to higher dimensional constellations1, the

attempts to exploit the convexity properties of the error probability

have been diverted towards channels with multimodal noise PDFs

[5], [6]. Goken et al. have shown in [5] that for a given detector, the

optimal signaling strategy results in a time sharing among no more

than three different signal values under second and fourth moment

constraints, and reported significant performance improvements over

conventional signaling schemes under Gaussian mixture noise. When

multiple detectors are available at the receiver of anM -ary power
constrained communications system, it is stated in [6] thatthe optimal

strategy is to time share between at most two maximum a-posteriori

probability (MAP) detectors corresponding to two deterministic sig-

nal vectors.

11-D and 2-D constellations are almost universally employedin practice.



Until recently, the discussions on the benefits of stochastic signal-
ing were severely limited to the Bayesian formulation, specifically

to the error probability criterion. However, in many problems of

practical interest, it is not possible to know prior probabilities or

to impose specific cost structures on the decisions. In such cases,

the probabilities of detection and false alarm become the main

performance metrics as described in the Neyman-Pearson (NP) ap-

proach [1]. For example, in wireless sensor network applications, a

transmitter can send one bit of information (using on-off keying)

about the presence of an event (e.g., fire). In [7], the problem

of designing the optimal signal distribution is addressed for on-
off keying systems to maximize the detection probability without

violating the constraints on the probability of false alarmand the

average signal power. It is shown that the optimal solution can be

obtained by time sharing between at most two signal vectors for the

on-signal and using the corresponding NP-type likelihood ratio test

(LRT) at the receiver. Although the results are general, numerical

examples have been chosen from multimodal Gaussian mixture

distributions to demonstrate benefits from time sharing approaches.

Unfortunately even in that case, finding the optimal signal set to

maximize the detection probability is a computationally cumbersome

task necessitating the use of global optimization techniques [7].

In this paper, we report an interesting and obviously overlooked

fact for the problem of detecting the presence of a signal emitted from

a power constrained transmitter operating over an additiveGaussian

noise channel within the NP framework. Contrary to the error

probability criterion [4], it is shown that for false alarm rates smaller

thanQ(2), remarkable improvements in detection probability can be
attained even in low dimensions by optimally distributing the fixed

average power between two levels (Q(·) denotes theQ−function).

More specifically, we study analytically the convexity properties of

determining the presence of a power-limited signal immersed in

additive Gaussian noise. It is proved that the detection probability

corresponding to theα−level LRT is either concave forα ≥ Q(2)

or has two inflection points such that the function is strictly concave,

strictly convex and finally strictly concave with respect toincreasing

values of the signal power forα < Q(2). Numerical methods with

global convergence are provided to determine the regions over which
time sharing enhances the detection performance over determinis-

tic signaling at the average power level. In addition, the analysis

is extended from scalar observations to multidimensional colored

Gaussian noise corrupted signals. Based on the convexity results,

optimal and near-optimal time sharing strategies are proposed for

average/peak power constrained transmitters. For almost all practical

applications, the required false alarm probability valuesare much

smaller thanQ(2) ≈ 0.02275. As a consequence, time sharing

can facilitate improved detection performance whenever the average

power limitations are in the designated regions. Finally, the dual

problem is considered from the perspective of a Gaussian jammer
to decrease the detection probability via time sharing. It is shown

that the optimal strategy results in on-off jamming when theaverage

noise power is below some critical value, a fact previously noted for

spread spectrum communications systems [8].

II. PROBLEM FORMULATION

Consider the problem of detecting the presence of a target signal,

where the receiver needs to decide between the two hypotheses H0

or H1 based on a real-valued scalar observationY acquired over an

AWGN channel.

H0 : Y = σN , H1 : Y =
√
S + σN (1)

Here, N ∼ N (0, 1) is a standard Gaussian random variable with

zero mean and unit variance,σ > 0 is the noise standard deviation

at the receiver,
√
S represents the transmitted signal for the alternative

hypothesisH1, andS > 0 is the corresponding signal power. The

additive noiseN is statistically independent of the signal
√
S. The

scalar channel model in (1) provides an abstraction for a continuous-

time system that passes the received signal through a correlator

(matched filter) and samples it once per symbol interval, thereby

capturing the effects of modulator, additive noise channeland receiver

front-end processing. In addition, although the above model is in

the form of a simple additive noise channel, it may be sufficient

to incorporate various effects such as thermal noise, multiple-access

interference, and jamming [3].

It is well-known that the NP detector gives the most powerfulα-

level test ofH0 versusH1 [1]. In other words, when the aim is
to maximize the probability of detection such that the probability of

false alarm does not exceed a predetermined valueα, the NP detector

is the optimal choice and takes the following form of an LRT for

continuous PDFs:

δNP (y) =







1 , if p1(y) ≥ η p0(y)

0 , if p1(y) < η p0(y)
(2)

where the thresholdη ≥ 0 is chosen such that the probability

of false alarm satisfiesPFA = P0 (p1(y) ≥ η p0(y)) = α, with

subscript0 denoting that the probability is calculated conditioned on

the null hypothesisH0. Then, the NP decision rule is the optimal one

among allα-level decision rules, i.e.,PD = P1 (p1(y) ≥ η p0(y)) is

maximized, where the probability is calculated under the condition

that the alternative hypothesisH1 is true.

The hypothesis pair in (1) can be restated in terms of the dis-

tributions on the observation space asH0 : Y ∼ N (0, σ2) and

H1 : Y ∼ N (
√
S, σ2). The likelihood ratio for (1) is then given

by L(y) = p1(y)/p0(y) = exp
{√

S/σ2
(

y −
√
S/2

)}

. Since
S > 0, the likelihood ratioL(y) is a strictly increasing function of

the observationy. Therefore, comparingL(y) to the thresholdη is

equivalent to comparingy to another thresholdη′ = L−1(η), where

L−1 is the inverse function ofL. Then, the probability of false alarm

is expressed asPFA = P0 (L(Y ) ≥ η) = P0 (Y ≥ η′) = Q (η′/σ),

whereQ−function is the tail probability of the standard Gaussian

distribution, i.e.,Q(x) = (1/
√
2π )

∫

∞

x
e−t2/2dt. It is noted that

any value of false alarm probabilityα can be attained by choosing

the thresholdη′ = σQ−1(α), whereQ−1 is the inverseQ−function.

Then, for fixedS, the optimalα−level NP decision rule employed
at the receiver is given by

δNP (y) =







1 , if y ≥ σQ−1(α)

0 , if y < σQ−1(α)
(3)



which also possesses the constant false alarm rate (CFAR) property
[1]. Let γ , S/σ2 denote the normalized signal power at the receiver.

Then, the detection probability achieved byδNP is obtained as

PD(γ) = P1

(

Y ≥ σQ−1(α)
)

= Q
(

Q−1(α) −√
γ
)

. (4)

For fixedα, the relationship between the detection probability andγ

is known as the power function of the test in radar terminology [1].

We will first discuss the convexity properties of the detection
probability with respect to the signal power for the NP test given

in (3). This is motivated by the possibility of enhancing thedetection

performance via time sharing between two signal power levels while

satisfying an average power constraint [3], [4], [9]. In theabsence

of fading, the average received power is a deterministically scaled

version of the transmitted power for non-varying AWGN channels.

Hence, any constraint on the transmitted power can be related to one

on the received power and consecutively to one in the normalized

form, and vice versa. In addition to the average power constraint, a

hard limit on the peak transmitted power can be imposed as well in
accordance with practical considerations.

III. C ONVEXITY PROPERTIES INSIGNAL POWER

A. Convexity/Concavity Results

In the following analysis, the endpoints are excluded from the set

of feasible false alarm probabilities. Specifically,α is confined in

the interval(0, 1) excluding the trivial cases ofα ∈ {0, 1}. We first

note the limits of the detection probability, i.e.,limγ→0 PD(γ) =

α and limγ→∞ PD(γ) = 1. Differentiating with respect toγ

yields P
′

D(γ) = (2
√
2πγ )−1 exp

{

−
(

Q−1(α)−√
γ
)2
/2
}

, which

is positive ∀ γ > 0 indicating thatPD(γ) is a strictly increasing

function of γ. Similarly, the limits for the first derivative is given as
limγ→0 P

′

D(γ) = ∞ and limγ→∞ P
′

D(γ) = 0.

Proposition 1: For α ∈ [Q(2), 1), PD(γ) is a monotonically
increasing and strictly concave function ofγ ∈ (0,∞). For α ∈
(0, Q(2)), PD(γ) is a monotonically increasing function with two

inflection pointsγ1 < γ2 such thatPD(γ) is strictly concave for

γ ∈ (0, γ1), strictly convex forγ ∈ (γ1, γ2), and strictly concave for

γ ∈ (γ2,∞).
Proof: It suffices to consider the second derivative of the detection

probability with respect toγ, i.e.,

P
′′

D(γ) =
1

4
√
2π γ

exp

{

−
(

Q−1(α)−√
γ
)2

2

}

×
(

Q−1(α)−√
γ − 1√

γ

)

. (5)

Since the first two terms in (5) are positive∀ γ > 0, the sign of the

second derivative is determined by the third term, i.e.,(Q−1(α) −√
γ − 1/

√
γ ). First, it is noted that forα ≥ Q(0) = 0.5, we have

Q−1(α) ≤ 0 which implies P
′′

D(γ) < 0 for all γ > 0 and the

detection probability is strictly concave. Next, letx ,
√
γ . The

third term in (5) has the reversed sign off(x) = x2−Q−1(α)x+1

for x > 0. The sign of quadratic polynomialf(x) can be determined
from its discriminant, which is given by∆ = (Q−1(α))2−4. When

α ∈ (Q(2),Q(−2)), the discriminant is negative∆ < 0, and we

havef(x) > 0 ∀x. Both α ≥ Q(0) andα ∈ (Q(2), Q(−2)) imply

thatP
′′

D(γ) < 0. Thus , it is concluded thatPD(γ) is strictly concave
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Fig. 2. Detection probability of the NP decision rule in (3) is plotted versusγ
for various values of the false alarm probabilityα. As an example, whenα =
10−4, the inflection points are located atγ1 ≈ 0.0851 and γ2 ≈ 11.7459
with PD(γ1) ≈ 0.0003 andPD(γ2) ≈ 0.3852. The second inflection point
(γ2) is also marked on each curve forα > Q(2).

for α > Q(2) ≈ 0.02275013. For α < Q(2), f(x) has two distinct
roots corresponding to the inflection points ofPD(γ), which are given

as

γ1 = 0.25
(

Q−1(α)−
√

(Q−1(α))2 − 4
)2

γ2 = 0.25
(

Q−1(α) +
√

(Q−1(α))2 − 4
)2

(6)

suggesting thatPD(γ) is strictly concave forγ ∈ (0, γ1)∪ (γ2,∞)

and strictly convex forγ ∈ (γ1, γ2). �

Fig. 2 depicts the detection probability of the NP decision rule in

(3) versusγ for various values of the false alarm probabilityα. As

expected,PD(γ) is strictly concave forα ∈ [Q(2), 1), and consists of

strictly concave, strictly convex and finally strictly concave intervals

for α ∈ (0, Q(2)). For the latter case, even though its existence is

guaranteed, the effect of the first inflection point is far less obvious

than the second inflection point. This can be attributed to the fact

that for small values ofα, γ1 ≈ 0 and PD(γ1) ≈ α whereas
γ2 ≈ (Q−1(α))2 and PD(γ2) ≈ 0.5, where the approximations

are obtained using the first order Taylor series expansion.

B. Optimal Signaling

The concavity of detection probability forα ∈ [Q(2), 1) stated in

Proposition 1 indicates that the detection performance of an average

power-limited transmitter cannot be improved by time sharing be-

tween different power levels. This follows from Jensen’s inequality

since the detection probability achieved via time sharing,which is

the convex combination of detection probabilities corresponding to

different power levels, is always smaller than the detection probability

when transmitting at a fixed power that is equal to the same

convex combination of the power levels. Fortunately, the range of
false alarm probabilities facilitating improved detection performance,

α ∈ (0, Q(2)), have higher practical significance. In order to obtain

the optimal time sharing strategy, we first present the following

lemma which is proved in the Appendix.



Lemma 1: Let α < Q(2), andγ1 andγ2 be the inflection points
of PD(γ) as given in (6). There exist unique pointsγC1 ∈ (0, γ1]

andγC2 ≥ γ2 such that the tangent toPD(γ) at γC1 is also tangent

at γC2 and this tangent lies abovePD(γ) for all γ > 0.
Using a similar analysis to that in the proof of Lemma 1, we can

also obtain the following lemma.
Lemma 2: Let α < Q(2), andγ1 andγ2 be the inflection points of

PD(γ). Suppose also thatγC1 andγC2 are the contact points of the

tangent line as described in Lemma 1. Given a pointγ̂ ∈ [γ1, γC2],

there exists a unique pointγC(γ̂) ∈ [γC1, γ1] such that the tangent

at γC(γ̂) passes through the point(γ̂,PD(γ̂)) and lies abovePD(γ)

for all γ ∈ (0, γ̂).2

Based on Lemma 1 and Lemma 2, we state the optimal signaling

strategy for the communications system in (1) operating under peak

power constraintΓpeak and average power constraintΓavg (Γavg ≤
Γpeak).

Proposition 2: Let α < Q(2). For Γavg ≤ γC1 or Γavg ≥ γC2

or Γpeak ≤ γ1, the best strategy is to exclusively transmit at

the average powerΓavg, i.e., time sharing does not help. When

Γavg ∈ (γC1, γC2) and γC2 ≤ Γpeak, the optimal strategy is to

time share between powersγC1 and γC2 with the fraction of time

(γC2 − Γavg)/(γC2 − γC1) allocated to the powerγC1. On the

contrary ifΓavg ∈ [γC(Γpeak),Γpeak] while Γpeak ∈ (γ1, γC2), the

optimal strategy is to time share between powersγC(Γpeak) and the

peak powerΓpeak with the fraction of time(Γpeak−Γavg)/(Γpeak−
γC(Γpeak)) allocated to the powerγC(Γpeak). Consequently, if

Γavg < γC(Γpeak) while Γpeak ∈ (γ1, γC2), transmitting contin-

uously atΓavg is the optimal strategy.3

Proof: We state the proof in the absence of a peak power constraint.

Let λT , (PD(γC2)− PD(γC1)) / (γC2 − γC1). For an average

powerγ, the proposed strategy achieves

P̃D(γ) =







PD(γ) if γ ∈ (0, γC1) ∪ (γC2,∞)

PD(γC1) + λT (γ − γC1) if γ ∈ [γC1, γC2]

(7)

It is easy to see that̃PD(γ) is concave. Next, we need to show that

the detection probability cannot be increased any further by time

sharing between different power levels. More precisely,P̃D(γ) is the

smallest concave function that is larger thanPD(γ) [3]. For γ ∈
(0, γC1) ∪ (γC2,∞), this clearly holds. Forγ ∈ [γC1, γC2], the

proof is via contradiction. Suppose that there exists another concave

functiong(γ) greater thanPD(γ) with the propertỹPD(x) > g(x) ≥
PD(x) for somex ∈ [γC1, γC2]. Due to concavity ofg(x), we have
P̃D(x) > g(x) ≥ θg(x1)+(1−θ)g(x2) ≥ θPD(x1)+(1−θ)PD(x2)

for anyθ ∈ [0, 1] andx = θx1+(1−θ)x2. Now letx1 = γC1, x2 =

γC2, and θ = (γC2 − x) / (γC2 − γC1). Then, P̃D(x) > g(x) ≥
P̃D(x), which is a contradiction. This completes the proof. The proofs

for the proposed time sharing strategies that are detailed according

to the various relations amongΓpeak,Γavg, γ1, γ2, γC1 andγC2 can

be obtained similarly. �

It should be noted that the transmitter requires the knowledge of

the noise variance at the receiver in order to employ the optimal

2The dependence of tangent pointγC to γ̂ is explicitly emphasized by
writing it as a function, i.e.,γC(γ̂).

3The cases ofΓavg ≤ γC1 and Γpeak ≤ γ1 can be practically
uninteresting since they result in very low detection probabilities.

time sharing strategy. If we do not pay attention to the peak power
constraint for a second, these results indicate that very weak and

strong transmitters should operate continuously at their average power

while transmitters with moderate power can benefit significantly from

time sharing strategies.
The critical points γC1 and γC2 can be obtained as

the unique pair that satisfiesP
′

D(γC1) = P
′

D(γC2) =

(PD(γC2)− PD(γC1)) / (γC2 − γC1), which can be solved numer-

ically by plugging in the corresponding expressions. Sincethe si-

multaneous solution of these equality constraints can be difficult due
to terms involving exponentials andQ−functions, we propose two

approaches to obtain the optimal signaling strategy. The first is to

solve the following nonconvex optimization problem:

max
λ,γC1,γC2

λQ
(

Q−1(α)−√
γC1

)

+ (1− λ)Q
(

Q−1(α)−√
γC2

)

s.t. λγC1 + (1− λ)γC2 ≤ Γavg (8)

where γC1 ∈ (0, γ1], γC2 ∈ [γ2,Γpeak], and λ ∈ [0, 1] denotes

the fraction of time powerγC1 is used assumingΓpeak ≥ γC2 and

Γavg ∈ [γC1, γC2]. A local solver can be employed using multiple

start points that are uniformly distributed within the bounds. The

global optimum can then be selected among those local maximaby

returning the one with the maximum score. In our trials, we observe

that close to optimal solutions can be obtained using as few as 10 start

points from each interval without compromising the computational

efficiency.
A much more effective numerical method to obtain the unique

tangent pointsγC1 ∈ (0, γ1] andγC2 ≥ γ2 is presented next. Based

on a bisection search, this method is guaranteed to convergeto the

exact values forγC1 andγC2 with desired accuracy. More explicitly,

we propose the following algorithm.

Algorithm 1

λmin = P
′

D(γ1), λmax = P
′

D(γ2)
γmin,1 = 0, γmax,1 = γ1
γmin,2 = γ2, γmax,2 = ∞
do

λ = (λmax + λmin) /2
γX1 = argmax

γ∈(γmin,1,γmax,1)

PD(γ)− λγ

γX2 = argmax
γ∈(γmin,2,γmax,2)

PD(γ)− λγ

if PD(γX1)− λγX1 > PD(γX2)− λγX2 ,
then λmax = λ, γmin,1 = γX1, γmin,2 = γX2

else λmin = λ, γmax,1 = γX1, γmax,2 = γX2

while |(PD(γX1)− λγX1)− (PD(γX2)− λγX2)| > ǫ

To see that the tangent pointsγC1 and γC2 can be obtained

via the proposed algorithm, a few observations are noted first. The

slope ofPD(γ) strictly decreases in the interval[γC1, γ1], strictly

increases in the interval[γ1, γ2], and then again strictly decreases in

the interval[γ2, γC2]. Consequently, we haveP
′

D(γ1) < P
′

D(γC1) =

P
′

D(γC2) < P
′

D(γ2). Using the analytical expressions derived for

γ1, γ2 and P
′

D(γ), the computations ofP
′

D(γ1) and P
′

D(γ2) are
straightforward. Hence, initial lower and upper bounds areobtained

for the slope ofPD(γ) at the tangent pointsγC1 and γC2. These

are denoted withλmin andλmax at the beginning of the proposed

algorithm, respectively.



Let P̃D(γ) and λT be as defined in (7). It is noted that̃PD(γ)

represents the upper boundary of the convex hull ofPD(γ). Now

consider the functionPD(γ)−λγ for λ > 0. SincePD(γ) ≤ P̃D(γ)

for all γ > 0, we havemaxγ>0 PD(γ)−λγ ≤ maxγ>0 P̃D(γ)−λγ.

The maximum of the right-hand side occurs atP̃
′

D(γ) = λ, for which

a unique solution exists for all positiveλ 6= λT . This is because

P̃
′

D(γ) = P
′

D(γ) over the intervals(0, γC1] and [γC2,∞), where

P
′

D(γ) is strictly decreasing and continuous withlimγ→0 P
′

D(γ) =

∞, P
′

D(γC1) = P
′

D(γC2) = λT and limγ→∞ P
′

D(γ) = 0. Hence,

we havemaxγ>0 P̃D(γ)−λγ = maxγ>0 PD(γ)−λγ for all λ > 0.

More explicitly, by definingγ̂(λ) , argmaxγ∈(0,∞) PD(γ)− λγ, it
is seen that̂γ(λ) is a decreasing function ofλ with γ̂(λ) ∈ (0, γC1)

for λ > λT and γ̂(λ) ∈ (γC2,∞) for 0 < λ < λT .

These observations are exploited in Algorithm 1 as follows.Since

PD(γ)−λγ is strictly concave over the intervals(0, γ1] and[γ2,∞),

γX1 andγX2 can be computed efficiently at each iteration by means

of convex optimization methods. Furthermore, the bounds denoted

with γmin,i, γmax,i get tighter with each iteration fori = 1, 2.

Suppose thatλ > λT at the first iteration. Then, the maximum

is attained within the interval(0, γC1) and PD(γX1) − λγX1 >

PD(γX2)− λγX2 is satisfied. SinceλT < λ, all values greater than

the current value ofλ are discarded by settingλmax = λ. Likewise,

sinceγC1 > γX1 and γC2 > γX2, all the values smaller than the
current values ofγX1 andγX2 are discarded from the search intervals

for the next values ofγX1 andγX2, respectively. Ifλ < λT at the

first iteration, the maximum is attained within the interval(γC2,∞)

andPD(γX1)− λγX1 < PD(γX2)− λγX2 is satisfied. In this case,

we haveλT > λ and all values smaller than the current value of

λ are discarded by settingλmin = λ. Likewise, sinceγC1 < γX1

and γC2 < γX2, all the values greater than the current values of

γX1 and γX2 are discarded from the search intervals for the next

values ofγX1 andγX2, respectively. At each iteration, eitherλmin

increases towardsλT or λmax decreases towardsλT , andλmax ≥
λT ≥ λmin is assured. Thus,λ converges toλT . At convergence,
we haveγX1 = argmaxγ∈(γmin,1,γmax,1)

PD(γ)−λTγ = γC1 and

γX2 = argmaxγ∈(γmin,2,γmax,2)
PD(γ)− λT γ = γC2. In practice,

a sufficiently small value is selected forǫ to control the accuracy of

the solution at convergence.

Proposition 2 requires also the knowledge ofγC(Γpeak) for the

optimal signaling strategy in the case ofΓpeak ∈ (γ1, γC2), where

γC(Γpeak) is as defined in Lemma 2. A similar bisection search

can be used to findγC(Γpeak) after γC1 and γC2 are obtained via

Algorithm 1. This method is described in Algorithm 2, the proof of

which can be stated similarly.

Algorithm 2

λmin = P
′

D(γ1), λmax = P
′

D(γC1)
γmin = γC1, γmax = γ1
do

λ = (λmax + λmin) /2
γX = argmax

γ∈(γmin,γmax)

PD(γ)− λγ

if PD(γX) + P
′

D(γX) (Γpeak − γX) > PD(Γpeak) ,
then λmax = λ, γmin = γX
else λmin = λ, γmax = γX

while

∣

∣

∣PD(γX) + P
′

D(γX) (Γpeak − γX)− PD(Γpeak)
∣

∣

∣ > ǫ

As an example, forα = 10−4, Γavg = 5, andΓpeak = 20, the

optimal strategy can achieve a detection probability of0.1946 by em-

ploying powerγC1 = 2.69×10−5 with probability0.7307 and power

γC2 = 18.5664 with probability 0.2693, whereas by exclusively

transmitting at the average power, the detection probability remains

at 0.0690. If the peak power constraint is lowered toΓpeak = 10,
the optimal strategy can still increase the detection probability to

0.1445 by time sharing betweenγC = 4.99× 10−5 and peak power

Γpeak = 10 with approximately equal fractions as suggested by

the solution ofP
′

D(γC) = (PD(Γpeak)− PD(γC)) / (Γpeak − γC).

Finally, it should be emphasized that the detection probability can

be improved even further by designing the optimal signalingscheme

jointly with the detector employed at the receiver as discussed in

[7]. However, in that case we need to sacrifice from the simplistic

structure of the threshold detector which is also easier to update if

the channel statistics change slowly over time.

C. Near-optimal Strategy

It should be noted that Algorithm 1 requires the solution of

two convex optimization problems at each iteration to obtain the

critical pointsγC1 andγC2, that are needed to describe the optimal
signaling strategy. Moreover,γC(Γpeak) should also be determined

using Algorithm 2 wheneverΓpeak ∈ (γ1, γC2). In the following,

it is shown that near-optimal performance can be achieved with

computational complexity comparable to only that of Algorithm 2.

We recall from the previous discussion that for small valuesof the

false alarm probability, the first inflection pointγ1 gets close to zero.

It is also stated above that the value ofPD(γ1) equals approximately

to α in that case. Since the critical pointsγC and γC1 are located

inside the interval(0, γ1], they get close to zero as well while the
corresponding detection probabilities approachα. Also evident from

the example above, this observation gives clues of a suboptimal

approach. We make a simplifying assumption and suppose thatPD(γ)

is convex over the interval(0, γ2). Using arguments similar to those

in the Appendix, it is then possible to show that there existsa unique

point γon ≥ γ2 such that the tangent toPD(γ) at γon passes through

the point(0, α). This observation leads to the following near-optimal

strategy in the case of strict false alarm requirements.

Near-optimal strategy: Let α < Q(2). A suboptimal strategy with
reasonable performance is to switch between powers 0 andγon with

the fraction of on-power timeΓavg/γon whenΓavg < γon < Γpeak.

For γon ≥ Γpeak, the proposed suboptimal strategy time shares

between powers 0 andΓpeak with the fraction of on-power time

Γavg/Γpeak. For Γavg > γon, the transmission is conducted exclu-

sively at the average power.

γon can be obtained fromPD(γon) − γonP
′

D(γon) = α. More

explicitly, we need to solve for̂x such that

x̂ = Q−1

(

Q−1(α)− x̂

2
√
2π

exp

{

− x̂2

2

}

+ α

)

(9)

and the contact point can be obtained by substitutingγon =
(

Q−1(α)− x̂
)2

. The form of the equation in (9) suggests that a fixed

point iteration can be employed to obtain the solution [10].However,
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Fig. 3. Detection probability of the NP decision rule in (3) is evaluated at
the inflection pointsγ1 andγ2.

the convergence is not assured in general. Instead, we revert to a
numerical method with global convergence toγon. This is shown in

Algorithm 3. Again, a convex optimization problem is solvedat each

iteration.

Algorithm 3

λmin = P
′

D(γ1), λmax = P
′

D(γ2)
γmin = γ2, γmax = ∞
do

λ = (λmax + λmin) /2
γX = argmax

γ∈(γmin,γmax)

PD(γ)− λγ

if PD(γX)− P
′

D(γX)γX > α ,
then λmin = λ, γmax = γX
else λmax = λ, γmin = γX

while

∣

∣

∣
PD(γX)− P

′

D(γX)γX − α
∣

∣

∣
> ǫ

Fig. 3 provides more insight about the near-optimal performance

of the proposed approach. For various values of the false alarm

probabilityα, we have computed the inflection pointsγ1 andγ2 from

(6), evaluated the corresponding detection probabilitiesPD(γ1) and

PD(γ2), respectively, and plotted the resulting detection performance

curves with respect toα. As the false alarm constraint is tightened
(smaller values), it is observed that the vertical gap between the

detection performances calculated at the respective inflection points

becomes much more pronounced. SincePD(γ) is monotonically

increasing andγC1 ≤ γ1 is assured from Lemma 1,PD(γC1) always

takes values smaller thanPD(γ1), which is denoted with the red

curve. On the contrary, the detection probability corresponding to

the larger contact pointγC2 results inPD(γC2) ≥ PD(γ2), which

is represented by the blue curve. For a givenα, the optimal strategy

stated in Proposition 2 time shares betweenγC1 and γC2, whose

contributions to the detection performance should therefore lie below

the red curve and above the blue curve, respectively. As a result, the
contribution from the smaller contact pointγC1 can safely be ignored

over a large set of false alarm probabilities without sacrificing from

the detection performance claimed by the optimal strategy stated

in Proposition 2. When the example in Section III.B is solvedby

assuming on-off signaling, it is observed that there is virtually no
performance degradation.

D. Extension to Multidimensional Case

As mentioned earlier in the introduction, when the observations

acquired by the receiver are corrupted with colored Gaussian noise,

the detection probability can be maximized by transmittingalong

the eigenvector corresponding to the minimum eigenvalue ofthe
noise covariance matrix [1]. More specifically, we considerthe

following hypothesis-testing problem where, given anM dimensional

data vector, we have to decide betweenH0 : Y = N and

H1 : Y =
√
Svmin + N, whereN ∼ N (0,Σ) is a Gaussian

random vector with zero mean and covariance matrixΣ, andvmin is

the normalized eigenvector corresponding to the minimum eigenvalue

of Σ with |vmin|2 = 1. It should be pointed out that a feedback

mechanism is required from the receiver to the transmitter in order

to facilitate signaling along the least noisy direction. Inthe absence

of such a mechanism, the following analysis provides an upper bound
on the detection performance.

At the receiver, the optimal correlation detector employs the

decision statisticsT (y) = vT
min · y, which is a linear combination

of jointly Gaussian random variables. Hence, the hypotheses can

be rewritten asH0 : T (Y) ∼ N (0, λmin) and H1 : T (Y) ∼
N (

√
S, λmin), whereλmin denotes the minimum eigenvalue ofΣ

[1]. From the false alarm constraint, the detector threshold can be

obtained asPFA = P0 (T (Y) ≥ η) = Q
(

η/
√
λmin

)

= α and
η =

√
λminQ

−1(α). The corresponding optimal NP decision rule is

given as

δNP (Y) =







1 if vT
min · y ≥

√
λminQ

−1(α)

0 if vT
min · y <

√
λminQ

−1(α)
(10)

By defining γ , S/λmin, the detection probability attained by

δNP is computed fromPD(γ) = P1(T (Y) ≥
√
λmin Q−1(α)) =

Q
(

Q−1(α) −√
γ
)

. Notice that this expression is exactly in the same

form as (4) after replacingσ2 with λmin and similar results to those

in Section III can be obtained in this multidimensional setting.

IV. CONVEXITY PROPERTIES INNOISE POWER

In this section, we investigate the binary hypothesis testing problem

stated in (1) from the perspective of a power constrained jammer. By

assuming signal powerS to be fixed, we aim to determine the optimal
power allocation strategy for a power constrained jammer that aims

to minimize the detection probability at the receiver. The jamming

noise is typically modeled with a Gaussian distribution [4], [8], [11],

[12]. The power of the jammer is controlled over time throughthe

variableσ2, which is independent ofS and N . It is assumed that

the jamming power varies slowly in comparison with the sampling

time at the receiver so that a smart receiver can estimate thecurrent

value of the jamming powerσ2 [12].4 Then, the receiver updates its

decision threshold viaη = σQ−1(α) to maintain a constant false

4On the other hand, if the jamming power changes rapidly within the
sampling period at the receiver, the net effect observed by the receiver would
be jamming at the average power, which is shown to be suboptimal in
Proposition 4 for jammers subject to stringent average power constraints.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P

D
 : 

D
et

ec
tio

n 
P

er
fo

rm
an

ce

β : Normalized Jammer Power

 

 

α = 10−1

α = 10−2

α = 10−3

α = 10−4

α = 10−5

α = 10−6

Fig. 4. Detection probability of the NP decision rule in (3) is plotted versus
β for various values of the false alarm probabilityα. As an example, when
α = 10−4 , the inflection point is located atβ∗ ≈ 0.05164 with PD(β∗) ≈
0.7523.

alarm probabilityα. Until the jammer changes its power to another

value forσ2, this is the optimalα−level NP decision rule. On the

other hand, jamming would be performed more effectively if the
receiver could not adapt to varying jamming power.

Under constant transmit powerS, the detection probability as a
function of the normalized jamming power,β , σ2/S, can be

expressed asPD(β) = Q
(

Q−1(α) − β−1/2
)

. The limits can be

computed aslimβ→0 PD(β) = 1 andlimβ→∞ PD(β) = α. Differen-

tiating with respect toβ yieldsP
′

D(β) = −(2
√
2π)−1β−3/2 exp

{

−
0.5
(

Q−1(α)− β−1/2
)2
}

, which is negative∀ β > 0. The limits for

the first derivative arelimβ→0 P
′

D(β) = 0 and limβ→∞ P
′

D(β) = 0.

Proposition 3: PD(β) is a monotonically decreasing function of

β ∈ (0,∞) with a single inflection point at

β∗ =

(

√

(Q−1(α))2 + 12−Q−1(α)

6

)2

(11)

that PD(β) is strictly concave forβ < β∗ and strictly convex for

β > β∗.

Proof: The second derivative of the detection probability is

P
′′

D(β) = (4
√
2π)−1β−7/2 exp

{

− 0.5
(

Q−1(α)− β−1/2
)2
}

(

3β+

Q−1(α)
√
β− 1

)

. As before, the sign of the second derivative is de-

termined by the right-most expression in parentheses. By substituting

x ,
√
β, the roots of the resulting quadratic polynomial are obtained

as
(

− Q−1(α) ±
√

(Q−1(α))2 + 12
)

/6. Sincex =
√
β > 0, the

positive root results in the inflection point given in (11) indicating

that PD(β) is strictly concave forβ < β∗ and strictly convex for

β > β∗. �

The detection performance of the NP detector given by (3) is

depicted in Fig. 4 versusβ for various values of the false alarm
probability α, which point out the possibility of decreasing the

detection probability via time sharing of the jammer noise power.

In order to obtain the optimal time sharing strategy for the jammer,

we first present the following lemma which can be proved usinga

similar approach to that provided in the Appendix.

Lemma 3: Let β∗ be the inflection point ofPD(β) as given in

(11). There exists a unique pointβC ≥ β∗ such that the tangent to
PD(β) at βC lies belowPD(β) and passes through the point(0, 1).

The contact point βC can be obtained fromPD(βC) −
βCP

′

D(βC) = 1, or equivalently solving for̂x in

x̂ = Q−1

(

1− Q−1(α)− x̂

2
√
2π

exp

{

− x̂2

2

})

(12)

and then substituting intoβC = (Q−1(α)−x̂)−2. A fixed point itera-

tion approach is not guaranteed to converge in general. Fortunately, a

variant of the proposed numerical method can be employed to obtain

βC as well. Once again, a convex optimization problem is solvedat

each iteration and the bisection search facilitates rapid convergence.

Algorithm 4

λmin = P
′

D(β
∗), λmax = 0

βmin = β∗, βmax = ∞
do

λ = (λmax + λmin) /2
βX = argmin

β∈(βmin,βmax)

PD(β)− λβ

if PD(βX)− P
′

D(βX)βX > 1 ,
then λmin = λ, βmin = βX

else λmax = λ, βmax = βX

while

∣

∣

∣
PD(βX)− P

′

D(βX)βX − 1
∣

∣

∣
> ǫ

Next, we present the optimal strategy for a Gaussian jammer
operating under peak power constraintJpeak and average power

constraintJavg (Javg ≤ Jpeak) towards a smart receiver employing

the adaptable threshold detector given in (3).

Proposition 4: The jammer’s optimal strategy is to switch between

powers 0 andβC with the fraction of on-power timeJavg/βC when

Javg < βC < Jpeak. For βC ≥ Jpeak, the optimal strategy time

shares between powers 0 andJpeak with the fraction of on-power

timeJavg/Jpeak. ForJavg > βC , jamming is performed continuously

at the average power.

Again the proof follows by noting that the stated strategy results

in the largest convex function that is smaller thanPD(β) for

β ∈ [0, Jpeak]. Finally as an example, forα = 10−4, Javg = 0.04,

andJpeak = 0.1, on-off Gaussian jamming can reduce the detection
probability from0.8999 down to0.7109 by transmitting with power

βC = 0.08779 for approximately45.56 percent of the time and

aborting jamming for54.44 percent of the time. If the peak power

constraint is lowered toJpeak = 0.06, the optimal strategy can still

decrease the detection probability to0.7612 by time sharing between

0 and peak powerJpeak = 0.06 with two-thirds of on-power time

fraction.

V. CONCLUSIONS ANDFUTURE WORK

In this paper, we have examined the convexity properties of the

detection probability for the problem of determining the presence

of a target signal immersed in additive Gaussian noise. Unnoticed

in the previous literature on the NP framework, we have foundout
that the detection performance of a power constrained transmitter can

be increased via time sharing between different levels whenever the

false alarm requirement is smaller thanQ(2) ≈ 0.02275. Although

the optimal strategy indicates time sharing between two nonzero



power levels for moderate values of the power constraint, itis shown
that the on-off signaling strategy can well approximate theoptimal

performance. Next, we have considered the dual problem for apower

constrained jammer and proved the existence of a critical power level

up to which on-off jamming can be employed to degrade the detection

performance of a smart receiver. A future work is to analyze how the

optimal strategy for the transmitter changes with the jammer’s time

sharing and vice versa. Equilibrium conditions can be sought in a

game-theoretic setting.
The results in this study can be applied for slow fading channels

assuming that perfect channel state information (CSI) is present at

the transmitter, and a short-term power constraint is imposed by

computing the average over a time period close to the duration of

the channel coherence time. In that case, the only modification in

the formulations would be to update the definition ofγ by scaling

it with the channel power gain. In particular, considering ablock

fading channel model, the proposed optimal and suboptimal signaling

approaches can be employed for each block. If the transmitter does

not have perfect CSI, then the detection probability achieved by the

optimal signaling approach based on perfect CSI can be used as an

upper bound on the detection performance. For fast fading channels,
the instantaneous CSI may not be available at the transmitter and the

optimum power control strategy, which adapts the transmit power

as a function of the instantaneous channel power gain, may not

be obtained. The performance metric should be changed to the

average detection probability over the fading distribution. In that

case, the convexity properties would change (and in generaldepend

on the fading distribution), and a new analysis would be required.

Nevertheless, we can still state that the average detectionprobability

is concave with respect to the transmit signal power forα ∈ [Q(2), 1)

since a nonnegative weighted sum of concave functions is concave.
Moreover, the optimal power control scheme can still be described as

time sharing betweenat most two power levels due to Carathéodory’s

theorem [13], but whether the time sharing would improve over the

constant power transmission scheme and over which regions it would

improve need to be analyzed for the specific fading distribution under

consideration.

APPENDIX

A. Proof of Lemma 1

As can be noted from the expression in the first paragraph of

Section III.A, the derivative of the detection probabilityP
′

D(γ)

is a continuous and positive function∀γ > 0 with the limits

limγ→0 P
′

D(γ) = ∞ and limγ→∞ P
′

D(γ) = 0. In Proposition

1, it is stated thatPD(γ) is strictly concave over the intervals

(0, γ1) and (γ2,∞), whereas it is strictly convex over the interval

(γ1, γ2). More precisely,P
′

D(γ) monotonically decreases over the

interval (0, γ1), monotonically increases over the interval(γ1, γ2),

and monotonically decreases over the interval(γ2,∞). Therefore,

there exists a unique pointγ1x ∈ (0, γ1], at which the derivative

of the detection probability is equal to that at the second inflection
point, i.e.,P

′

D(γ1x) = P
′

D(γ2). Similarly, there exists a unique point

γ2x ∈ [γ2,∞), at which the derivative of the detection probability

is equal to that at the first inflection point, i.e.,P
′

D(γ2x) = P
′

D(γ1).

More generally, for everŷγ1 ∈ [γ1x, γ1] there exists a unique point

γ̂2 ∈ [γ2, γ2x] such that the derivatives at both points are equal
P

′

D(γ̂1) = P
′

D(γ̂2). In other words, a one-to-one continuous function

can be defined from the interval[γ1x, γ1] onto the interval[γ2, γ2x]

as followsγ̂2(γ̂1) = (P
′

D)
−1
(

P
′

D(γ̂1)
)

. Now, consider the function

f(γ, γ̂1) , PD(γ)−
(

P
′

D(γ̂1)(γ − γ̂1) + PD(γ̂1)
)

, which provides

the vertical difference between the detection probabilityPD(γ) and

the value of the line tangent to the detection probability curve at γ̂1.
Recall that for a given̂γ1 ∈ [γ1x, γ1], ∂f/∂γ = P

′

D(γ)−P
′

D(γ̂1) is

zero at a unique point̂γ2 ∈ [γ2, γ2x]. Next, we define the following

continuous function:h(γ̂1) , f(γ̂2 (γ̂1) , γ̂1) = PD(γ̂2)−PD(γ̂1)−
P

′

D(γ̂1)(γ̂2 − γ̂1). The operation of this function can be described

informally as follows. It takes as input a point̂γ1 ∈ [γ1x, γ1],

finds the corresponding unique pointγ̂2 ∈ [γ2, γ2x] with the same

slope such thatP
′

D(γ̂2) = P
′

D(γ̂1), draws the tangent line to the

detection probability curve at the pointγ̂1 with the slopeP
′

D(γ̂1), and

calculates the vertical separation between the detection probability

curve and the tangent line at the pointγ̂2. In the sequel, we show

that h(·) has a unique rootγC1 ∈ [γ1x, γ1]. By differentiation, it is
observed thath(·) is an increasing function over̂γ1 ∈ [γ1x, γ1]. More

formally, ∂h(γ̂1)/∂γ̂1 = P
′

D(γ̂2)γ̂
′

2−P
′

D(γ̂1)−P
′′

D(γ̂1)(γ̂2− γ̂1)−
P

′

D(γ̂1)(γ̂
′

2 − 1) = −P
′′

D(γ̂1)(γ̂2 − γ̂1) > 0, where the last equality

follows fromP
′

D(γ̂1) = P
′

D(γ̂2) and the inequality is due to the strict

concavity ofPD(γ̂1) over γ̂1 ∈ [γ1x, γ1]. By selectingγ̂1 = γ1x, we

have γ̂2 = γ2 andh(γ1x) = PD(γ2) − PD(γ1x) − P
′

D(γ1x)(γ2 −
γ1x) ≤ 0. The last inequality follows by noting thatP

′

D(γ) ≤
P

′

D(γ1x) for γ ∈ [γ1x, γ2] andPD(γ2) = PD(γ1x)+
∫ γ2
γ1x

P
′

D(γ)dγ.

On the other hand, by selectinĝγ1 = γ1, we haveγ̂2 = γ2x and

h(γ1) = PD(γ2x) − PD(γ1) − P
′

D(γ1)(γ2x − γ1) ≥ 0. Again, the
inequality follows fromP

′

D(γ) ≥ P
′

D(γ1) for γ ∈ [γ1, γ2x] and

PD(γ2x) = PD(γ1) +
∫ γ2x
γ1

P
′

D(γ)dγ. Sinceh(·) is a continuous

and increasing function, it must have a unique rootγC1 ∈ [γ1x, γ1].

Consequently, tangent toPD(γ) at γC1 is also tangent at the point

γC2 = (P
′

D)
−1
(

P
′

D(γC1)
)

∈ [γ2, γ2x].

Next, we show that the tangent line, which passes through the

points (γC1,PD(γC1)) and (γC2,PD(γC2)), lies abovePD(γ) for

all γ > 0. SincePD(γ) is strictly concave over(0, γ1), the tangent

at γC1 lies abovePD(γ) for γ ∈ (0, γ1). Recall that the same line

is also tangent toPD(γ) at γC2 and as a result, it lies abovePD(γ)

for γ > γ2. Subsequently, the line segment connecting the points
(γ1,PD(γ1)) and (γ2,PD(γ2)) lies abovePD(γ) for γ ∈ [γ1, γ2]

sincePD(γ) is convex over this interval. Since the inflection points

(γ1,PD(γ1)) and (γ2,PD(γ2)) are below the tangent line, the line

segment connecting them also lies below the tangent line. This proves

that the tangent line lies abovePD(γ) for all γ > 0. �
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