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Abstract

An M−ary communication system is considered in which the transmitter and the receiver are connected

via multiple additive (possibly non-Gaussian) noise channels, any one of which can be utilized for the

transmission of a given symbol. Contrary to deterministic signaling (i.e., employing a fixed constellation),

a stochastic signaling approach is adopted by treating the signal values transmitted for each information

symbol over each channel as random variables. In particular, the joint optimization of the channel switching

(i.e., time sharing among different channels) strategy, stochastic signals, and decision rules at the receiver is

performed in order to minimize the average probability of error under an average transmit power constraint.

It is proved that the solution to this problem involves either one of the following: (i) deterministic signaling

over a single channel, (ii) randomizing (time sharing) between two different signal constellations over a

single channel, or (iii) switching (time sharing) between two channels with deterministic signaling over

each channel. For all cases, the optimal strategies are shown to employ corresponding maximum a posteriori

probability (MAP) decision rules at the receiver. In addition, sufficient conditions are derived in order to

specify whether the proposed strategy can or cannot improve the error performance over the conventional

approach, in which a single channel is employed with deterministic signaling at the average power limit.

Finally, numerical examples are presented to illustrate the theoretical results.
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1. Introduction

In recent studies, the benefits of randomization (time sharing) have been analyzed for various detection

problems in an environment of additive and non-varying but otherwise arbitrarily distributed noise [1–16].

In the context of noise enhanced detection, an additive “noise” component that is realized by a randomiza-

tion between at most two different signal levels can be injected into the input of a suboptimal detector in

order to improve its detection performance under a false alarm constraint [1–3]. Similar noise benefits are

investigated for detection problems in the Bayesian, minimax, and restricted Bayesian frameworks as well,

and it is shown that the optimal additive noise can be characterized by a randomization among a certain

number of signal values in each scenario [2, 4, 5].

Due to the irrelevance theorem of optimal detection [17], it is known that the performance of an optimal

receiver cannot be improved if the injected noise is independent of the received signal and the hypotheses.

On the other hand, if the signal values transmitted for each information symbol are designed by taking into

account the probability density function (PDF) of channel noise, some performance improvement can be ob-

tained even if the receiver is optimal. For example, it is well-known that the performance of optimal binary

detection in Gaussian noise is improved by selecting deterministic antipodal signals along the eigenvector

of the noise covariance matrix corresponding to the minimum eigenvalue [17]. In stochastic signaling, a

more general approach is adopted by treating the signal values transmitted for each information symbol as

random variables, and the optimal signal distribution is obtained by maximizing some performance crite-

rion under certain system constraints [8, 9, 11, 18]. For communication systems that operate over channels

with multimodal noise distributions, it is shown in [8] that transmitting a stochastic signal for each symbol

instead of a deterministic signal can improve performance of a given receiver in terms of error probability.

In particular, it is proved that an optimal stochastic signal can be represented by a randomization of no more

than three different signal values under second and fourth moment constraints. In [9], joint optimal design

of stochastic signals and a detector is considered under an average transmit power constraint. It is shown

that the solution results in a randomization between at most two distinct signal constellations with the corre-

sponding maximum a posteriori probability (MAP) detector at the receiver. A similar analysis is conducted

under the Neyman-Pearson criterion in [11]. Stochastic signaling in the presence of imperfect channel
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state information at the transmitter is studied in [18], and various stochastic signal design approaches are

proposed for that scenario. In addition, in other studies such as [19–24], time-varying or random signal

constellations are utilized in order to enhance error performance or to achieve diversity.

Error performance of some communication systems that operate over an additive time-invariant noise

channel can also be improved via detector randomization, which involves the use of multiple detectors at the

receiver with certain probabilities [2, 3, 12, 13, 25]. In other words, a receiver can randomize among multi-

ple detectors in order to achieve a lower average probability of error. In [3], an average power constrained

binary communication system is considered, and randomization between two antipodal signal pairs and the

corresponding MAP detectors is studied. Significant performance improvements are reported as a result

of detector randomization in the presence of symmetric Gaussian mixture noise over a range of average

power constraint values. In [13], the results in [3] and [9] are generalized by considering an average power

constrained M-ary communication system that can employ both detector randomization and stochastic sig-

naling over an additive noise channel with some known distribution. It is shown that the joint optimization

of the transmitted signals and the detectors at the receiver results in a randomization between at most two

MAP detectors corresponding to two deterministic signal constellations. In a related study, the form of the

optimal additive noise is determined for variable detectors in the context of noise enhanced detection under

both Neyman-Pearson and Bayesian criteria [2].

When multiple channels are available between a transmitter and a receiver, it may be advantageous to

perform channel switching; that is, to transmit over one channel for a certain fraction of time, and then

switch to another channel during the next transmission period even if the channel statistics are not varying

with time [6, 26, 27]. Fig. 1 illustrates this fact for an average power constrained binary communication

system which employs antipodal signaling with {−
√

S,
√

S} for a given signal power S. It is seen that the

average probability of error can be reduced by switching (time sharing) between channel 1 and channel

2 with respective power levels S1 and S2 in comparison to the constant power transmission scheme that

employs power Savg exclusively over channel 1. More precisely, time sharing exploits the nonconvexity of

the plot for the minimum of the error probabilities over both channels as a function of the signal power. The

resulting strategy yields the convex hull of the individual error probability functions. This observation is
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Figure 1: Illustrative example demonstrating the benefits of switching between two channels under an average power constraint.

first noted in [6] while studying the convexity properties of error probability with respect to the transmit

signal power for the optimal detection of antipodal signals corrupted by additive unimodal noise. It is

shown that the optimum performance under an average power constraint can be achieved by time sharing

between at most two channels and power levels.

In this manuscript, we study the optimal channel switching, signaling and detection strategy that min-

imizes the average probability of error for an average power constrained M-ary communication system in

which the transmitter and the receiver are connected via multiple additive noise channels. Although the

channel switching problem is treated in some studies, such as [6], for unimodal noise distributions and

deterministic binary antipodal signals, no previous work has considered this problem for generic noise

PDFs (i.e., including non-Gaussian or multimodal cases) and in the presence of stochastic signaling (i.e.,

when the transmitter can perform signal randomization for each information symbol sent over any one of

the channels) for M-ary communication systems. More specifically, we investigate the joint optimization

of the channel switching strategy, stochastic signals (employed for the transmission of each symbol over

each channel), and decision rules (used for each channel at the receiver) in order to minimize the average

probability of error under an average transmit power constraint.

The main contributions of this study can be summarized as follows:

• A novel problem formulation is proposed for the optimal signaling and detection problem in the pres-

ence of multiple additive noise channels by considering the joint optimization of the channel switch-
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ing strategy, stochastic signals, and detectors without imposing any restrictions except the continuity

of the probability distributions of the channel noise.

• It is proved that the solution to this generic problem corresponds to either (i) deterministic signaling

(i.e., employing a fixed constellation) over a single channel with the corresponding MAP detector,

(ii) randomizing (time sharing) between two different signal constellations over a single channel with

the corresponding MAP detector, or (iii) switching (time sharing) between the MAP detectors of two

channels with deterministic signaling over each channel.

• Various sufficient conditions are derived in order to specify whether or not the proposed channel

switching strategy can improve the error performance over the conventional approach, in which a

single channel is employed with deterministic signaling at the average power limit.

In addition, numerical examples are provided to illustrate the improvements that can be achieved via the

optimal signaling and detection strategy. The results in this manuscript generalize some of the previous

studies in the literature and cover them as special cases. For example, in the absence of channel switching

(i.e., in the presence of a single channel between the transmitter and the receiver) and for binary commu-

nications, the results reduce to those in [9]. In addition, in the absence of stochastic signaling and when

the channel noise is assumed to have a unimodal differential PDF for a binary communication system, the

problem considered in this study covers the one in [6] as a special case.

In a recent conference paper [28], we have presented the optimal channel switching, signaling and

detection problem, and provided its solution. The current paper presents a more detailed derivation of

this solution. In addition, a number of sufficient conditions, which are presented in Propositions 2–6, are

obtained for the improvability and non-improvability of the correct decision performance via stochastic

signaling or channel switching over a fixed power transmission scheme that employs MAP detection using

the most favorable channel. Since a set of possibly nonconvex optimization problems has to solved in order

to obtain the optimal signaling strategy, these conditions can be checked beforehand to determine whether

an improvement via stochastic signaling or channel switching is even possible. Numerical examples are

also presented to corroborate these results. More specifically, both distinct and identical noise channels are
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considered, and various performance graphs are presented to explain the benefits of stochastic signaling and

channel switching.

The remainder of the manuscript is organized as follows. In Section 2, the optimal signaling and de-

tection problem is formulated in the presence of multiple additive noise channels under an average transmit

power constraint, and the form of the solution to this optimization problem is obtained. In Section 3, im-

provability and nonimprovability conditions are provided in order to specify when the proposed channel

switching strategy can improve performance over the conventional approach. Numerical examples are pre-

sented in Section 4, which is followed by some concluding remarks in Section 5.

2. Stochastic Signaling and Channel Switching

Consider an M-ary communication system, in which the information can be conveyed from the trans-

mitter to the receiver over K additive non-varying and independent noise channels as illustrated in Fig. 2.

The transmitter is allowed to switch or time share among these K channels to improve the correct decision

performance at the receiver. A relay at the transmitter controls access to the channels so that only one of

the channels can be used for symbol transmission at any given time. Furthermore, a stochastic signaling

approach is adopted by treating the signal transmitted from each channel for each information symbol as a

random vector instead of a constant value [8, 13]. In other words, the transmitter can perform randomization

of signal values for each information symbol, which also corresponds to a form of constellation randomiza-

tion [9, 19, 20]. The transmitter and the receiver are assumed to be synchronized so that the receiver knows

which channel is currently in use, and employs the optimal decision rule for the corresponding channel and

the stochastic signaling scheme. In practice, this assumption can be realized by employing a communica-

tions protocol that allocates the first Ns,1 symbols in the payload for channel 1, the next Ns,2 symbols in the

payload for channel 2, and so on. The information on the number of symbols for different channels can be

included in the header of a communications packet [13].

Multiple channels can be available between a transmitter and a receiver, for example, in cognitive radio

systems, where secondary users sense the spectrum in order to determine available frequency bands for

communications [29, 30]. In the presence of multiple available frequency bands between a transmitter-
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Figure 2: M-ary communication system that employs stochastic signaling and channel switching.

receiver pair in a cognitive radio system (see, e.g., [31]), channel switching can be performed in order to

improve the error performance of the secondary system. Therefore, one application of the scenario in Fig. 2

can be the communications of secondary users in a cognitive radio system.

As pointed out in [6], for a binary-valued scalar communication system that employs antipodal signaling

and the corresponding optimal MAP detector at the receiver, error probability is a nonincreasing convex

function of the signal-to-noise ratio (SNR) when the channel has a continuously differentiable unimodal

noise PDF with a finite variance. The more general case of arbitrary signal constellations is investigated

in [7] by concentrating on the maximum likelihood (ML) detection over additive white Gaussian noise

(AWGN) channels. The symbol error rate (SER) is shown to be always convex in SNR for 1-D and 2-

D constellations, and also for higher dimensional constellations in high SNR regimes. As a result, it is

impossible to improve the error performance of an optimal detector via stochastic signaling under an average

transmit power constraint in the above mentioned cases due to the convexity of the error probability. On the

other hand, nonconvexity can be observed at low to intermediate SNRs in the presence of multimodal noise

and even unimodal (including Gaussian) noise for high dimensional constellations.1 As an example, it is

1Non-Gaussian and multimodal noise distributions are observed in some practical systems due to effects such as interference
and jamming [32–34].
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reported in [8] and [9] that employing stochastic signaling; that is, modeling signals for different symbols

as random variables instead of deterministic quantities, can provide significant performance improvement

under Gaussian mixture noise. Motivated by this observation, we consider additive noise channels with

generic PDFs and aim to obtain the optimal signaling and detection strategy when multiple channels are

available for symbol transmission and stochastic signaling can be performed over each channel. In this

scenario, the noisy observation vector Y received by the detector corresponding to the ith channel can be

modeled as follows.

Y = S(i)
j + N(i) , j ∈ {0, 1, . . . ,M − 1} and i ∈ {1, . . . ,K} , (1)

where S(i)
j represents the N-dimensional signal vector transmitted for symbol j over channel i, and N(i) is

the noise in channel i with a continuous PDF pN(i) . N(i) is assumed to be independent of S(i)
j and all the noise

components of the remaining channels. It should be emphasized that S(i)
j is modeled as a random vector

to employ stochastic signaling. Also, the prior probabilities of the symbols, denoted by π0, π1, . . . , πM−1,

are assumed to be known. The vector channel model given above provides the discrete-time equivalent

representation of a continuous-time system that processes the received signal by an orthonormal set of

linear filters, samples the output of each filter once per symbol interval and concatenates the sampled values

into a vector, thereby capturing the effects of modulator, additive noise channel and receiver front-end

processing on the noisy observation signal. The resulting digital signal vector is fed to the designated

detector to carry out the demodulation task. In addition, although the signal model in (1) is in the form of a

simple additive noise channel, it is sufficient to incorporate various effects such as thermal noise, multiple-

access interference, and jamming [6]. It is also valid in the case of flat-fading channels assuming perfect

channel estimation [8]. Note that the probability distribution of the noise component in (1) is not necessarily

Gaussian since it is modeled to include the effects of interference and jamming as well. Hence, the noise

component can have a significantly different probability distribution from the Gaussian distribution [32–34].

The receiver uses the observation in (1) in order to determine the transmitted information symbol. For

that purpose, a generic decision rule (detector) is considered for each channel making a total of K detectors
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getting utilized at the receiver. That is, for a given observation vector Y = y, the detector of the ith channel

ϕ(i)(y) can be characterized as

ϕ(i)(y) = j , if y ∈ Γ(i)
j , (2)

for j ∈ {0, 1, . . . ,M−1} ,where Γ(i)
0 ,Γ

(i)
1 , . . . , Γ

(i)
M−1 are the decision regions (i.e., a partition of the observation

space RN) for the detector of the ith channel [17]. The transmitter and the receiver can switch between

these K channels in any manner in order to optimize the probability of error performance. Let vi denote the

probability that channel i is selected for a given symbol transmission by the communication system. In the

remainder of this paper, vi is called the channel switching factor for channel i, where
∑K

i=1 vi = 1 and vi ≥ 0

for i = 1, . . . ,K. In the context of time sharing, the transmitter and the receiver communicate over channel

i for 100vi percent of the time.

The aim of this study is to jointly optimize the channel switching strategy (v1, . . . , vK), stochastic signals,

and detectors in order to achieve the minimum average probability of error, or equivalently, the maximum

average probability of correct decision. The average probability of correct decision can be expressed as

Pc =
∑K

i=1 vi P(i)
c , where P(i)

c represents the corresponding probability of correct decision for channel i under

M-ary signaling; that is

P(i)
c =

M−1∑
j=0

π j

∫
Γ

(i)
j

p(i)
j (y) dy (3)

for i = 1, 2, . . . ,K, with p(i)
j (y) denoting the conditional PDF of the observation when the jth symbol is

transmitted over the ith channel. Since stochastic signaling is considered, S(i)
j in (1) is modeled as a random

vector. Recalling that the signals and the noise are independent, the conditional PDF of the observation can

be obtained as p(i)
j (y) =

∫
RN pS(i)

j
(x) pN(i)(y − x) dx = E

{
pN(i)

(
y − S(i)

j
)}

, where the expectation is over the

PDF of S(i)
j . Then, the average probability of correct decision can be expressed as

Pc =

K∑
i=1

vi

 M−1∑
j=0

∫
Γ

(i)
j

π j E
{
pN(i)

(
y − S(i)

j
)}

dy

 . (4)
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In practical systems, there is a constraint on the average power emitted from the transmitter. Under

the framework of stochastic signaling and channel switching, this constraint on the average power can be

expressed in the following form [17].

K∑
i=1

vi

 M−1∑
j=0

π j E
{∥∥∥S(i)

j

∥∥∥2
2

} ≤ A , (5)

where A denotes the average power limit.

In this study, we primarily concentrate on obtaining the optimal signaling and detection strategy in

terms of the correct decision probability for an M-ary communication system in the presence of multiple

channels. The novelty of the problem introduced here arises from the following two aspects: (i) signals

transmitted over each channel corresponding to different symbols are modeled as random vectors subject

to an average power constraint, (ii) the only restriction is the continuity of the noise PDFs of the chan-

nels available for switching, and (iii) optimal detectors are designed jointly with the optimal signaling and

switching strategies. This formulation, in turn translates into a design problem over the channel switching

factors {vi}Ki=1, channel specific signal PDFs employed at the transmitter
{

pS(i)
0
, pS(i)

1
, . . . , pS(i)

M−1

}K

i=1
, and the

corresponding optimal detectors used at the receiver
{
ϕ(i)

}K

i=1
. Stated more formally, the aim is to solve the

following optimization problem.

max{
ϕ(i), vi, pS(i)

0
, p

S(i)
1
, ... , p

S(i)
M−1

}K

i=1

K∑
i=1

vi

 M−1∑
j=0

∫
Γ

(i)
j

π j E
{
pN(i)

(
y − S(i)

j
)}

dy


subject to

K∑
i=1

vi

M−1∑
j=0

π j E
{∥∥∥S(i)

j

∥∥∥2
2

} ≤ A ,

K∑
i=1

vi = 1 , vi ≥ 0 , ∀ i ∈ {1, 2, . . . ,K} . (6)

Included in the above statement are the implicit assumptions stating that each pS(i)
j

(·) should represent a

PDF. Therefore, pS(i)
j

(x) ≥ 0 , ∀x ∈ RN , and
∫
RN pS(i)

j
(x) dx = 1 are required ∀ j ∈ {0, 1, . . . ,M − 1} and

∀ i ∈ {1, . . . ,K}.

The signals for all the M symbols that are transmitted over channel i can be expressed as the elements of
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a random vector as follows: S(i) ,
[
S(i)

0 S(i)
1 . . . S(i)

M−1

]
∈ RMN , where S(i)

j ’s are N-dimensional row vectors

∀ j ∈ {0, 1, . . . ,M − 1} . More explicitly, each realization of S(i) represents a signal constellation for M-ary

symbol transmission in an N-dimensional space. Then, the optimization problem in (6) can be expressed in

a more compact form as follows:

max
{ϕ(i), vi, pS(i)}Ki=1

K∑
i=1

vi E
{
Gi(S(i))

}
subject to

K∑
i=1

vi E
{
H(S(i))

}
≤ A ,

K∑
i=1

vi = 1 , vi ≥ 0 , ∀ i ∈ {1, 2, . . . ,K} , (7)

where Gi(S(i)) =
∑M−1

j=0

∫
Γ

(i)
j
π j pN(i)

(
y − S(i)

j

)
dy, H(S(i)) =

∑M−1
j=0 π j

∥∥∥S(i)
j

∥∥∥2
2, and each expectation is taken

with respect to pS(i)(·), which denotes the PDF of the signal constellation employed for symbol transmission

over channel i. Specifically, Gi(s(i)) represents the probability of correct decision when the signal constella-

tion represented by the deterministic vector s(i) is used for the transmission of M symbols over the additive

noise channel i and the corresponding detector ϕ(i) is employed at the receiver. Then, E{Gi(S(i))} can be

interpreted as the probability of correct decision for a generic stochastic signaling scheme over channel i.

The exact number of signal constellations employed by this scheme is determined by the number of dis-

tinct values that the random vector S(i) can take. The expression for H(·) is the same irrespective of which

channel is used, and an explicit reference to the channel number as in the subscript of Gi(·) is not necessary.

Let P†c denote the maximum average probability of correct decision obtained as the solution of the

optimization problem in (7). To provide a simpler formulation of this problem, an upper bound on P†c will

be derived first, and then the achievability of that bound will be investigated.

Suppose that G(x) denotes the maximum of the probabilities of correct decision when the determin-

istic signal constellation x is used for the transmission of M symbols over the additive noise channels

i = 1, 2, . . . , K and the corresponding detectors for all K channels are employed at the receiver. That

is, G(x) , max
i∈{1, 2, ... ,K}

Gi(x), from which G(x) ≥ Gi(x) follows ∀ i ∈ {1, 2, . . . , K} and ∀ x ∈ RMN . This

inequality can be applied to the objective function in (7) to obtain a new optimization problem that provides
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an upper bound on the solution of the optimization problem in (7) as follows.

max
{ϕ(i), vi, pS(i)}Ki=1

K∑
i=1

vi E
{
G(S(i))

}
subject to

K∑
i=1

vi E
{
H(S(i))

}
≤ A ,

K∑
i=1

vi = 1 , vi ≥ 0 , ∀ i ∈ {1, 2, . . . ,K} , (8)

where the expectations are taken with respect to pS(i)(·)’s. Note that by replacing Gi(S(i)) with G(S(i)), the

reference to individual channels inside the expectation operator is dropped which will prove useful in the

foregoing analysis.

Let P⋆c denote the maximum average probability of correct decision obtained as the solution to the

optimization problem in (8). From the definition of function G(·), P⋆c ≥ P†c is always satisfied. In or-

der to achieve further simplification of the problem in (8), define pS(s) , ∑K
i=1 vi pS(i)(s) , where s ,

[ s0 s1 · · · sM−1] ∈ RMN , and s j’s are N-dimensional row vectors ∀ j ∈ {0, 1, . . . ,M − 1} . Since
∑K

i=1 vi =

1 , vi ≥ 0 ∀i , and pS(i)(·)’s are valid PDFs on RMN , pS(s) satisfies the conditions to be a PDF. Then, the

optimization problem in (8) can be written in the following equivalent form.

max
pS, {ϕ(i)}Ki=1

E{G(S)} subject to E{H(S)} ≤ A , (9)

where G(s) = max
i∈{1, 2, ... ,K}

Gi(s) for all s ∈ RMN , and the expectations are taken with respect to pS(·), which

denotes the PDF of the signal constellation employed for transmission of symbols {0, 1, . . . ,M − 1} .

In (9), G(s) represents the maximum of the probabilities of correct decision when the deterministic

signal constellation s is used for the transmission of M symbols over the additive noise channels i =

1, 2, . . . , K and the corresponding detectors are employed at the receiver. Then, E{G(S)} can be inter-

preted as a randomization among channels with respect to the PDF pS(·), where the probability of correct

decision corresponding to each component of pS (i.e., for each signal constellation s in the support of pS)

is maximized by transmitting it over the most favorable channel (i.e., the channel with the highest prob-

ability of correct decision for the given signal constellation s), and altogether they maximize the average

probability of correct decision.

12



Optimization problems in the form of (9) have been investigated in various studies in the literature

[1, 5, 13]. Assuming that the signal values specified by the signal constellation s ∈ RMN are bounded,

i.e., a ≼ s ≼ b where a and b are finite real vectors in RMN , and ≼ denotes element-wise inequality; an

optimal solution to (9) can be represented by a randomization of at most two signal constellations, that is,

pS(s) = λδ(s− s1)+ (1− λ)δ(s− s2), where λ ∈ [0, 1] and δ(·) is the Dirac delta function. This result follows

from Carathéodory’s theorem [35], and can be derived using a similar approach to those in [1, Theorem 3]

and [5, Theorem 4]. Substituting this result in (9), the following optimization problem is obtained:

max{
λ, s1, s2, {ϕ(i)}Ki=1

} λG(s1) + (1 − λ) G(s2)

subject to λH(s1) + (1 − λ) H(s2) ≤ A , λ ∈ [0, 1], (10)

where G(sk) = max
i∈{1, 2, ... ,K}

Gi(sk), Gi(sk) =
∑M−1

j=0

∫
Γ

(i)
j
π j pN(i)

(
y − sk, j

)
dy ∀ i ∈ {1, 2, . . . ,K} , H(sk) =∑M−1

j=0 π j
∥∥∥sk, j

∥∥∥2
2, and sk = [ sk,0 sk,1 · · · sk,M−1] ∈ RMN with sk, j denoting the N-dimensional vector rep-

resenting the jth symbol in constellation sk. Therefore, the solution to the optimization problem given

in (9), which is an upper bound on the solution of the original problem presented in (6), is achieved by

randomizing between at most two signal constellations, s1 and s2.

In order to understand the possible implications of the representation given in (10), we consider the

following scenario. Let λ, s1 and s2 be the optimal parameters obtained from the solution of (10). Evidently,

if either λ = 0 or s1 = s2, this would imply that the optimal performance under the average power constraint

is achieved by transmitting over a single channel with deterministic signaling. Next, we investigate the

possible cases for λ , 0 and s1 , s2. By construction, G(sk) selects the channel with the largest average

probability of correct decision for the transmission of the symbols in the constellation sk. Therefore, it may

either be that s1 and s2 are transmitted over the same channel (i.e., stochastic signaling over a single channel)

or over distinct channels (i.e., channel switching with deterministic signals over each channel). It should be

noted that channel switching between two channels while stochastic signaling over each channel is overruled

by the form of the optimization problem given in (10). Nevertheless, an intuitive explanation for this fact

can be given as follows. Suppose that the optimal strategy results in switching between channels 1 and 2
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with probability λ, and it is found that randomization between two signal constellations, represented with s(i)
1

and s(i)
2 , is optimal with probability αi for channel i ∈ {1, 2}, where λ, α1, α2 ∈ (0, 1). Let (g(i)

1 , h
(i)
1 ) denote

the point for the average probability of correct decision and average signal power corresponding to the

signal constellation s(i)
1 . Similarly, let (g(i)

2 , h
(i)
2 ) denote the corresponding point for the signal constellation

s(i)
2 . It is easy to see that the assumed strategy results in a convex combination of the four points in the

following set S ,
{
(g(1)

1 , h
(1)
1 ), (g(1)

2 , h
(1)
2 ), (g(2)

1 ), h(2)
1 ), (g(2)

2 , h
(2)
2 )

}
. This convex combination is determined by

the parameters λ, α1 and α2. For different values of these parameters, any point in the convex hull of the set

S can be attained. However, since an optimal strategy should maximize the average probability of correct

decision under the average transmit power constraint, the optimal point should lie on the boundary of the

convex hull of the set S. But any point on the boundary of the convex hull can be represented by a convex

combination of at most two points in the set S, which implies that the optimal strategy is, in fact, either

stochastic signaling over a single channel or switching between two channels with deterministic signals

over each channel. All in all, it is concluded that the objective function in (10) is maximized under the

specified constraints by either one of the following strategies:

1. transmitting exclusively over a single channel via deterministic signaling, i.e., λ ∈ {0, 1},

2. randomizing (time sharing) between two signal constellations over a single channel, i.e., λ ∈ (0, 1)

and arg max
i ∈{1, 2, ... ,K}

Gi(s1) = arg max
i ∈{1, 2, ... ,K}

Gi(s2),

3. switching (time sharing) between two channels and deterministic signaling over each channel, i.e.,

λ ∈ (0, 1) and arg max
i ∈{1, 2, ... ,K}

Gi(s1) , arg max
i ∈{1, 2, ... ,K}

Gi(s2).

Three distinct cases mentioned above can also be grouped under two overlapping cases as follows:

1. randomizing between at most two signal constellations over a single channel,

2. switching between at most two channels and deterministic signaling over each channel.

It is noted that randomizing between at most two signal constellations over a single channel covers deter-

ministic signaling since the former reduces to the latter for λ ∈ {0, 1}. Similarly, switching between at most

two channels and deterministic signaling over each channel also reduces to deterministic signaling over

a single channel when λ ∈ {0, 1}. This form is introduced because it provides an ease of notation in the

following analysis.
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The last step in the simplification of the optimization problem in (10) comes from an observation about

the structure of optimal detectors. For a given channel i and the corresponding signaling scheme over the

channel (deterministic or randomization between two signal constellations), the conditional probability of

the observation y given that symbol j is transmitted can be expressed as

p(i)
j (y) = E

{
pN(i)(y − S(i)

j )
}
=


pN(i)

(
y − s(i)

j
)
, if deterministic

λ pN(i)
(
y − s(i)

1, j
)
+ (1 − λ) pN(i)

(
y − s(i)

2, j
)
, if randomized

. (11)

When deciding among M symbols based on observation y at detector i, the MAP decision rule selects

symbol j if j = arg max
l ∈{0, 1, ... ,M−1}

πl p(i)
l (y) , and it maximizes the probability of correct decision [17]. Therefore,

it is not necessary to search over all decision rules in (10); only the MAP decision rule should be determined

for the detector of each channel and its corresponding probability of correct decision should be considered.

The probability of correct decision for a generic decision rule is given in (3). Using the decision regions

corresponding to the MAP detector, i.e., Γ(i)
j = {y ∈ RN | π j p(i)

j (y) ≥ πl p(i)
l (y) , ∀l , j}, the average

probability of correct decision for ith channel becomes

P(i)
c,MAP =

∫
RN

max
j ∈{0, 1, ... ,M−1}

{
π j p(i)

j (y)
}

dy , (12)

where p(i)
j (y) is as in (11).

Below, more explicit forms of the optimization problem stated in (10) are given for all possible scenarios

mentioned previously.

(i) Case 1. Transmitting exclusively over a single channel via deterministic signaling:

In this case, a single channel is utilized exclusively, and the transmitted signal for each symbol is determin-

istic, i.e., a fixed signal constellation is employed for symbol transmission over the channel. Without loss

of generality, channel i is considered. The optimization problem in (10) becomes

max
{s(i), ϕ(i)}

M−1∑
j=0

∫
Γ

(i)
j

π j pN(i)

(
y − s(i)

j

)
dy subject to

M−1∑
j=0

π j
∥∥∥s(i)

j

∥∥∥2
2 ≤ A . (13)

Using the result given in (12) for the deterministic case, the equivalent optimization problem can be written
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as follows.

max
s(i)

∫
RN

max
j ∈{0, 1, ... ,M−1}

{
π j pN(i)

(
y − s(i)

j

) }
dy subject to

M−1∑
j=0

π j
∥∥∥s(i)

j

∥∥∥2
2 ≤ A (14)

(ii) Case 2. Randomizing (time sharing) between at most two signal constellations over a single chan-

nel:

Similarly to the previous case, the transmission occurs over a single channel exclusively, but in this case the

transmitted signal for each symbol is a randomization between at most two different signal vectors. Without

loss of generality, channel i is considered. The optimization problem in (10) is expressed as follows.

max{
λ, s(i)

1 , s
(i)
2 , ϕ

(i)
} λGi(s(i)

1 ) + (1 − λ) Gi(s(i)
2 )

subject to λH(s(i)
1 ) + (1 − λ) H(s(i)

2 ) ≤ A , λ ∈ [0, 1] (15)

where Gi(s(i)
k ) =

∑M−1
j=0

∫
Γ

(i)
j
π j pN(i)(y − s(i)

k, j) dy , H(sk) =
∑M−1

j=0 π j
∥∥∥s(i)

k, j

∥∥∥2
2 , and k ∈ {1, 2}. As stated earlier,

it is assumed that a single detector is employed for each channel at the receiver. Using the result for

randomized signaling case given in (12), the equivalent optimization problem can be written as

max{
λ, s(i)

1 , s
(i)
2

}
∫
RN

max
j ∈{0, 1, ... ,M−1}

{
π j p(i)

j (y)
}

dy

subject to λ

M−1∑
j=0

π j
∥∥∥s(i)

1, j

∥∥∥2
2

 + (1 − λ)

M−1∑
j=0

π j
∥∥∥s(i)

2, j

∥∥∥2
2

 ≤ A , λ ∈ [0, 1] (16)

where p(i)
j (y) = λ pN(i)

(
y − s(i)

1, j
)
+ (1 − λ) pN(i)

(
y − s(i)

2, j
)
. It is recalled that the optimization problem in (16)

reduces to that of (14) when λ ∈ {0, 1}.

(iii) Case 3. Switching (time sharing) between at most two channels and deterministic signaling over

each channel:

In this case, optimum performance is investigated while transmitting over at most two channels and the

transmission over each channel is deterministic, i.e., a fixed signal constellation is employed for symbol

transmission over each channel but the channels are switched in time. Without loss of generality, channels
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i and l are considered (i , l and i , l ∈ {1, 2, . . . ,K}). The optimization problem in (10) takes the following

form.

max
{λ, s(i), s(l), ϕ(i), ϕ(l)}

λGi(s(i)) + (1 − λ) Gl(s(l))

subject to λH(s(i)) + (1 − λ) H(s(l)) ≤ A , λ ∈ [0, 1] (17)

where Gi(s(i)) =
∑M−1

j=0

∫
Γ

(i)
j
π j pN(i)(y − s(i)

j ) dy, H(s(i)) =
∑M−1

j=0 π j
∥∥∥s(i)

j

∥∥∥2
2, Gl(s(l)) and H(s(l)) are defined

similarly by replacing i with l in the preceding equations. Since deterministic signaling is employed in each

channel, the result given in (12) for the deterministic case should be applied for each channel. Then, an

equivalent optimization problem can be written as

max
{λ, s(i), s(l)}

λGi,MAP(s(i)) + (1 − λ) Gl,MAP(s(l))

subject to λH(s(i)) + (1 − λ) H(s(l)) ≤ A , λ ∈ [0, 1] (18)

where Gi,MAP(s(i)) =
∫
RN max

j ∈{0, 1, ... ,M−1}

{
π j pN(i)(y − s(i)

j )
}

dy, H(s(i)) =
∑M−1

j=0 π j
∥∥∥s(i)

j

∥∥∥2
2, Gl(s(l)) and H(s(l))

are defined similarly by replacing i with l in the respective equations.

It is noted that the optimization space is considerably reduced in (14), (16) and (18) compared to those

in (13), (15) and (17), respectively since there is no need to search over the detectors in (14), (16) and (18).

In the rest of the analysis, only the second and third cases will be investigated since they cover deter-

ministic signaling over a single channel as a special case. In view of the above analysis, the solution of

the optimization problem in (10) can be decomposed into two parts. First, randomizing between at most

two signal constellations over a single channel is considered. Let P(i)
c,Opt be the solution of the optimization

problem in (16) for ith channel; that is, P(i)
c,Opt denotes the maximum average probability of correct decision

that can be achieved by stochastic signaling over channel i under the average power constraint. Secondly,

switching between at most two channels with deterministic signaling over each channel is considered. Let

P(i, l)
c,Opt be the solution of the optimization problem in (18) for channels i and l; that is, P(i, l)

c,Opt denotes the

maximum average probability of correct decision that can be achieved by switching between channels i and
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l under the average power constraint. Then, the solution of the optimization problem in (10) can be obtained

by solving the following set of optimization problems and computing their maximum.

PStoc
c = max

i∈{1, 2, ... ,K}
P(i)

c,Opt (19)

PCS
c = max

i,l∈{1, 2, ... ,K} and i<l
P(i, l)

c,Opt (20)

P⋆c = max
{
PStoc

c , PCS
c

}
(21)

where the superscript Stoc denotes stochastic signaling over a single channel and CS abbreviates channel

switching. When the noise PDFs on all the channels are different, the solution of the optimization problem

is given by (21) without any further simplifications. In order to calculate PStoc
c in (19), the optimal stochastic

signaling strategy described by the optimization problem given in (16) should be obtained for all K channels.

Likewise, PCS
c in (20) requires that the optimal channel switching strategy characterized by the optimization

problem given in (18) should be computed for all channels pairs. Since there are K distinct channels and

K(K −1)/2 distinct channel pairs, a total of K(K + 1)/2 optimization problems must be solved to obtain the

corresponding performance scores, among which the maximum is selected according to (21) to identify the

optimum strategy. In the cases where some channels share the same noise PDF, the results are still valid but

the optimization sets given in (19) and (20) over which the maximum values are computed can be refined

to avoid repeated computations of the same expressions.2

The following proposition states that the expressions in (19)-(21) provides the solution of the generic

problem in (7).

Proposition 1: The maximum average probabilities of correct decision achieved by the solutions of the

optimization problems in (7) and (21) are equal, i.e., P†c = P⋆c .

Proof: First, consider the optimization problem in (7) when K = 2 channels are used, and deterministic

signaling is employed for each channel, i.e., pS(1)(s(1)) = δ(s(1) − s1) and pS(2)(s(2)) = δ(s(2) − s2) . Suppose

also that the symbols transmitted over each channel are decoded using the MAP detector corresponding to

2Detector randomization as discussed in [3, 13] can also be analyzed using our framework. Specifically, it can be modeled by
assuming that some channels have identical noise distributions. That is, each channel appears in the system model with a certain
multiplicity.
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that channel. In that case, (7) reduces to the optimization problem in (18); hence, (7) covers (18) as a special

case. Secondly, consider the optimization problem in (7) when K = 1 channel is used, and a randomization

between at most two signal constellations is employed, i.e., pS(s) = λ δ(s − s1) + (1 − λ) δ(s − s2). Suppose

also that a single MAP detector is employed at the receiver. Then, (7) reduces to the optimization problem

in (16); hence, (7) covers (16) as a special case. Since both (16) and (18) are special cases of (7) for any

choice of the channels i ∈ {1, 2, . . . , K}, l ∈ {1, 2, . . . , K} and i , l, the maximum value of the objective

function in (7) should be larger than or equal to the maximum given by (21). This, in turn, implies that

P†c ≥ P⋆c . On the other hand, the optimization problem in (7) has been replaced with the upper bound given

in (8), the solution of which is shown to reduce to that given in (21); that is, P†c ≤ P⋆c . Therefore, it is

concluded that P†c = P⋆c . �

Proposition 1 implies that the solution of the original optimization problem stated in (7), which considers

the joint optimization of switching factors among channels, channel specific signal PDFs employed at the

transmitter and the corresponding detectors used at the receiver, can be obtained as the solution of the much

simpler optimization problem specified in (21). Formally, when multiple channels are available for signal

transmission (i.e., K ≥ 2), it is sufficient to either employ switching between two channels with deterministic

signaling over each channel (i.e., there is no need to employ stochastic signaling over a channel to achieve

the optimal solution while switching channels); or randomize between at most two signal constellations

over a single channel, whichever results in the highest average probability of correct decision.

The solution of the optimization problem in (21) can be obtained via global optimization techniques

(since it is a nonlinear nonconvex optimization problem in general due to arbitrary noise PDFs), or a convex

relaxation approach as in [5] can be employed to obtain approximate solutions in polynomial time.

3. Improvability and Non-improvability Conditions

Although the solution given in (19)-(21) has simplified the search over all possible channel switching

factors, signal PDFs and decision rules (see (7)) to a search over a few variables (see (16) and (18)), it

is still computationally intensive. Specifically, for the optimal stochastic signaling strategy given in (19),

the maximum correct decision probabilities should be computed for all K channels. Similarly, for the
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optimal channel switching strategy given in (20), the maximum correct decision probabilities should be

computed for all K(K − 1)/2 distinct pairs of channels. In total, it is required to solve K(K + 1)/2 op-

timization problems, and there are 2MN + 1 optimization variables in each problem (i.e., s1 and s2 are

two signal constellations employed for M-ary communications in an N-dimensional signal space and λ is

a scalar parameter). Therefore, it is very important to know, before attempting to solve the overall opti-

mization problem, whether channel switching in the presence of stochastic signaling can help improve the

performance of the communication system under an average power constraint.

Remark: From this point on, the terms channel switching and stochastic signaling are used to refer

to “switching between two channels with deterministic signaling over each channel” and “randomization

between at most two signal constellations over a single channel”, respectively. �

In order to define improvability and nonimprovability, we refer to a conventional communications sce-

nario, in which the transmitter employs a fixed constellation with average signal power A (e.g., antipodal

signaling with {−
√

A,
√

A} for binary communications) over the channel that results in the highest correct

decision probability and the receiver uses the corresponding MAP detector. Then, the system is called im-

provable if either stochastic signaling or channel switching3 can improve the average probability of correct

decision over the conventional signaling method. Otherwise, the system is called nonimprovable.

Before writing down the expression for the average correct decision probability of the conventional sys-

tem, we need to introduce more notation. Recall from (18) that Gi,MAP(s) represents the average probability

of correct decision when the deterministic signal constellation s is used for the transmission of M symbols

over the additive noise channel i and the corresponding MAP detector is employed at the receiver for the

same channel. Next, GMAP(s) is defined as the maximum of these correct decision probabilities for the given

signal constellation s over all K additive noise channels. Namely,

GMAP(s) , max
i∈{1, 2, ... ,K}

Gi,MAP(s) for all s , (22)

where Gi,MAP(s) =
∫
RN max

j ∈{0, 1, ... ,M−1}

{
π j pN(i)(y − s j)

}
dy. It is also recalled that H(s) denotes the average

3Together, they constitute the solution for the optimal signaling and detector design problem in the presence of multiple additive
noise channels.
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power of the signal constellation s over the prior probabilities (see its definition after (10)). With this nota-

tion, the probability of correct decision for the conventional system can be expressed as Pcv
c = GMAP(scv),

where scv represents the conventional deterministic signal constellation employed for the transmission of

all the M symbols, and H(scv) = A is satisfied. The max operator in (22) ensures that scv is transmitted over

the channel with the highest correct decision probability. It is also sensible to assume that the components

of the constellation vector scv, i.e., the signal vectors employed for symbol transmission, are designed to

maximize the correct decision probability under the average power constraint, but some popular choices can

also be assumed such as MPAM or MQAM [36]. The aim is to improve upon Pcv
c under the average power

constraint. Next, Gi,ϕ(s) is defined as the probability of correct decision when the signal constellation s is

transmitted over channel i and decoded using a given fixed decision rule ϕ. Similar to the above discussion,

Gϕ(s) is defined as the maximum of these correct decision probabilities over all the additive noise channels.

Gϕ(s) , max
i∈{1, 2, ... ,K}

Gi,ϕ(s) for all s , (23)

where Gi,ϕ(s) =
∑M−1

j=0

∫
Γ j
π j pN(i)

(
y − s j

)
dy. In (22), each channel is allowed to employ its own MAP

detector that is tuned according to the channel noise and signal constellation, whereas in (23), the same

decision rule is used for all the channels.

Suppose that the conventional system transmits over a specific channel î using the signal constellation

scv and decoding is performed using the corresponding MAP detector ϕ̂, thereby achieving the highest

correct decision probability Pcv
c via deterministic signaling with scv over a single channel. That is, Pcv

c =

GMAP(scv) = Gî,MAP(scv) = Gî,ϕ̂(scv) = Gϕ̂(scv). Let Sh = {s : H(s) = h}. For a given value h of H, we have

s = H−1(h), where H−1 is the inverse mapping of H. Since H is not a one-to-one function, there exists a set

of values s which satisfy H(s) = h. A new function Jϕ̂(h) is defined as

Jϕ̂(h) , max
s∈Sh

Gϕ̂(s) , (24)

which specifies the maximum probability of correct decision that can be attained for a given value of the
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average signal power h using the detector of the conventional system ϕ̂ [1, 37].4 More clearly, the maxi-

mum is computed over the performances of the individual channels for the set of signal vectors with the

given average power value h when deterministic signaling is performed over each channel and decoding

is accomplished at the receiver via the detector ϕ̂ of the conventional system. In other words, an equiva-

lent representation for Jϕ̂(h) can be given as Jϕ̂(h) = max
s∈Sh, i∈{1, 2, ... ,K}

Gi,ϕ̂(s).Lastly, it should be noted that

Jϕ̂(A) ≥ Pcv
c by definition. Based on these preliminaries, the following improvability condition is obtained

first.

Proposition 2: If Jϕ̂(h) is second-order continuously differentiable around A and satisfies J ′′
ϕ̂

(A) > 0,

then the communication system is improvable.

Proof: When J ′′
ϕ̂

(A) > 0 and Jϕ̂(h) in (24) is second-order continuously differentiable around h = A,

there exists ε > 0 such that Jϕ̂(h) is convex on the interval (A − ε, A + ε). Consider a signaling scheme

with PDF pS(s) = 0.5 δ(s − s1) + 0.5 δ(s − s2) where H(s1) = A − ε and H(s2) = A + ε. Since H(s) is

a continuous mapping from RMN to [0,∞), the existence of s1 and s2 is assured. First, it is observed that

the average transmit power under the proposed signaling scheme does not violate the power constraint.

Formally, 0.5 H(s1) + 0.5 H(s2) = 0.5 (A − ε) + 0.5 (A + ε) = A. Next, due to the strict convexity of Jϕ̂

around h = A, we have 0.5Jϕ̂(A − ε) + 0.5Jϕ̂(A + ε) > Jϕ̂(A) ≥ Pcv
c . From the definition of Jϕ̂(h), it is

also observed that there exist channels m and n such that 0.5 Gm,ϕ̂(s1) + 0.5 Gn,ϕ̂(s2) > Pcv
c . Depending on

the channel PDFs, the performance scores Gm,ϕ̂(s1) and Gn,ϕ̂(s2) can be attained by either transmitting over

the same channel (m = n) or on distinct channels (m , n), and employing the detector ϕ̂ of the conventional

system. In the case of transmitting over the same channel, the performance can further be increased by

designing the optimal MAP detector corresponding to the PDF pS(s) = 0.5 δ(s − s1) + 0.5 δ(s − s2) instead

of using the detector ϕ̂. Similarly, in the case of different channels, each channel can employ its own

optimal MAP detector resulting in a better performance score, that is 0.5 Gm,MAP(s1) + 0.5 Gn,MAP(s2) ≥

0.5 Gm,ϕ̂(s1) + 0.5 Gn,ϕ̂(s2) > Pcv
c . Hence, it is concluded that under the assumptions in the proposition,

the correct decision probability can be improved using either stochastic signaling or channel switching

depending on the channel noise PDFs. �

4The average signal power is considered because it is recalled that the expectation is taken over the prior probabilities of all M
symbols.
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In order to evaluate the improvability condition in Proposition 2, explicit knowledge about the behavior

of Jϕ̂(h) around h = A is required. This could be a difficult task since H(s) is not an injective function and

the exact form of Gϕ̂(s) can be hard to compute. In such cases, the relationship between Gϕ̂(s) and H(s) can

be learned by Monte-Carlo simulation using importance sampling [1]. Once this is accomplished, the check

for the improvability condition stated in Proposition 2 can be carried out in the single-dimensional domain

of Jϕ̂(h) instead of the multi-dimensional domain of Gϕ̂(s). In the following, we present improvability

conditions that can be evaluated in a more direct manner without relying on auxiliary functions like Jϕ̂(h).

Proposition 3: The average probability of correct decision can be improved if there exists signal con-

stellations s1 and s2 such that

• H(s1) > A > H(s2) , and

•
(
A − H(s2)

)(
Gϕ̂(s1) −Gϕ̂(s2)

)
>

(
H(s1) − H(s2)

)(
Pcv

c −Gϕ̂(s2)
)

are satisfied.

Proof: Consider a signaling scheme with PDF pS(s) = λ δ(s − s1) + (1 − λ) δ(s − s2), which utilizes

all the average power, i.e. λH(s1) + (1 − λ) H(s2) = A. From this equality, λ can be expressed as λ =(
A − H(s2)

)/(
H(s1) − H(s2)

)
. Since λ ∈ (0, 1) must be satisfied for physically realizable configurations,

the first condition follows. Secondly, observe that the expression λGϕ̂(s1) + (1 − λ) Gϕ̂(s2) provides a lower

bound on the performance of optimal design given in (21). Then, λGϕ̂(s1)+ (1−λ) Gϕ̂(s2) > Pcv
c is sufficient

for improvability of the conventional system. The second condition in the proposition can be obtained by

substituting the expression for λ into the preceding inequality. �

The following corollary follows from Proposition 3 by focusing on the improvements due to channel

switching only.

Corollary 1: The average probability of correct decision can be improved if there exists different chan-

nels i1 and i2, and signal constellations s1 and s2 that satisfy

• H(s1) > A > H(s2) , and

•
(
A − H(s2)

)(
Gi1,MAP(s1) −Gi2,MAP(s2)

)
>

(
H(s1) − H(s2)

)(
Pcv

c −Gi2,MAP(s2)
)
.
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If a pair of signal constellations that satisfy the conditions in Proposition 3 and Corollary 1 is found,

one can continue to solve for the optimal set of parameters using the approach given in (21). Next, some

alternative improvability conditions are stated.

Proposition 4: Suppose that Gϕ̂(s) is second-order continuously differentiable around s = scv. Define

g(1)(s, x) , JG(s) x, g(2)(s, x) , xT HG(s) x, h(1)(s, x) , 2sT Π x, and h(2)(x) , 2xT Π x, where JG(s)

denotes the Jacobian (gradient) of Gϕ̂ evaluated at s, HG(s) denotes the Hessian of Gϕ̂ evaluated at s, and Π

is a diagonal matrix of prior probabilities obtained by repeating each prior N times consecutively along the

diagonal.5 Then, the probability of correct decision can be improved if there exists a signal constellation x

such that

• g(1)(s, x)h(1)(s, x) < 0 is satisfied at s = scv, or

• g(1)(s, x) > 0, h(1)(s, x) > 0, and g(2)(s, x)h(1)(s, x) > h(2)(x)g(1)(s, x) are satisfied at s = scv.

Proof: Please see Appendix A.

Proposition 4 presents a sufficient condition for improvability that is based solely on the first and second

derivatives of the functions Gϕ̂ and H. In the following, sufficient conditions for nonimprovability of the

correct decision performance over the conventional system are derived. Similar to the previous discussion,

we present two approaches, the first one is based on an auxiliary function and the latter facilitates direct

evaluation.

In light of the definitions of GMAP and H given at the beginning of Section 3, we note the following

observations. We recall that Sh is defined as Sh = {s : H(s) = h}. A set of values g of GMAP can be

obtained correspondingly by g = GMAP(s) = GMAP(H−1(h)). By introducing the joint PDF pS,h(·) for the

signal distribution in the h domain, the upper bound for the original optimization problem given in (9) can

be equivalently expressed as

max
pS,h

∫ ∞

0
g pS,h(h) dh subject to

∫ ∞

0
h pS,h(h) dh ≤ A (25)

5Π = diag(π1, . . . , π1︸     ︷︷     ︸
N times

, π2, . . . , π2︸     ︷︷     ︸
N times

, . . . . . . . . . , πM , . . . , πM︸       ︷︷       ︸
N times

)
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In fact, a finite upper limit can be used in the integrals instead of infinity in practical scenarios [1]. Next, an

auxiliary function is defined as follows.

F (h) = max
s∈Sh

GMAP(s) (26)

where F (h) represents the maximum probability of correct decision over all the channels when a deter-

ministic signal constellation with average power h is employed for symbol transmission and decoding is

performed using the corresponding optimal MAP detector for each channel.

Proposition 5: If there exists a non-decreasing concave function Υ(h) that satisfies Υ(h) ≥ F (h), ∀h and

Υ(A) = F (A) = Pcv
c , then neither channel switching nor stochastic signaling can improve the probability of

correct decision.

Proof: Consider the optimization problem given in (25), which is an upper bound on the original opti-

mization problem as mentioned before. Suppose that a signaling scheme characterized with a PDF pS,h(h)

is employed. Let the corresponding average probability of correct decision be denoted by Pc(pS,h). Similar

to [1, Theorem 2], we have

Pc(pS,h) =
∫ ∞

0
g pS,h(h) dh ≤

∫ ∞

0
F (h) pS,h(h) dh, from (26)

≤
∫ ∞

0
Υ(h) pS,h(h) dh, from the assumption in the proposition

≤ Υ
(∫ ∞

0
h pS,h(h) dh

)
, due to the concavity of Υ(h)

≤ Υ(A) = Pcv
c , Υ(h) is non-decreasing. (27)

Since the above inequality holds for all possible signal distributions satisfying the average power constraint,

it is also valid for the optimal signal PDF that maximizes the optimization problem given in (25). Hence,

(27) is an upper bound on the original optimization problem given in (6), and it is concluded that the

communication system is nonimprovable. �

Although the sufficient condition for nonimprovability suggested in Proposition 5 relies on single-

variable functions Υ(h) and F (h), they are not easy to obtain in general. The following condition depends
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directly on GMAP(s) and H(s).

Proposition 6: Let C denote the convex hull of the set of all possible values for the signal constellation

vector s. Suppose also that H(s) ≤ A implies GMAP(s) ≤ Pcv
c for all s ∈ C. If GMAP(s) is a concave function

over C, then the communications system is nonimprovable.

Proof: Please see Appendix B.

In this section, sufficient conditions are provided for the improvability and non-improvability of the

correct decision performance via stochastic signaling or channel switching over a conventional communi-

cations scenario, in which the transmitter employs a fixed constellation at the average transmit signal power

over the channel that results in the highest correct decision probability while the receiver employs the corre-

sponding MAP detector. At this point, it should be recalled that a total of K(K+1)/2 optimization problems,

each having 2MN + 1 optimization variables, are needed to be solved to obtain the optimal signaling strat-

egy, where K is the number of available channels, M is the number of signals in the constellation, and N is

the constellation dimensionality. Therefore, before attempting to solve these optimization problems, which

are not necessarily convex, it would be helpful to know in advance whether an improvement via stochastic

signaling or channel switching is possible. The sufficient conditions presented in Propositions 2–6 are de-

rived mainly for this reason. If an improvability condition is satisfied, we can start searching for the optimal

strategy by solving the proposed optimization problems. On the contrary, if a non-improvability condition

is satisfied, it indicates that the correct decision performance cannot be improved via stochastic signaling or

channel switching. In this case, the sufficient condition lets us know beforehand that the optimal strategy is

to employ deterministic signaling over a single channel at the average transmit signal power. Therefore, no

performance improvement is possible via stochastic signaling or channel switching, and there is no reason

to solve the proposed optimization problems. In summary, by checking the sufficient conditions, it may

be possible to identify whether an optimal solution that involves stochastic signaling or channel switching

exists or not. However, if such a solution exists (i.e., one of the improvability conditions is satisfied), it is

necessary to solve the proposed optimization problem to find that solution. Compared with the computa-

tional complexity of obtaining the optimal solution, the sufficient conditions can be much easier to check

depending on the exact form of the channel noise PDFs. For example, in Propositions 3 and 4, it is suf-
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ficient to find a feasible point that satisfies the given conditions in order to conclude that the performance

is improvable. On the contrary, Proposition 5 relies on the existence of a non-decreasing concave function

that satisfies a certain condition, which may be relatively harder to find.

4. Numerical Results

In this section, numerical examples are presented to illustrate the performance of the proposed signaling

strategies in the presence of multiple channels. A scalar binary communication system with equiprobable

information symbols is considered and the average power limit is set to A = 1. It is assumed that K ≥ 2

channels are available between the transmitter and the receiver, and only one of them can be used for

transmission at any given time. The following four strategies are considered for performance comparison.

Gaussian solution over the best channel: In this approach, antipodal signals
{ − √A,

√
A
}

are trans-

mitted for binary information symbols over the most favorable channel, i.e., the one that yields the highest

probability of correct decision, and the corresponding MAP detector is employed at the receiver. Since

deterministic antipodal signaling is optimal in the presence of Gaussian noise (not necessarily optimal for

other types of noise), this approach is called Gaussian solution over the best channel.

Optimal deterministic solution over the best channel: In this scheme, the optimal deterministic signal

constellation and the corresponding MAP decision rule are obtained to maximize the probability of correct

decision in the absence of stochastic signaling and channel switching. K optimization problems in the form

of (14) are solved and the most favorable channel is employed for symbol transmission.

Optimal stochastic solution over the best channel: This scheme employs a single MAP detector at

the receiver and randomizes between at most two signal constellations. The optimization problem in (16)

is solved for all K channels and the most favorable channel is selected for symbol transmission as shown in

(19).

Optimal channel switching with deterministic signaling: In this scheme, switching is performed

between at most two channels with deterministic signaling over each channel. K(K − 1)/2 optimization

problems in the form of (18) are solved and the most favorable channel pair is selected as shown in (20).

It should be noted that the maximum of the last two strategies constitute the solution to the optimal
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Figure 3: Average probability of error versus A/σ2 for various strategies, where L = 3 and µ = [−0.9 0 0.9] for the Gaussian
mixture noise.

signaling and detector design problem in the presence of multiple channels, as stated in (21).

In the following numerical examples, it is assumed that the channel noise is modeled by a Gaussian

mixture distribution [1, 5, 32, 34], which is represented by

p N(i)(n) =
1

√
2πσiLi

Li∑
l=1

exp

−
(
n − µ(i)

l

)2

2σ2
i

 (28)

for i ∈ {1 . . .K}, where Li is the number of components in the mixture for channel i. As noted from

(28), the components of the Gaussian mixture noise have the same weight 1/Li and the same variance σ2
i .

For notational simplicity, the component means of the Gaussian mixture for channel i are collected in the

vector µ(i) =
[
µ(i)

1 . . . µ
(i)
Li

]
. Based on (28), the average noise power of the ith channel can be calculated as

E
{
|N(i)|2

}
= σ2

i +
1
Li
∥µ(i)∥22, where ∥µ(i)∥2 denotes the L2 norm of vector µ(i).

First, we consider a scenario in which K ≥ 2 identical channels (i.e., channels with the same noise PDF)

are available; i.e., σi = σ, Li = L, and µ(i) = µ, ∀i ∈ {1 . . .K}, where µ = [µ1 . . . µL]. Since identical

channels are considered and at most two channels are required for the optimum solution as discussed in
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Table 1: Optimal signal parameters for the scenario in Fig. 3.

Deterministic Sig. Stochastic Signaling Channel Switching
A/σ2 (dB) s1 λ s1,1 s2,1 λ s(1)

1 s(2)
1

10 1 N/A 1 1 0.1533 0.7271 1.0418
15 0.7239 0.7885 0.7160 1.6783 0.4492 0.7060 1.1870
20 0.6904 0.7650 0.6894 1.6456 0.4254 0.6880 1.1790
25 0.6799 0.7482 0.6798 1.6120 0.3843 0.6796 1.1558

Section 2, K can be any number that is larger than or equal to 2. Hence, the results in this part are valid for

all K ≥ 2. In Fig. 3, the average probabilities of error corresponding to the four strategies discussed above

are plotted versus A/σ2 for L = 3 and µ = [−0.9 0 0.9]. From the figure, it is observed that the Gaussian

solution has the worst performance among all the approaches as expected since it is optimized for Gaussian

noise and is not expected to achieve good performance in the presence of multimodal channel noise. When

optimal deterministic signaling is employed, significant gains can be achieved over the Gaussian solution

in this example. In addition, further improvements are possible when stochastic signaling is used instead of

deterministic signaling. As A/σ2 increases, the overlap between the class conditional PDFs corresponding

to binary symbols decreases and there is more room in the signal space for performance improvement via

randomized approaches. Overall, the best performance is achieved when switching is performed between

two MAP detectors corresponding to two signal constellations. Since identical channels are considered in

this example, channel switching can also be regarded as detector randomization via time-sharing for this

scenario [13]. Furthermore, the performance of detector randomization is guaranteed to exceed that of

stochastic signaling in the case of identical channels, which is also evident from Fig. 3.6

In order to further investigate the results in Fig. 3, the parameters for the proposed strategies are pre-

sented in Table 1 for some values of A/σ2. Due to the symmetry of the Gaussian mixture noise, antipodal

signaling is employed for binary communications. More explicitly, for optimal deterministic signaling, s0

and s1 denote the signals transmitted for information symbols 0 and 1, respectively, and we have s0 = −s1.

For optimal stochastic signaling, the optimal signal for information symbol i ∈ {0, 1} is expressed in the

6Additional results were obtained for µ = [−0.9 −0.2 0.2 0.9], µ = [−0.9 −0.2 0 0.2 0.9], and µ = [−1.2 −0.6 −0.1 0.1 0.6 1.2]
as well, and similar observations to those for Fig. 3 were made. The resulting figures are not presented since they are quite similar
to Fig. 3.
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form of pSi(s) = λ δ(s − s1,i) + (1 − λ) δ(s − s2,i) with s1,0 = −s1,1 and s2,0 = −s2,1. Finally, the optimal

channel switching solution employs the signal pair
{
−s(1)

1 , s(1)
1

}
and the corresponding MAP detector with

probability λ, and the signal pair
{
−s(2)

1 , s(2)
1

}
and the corresponding MAP detector with probability 1 − λ .

From Table 1, it is observed that all the solutions converge to the Gaussian solution as the noise variance

increases. This is due to the fact that the Gaussian mixture noise approximates a unimodal PDF at high

values of the variance for which the Gaussian solution is optimal. However, as the noise variance decreases

(i.e., A/σ2 increases), the multimodal nature of the noise PDF prevails and the best performance is achieved

by the optimal channel switching solution.

The results depicted in Fig. 3 and Table 1 can also be verified by plotting the error probability of

the optimal MAP detector as a function of the signal power in the presence of deterministic antipodal

signaling, i.e., s1 = −s0 = s. This is shown in Fig. 4 for the channel characterized by the parameters L = 3,

µ = [−0.9 0 0.9] and A/σ2 = 15 dB, where A = 1 as specified before. Due to multimodal noise, the error

probability is a nonmonotonic and nonconvex function of the signal power [3, 9]. From Fig. 4, it is seen

that the optimal deterministic solution is obtained as s1 = −s0 =
√

0.524 = 0.7239, which corresponds to

the minimum value (0.0948) of the error probability curve for s2 ≤ 1. The best performance is achieved

by switching between two power levels 0.4984 and 1.409 using the corresponding antipodal signal pairs

{−0.7060, 0.7060} and {−1.1870, 1.1870}, which are in compliance with Table 1. Also, the switching factor

λ can be calculated based on the average power limit, A = 1, as follows: 0.4984λ+ 1.409(1− λ) = 1, which

yields λ = 0.4492 as in Table 1. It is observed from Fig. 4 that switching between two MAP detectors can

reduce the average probability of error down to nearly 0.05, which is indicated by the red circle in the figure.

Next, we consider a scenario in which all the channels have distinct noise PDFs. In this case, the best

performance can be achieved by either the optimal channel switching with deterministic signaling approach

or the optimal stochastic solution over the best channel approach. For the Gaussian mixture noise model in

(28), it is assumed that σi = σ and Li = L, ∀i ∈ {1, . . . ,K}, and that the component means of the Gaussian

mixture are chosen as

µ(i) =
√

E
vi

∥vi∥2
(29)
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Figure 4: Error probability versus signal power s2 for the channel characterized by the parameters L = 3 and µ = [−0.9 0 0.9] and
A/σ2 = 15 dB (cf. Fig. 3 and Table 1).

Table 2: Optimal signal parameters for the scenario in Fig. 5.

Gaussian solution Deterministic Sig. Stochastic Signaling Channel Switching
A/σ2 (dB) Channel s1 Channel s1 Channel λ s1,1 s2,1 λ s(1)

1 s(2)
1 s(3)

1
10 2 1 2 1 2 N/A 1 1 0.8450 1.0601 0.5697 X
15 2 1 2 1 2 0.0502 1.0078 0.9996 0.5642 1.202 0.6509 X
20 3 1 2 0.6405 2 0.7547 0.6381 1.6805 0.5614 1.2108 0.6353 X
25 3 1 2 0.6213 2 0.7348 0.6210 1.6439 0.6023 1.1848 0.6206 X
30 3 1 2 0.6152 2 0.7222 0.6152 1.6174 0.6369 1.1638 0.6151 X

for i = 1, . . . ,K, where E is a constant and vi’s are L-dimensional distinct vectors. It is noted that ∥µ(i)∥22 = E.

Hence, the average noise power is the same for all the channels. Namely, E
{
|N(i)|2

}
= σ2 + E

L , ∀i ∈

{1, . . . ,K}. In Fig. 5, the average probabilities of error for the four strategies are plotted versus A/σ2 for

K = 3, v1 = [−3 − 2 0 2 3], v2 = [−4 − 3 0 3 4], v3 = [−5 − 3 0 3 5], and E = 3. From Fig. 5, it is

concluded that the optimal channel switching strategy achieves the lowest average probability of error and

the Gaussian solution has the worst performance over the whole range of A/σ2 values.

The optimal parameters of the strategies in Fig. 5 are shown for some values of A/σ2 in Table 2. For the

Gaussian solution and the optimal deterministic solution, the channel that results in the lowest probability
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Figure 5: Average probability of error versus A/σ2 for various approaches, where K = 3, v1 = [−3 − 2 0 2 3], v2 = [−4 − 3 0 3 4],
v3 = [−5 − 3 0 3 5], and E = 3 (see (29)).

of error is indicated in the first column of the respective area in the table and the second column specifies

the scalar signal value employed for the transmission of information symbol 1. Again, antipodal signals

are considered for symbol 0 and symbol 1. It is observed that either channel 2 or channel 3 is employed

for these solutions depending on the noise level. For the optimal stochastic solution, the same notation

is employed as in Table 1 together with the channel index employed for communications. In the case of

optimal channel switching, Table 2 shows the two channels between which switching is performed (the “X”

mark indicates that the corresponding channel is not utilized). As an example, for A/σ2 = 20 dB in Fig. 5,

the optimal channel switching strategy transmits over channel 1 using the constellation {−1.2108, 1.2108}

with probability 0.5614 (i.e., 56.14% of the time), and transmits over channel 2 using the constellation

{−0.6353, 0.6353} with probability 0.4386. Since the average noise power is the same for all channels, the

optimal parameters for each strategy are determined by the variance and the means of the Gaussian mixture

components. In order to determine the improvability in this scenario, the conditions in Proposition 3 can

be evaluated. For example, at A/σ2 = 25 dB, the calculations show that the improvability conditions in

Proposition 3 are satisfied for s1 = 1.45 and s2 = 0.95.
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Figure 6: Error probability versus signal power s2 for the three channels when A/σ2 = 15 dB (cf. Fig. 5 and Table 2).

In order to illustrate the improvements via channel switching, Fig. 6 presents the error probabilities of

the three channels considered in Fig. 5 and Table 2 as a function of the signal power in the presence of

antipodal signaling when A/σ2 = 15 dB. As shown in the figure, the optimal channel switching strategy

performs time sharing between Channel 1 and Channel 2 with power levels 1.445 and 0.4238 (i.e., signal

constellations {−1.202, 1.202} and {−0.6509, 0.6509}), respectively. The results are in compliance with

Table 2, as expected. It should also be noted that a lower average probability of error can be achieved for

the scenario in Fig. 6 if detector randomization is allowed for each channel; that is, if multiple detectors can

be implemented and time shared for the detection of symbols acquired over each channel. In that case, a

randomization between two constellations and the corresponding MAP detectors over Channel 2 can result

in a lower average probability of error. Fortunately, as previously stated in Footnote 2, such scenarios can

be covered using the proposed framework in this study by considering multiple channels with identical

distributions.

Finally, a scenario with just two channels is considered. The parameters of the first channel are given by

v1 = [−6 − 3 − 2 2 3 6], L1 = 6, and E = 4 (see (29)). The second channel is modeled to have zero-mean
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Figure 7: Average probability of error versus A/σ2
1 for various approaches, where the first channel is characterized by the param-

eters K = 2, v1 = [−6 − 3 − 2 2 3 6 ], E = 4 (see (29)), and the second channel has zero-mean Gaussian noise with the same
average power as the first channel.

Table 3: Optimal signal parameters for the scenario in Fig. 7.

Gaussian solution Deterministic sig. Stochastic Signaling Channel Switching
A/σ2

1 (dB) Channel s1 Channel s1 Channel λ s1,1 s2,1 λ s(1)
1 s(2)

1
15 2 1 2 1 2 N/A 1 1 0.1823 0.6683 1.0599
20 1 1 1 1 1 0.0857 0.2068 1.0439 0.9134 1.0266 0.6576
25 1 1 1 0.6963 1 0.6725 0.6964 1.4344 0.8810 0.6961 2.1951
30 1 1 1 0.7037 1 0.6378 0.7037 1.3743 0.9495 0.7037 3.2388

Gaussian noise with the same average power as the first one; i.e., L2 = 1, µ(2) = 0, and σ2
2 = σ

2
1+

E
L1

in (28).

The average probabilities of error for the proposed strategies are plotted versus A/σ2
1 in Fig. 7. Unlike the

cases in Fig. 3 and Fig. 5, the best performance is achieved by stochastic signaling over the best channel in

this scenario. It should be emphasized that the possibility of an optimal solution in the form of stochastic

signaling is stated in Section 2 (see (19)-(21)). It is also observed that the optimal channel switching strategy

performs very closely to the optimal deterministic signaling approach over the best channel. In other words,

channel switching does not provide significant performance improvements in this scenario. The optimal

parameters of the strategies depicted in Fig. 7 are presented for some values of A/σ2
1 in Table 3.
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5. Concluding Remarks

Optimal signaling and detector design have been studied under an average transmit power constraint for

generic noise distributions in the presence of multiple channels and stochastic signaling. It has been shown

that the optimal solution to the joint channel switching, stochastic signaling, and detector design problem

corresponds to one of the following strategies: (i) deterministic signaling over a single channel, (ii) random-

izing (time sharing) between at most two signal constellations over a single channel, or (iii) switching (time

sharing) between at most two channels with deterministic signaling over each channel. For all cases, the

optimal strategies employ the corresponding MAP detectors at the receiver. Optimization problems have

been formulated to obtain the parameters of the proposed strategies. In addition, sufficient conditions have

been provided to specify whether or not the proposed strategy can improve the error performance over the

conventional approach, in which a single channel is employed with deterministic signaling at the average

power limit. Various numerical examples have been presented to illustrate the theoretical results. It has

been observed that significant performance improvements can be achieved in some cases via the proposed

optimal approach in the presence of multimodal noise.

Appendix A. Proof of Proposition 4

Consider a signaling scheme with infinitesimally small perturbations around the conventional signal

constellation, pS(s) = λ δ (s − (scv + ∆1)) + (1 − λ) δ (s − (scv + ∆2)). A sufficient set of conditions for

improvability can then be expressed as

λGϕ̂(scv + ∆1) + (1 − λ)Gϕ̂(scv + ∆2) > Pcv
c

λH(scv + ∆1) + (1 − λ)H(scv + ∆2) ≤ A . (A.1)

A second-order approximation for Gϕ̂(scv + ∆k) and H(scv + ∆k) can be obtained using the Taylor series

expansion as Gϕ̂(scv +∆k) ≈ Gϕ̂(scv)+ JG(scv)∆k + 0.5∆T
k HG(scv)∆k and H(scv +∆k) ≈ H(scv)+ JH(scv)∆k +

0.5∆T
k HH(scv)∆k respectively, where JG(scv) and HG(scv) (similarly JH(scv) and HH(scv)) are the gradient
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and Hessian of Gϕ̂(s) (H(s)) evaluated at s = scv, respectively. From (A.1),

λ∆T
1 HG(scv)∆1 + (1 − λ)∆T

2 HG(scv)∆2 + 2JG(scv)[λ∆1 + (1 − λ)∆2] > 0, (A.2)

λ∆T
1 HH(scv)∆1 + (1 − λ)∆T

2 HH(scv)∆2 + 2JH(scv)[λ∆1 + (1 − λ)∆2] ≤ 0, (A.3)

Let ∆1 = νx and ∆2 = ωx, where ν and ω are infinitesimal real numbers, and x is an MN-dimensional real

vector. Using the definitions from the statement of the proposition, the conditions in (A.2) can be expressed,

after some manipulation7 as

(
g(2)(s, x) + ℓ · g(1)(s, x)

)∣∣∣∣s=scv
> 0 , (A.4)(

h(2)(x) + ℓ · h(1)(s, x)
)∣∣∣∣s=scv

≤ 0 , (A.5)

where ℓ , 2
(
λ(ν − ω) + ω

)/(
λ(ν2 − ω2) + ω2) . By varying λ in the interval (0, 1) and choosing appropriate

values for infinitesimal quantities ν and ω, any real value can be assigned to ℓ. The first part of the Propo-

sition states g(1)(s, x)h(1)(s, x) < 0 at s = scv, meaning that g(1)(scv, x) and h(1)(scv, x) must have different

signs. Under this condition, it is easy to see that a suitable choice of ℓ satisfies the requirements given in

(A.4) and (A.5). Namely, any choice of ℓ with a sufficiently high absolute value and the correct sign is

adequate. In the second part of the Proposition, it is assumed that g(1)(s, x) and h(1)(s, x) are positive at

s = scv. Multiplying both terms in (A.4) with h(1)(s, x), and similarly multiplying both terms in (A.5) with

g(1)(s, x), an equivalent condition for the improvability can be written as

(
g(2)(s, x)h(1)(s, x) + ℓ · h(1)(s, x)g(1)(s, x)

)∣∣∣∣s=scv
> 0 , (A.6)(

h(2)(x)g(1)(s, x) + ℓ · h(1)(s, x)g(1)(s, x)
)∣∣∣∣s=scv

≤ 0 , (A.7)

Notice that the second terms in (A.6) and (A.7) are the same. Under the condition of g(2)(s, x)h(1)(s, x) >

h(2)(x)g(1)(s, x) at s = scv, meaning that the first term in (A.6) is greater than the first term in (A.7), an

7Recall that H(s) =
∑M−1

j=0 π j ∥s j∥22 where s j represents the signal vector transmitted for the jth symbol. Then, the gradient and
the Hessian are given as JH(s) = 2sTΠ and HH(s) = 2Π, respectively. Since the only nonzero entries ofΠ are the prior probabilities
on the diagonal, the Hessian of H(s) is a constant and positive definite matrix that is independent of s.
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appropriate value of ℓ can always be found such that the improvability conditions in (A.6) and (A.7) are

satisfied. �

Appendix B. Proof of Proposition 6

Since H(s) is a convex function for all values of s, Jensen’s inequality implies that for any given signal

distribution pS, E{H(S)} ≥ H(E{S}), which in turn implies that H(E{S}) ≤ A due to the average power

constraint. Since C is convex, E{S} ∈ C. Then, from the assumption in the Proposition, H(E{S}) ≤ A

implies that GMAP(E{S}) ≤ Pcv
c . Since GMAP(s) is a concave function over C, E{GMAP(S)} ≤ GMAP(E{S}) ≤

Pcv
c for any given distribution pS. Consequently, the previous inequality also holds for the optimal signal

distribution obtained as the solution of the optimization problem given in (9), which is itself an upper bound

on the solution of the original optimization problem given in (6). Hence, it is concluded that under the

conditions in the Proposition, the communication system is nonimprovable. �
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