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Abstract—In this paper, we study the convexity properties for the
problem of detecting the presence of a signal emitted from a qwer
constrained transmitter in the presence of additive Gaussin noise under
the Neyman-Pearson (NP) framework. It is proved that the detction
probability corresponding to the a—Ilevel likelihood ratio test (LRT) is
either strictly concave or has two inflection points such thathe function is
strictly concave, strictly convex and finally strictly conave with respect
to increasing values of the signal power. In addition, the aalysis is
extended from scalar observations to multidimensional cared Gaussian
noise corrupted signals. Based on the convexity results, timal and near-
optimal time sharing strategies are proposed for averagegak power
constrained transmitters and jammers. Numerical methods \ith global
convergence are also provided to obtain the parameters forhe proposed
strategies.

Index Terms— Detection, Neyman-Pearson (NP), Gaussian noise, con-

vexity, stochastic signaling, jamming, time sharing, poweconstraint.

|I. INTRODUCTION

In coherent detection applications, despite the ubiqsit@stric-
tions on the transmission power, there is often some flaxibil the
choice of signals transmitted over the communications omadil].
Due to crosstalk limitation between adjacent wires and Ueegy
blocks, wired systems require that the signal power shouwdd
carefully controlled [2]. A more pronounced example fronreléss

systems dictates the signal power to be limited both to comse

battery power and to meet restrictions by regulatory bodiés well-
known that the performance of optimal binary detection iru&an
noise is improved by selecting deterministic antipodahalg along
the eigenvector of the noise covariance matrix correspanth the
minimum eigenvalue [1]. Further insights are obtained hdging
the convexity properties of error probability in [3] for thaptimal
detection of binary-valued scalar signals corrupted byitagdnoise
under an average power constraint. It is shown that the profrabil-
ity is a nonincreasing convex function of the signal poweewlthe
channel has a continuously differentiable unimodal noisdability
density function (PDF) with a finite variance. This discossiis
extended from binary modulations to arbitrary signal celtetions
in [4] by concentrating on the maximum likelihood (ML) detiea
over additive white Gaussian noise (AWGN) channels. Thebgym

error rate (SER) is shown to be always convex in signal-ieeno

ratio (SNR) for 1-D and 2-D constellations, but nonconvexi
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Fig. 1. lllustrative example demonstrating the benefits tulae sharing
between two power levels under an average power constraint.

higher dimensions at low to intermediate SNRs is possibleijew
convexity is always guaranteed at high SNRs with an odd nurobe
inflection points in-between. When the transmitter is agerpower
constrained, this result suggests the possibility of i the error
performance in high dimensional constellations througietsharing

of the signal power, as opposed to the case for low dimensions
(1-D and 2-D). The convexity properties of the SER with respe
to jamming power (i.e., multiplicative reciprocal of SNRjeaalso
addressed in the same study.

b Fig. 1 depicts how time sharing helps improve the error proba
bility under an average power constraint via a simple itetbn.
Suppose that the average power constraint is denoted Syith

It is seen that the average probability of error can be redlune
time sharing between power levels and S. with respect to the
constant power transmission wifh,.. More precisely, time sharing
exploits the nonconvexity of the plot of error probabilitersus
signal power. With the advent of the optimization technigjuihere
has been a renewed interest in designing time sharing ssheme
that improve/degrade (jamming problem) the error perforceaof
communications systems operating under signal power iGntt.
Since performance gains in AWGN channels due to such sttichas
approaches are restricted to higher dimensional conttelth, the
attempts to exploit the convexity properties of the errasbability
have been diverted towards channels with multimodal noB&sP
[5], [6]. Goken et al. have shown in [5] that for a given detecthe
optimal signaling strategy results in a time sharing amoagnore
than three different signal values under second and foudmemt
constraints, and reported significant performance imprarés over
conventional signaling schemes under Gaussian mixtusen@Vhen
multiple detectors are available at the receiver of \drary power
constrained communications system, it is stated in [6]ttabptimal
strategy is to time share between at most two maximum a-poste
Probability (MAP) detectors corresponding to two deteristin sig-
nal vectors.

11-D and 2-D constellations are almost universally employegractice.



Until recently, the discussions on the benefits of stocbasgnal- Il. PROBLEM FORMULATION
ing were severely limited to the Bayesian formulation, sjeadly
to the error probability criterion. However, in many prabie of ~ Consider the problem of detecting the presence of a targaetsi
practical interest, it is not possible to know prior probiieis or Where the receiver needs to decide between the two hypstfiese
to impose specific cost structures on the decisions. In saskes; ©OF H1 based on a real-valued scalar observafidacquired over an
the probabilities of detection and false alarm become thén ma\WGN channel.
performance metrics as described in the Neyman-Pearsoh gpP Ho: Y=0N , Hi:Y=vVS+oN (1)
proach [1]. For example, in wireless sensor network apiding, a
transmitter can send one bit of information (using on-ofjikg) Here, N ~ N(0,1) is a standard Gaussian random variable with
about the presence of an event (e.g., fire). In [7], the problezero mean and unit variance,> 0 is the noise standard deviation
of designing the optimal signal distribution is addressed ¢n- atthe receiven,/S represents the transmitted signal for the alternative
off keying systems to maximize the detection probabilitythout hypothesis#i, and.S > 0 is the corresponding signal power. The
violating the constraints on the probability of false alaamd the additive noiseN is statistically independent of the signgiS. The
average signal power. It is shown that the optimal solutian be scalar channel model in (1) provides an abstraction for dirmeous-
obtained by time sharing between at most two signal vecmrshe  time system that passes the received signal through a awrel
on-signal and using the corresponding NP-type likelihoaidortest (matched filter) and samples it once per symbol intervalretie
(LRT) at the receiver. Although the results are general, enigal capturing the effects of modulator, additive noise chaanel receiver
examples have been chosen from multimodal Gaussian mixtdifent-end processing. In addition, although the above rhdgién
distributions to demonstrate benefits from time sharingregghes. the form of a simple additive noise channel, it may be sufficie
Unfortunately even in that case, finding the optimal sigretl t9 to incorporate various effects such as thermal noise, piedticcess
maximize the detection probability is a computationallyntiersome interference, and jamming [3].
task necessitating the use of global optimization tectesqu]. It is well-known that the NP detector gives the most powerttll
level test of H, versus?#, [1]. In other words, when the aim is
to maximize the probability of detection such that the ptolitg of
In this paper, we report an interesting and obviously owéal false alarm does not exceed a predetermined valuke NP detector
fact for the problem of detecting the presence of a signaftechfrom IS the optimal choice and takes the following form of an LRT fo
a power constrained transmitter operating over an add@igassian continuous PDFs:
noise (.:.hann_el _within t.hc.e NP framework. Contrary to the error 1, if pi(y) > npo(y)
probability criterion [4], it is shown that for false alarrates smaller onp(y) = i 2
than@(2), remarkable improvements in detection probability can be 0, 1 pr(y) <npoly)
attained even in low dimensions by optimally distributifg tfixed where the threshold; > 0 is chosen such that the probability
average power between two level9(() denotes thep—function). of false alarm satisfie®ra = Po (p1(y) > npo(y)) = «, with
More specifically, we study analytically the convexity peoties of subscript0 denoting that the probability is calculated conditioned on
determining the presence of a power-limited signal imnarge the null hypothesigio. Then, the NP decision rule is the optimal one
additive Gaussian noise. It is proved that the detectiorbaiitity among alla-level decision rules, i.ePp = P1 (p1(y) > npo(y)) is
corresponding to the—level LRT is either concave forr > Q(2) maximized, where the probability is calculated under thadéion
or has two inflection points such that the function is styictbncave, that the alternative hypothests; is true.
strictly convex and finally strictly concave with respectitoreasing ~ The hypothesis pair in (1) can be restated in terms of the dis-
values of the signal power far < Q(2). Numerical methods with tributions on the observation space #s : Y ~ A(0,0°) and
global convergence are provided to determine the regioaswliich  #; : Y ~ AN (V/S,0?). The likelihood ratio for (1) is then given
time sharing enhances the detection performance overndeisr by L(y) = pi(y)/po(y) = exp{\/§/02 (y - \/5/2)}. Since
tic signaling at the average power level. In addition, thalgsis S > 0, the likelihood ratioL(y) is a strictly increasing function of
is extended from scalar observations to multidimensiormdbred the observationy. Therefore, comparind.(y) to the threshold; is
Gaussian noise corrupted signals. Based on the convexstitse equivalent to comparing to another thresholdg’ = L' (n), where
optimal and near-optimal time sharing strategies are megdor I ~!is the inverse function of.. Then, the probability of false alarm
average/peak power constrained transmitters. For alnfigstaatical is expressed aBra = Po (L(Y) > 7)) =Po (Y > 1) =Q (' /0o),
applications, the required false alarm probability valaes much where Q—function is the tail probability of the standard Gaussian
smaller thanQ(2) ~ 0.02275. As a consequence, time sharingdistribution, i.e.,Q(z) = (1/v2r) [ e~t*/24d¢. It is noted that
can facilitate improved detection performance wheneveraverage any value of false alarm probability can be attained by choosing
power limitations are in the designated regions. Finalhe tlual the thresholdy = 0Q *(«a), where@Q* is the inverseQ —function.
problem is considered from the perspective of a Gaussiamg@m Then, for fixedS, the optimala—level NP decision rule employed
to decrease the detection probability via time sharingsIshown at the receiver is given by
that the optimal strategy results in on-off jamming when dkierage
noise power is below some critical value, a fact previousited for 1, ify>oQ ' (a) A3)

- Y Ine(y) = _ .
spread spectrum communications systems [8]. 0, ify<oQ ()



which also possesses the constant false alarm rate (CFAREipy
[1]. Lety £ S/o? denote the normalized signal power at the receive
Then, the detection probability achieved by is obtained as

Po(7)=P1 (Y 20Q () =Q(Q (@) —v7). 4

For fixed «, the relationship between the detection probability and
is known as the power function of the test in radar terminglfig.

We will first discuss the convexity properties of the detauti
probability with respect to the signal power for the NP teiseqg
in (3). This is motivated by the possibility of enhancing ttetection
performance via time sharing between two signal power sewlile
satisfying an average power constraint [3], [4], [9]. In thissence
of fading, the average received power is a determinisyicadialed
version of the transmitted power for non-varying AWGN chelsn
Hence, any constraint on the transmitted power can be cetatene
on the received power and consecutively to one in the norexhli
form, and vice versa. In addition to the average power caimgfra
hard limit on the peak transmitted power can be imposed akimel
accordance with practical considerations.

I1l. CONVEXITY PROPERTIES INSIGNAL POWER
A. Convexity/Concavity Results

In the following analysis, the endpoints are excluded frow et
of feasible false alarm probabilities. Specificalty,is confined in
the interval(0, 1) excluding the trivial cases af € {0, 1}. We first
note the limits of the detection probability, i.dim,—oPp(vy) =
a and limy—o Pp(y) = 1. Differentiating with respect toy
yields Pp(7) = (24277 )" exp {— (Q (o) - W)Q/z}, which
is positive V~y > 0 indicating thatPp(y) is a strictly increasing
function of v. Similarly, the limits for the first derivative is given as
lim, 0 Pp(v) = 0o andlim, e Pp(v) = 0.

Proposition 1: For a € [Q(2),1), Pp(y) is a monotonically
increasing and strictly concave function of € (0,00). For a €
(0,Q(2)), Pp(y) is a monotonically increasing function with two
inflection pointsy: < 2 such thatPp(y) is strictly concave for
~v € (0,71), strictly convex fory € (v1,2), and strictly concave for
v € (y2,00).

Proof: It suffices to consider the second derivative of the detacti
probability with respect toy, i.e.,

Po(v) :4\/;_%7 exp {_w}
x (Q’l(a)—f— %) (5)

Since the first two terms in (5) are positivey > 0, the sign of the
second derivative is determined by the third term, i(€; " (a) —
VY — 1/4/7). First, it is noted that forx > Q(0) = 0.5, we have
Q *(a) < 0 which impIiesP;;(*y) < 0 for all v > 0 and the
detection probability is strictly concave. Next, let £ V7 - The
third term in (5) has the reversed sign ffz) = 2> — Q' (a)z + 1
for > 0. The sign of quadratic polynomigl(z) can be determined
from its discriminant, which is given bA = (Q~!(«))? — 4. When
a € (Q(2),Q(—2)), the discriminant is negative\ < 0, and we
have f(z) > 0 Vz. Botha > Q(0) anda € (Q(2),Q(—2)) imply
thatPg(w) < 0. Thus, it is concluded thap () is strictly concave
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Fig. 2. Detection probability of the NP decision rule in (8)plotted versus
for various values of the false alarm probability As an example, whea =
104, the inflection points are located ai ~ 0.0851 and~s ~ 11.7459
with Pp(v1) &~ 0.0003 and Pp(y2) ~ 0.3852. The second inflection point
(72) is also marked on each curve far> Q(2).

for a > Q(2) ~ 0.02275013. Fora < Q(2), f(x) has two distinct
roots corresponding to the inflection pointskaf (), which are given
as

71 =025 (Q 7 () ~ V@ @) —4)
12=025 (@7 (@) + V@ (@) 1) (6)

suggesting thaPp (v) is strictly concave fory € (0,v1) U (72, 00)
and strictly convex fory € (1, v2). |

Fig. 2 depicts the detection probability of the NP decisiale 1in
(3) versusy for various values of the false alarm probability As
expectedPp () is strictly concave for € [Q(2), 1), and consists of
strictly concave, strictly convex and finally strictly cawe intervals
for a € (0,Q(2)). For the latter case, even though its existence is
guaranteed, the effect of the first inflection point is farsle®vious
than the second inflection point. This can be attributed #o fett
that for small values ofa, 1 0 and Pp(y1) a whereas
Y2 (Q7*())* and Pp(v2) 0.5, where the approximations
are obtained using the first order Taylor series expansion.
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B. Optimal Sgnaling

The concavity of detection probability fer € [Q(2), 1) stated in
Proposition 1 indicates that the detection performancenci\@rage
power-limited transmitter cannot be improved by time sigrbe-
tween different power levels. This follows from Jensen'sguality
since the detection probability achieved via time sharingich is
the convex combination of detection probabilities coroegfing to
different power levels, is always smaller than the deteqimbability
when transmitting at a fixed power that is equal to the same
convex combination of the power levels. Fortunately, thegeaof
false alarm probabilities facilitating improved deteatiperformance,
a € (0,Q(2)), have higher practical significance. In order to obtain
the optimal time sharing strategy, we first present the ¥Valg
lemma which is proved in the Appendix.



Lemma 1. Let o < Q(2), and~: and~y. be the inflection points time sharing strategy. If we do not pay attention to the peakep
of Pp() as given in (6). There exist unique poinis1 € (0,v1] constraint for a second, these results indicate that vergkvand
and~yc2 > 72 such that the tangent p () at~c1 is also tangent strong transmitters should operate continuously at tiveirasge power

atyc2 and this tangent lies abovep () for all v > 0. while transmitters with moderate power can benefit signifigafrom
Using a similar analysis to that in the proof of Lemma 1, we catime sharing strategies.

also obtain the following lemma. The critical points y¢1 and ~c2 can be obtained as
Lemma 2: Let o < Q(2), andy; and~y. be the inflection points of the unique pair that satisfiep(vo1) = Pp(ye2) =

Pp (7). Suppose also thatc1 and~yc2 are the contact points of the (Pp(yc2) — Po(ye1)) / (ye2 — ve1), which can be solved numer-
tangent line as described in Lemma 1. Given a pé4ir [y1,7c2], ically by plugging in the corresponding expressions. Sitiw si-
there exists a unique pointc(¥) € [yc1, 1] such that the tangent multaneous solution of these equality constraints can fiieudt due
atyc (%) passes through the poifiy, Pp(%)) and lies abovép(y) to terms involving exponentials an@—functions, we propose two
for all v € (0,4).2 approaches to obtain the optimal signaling strategy. The i to
Based on Lemma 1 and Lemma 2, we state the optimal signalisglve the following nonconvex optimization problem:
strategy for the communications system in (1) operatingeumeak B B
power constraint',e.x and average power constraififye (Fave < A,J?f‘,’im AQ (Q o) - M) +{1-2@ (Q o) - M)
[peak)- st Aver + (1 — Nyee < Tavg (8)
Proposition 2: Let o < Q(2). For 'avg < o1 OF Davg > o2
or [peax < 71, the best strategy is to exclusively transmit awhereyci € (0,m], vo2 € [2,pear], @and A € [0,1] denotes
the average powel.g, i.e., time sharing does not help. Wherf1€ fraction of time powerc; is used assumingpcax > yc2 and
Tavg € (Y01,7¢2) andycs < Tpear, the optimal strategy is to Tave € [yc1,7v02]. A local solver can be employed using multiple
time share between powers:1 and~c» with the fraction of time start points that are uniformly distributed within the bdan The
(vc2 — Tave)/(vc2 — ~e1) allocated to the poweryci. On the global optimum can then be selected among those local masima
contrary if Cavs € [v¢(Dpeak ), Cpeak] While Tpeaie € (71, 702), the returning the one with the maximum score. In our trials, weeste
optimal strategy is to time share between powgrgl,c.i) and the that close to optimal solutions can be obtained using as $el0astart
peak power .. with the fraction of ime(Tpeax — Lave )/ (Tpeak — points from each interval without compromising the compiatel

ve(Dpear)) allocated to the poweryc(Ipear). Consequently, if efficiency. . . . .
Pavg < ¢ (Tpear) While Tpeaic € (71,7c2), transmitting contin- A much more effective numerical method to obtain the unique

uously atl. is the optimal strategy. tangent pointsyc1 € (0,~1] and~yc2 > 72 is presented next. Based

Proof: We state the proof in the absence of a peak power constraifif. @ Pisection search, this method _is guaranteed to conWer:tjt_e
Let A+ 2 (Pp(ycz) — Po(ye1)) / (yez — ve1). For an average exact values foryc1 and~yc2 with desired accuracy. More explicitly,

power ~, the proposed strategy achieves we propose the following algorithm.
Algorithm 1

Bo(y) = Pp(7) if v € (0,7¢1) U (vc2, 00) — —
Pp(yo1) + Ar (v —vo1) if v € [yor, vo2] Amin = Pp(71); Amae = Pp(72)

(7) Ymin,1 = 0, Ymaz,1 = Y1
It is easy to see thdtp () is concave. Next, we need to show that/ ™2 = 727 Tmaz2 =0
the detection probability cannot be increased any furthettiime

~ A= ()\maz + )\mzn) /2
sharing between different power levels. More precisBly() is the

Yx1 = argmax Po(y) — Ay
smallest concave function that is larger thBp () [3]. For v € Y€ (Ymin, 1, Ymaz,1)
(0,7¢1) U (yo2,00), this clearly holds. Fory € [yci,vez], the Tx2 = Ve(wa?ggnjx 2)PD(7) — N
proof is via contradiction. Suppose that there exists avotbncave if PD(VXISM_TL,)\,WZX Pp(vx2) — AMyx2 .,
functiong() greater thaPp () with the propertyPp (z) > g(z) > then Aoz = A, Ymin,1 = VX1, Ymin,2 = YX2
Pp(z) for somez € [yc1,7c2]. Due to concavity ofy(xz), we have else Amin = A, Ymaz,1 = VX1, Ymaz,2 = VX2

Po(z) > g(x) > 0g(z1)+(1—0)g(xz2) > 0Pp(21)+(1—0)Pp(2z) While [(Po(yx1) — Ayx1) — (Po(yx2) — Ayxz2)| > e
forany6 € [0,1] andz = 01+ (1—60)z2. Now letz1 = yo1, z2 =
Yoz, andd = (o2 — @) / (yo2 — vc1). Then, Pp(z) > g(z) >
Pp(z), which is a contradiction. This completes the proof. Theofso
for the proposed time sharing strategies that are detaitedrding
to the various relations among,ecax, ave, 71, ¥2, Yo1 andyc2 can
be obtained similarly. O
It should be noted that the transmitter requires the knoydeof
the noise variance at the receiver in order to employ thengti

To see that the tangent pointg-; and vyc2 can be obtained
via the proposed algorithm, a few observations are notet fife
slope of Pp(y) strictly decreases in the interv@ci,1], strictly
increases in the intervad, v2], and then again strictly decreases in
the interval[2, vc2]. Consequently, we ha\E’D (M) < P’D(wm) =
P;D(’)/CQ) < P;D(’yz). Using the analytical expressions derived for
1, v2 and P;D(y), the computations onD(yl) and P;D(’yg) are
straightforward. Hence, initial lower and upper bounds av&ined

?The_dependencg of_tangenAt point: to 4 is explicitly emphasized by for the slope ofPp(y) at the tangent pointgc; and yc2. These
writing it as a function, i.e9c (7). are denoted with\,,,;, and A\, at the beginning of the proposed

3The cases OfTavg < o1 and T'peak < 1 can be practically
uninteresting since they result in very low detection pholities. algorithm, respectively.



Let Pr(7) and Ar be as defined in (7). It is noted th&(7)  while |Pp(vx) + Pp(7x) (peak — 7x) — Pp(Fpear)| > €
represents the upper boundary of the convex hulPef(y). Now
consider the functioiPp () — Ay for A > 0. SincePp () < Pp(v) As an example, forx = 107%, Tayy = 5, and ['pear = 20, the
for all v > 0, we havemax, ~o Pp(7) — Ay < max,~o Pp(7)—\y. optimal strategy can achieve a detection probabilit).a946 by em-
The maximum of the right-hand side occurs‘f’é;(y) = )\, for which  ploying poweryc: = 2.69x 10> with probability0.7307 and power
a unique solution exists for all positivé # \r. This is because yc2 = 18.5664 with probability 0.2693, whereas by exclusively
Ph(7) = Pp(7) over the intervals(0, yo1] and [yo2,00), where  transmitting at the average power, the detection protigbitimains
P;D(’y) is strictly decreasing and continuous witlm.,—o Pg(y) = at 0.0690. If the peak power constraint is lowered e = 10,

00, Pp(ye1) = Pp(yes) = Ar andlim, o Pp(y) = 0. Hence, the optimal strategy can still increase the detection fhiliba to

we havemax->o 15D(7) — My = max,~o Pp(y)— Ay forall A > 0. 0.1445 by time sharing betweefic = 4.99 x 10~ and peak power
More explicitly, by definingy(\) £ argmax. ¢ g ooy Pn(7) = Ay, it I'peax = 10 Witlh approximately equal fractions as suggested by
is seen thaty()\) is a decreasing function of with 4(\) € (0,v¢1) the solution ofPp(vc) = (Pp(T'peak) — Pp(v¢)) / (Fpeak — vo).

for A > Ar and4(A) € (yo2,00) for 0 < A < Ar. Finally, it should be emphasized that the detection prditylian

These observations are exploited in Algorithm 1 as folloBisce be improved even further by designing the optimal signatiogeme
Pb () — My is gtrictly concave over the intervalg0, +1] and[yz, 00), jointly with the detector employed at the receiver as disedsin
vx1 and~xa2 can be computed efficiently at each iteration by mearlg]. However, in that case we need to sacrifice from the sistipli
of convex optimization methods. Furthermore, the boundsowel Structure of the threshold detector which is also easierpuate if
With Yomin.i, Ymaz,: g€t tighter with each iteration foi = 1,2. the channel statistics change slowly over time.

Suppose that\ > A\p at the first iteration. Then, the maximum

is attained within the interval0,vc1) and Pp(yx1) — Myx1 > ¢ Near-optimal Srategy

Po(yx2) — Myxe is satisfied. Since\r < A, all values greater than
the current value of\ are discarded by setting.... = A. Likewise,
sinceyc1 > yx1 andyce > 7yxe, all the values smaller than the
current values ofyx1 and~x» are discarded from the search interval
for the next values ofyx; and~yxa2, respectively. IfA < Ar at the
first iteration, the maximum is attained within the interyak:2, co)
andPp (yx1) — Ayx1 < Pp(yx2) — Ayx2 is satisfied. In this case,

we haveAr > X and all values smaller than the current value ) ) )
. . I . We recall from the previous discussion that for small valoeghe
A are discarded by setting,.., = A. Likewise, sinceyc1 < vx1

f?lse alarm probability, the first inflection poift gets close to zero.
and vc2 < 7yx2, all the values greater than the current values ? s al d ab hat th | | } |
vx1 and yxo are discarded from the search intervals for the nex&IS also stated above that the valuefds (v1) equals approximately

values ofyx1 andyx2, respectively. At each iteration, eithar,,;», Fo ?‘ n thaF case. Since the critical pointe; andyo, are Ioc.ated
increases towardds or A decreases towardsy, and > inside the interval(0, ], they get close to zero as well while the
PR is assured _lr_nha: S\ converges to\ Aé conver;lg;lénge corresponding detection probabilities approachAlso evident from
T = i . ) T- ’ . . . .
we havemvn argmax Po(7) = Aty = yer and the example above, this observation gives clues of a subapti
X1 = . D — AT = 7YC1 . e s .
WE(W”*”'II’JT"@’)” Ay = 7es. In practice approach. We make a simplifying assumption and suppos@th@ay)
YE(Vmin,2:Ymaz,2) = P T ATY = C2: v : : P
a sufficiently small value is selected ferto control the accuracy of !S convex over. th.e .|nterva(|0, 72),' Using arguments S|m||a.r to.those
the solution at convergence in the Appendix, it is then possible to show that there exastmique
. . ' oint von > 2 such that the tangent at yon passes through
Proposition 2 requires also the knowledge v@f (I'peax) for the P 7 =2 . ) gent p () at p. g
optimal signaling strategy in the case Bfeu € ( ), where the point(0, «). This observation leads to the following near-optimal
eak Y1, YC2)s . . .
. ' . _ . . trategy in the case of strict false alarm requirements.
vo(T'peak) is as defined in Lemma 2. A similar bisection search N 9y imal strat Let ) A g timal strat ith
i ) . ear-opti rategy: Le . A suboptimal strategy wi
can be used to findc(Ipear) after o1 and yoo are obtained via P &y Leta < Q( ) P oy
Algorithm 1. This method is described in Algorithm 2, the pirof reasonable performance is to switch between powers Gyanaith
which can be stated similarly ' the fraction of on-power tim& .vg /Yon WhenTave < Yon < [peak-
’ For von > T'peak, the proposed suboptimal strategy time shares

between powers 0 anfl,c.x With the fraction of on-power time

It should be noted that Algorithm 1 requires the solution of
two convex optimization problems at each iteration to abtdie
gritical pointsyci1 and ez, that are needed to describe the optimal
signaling strategy. Moreovefyc (I'pear) Should also be determined
using Algorithm 2 wheneverl ,cax € (71,7c2). In the following,
it is shown that near-optimal performance can be achievetth wi
o?omputational complexity comparable to only that of Algiom 2.

Yx2 = argmax

Algorithm 2 Tave /Tpeak. FOr T'ave > von, the transmission is conducted exclu-
- - sively at the average power.

Amin = Pp(11), Amaz = Pp(yc1) Yon Can be obtained fromPn (Yon) — YonPp (Yon) = a. More
Z’Zi” =701, Ymaz =M explicitly, we need to solve fof: such that

A= ()\maw + )\min) /2 ~ -1 Qfl(a) -z ‘%2

= —_— - 9
yx = argmax Pp(y) =My F=C wWor P Tz ®)
YE(YminYmaz) . . . :
if Pp(vx) + Pp(vx) (Tpeak — 7x) > Pp(Tpeak) s and the cont2act point can be obt:?une.d by substituting =
then Amaz = A, Ymin = X (@ "(a) — &)". The form of the equation in (9) suggests that a fixed

else A\pmin = A, Ymaz = 7x point iteration can be employed to obtain the solution [Hajwever,



" assuming on-off signaling, it is observed that there isuwilty no
H X:0.02275 T 3 .
: v: 01587 performance degradation.
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°r e 1 D. Extension to Multidimensional Case
B As mentioned earlier in the introduction, when the obséonat
T acquired by the receiver are corrupted with colored Ganssase,
w7 : 3 the detection probability can be maximized by transmittaigng
10° 7 3 the eigenvector corresponding to the minimum eigenvalughef
w0 b 7 ] noise covariance matrix [1]. More specifically, we considbae
ool ; - = Pov) | following hypothesis-testing problem where, given/@nhdimensional
P —Ppl¥) data vector, we have to decide betwegfy : Y = N and
Hi : Y = VSVimin + N, where N ~ A(0,%) is a Gaussian
: o o e o random vector with zero mean and covariance ma&jandv min iS

¢ Felse Alarm Probabiliy the normalized eigenvector corresponding to the minimugereialue
Fig. 3. Detection probability of the NP decision rule in (3)dvaluated at of 33 with |V’”i”|2 = L. It should be pointed out that a feedback
the inflection pointsy; and-s. mechanism is required from the receiver to the transmittevrder
to facilitate signaling along the least noisy direction.tie absence
of such a mechanism, the following analysis provides an uppend
on the detection performance.

At the receiver, the optimal correlation detector employe t
decision statistic§'(y) = v, - y, which is a linear combination
of jointly Gaussian random variables. Hence, the hypothesn
Algorithm 3 be rewritten asto : T(Y) ~ N(0,Amin) and H1 : T(Y) ~
N(V'S, Anin), Where,,;, denotes the minimum eigenvalue BY
[1]. From the false alarm constraint, the detector threstualn be

PD : Detection Probability

the convergence is not assured in general. Instead, wet rever
numerical method with global convergencentg,. This is shown in
Algorithm 3. Again, a convex optimization problem is solegtdeach
iteration.

)\min - PD('Yl), )\maz = PD(’VQ)
Ymin = V2, Ymaz = OO

do obtained asPra = Po (T(Y) >1n) = Q (n/vAmin) = o and
A= (Amaz + Amin) /2 7= vAmin@ *(a). The corresponding optimal NP decision rule is
yx = argmax Pp(y) — Ay given as
"/E(’V7ninv’7'rlnaz)
if Pp(yx) —Pp(yx)yx > a, 5 (Y) 1 if Vi Yy = VA Q (@) (10)
NP =
ehem Amin =4 Yoz = 7 0 it Vi -y < VAmmQ (@)
else Aoz = A, Ymin = 7x
while |Pp(vx) —PB(WX)WX —al >e€ By defining v £ S/Amin, the detection probability attained by

Snp is computed fromPp(y) = P1(T(Y) > vVAmin @ '(a)) =
Fig. 3 provides more insight about the near-optimal pertoree @ (Q~'(a) — /7). Notice that this expression is exactly in the same

of the proposed approach. For various values of the falsenalaform as (4) after replacing® with A.,.;,, and similar results to those

probability o, we have computed the inflection pointsand-~, from in Section Ill can be obtained in this multidimensional isett

(6), evaluated the corresponding detection probabiliies~:) and

Pn(72), respectively, and plotted the resulting detection pentorce IV. CONVEXITY PROPERTIES INNOISE POWER

curves with respect te.. As the false alarm constraint is tightened |, thig section, we investigate the binary hypothesisiggtiroblem
(smaller values), it is observed that the vertical gap betw&he gisied in (1) from the perspective of a power constrainedrjamBy
detection performances calculated at the respective fitiepoints assuming signal powe to be fixed, we aim to determine the optimal
becomes much more pronounced. Sirieg(y) is monotonically hower allocation strategy for a power constrained jammat #ims
increasing andc1 < 1 is assured from Lemma Ep (vc1) always 1 minimize the detection probability at the receiver. Thenining
takes values smaller thafp (y1), which is denoted with the red pgjse js typically modeled with a Gaussian distribution [8], [11],
curve. On the contrary, the detection probability corresig 10 12] The power of the jammer is controlled over time throubk
the larger contact poinfc: results inPp(yc2) > Po(y2), which  yariaple o2, which is independent of and N. It is assumed that
is represented by the blue curve. For a giverthe optimal strategy the jamming power varies slowly in comparison with the sangpl
stated in Proposition 2 time shares betwegn and yc2, Whose  time at the receiver so that a smart receiver can estimateutiient
contributions to the detection performance should theeelie below \ajye of the jamming powes? [12].4 Then, the receiver updates its
the red curve and above the blue curve, respectively. Asudtrélse  §acision threshold viag = 0Q~'(a) to maintain a constant false
contribution from the smaller contact poipt; can safely be ignored

over a large set of false alarm probabilities without samrifj from ~ “On the other hand, if the jamming power changes rapidly wittiie
the detection performance claimed by the optimal strateged sampling period at the receiver, the net effect observecbeyeéceiver would

be jamming at the average power, which is shown to be subaptim
in Proposition 2. When the example in Section Il.B is sohN®d Proposition 4 for jammers subject to stringent average paoastraints.




) (11). There exists a unique poift > * such that the tangent to

09‘;\“ ; : a‘zlo:; Pp(p) at B¢ lies be!owPD(ﬂ) and passes_ through the poiitx, 1).
!.""- . - ‘0‘:1073 The contact point 3¢ can be obtained fromPp(8c) —
o '.I ‘;I \\ B ;::gA BePp(Be) = 1, or equivalently solving fo: in
S orpala oy - - -a=1075] 1 N L2
E o8 L v \‘\\ : | and then substituting intc = (Q~*(a)—&) 2. A fixed point itera-
g o4 l-l'. "‘_ : ’ . tion approach is not guaranteed to converge in generalufrately, a
a0 03F @.l'. ‘-“ ‘ . variant of the proposed numerical method can be employetteiro
o2k 14 ‘\___ , Bc as well. Once again, a convex optimization problem is soled
ol "\_\'\‘ "x____ R S S | each iteration and the bisection search facilitates rapitvergence.
AN B T e PR N SRS S Algorithm 4

0 0.1 0.2 03 0.4 05 0.6 07 08 0.9 1
B : Normalized Jammer Power

)\min = P;D (ﬂ*)7 )\maw =0

Fig. 4. Detection probability of the NP decision rule in (8)dlotted versus Brmin = B, Bmaz = 00
3 for various values of the false alarm probability As an example, when ©©
a =104, the inflection point is located at* ~ 0.05164 with P (8*) ~ A = (Amaz + Amin) /2

0.7523. Bx = argmin  Pp(B) — B
ﬁe(ﬁminwﬁﬂlal?)

if Pp(Bx) - Pp(Bx)Bx > 1,
alarm probabilitya. Until the jammer changes its power to another then M\in = A, Bmin = Bx

value for o2, this is the optimaly—level NP decision rule. On the else Az = A, Bmaz = Bx
other hand, jamming would be performed more effectivelyhié t while ‘PD(BX) —P'D(BX)BX — 1‘ > €
receiver could not adapt to varying jamming power.

Under constant transmit powe, the detection probability as a Next, we present the optimal strategy for a Gaussian jammer
function of the normalized jamming powefi = ¢°/S, can be operating under peak power constraiff... and average power
expressed a®p(8) = Q (Q'(a) — B7'/?). The limits can be constraintlaws (Javs < Jpear) towards a smart receiver employing
computed aims—,o Pp(8) = 1 andlimg o Pp(8) = o Differen-  the adaptable threshold detector given in (3).
tiating with respect tg3 yields Py, (8) = —(2v/2m) '8~ exp { - Proposition 4: The jammer’s optimal strategy is to switch between
0.5(Q ' (a) — 6*1/2)2}, which is negativey 3 > 0. The limits for powers 0 and3c with the fraction of on-power timé.y. /Sc when
the first derivative aréims_,o Pp(53) = 0 andlimg_e Pp(8) = 0. Jave < Bc < Jpeak. FOr fo > Jpear, the optimal strategy time

Proposition 3: Pp(3) is a monotonically decreasing function ofShares between powers 0 adig.. with the fraction of on-power

5 € (0, 00) with a single inflection point at time Javg /Jpeak. FOr Javg > Bc, jamming is performed continuously
) at the average power.
5 = (\/ (@ 'a))*+12 - Ql(a)> (1)  Again the proof follows by noting that the stated strategsuts
6 in the largest convex function that is smaller th&w(3) for

. Ly o

that Pp(B) is strictly concave for3 < §* and strictly convex for B € [0, Jpeax]. Finally as an e.xam.ple, f_o"" =107 Javg = 0.04, )

8> B and Jpeax = 0.1, on-off Gaussian jamming can reduce the detection
Proof. The second derivative of the detection probability igrobability from0.8999 down t00.7109 by transmitting with power

P,:,)(B) — (4/2m) 1B exp{ —O.5(Q*1(a)—5*1/2)2}(35+ Bc = 0.08779 for approximately45.56 percent of the time and

Q' (a)y/B - 1). As before, the sign of the second derivative is d(_:‘.':_thorting jamming for54.44 percent of the time. If the peak power

termined by the right-most expression in parentheses. Bgtiuting constraint Is Ioweregl Wpeak :_(_)‘06' the optlmal stratfegy can sl

2 2 /B, the roots of the resulting quadratic polynomial are otsidin decrease the detection probabilitytd612 by time sharing between

as ( — Q0 (a) £ VO @2 T 12)/6 Sincez — v/B > 0, the 0 and peak poweldpeax = 0.06 with two-thirds of on-power time

positive root results in the inflection point given in (11)dicating fraction.

that Pp(B) is strictly concave for3 < * and strictly convex for

8> B 0 V. CONCLUSIONS ANDFUTURE WORK

The detection performance of the NP detector given by (3) isIn this paper, we have examined the convexity propertieshef t
depicted in Fig. 4 versug for various values of the false alarmdetection probability for the problem of determining theegence
probability «, which point out the possibility of decreasing theof a target signal immersed in additive Gaussian noise. ticet
detection probability via time sharing of the jammer noisgver. in the previous literature on the NP framework, we have foonot
In order to obtain the optimal time sharing strategy for theainer, that the detection performance of a power constrained rirétes can
we first present the following lemma which can be proved usingbe increased via time sharing between different levels aventhe
similar approach to that provided in the Appendix. false alarm requirement is smaller th@{2) =~ 0.02275. Although

Lemma 3: Let 8* be the inflection point ofPp(3) as given in the optimal strategy indicates time sharing between twozen



power levels for moderate values of the power constrairig, shown
that the on-off signaling strategy can well approximate dpg&mal
performance. Next, we have considered the dual problem pomaer
constrained jammer and proved the existence of a critioabpdevel
up to which on-off jamming can be employed to degrade thectiete
performance of a smart receiver. A future work is to analyae the
optimal strategy for the transmitter changes with the jansrtéame
sharing and vice versa. Equilibrium conditions can be sbugta
game-theoretic setting.

The results in this study can be applied for slow fading cle&n

assuming that perfect channel state information (CSI) ésemt at
the transmitter, and a short-term power constraint is iragoby
computing the average over a time period close to the duraifo
the channel coherence time. In that case, the only modiitati
the formulations would be to update the definitionyoby scaling
it with the channel power gain. In particular, considerindblack
fading channel model, the proposed optimal and suboptilgahling
approaches can be employed for each block. If the transndittes
not have perfect CSl, then the detection probability acdeby the

42 € [y2,722] such that the derivatives at both points are equal
P;D(%) = P;D(’yz). In other words, a one-to-one continuous function
can be defined from the intervé}i», 1] onto the intervalyz, v2z]

as follows4z(41) = (P]D)*1 (P;D(’yl)). Now, consider the function

F(1,51) 2 Po(7) = (Pp(31)(y = 41) + P (41) ), which provides
the vertical difference between the detection probabifity(~) and
the value of the line tangent to the detection probabilityvelat, .
Recall that for a gived: € [yiz,71], 0f /0y = P/D(W) — P/D(fyl) is
zero at a unique poinfz € [y2,v2:]. Next, we define the following
continuous functionk(91) £ f(52 (31),91) = Pp(%2) —=Pp(41) —
P;D(’yl)(’yz — 41). The operation of this function can be described
informally as follows. It takes as input a poifti € [viz, 7],
finds the corresponding unique poifi € [y2,72.] with the same
slope such thaP’D(&g) = P’D(%), draws the tangent line to the
detection probability curve at the poifit with the sIopeP;D(’yl), and
calculates the vertical separation between the detectiobapility
curve and the tangent line at the poiit. In the sequel, we show
that 4(-) has a unique roofc: € [y1.,71]. By differentiation, it is
observed thak(-) is an increasing function ovér € [yiz,v1]. More

optimal signaling approach based on perfect CSI can be useah a formally, Oh(%1) /0% = P;D(’yz)’yé —P;D(%) _P;;(,Ayl)(% A1) —

upper bound on the detection performance. For fast fadiagretls,
the instantaneous CSI may not be available at the transraittbthe
optimum power control strategy, which adapts the transroivgy

as a function of the instantaneous channel power gain, may Mve 5.
be obtained. The performance metric should be changed to tple)

average detection probability over the fading distribution that
case, the convexity properties would change (and in gecie@énd
on the fading distribution), and a new analysis would be iregu
Nevertheless, we can still state that the average deteptmivability
is concave with respect to the transmit signal powenfar [Q(2), 1)

since a nonnegative weighted sum of concave functions isav@n
Moreover, the optimal power control scheme can still be dliesd as

time sharing betweeat most two power levels due to Carath’eodory’s,Yc

theorem [13], but whether the time sharing would improverdbe
constant power transmission scheme and over which redioveuid
improve need to be analyzed for the specific fading distidoutinder
consideration.

APPENDIX
A. Proof of Lemma 1

Po(51) (3 — 1) = —Pp(51) (52 — 41) > 0, where the last equality
follows from P;D(%) = P}D(%) and the inequality is due to the strict
concavity ofPp(41) overd: € [yiz,71]. By selectingy: = 1., we
= v and h(y1z) = Pp(12) — Pp(71s) — PB(%;)(W -
< 0. The last inequality follows by noting thafp(y) <
Py (712) fOr 7 € [y12,72] andPp (72) = P (y12) + [J2 Pp(7)dy.
On the other hand, by selectinfg = ~1, we havedy, = 2, and
h(71) = Pp(y22) — Po(m) — Pp(71)(22 — 1) > 0. Again, the
inequality follows fromP;D(fy) > P]D(m) for v € [y1,72:] and
Po(y2:) = Po(m1) + f]]“ P'D(y)dw. Since h(-) is a continuous
and increasing function, it must have a unique r9et € [yiz, 1]
Consequently, tangent ®p () at vc1 is also tangent at the point
2= (Pp) ™" (Pp(ren)) € [,y

Next, we show that the tangent line, which passes through the
points (vc1, Po(ve1)) and (vez, Po(vez)), lies abovePp () for
all v > 0. SincePp(v) is strictly concave ove(0, 1), the tangent
at yc1 lies abovePp () for v € (0,71). Recall that the same line
is also tangent t&p () atyc2 and as a result, it lies abovey ()
for v > ~2. Subsequently, the line segment connecting the points
(71, Pp(m)) and (y2, Pp(y2)) lies abovePn () for v € [y1,72]

As can be noted from the expression in the first paragraph sihce Pp () is convex over this interval. Since the inflection points

Section Ill.LA, the derivative of the detection probabilil%(fy)
is a continuous and positive functioly > 0 with the limits
lim~—0 PB(W) = oo and limy— o P;D(’y) = 0. In Proposition

1, it is stated thatPp(y) is strictly concave over the intervals
(0,7v1) and (2, 00), whereas it is strictly convex over the interval

(v1,Pp(v1)) and (2, Pp(v2)) are below the tangent line, the line
segment connecting them also lies below the tangent linis.prbves
that the tangent line lies abowey (v) for all v > 0. |
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