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Abstract

Noise enhanced hypothesis-testing is studied according to the restricted Neyman-Pearson (NP) criterion.

First, a problem formulation is presented for obtaining the optimal probability distribution of additive noise

in the restricted NP framework. Then, sufficient conditions for improvability and nonimprovability are

derived in order to specify if additive noise can or cannot improve detection performance over scenarios in

which no additive noise is employed. Also, for the special case of a finite number of possible parameter

values under each hypothesis, it is shown that the optimal additive noise can be represented by a discrete

random variable with a certain number of point masses. In addition, particular improvability conditions

are derived for that special case. Finally, theoretical results are provided for a numerical example and

improvements via additive noise are illustrated.

Keywords: Detection, composite hypothesis, noise benefits, stochastic resonance, restricted

Neyman-Pearson.

1. Introduction

Recently, performance improvements obtained via “noise” have been investigated for various problems

in the literature ([2] and references therein). Although increasing noise levels or injecting additive noise to

a system usually results in degraded performance, it can also lead to performance enhancements in some
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cases. Enhancements obtained via noise can, for instance, be in the form of increased signal-to-noise ratio

(SNR), mutual information or detection probability, or in the form of reduced average probability of error

[2]-[11].

In hypothesis-testing problems, additive noise can be used to improve performance of a suboptimal

detector according to Bayesian, minimax, and Neyman-Pearson (NP) criteria. In [6], the Bayesian criterion

is considered under uniform cost assignment, and it is shown that the optimal noise that minimizes the

probability of decision error has a constant value. The study in [9] obtains optimal additive noise for

suboptimal variable detectors according to the Bayesian and minimax criteria based on the results in [3]

and [6]. In [8], noise enhanced M-ary composite hypothesis-testing is studied in the presence of partial

prior information, and optimal additive noise is investigated according to average and worst-case Bayes risk

criteria. In [7], noise enhanced hypothesis-testing is treated in the restricted Bayesian framework, which

generalizes the Bayesian and minimax criteria and covers them as special cases [12, 13].

In the NP framework, additive noise can be utilized to increase detection probability of a suboptimal

detector under a constraint on false-alarm probability [3, 10, 11, 14]. In [10], an example is provided

to illustrate improvements in detection probability due to additive independent noise for the problem of

detecting a constant signal in Gaussian mixture noise. A theoretical framework is established in [3] for

noise enhanced hypothesis-testing according to the NP criterion, and sufficient conditions are obtained for

improvability and nonimprovability of a suboptimal detector via additive noise. In addition, it is shown that

optimal additive noise can be realized by a randomization between at most two different signal levels. Noise

enhanced detection in the NP framework is studied also in [11], which provides an optimization theoretic

framework, and proves the two point mass structure of the optimal additive noise probability distribution.

Noise benefits are studied also for composite hypothesis-testing problems, in which there exist multiple

possible distributions, hence, multiple parameter values, under each hypothesis [15]. Such problems are

encountered in various scenarios such as radar systems, noncoherent communications receivers, and spec-

trum sensing in cognitive radio networks [15]-[17]. Noise enhanced hypothesis-testing is investigated for

composite hypothesis-testing problems according to the Bayesian, NP, and restricted Bayesian criteria in

[7, 8, 18]. However, no studies have considered the noise enhanced hypothesis-testing problem according
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to the restricted NP criterion, which focuses on composite hypothesis-testing problems in the presence of

uncertainty in the prior probability distribution under the alternative hypothesis. In the restricted NP frame-

work, the aim is to maximize the average detection probability under constraints on the worst-case detection

and false-alarm probabilities [12, 19]. Since prior information may not be perfect in practice, the average

detection probability, which is calculated based on the prior distribution under the alternative hypothesis,

may not be accurate. Therefore, imposing a constraint on the worst-case detection probability guarantees

a minimum detection performance even for the least favorable prior distribution. Hence, the restricted NP

approach can have important benefits compared to the NP approach (which aims to maximize the average

detection probability under a false-alarm constraint only) when the prior information is not perfect.

In this study, noise enhanced detection is investigated for composite hypothesis-testing problems ac-

cording to the restricted NP criterion. A formulation is provided for obtaining the probability distribution of

the optimal additive noise in the restricted NP framework. Also, sufficient conditions of improvability and

nonimprovability are derived in order to determine when the use of additive noise can or cannot improve

performance of a given detector according to the restricted NP criterion. In addition, a special case in which

there exist finitely many possible values of the unknown parameter under each hypothesis is considered, and

the optimal additive noise is shown to correspond to a discrete random variable with a certain number of

point masses in that scenario. Furthermore, particular improvability conditions are derived for that special

case. Finally, a numerical example is presented to illustrate improvements obtained via additive noise and to

provide applications of the improvability conditions. Since a generic composite hypothesis-testing problem

with prior distribution uncertainty is investigated in this study, the results can be considered to generalize

the previous studies in the literature [3, 11, 18].

The remainder of the manuscript is organized as follows. In Section 2, the noise enhanced hypothesis-

testing problem is formulated according to the restricted NP criterion, and improvability and nonimprov-

ability conditions are results. In Section 3, the special case with finitely many possible values for the

unknown parameter is considered, and particular results are obtained regarding the probability distribution

of the optimal additive noise and sufficient conditions for improvability. A numerical example is presented

in Section 4 to investigate theoretical results. Finally, concluding remarks are made in Section 5.
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2. Noise Enhanced Detection in Restricted NP Framework

We consider a binary composite hypothesis-testing problem formulated as

H0 : pX
θ (x) , θ ∈ Λ0 , H1 : pX

θ (x) , θ ∈ Λ1 (1)

where pX
θ (·) denotes the probability density function (p.d.f.) of observation X for a given value of the

parameter, Θ = θ, the observation (measurement), x, is a K-dimensional vector (i.e., x ∈ RK), and Λi is the

set of possible parameter values underHi for i = 0, 1 [15]. Parameter sets Λ0 and Λ1 are disjoint, and their

union forms the parameter space Λ; that is, Λ = Λ0 ∪ Λ1.

In this study, we consider a practical scenario in which there exists imperfect prior information about

the parameter. In particular, we assume that the prior probability distribution of the parameter under each

hypothesis is known with some uncertainty [20]. Let w0(θ) and w1(θ) represent the imperfect prior proba-

bility distributions of parameter θ underH0 andH1, respectively. These probability distributions may differ

from the true prior probability distributions, which are not known by the designer. For instance, w0(θ) and

w1(θ) can be obtained via estimation based on previous decisions (experience). Then, uncertainty is related

to estimation errors, and a higher amount of uncertainty is observed as estimation errors increase [19].

For theoretical analysis, we consider a generic decision rule (detector), which is expressed as

ϕ(x) = i, if x ∈ Γi , (2)

for i = 0, 1, where Γ0 and Γ1 form a partition of the observation space Γ. The aim in this study is to

investigate the effects of adding independent “noise” to inputs of given generic detectors as in (2) and

to obtain optimal probability distributions of such additive “noise” in the restricted NP framework. As

investigated in recent studies such as [2, 3, 7, 9, 10, 11], addition of independent noise to observations can

improve detection performance of suboptimal detectors in some cases.

Let n denote the “noise” component that is added to original observation x. Then, the noise modified

observation is formed as y = x+ n, where n has a p.d.f. denoted by pN(·). The detector in (2) uses the noise
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modified observation y in order to make a decision. As in [3, 7, 11], we assume that the detector in (2) is

fixed, and that the only way of enhancing the performance of the detector is to optimize the additive noise

component, n.

According to the restricted NP criterion [12, 19], the optimal additive noise should maximize the average

detection probability under constraints on the worst-case detection and false-alarm probabilities. Therefore,

the probability distribution of the optimal additive noise can be obtained from the solution of the following

optimization problem:

max
pN(·)

∫
Λ1

Py
D(ϕ; θ) w1(θ) dθ

subject to Py
D(ϕ; θ) ≥ β, ∀θ ∈ Λ1

Py
F(ϕ; θ) ≤ α, ∀θ ∈ Λ0 (3)

where Py
D(ϕ; θ) and Py

F(ϕ; θ) denote respectively the detection and false-alarm probabilities of a given deci-

sion rule ϕ, which employs the noise modified observation y, for a given value of Θ = θ, β is the lower limit

on the worst-case detection probability, α is the false-alarm constraint, and w1(θ) is the imperfect prior dis-

tribution of the parameter under hypothesisH1. The objective function in (3) corresponds to the average de-

tection probability based on the imperfect prior distribution; that is,
∫
Λ1

Py
D(ϕ; θ) w1(θ) dθ = E{Py

D(ϕ;Θ)} ,

Py
D(ϕ). In addition, Py

D(ϕ; θ) and Py
F(ϕ; θ) can be expressed as

Py
D(ϕ; θ) = E {ϕ(Y) |Θ = θ} =

∫
Γ

ϕ(y) pY
θ (y) dy θ ∈ Λ1 (4)

Py
F(ϕ; θ) = E {ϕ(Y) |Θ = θ} =

∫
Γ

ϕ(y) pY
θ (y) dy θ ∈ Λ0 (5)

where pY
θ (·) is the p.d.f. of the noise modified observation for a given value of Θ = θ.

In order to express the optimization problem in (3) more explicitly, we first manipulate Py
D(ϕ; θ) in (4)
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as follows:

Py
D(ϕ; θ) =

∫
Γ

∫
RK
ϕ(y) pX

θ (y − n) pN(n) dn dy (6)

=

∫
RK

pN(n)
[∫
Γ

ϕ(y)pX
θ (y − n) dy

]
dn (7)

,
∫
RK

pN(n) Fθ(n) dn (8)

= E{Fθ(N)} (9)

for θ ∈ Λ1, where the independence of X and N is used to obtain (6) from (4), and Fθ is defined as

Fθ(n) ,
∫
Γ

ϕ(y) pX
θ (y − n) dy. (10)

Note that Fθ(n) corresponds to the detection probability for a given value of θ ∈ Λ1 and for a constant value

of additive noise, N = n. Therefore, for n = 0, Fθ(0) = Px
D(ϕ; θ) is obtained; that is, Fθ(0) is equal to the

detection probability of the decision rule for a given value of θ ∈ Λ1 and for the original observation x.

Based on similar manipulations as in (6)-(9), Py
F(ϕ; θ) in (5) can be expressed as

Py
F(ϕ; θ) = E{Gθ(N)} (11)

for θ ∈ Λ0, where

Gθ(n) ,
∫
Γ

ϕ(y) pX
θ (y − n) dy. (12)

Note that Gθ(n) defines the false alarm probability for a given value of θ ∈ Λ0 and for a constant value of

additive noise, N = n. Hence, for n = 0, Gθ(0) = Px
F(ϕ; θ) is obtained; that is, Gθ(0) is equal to the false

alarm probability of the decision rule for a given value of θ ∈ Λ0 and for the original observation x.
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From (9) and (11), the optimization problem in (3) can be reformulated as

max
pN(·)

∫
Λ1

E{Fθ(N)}w1(θ) dθ

subject to min
θ∈Λ1

E{Fθ(N)} ≥ β

max
θ∈Λ0

E{Gθ(N)} ≤ α (13)

In addition, based on the following definition,

F(n) ,
∫
Λ1

Fθ(n)w1(θ) dθ , (14)

the optimization problem in (13) can be expressed in the following simpler form:

max
pN(·)

E{F(N)},

subject to min
θ∈Λ1

E{Fθ(N)} ≥ β

max
θ∈Λ0

E{Gθ(N)} ≤ α. (15)

Based on the definitions in (10) and (14), it is noted that F(0) = Px
D(ϕ); that is, F(0) is equal to the average

detection probability for the original observation x (i.e., the average detection probability in the absence of

additive noise).

The exact solution of the optimization problem in (15) is very difficult to obtain in general as it requires

a search over all possible additive noise p.d.f.s. Hence, an approximate solution can be obtained based on

the Parzen window density estimation technique [7, 18, 21]. In particular, the additive noise p.d.f. can be

parameterized as

pN(n) ≈
L∑

l=1

µl φl(n) (16)

where µl ≥ 0,
∑L

l=1 µl = 1, and φl(·) is a window function that satisfies φl(x) ≥ 0 ∀x and
∫
φl(x)dx = 1, for
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l = 1, . . . , L. A common window function is the Gaussian window, for which φl(n) is given by the p.d.f. of a

Gaussian random vector with a certain mean vector and a covariance matrix. Based on (16), the optimization

problem in (15) can be solved over a number of parameters instead of p.d.f.s, which significantly reduces

the computational complexity. However, even in that case, the problem is nonconvex in general; hence,

global optimization algorithms such as particle swarm optimization (PSO) need to be used [7, 22].

Since the optimization problem in (15) is complex to solve in general, it can be useful to determine

beforehand if additive noise can or cannot improve the performance of a given detector. For that purpose,

we obtain sufficient conditions for which the use of additive noise can or cannot provide any performance

improvements compared to the case of not employing any additive noise. To that aim, we first define

improvability and nonimprovability in the restricted NP framework as follows:

Definition 1: According to the restricted NP criterion, a detector is called improvable if there ex-

ists additive noise N such that E{F(N)} > Px
D(ϕ) = F(0) and min

θ∈Λ1
Py

D(ϕ; θ) = min
θ∈Λ1

E{Fθ(N)} ≥ β, and

max
θ∈Λ0

Py
F(ϕ; θ) = max

θ∈Λ0
E{Gθ(N)} ≤ α. Otherwise, the detector is called nonimprovable.

In other words, for improvability of a detector, there must exist additive noise that increases the average

detection probability under the worst-case detection and false-alarm constraints.

According to Definition 1, we first obtain the following nonimprovability condition based on the prop-

erties of Fθ in (10), Gθ in (12), and F in (14).

Proposition 1: Assume that there exits θ∗ ∈ Λ0 (θ∗ ∈ Λ1) such that Gθ∗(n) ≤ α (Fθ∗(n) ≥ β) implies

F(n) ≤ F(0) for all n ∈ Sn, where Sn is a convex set1 consisting of all possible values of additive noise n.

If Gθ∗(n) is a convex function (Fθ∗(n) is a concave function), and F(n) is a concave function over Sn, then

the detector is nonimprovable.

Proof: The proof is similar to those in [7] and [14]. The convexity of Gθ∗(·) implies that the false alarm

probability in (9) is bounded, via Jensen’s inequality, as

Py
F(ϕ; θ∗) = E{Gθ∗(N)} ≥ Gθ∗ (E{N}) . (17)

1It is reasonable to model Sn as a convex set since convex combination of individual noise components can be obtained via
randomization [7, 23].
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As Py
F(ϕ; θ∗) ≤ α must hold for improvability, (17) requires that Gθ∗ (E{N}) ≤ α must be satisfied. Since

E{N} ∈ Sn, Gθ∗ (E{N}) ≤ α implies that F (E{N}) ≤ F(0) due to the assumption in the proposition. Hence,

Py
D(ϕ) = E{F(N)} ≤ F (E{N}) ≤ F(0) , (18)

where the first inequality results from the concavity of F. Then, from (17) and (18), it is concluded that

whenever the false-alarm constraint is satisfied, the average detection probability can never be higher than

that in the absence of additive noise; that is, Py
F(ϕ; θ∗) ≤ α implies Py

D(ϕ; θ∗) ≤ F(0) = Px
D(ϕ). For this reason,

the detector is nonimprovable. Based on similar arguments, the alternative nonimprovability condition in

terms of Fθ (stated in the parentheses in the proposition) can be proved as well. �

The nonimprovability conditions in Proposition 1 can be useful in determining when it is unnecessary

to solve the optimization problem in (15). When these conditions are satisfied, additive noise should not

be employed in the system at all since it cannot provide any performance improvements according to the

restricted NP criterion.

In addition to the nonimprovability conditions in Proposition 1, we obtain sufficient conditions for

improvability in the remainder of this section. Assume that F(x), Fθ(x) ∀ θ ∈ Λ1, and Gθ(x) ∀ θ ∈ Λ0

are second-order continuously differentiable around x = 0 . Then, we define the following functions for

notational convenience:

g(1)
θ (x, z) , zT∇Gθ(x) (19)

f (1)
θ (x, z) , zT∇Fθ(x) (20)

f (1)(x, z) , zT∇F(x) (21)

g(2)
θ (x, z) , zT H(Gθ(x)) z (22)

f (2)
θ (x, z) , zT H(Fθ(x)) z (23)

f (2)(x, z) , zT H(F(x)) z (24)

where z is a K-dimensional column vector, and ∇ and H represent the gradient and Hessian operators,
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respectively. For example, ∇Gθ(x) is a K-dimensional column vector with its ith element being equal to

∂Gθ(x)
∂xi

, where xi denotes the ith component of x, and H(Gθ(x)) is a K × K matrix with its element in row l

and column i being given by ∂2Gθ(x)
∂xl∂xi

.

Based on the preceding definitions, the following proposition provides sufficient conditions for improv-

ability.

Proposition 2: Let L0 and L1 denote the sets of θ values that maximize Gθ(0) and minimize Fθ(0),

respectively. Then the detector is improvable if there exists a K-dimensional vector z such that one of the

following conditions is satisfied for all θ0 ∈ L0 and θ1 ∈ L1:

• f (1)(x, z) > 0, f (1)
θ1

(x, z) > 0, and g(1)
θ0

(x, z) < 0 at x = 0.

• f (1)(x, z) < 0, f (1)
θ1

(x, z) < 0, and g(1)
θ0

(x, z) > 0 at x = 0.

• f (2)(x, z) > 0, f (2)
θ1

(x, z) > 0, and g(2)
θ0

(x, z) < 0 at x = 0.

Proof: Please see Appendix A.1.

Proposition 2 implies that under the stated conditions, one can always find a noise p.d.f. that increases

the average detection probability under the constraints on the worst case detection and false alarm prob-

abilities. In other words, the conditions in the proposition guarantee the existence of additive noise that

improves the detection performance according to the restricted NP criterion.

In addition to the improvability conditions in Proposition 2, we can obtain alternative sufficient condi-

tions for improvability based on the approaches in [3, 7]. For that purpose, we first define two new functions

J(t) and H(t) as follows:

J(t) , sup
{

F(n)
∣∣∣ max
θ∈Λ0

Gθ(n) = t , n ∈ RK
}

(25)

H(t) , inf
{

min
θ∈Λ1

Fθ(n)
∣∣∣ max
θ∈Λ0

Gθ(n) = t , n ∈ RK
}

(26)

which represent, respectively, the maximum average detection probability and the minimum worst-case

detection probability for a given value of the maximum false-alarm probability considering constant values

of additive noise. As an initial observation from (25) and (26), one can conclude that if there exists t0 ≤

α such that J(t0) > F(0) and H(t0) ≥ β, then the detector is improvable, since under such a condition
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there exists a noise component n0 that satisfies F(n0) > F(0), min
θ∈Λ1

Fθ(n0) ≥ β and max
θ∈Λ0

Gθ(n0) ≤ α (i.e.,

performance improvement can be achieved by adding a constant noise component n0 to the observation).

Since improvability of a detector via constant noise component is not very common in practice, the

following improvability condition is presented for more practical scenarios.

Proposition 3: Define the minimum value of the detection probability and the maximum value of the

false alarm probability in the absence of additive noise as β̃ , min
θ∈Λ1

Px
D(ϕ; θ) and α̃ , max

θ∈Λ0
Px

F(ϕ; θ) , respec-

tively, where β̃ ≥ β and α̃ ≤ α . Assume that H(α̃) = β̃, where H is as defined in (26). Then the detector is

improvable if J(t) in (25) and H(t) in (26) are second-order continuously differentiable around t = α̃, and

satisfy J
′′
(α̃) > 0 and H

′′
(α̃) ≥ 0.

Proof: Please see Appendix A.2.

Proposition 3 can be employed in a similar manner to Proposition 2 in order to determine if a given

detector is improvable according to the restricted NP framework. The main advantage of Proposition 3

is that J(t) and H(t) are always single-variable functions irrespective of the dimension of the observation

vector, which facilitates simple evaluation of the conditions in the proposition. However, in some cases, it

can be challenging to obtain an expression for J(t) in (25) and H(t) in (26). On the other hand, Proposition

2 deals directly with Gθ(·), Fθ(·), and F(·) without defining auxiliary functions as in Proposition 3; hence,

it can be employed more efficiently in some cases. However, it should also be noted that the functions in

Proposition 2 are always K-dimensional, which can make the evaluation of the conditions more complex

than those in Proposition 3 in some other cases.

3. Special Case: Finitely Many Possible Values for the Parameter

The results obtained in the previous section are generic in the sense that there are no specific restrictions

on the parameter sets Λ0 and Λ1 corresponding to hypotheses H0 and H1, respectively. In this section, we

provide more detailed theoretical analysis for the special case in which the parameter sets consist of finitely

many elements. Let Λ0 = {θ01, θ02, . . . θ0M} and Λ1 = {θ11, θ12, . . . θ1N}.

The most important simplification in this case is that the optimal probability distribution of additive

noise can be represented by a discrete probability distribution with at most M + N point masses under mild
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conditions as specified in the following proposition.

Proposition 4: Suppose that each component of additive noise is upper and lower bounded by two finite

values; that is, n j ∈ [a j, b j] for j = 1, . . . ,K where a j and b j are finite.2 If Fθ1i(·) and Gθ0i(·) are continuous

functions, then the p.d.f. of an optimal additive noise can be expressed as

pN(n) =
M+N∑
l=1

λl δ(n − nl) , (27)

where
∑M+N

l=1 λl = 1 and λl ≥ 0 for l = 1, 2, . . . , M + N.

Proof: The proof is omitted since it can be obtained similarly to the proofs of Theorem 4 in [7], Theorem

8 in [18], and Theorem 3 in [3]. �

Based on Proposition 4, the optimization problem in (15) can be expressed as

max
{λl,nl}M+N

l=1

M+N∑
l=1

λl F(nl)

subject to min
θ∈Λ1

M+N∑
l=1

λl Fθ(nl) ≥ β

max
θ∈Λ0

M+N∑
l=1

λl Gθ(nl) ≤ α

M+N∑
l=1

λl = 1 , λl ≥ 0 for l = 1, 2, . . . , M + N (28)

Compared to (15), the optimization problem in (28) has much lower computational complexity in general

since it requires optimization over a number of variables instead of over all possible p.d.f.s. However,

depending on the number of possible parameter values, M + N, the computational complexity can still be

high in some cases.

Next, we obtain sufficient conditions for improvability according to the restricted NP criterion. Let Sβ

(Sα) denote the set of indices for which Fθ1i(0) (Gθ0i(0)) achieves the minimum value of β (maximum value

2This is a reasonable assumption because additive noise cannot take infinitely large values in practice.
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of α), and let S̄β (S̄α) represent the set of indices with Fθ1i(0) > β (Gθ0i(0) < α ); that is,

Sβ =
{
i ∈ {1, 2, . . . ,N} | Fθ1i(0) = β

}
(29)

S̄β =
{
i ∈ {1, 2, . . . ,N} | Fθ1i(0) > β

}
(30)

Sα =
{
i ∈ {1, 2, . . . , M} | Gθ0i(0) = α

}
(31)

S̄α =
{
i ∈ {1, 2, . . . , M} | Gθ0i(0) < α

}
. (32)

Note that Sβ ∪ S̄β = {1, 2, . . . ,N} (Sα ∪ S̄α = {1, 2, . . . , M}); hence, Fθ1i(0) = Px
D(ϕ; θ1i) ≥ β for i =

1, 2, . . . ,N (Gθ0i(0) = Px
F(ϕ; θ0i) ≤ α for i = 1, 2, . . . , M ).

Based on the functions in (19)-(24), we define new functions as f (n)
i (x, z) , f (n)

θ1i
(x, z) and g(n)

i (x, z) ,

g(n)
θ1i

(x, z). Also let Fn and Gn (n = 1, 2) represent the sets that consist of f (n)(x, z), f (n)
i (x, z) for i ∈ Sβ , and

g(n)
i (x, z) for i ∈ Sα ; namely,

Fn =
{
f (n)(x, z), f (n)

i (x, z) for i ∈ Sβ
}

(33)

Gn =
{
g(n)

i (x, z) for i ∈ Sα
}
, (34)

for n = 1, 2. Note that Fn (Gn) has |Sβ|+1 (|Sα|) elements, where |Sβ| (|Sα|) denotes the number of elements

in Sβ (Sα). Representing by Fn( j) (Gn( j)) the jth element of Fn (Gn ), it is noted that Fn(1) = f (n)(x, z) and

Fn( j) = f (n)
Sβ( j−1)(x, z) for j = 2, . . . , |Sβ| + 1 (Gn( j) = g(n)

Sα( j)(x, z) for j = 2, . . . , |Sα|), where Sβ( j − 1) is the

( j − 1)th element of Sβ (Sα( j) is the jth element of Sα). Furthermore, the following sets are defined for the
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indices j ∈ Sβ ( j ∈ Sα) for which F1( j) (G1( j)) is zero, negative or positive:

Sz
β =

{
j ∈ {1β, 2β, . . . , (|Sβ| + 1)β} | F1( j) = 0

}
(35)

Sn
β =

{
j ∈ {1β, 2β, . . . , (|Sβ| + 1)β} | F1( j) < 0

}
(36)

Sp
β =

{
j ∈ {1β, 2β, . . . , (|Sβ| + 1)β} | F1( j) > 0

}
(37)

Sz
α = { j ∈ {1α, 2α, . . . , (|Sα|)α} | G1( j) = 0} (38)

Sn
α = { j ∈ {1α, 2α, . . . , (|Sα|)α} | G1( j) < 0} (39)

Sp
α = { j ∈ {1α, 2α, . . . , (|Sα|)α} | G1( j) > 0} (40)

where we denote j as jα ( jβ) in order to emphasize that j is coming from set Sα (is not coming from set

Sα).

In the following proposition, an indicator function IA(x) is used, which is defined as IA(x) = 1 if x ∈ A

and IA(x) = 0 otherwise. Based on the definitions in (29)-(40), the following proposition provides sufficient

conditions for improvability in the restricted NP framework.

Proposition 5: When Λ consists of a finite number of elements, a detector is improvable according to

the restricted NP criterion if there exists a K-dimensional vector z such that the following two conditions

are satisfied at x = 0 :

1. F2( j) > 0 , ∀ j ∈ Sz
β and G2( j) < 0 , ∀ j ∈ Sz

α .

2. One of the following is satisfied:

• Any three of |Sn
β|, |S

p
β |, |Sn

α| and |Sp
α| is zero, or |Sn

β| + |S
p
α| = 0, or |Sn

α| + |S
p
β | = 0.

• |Sn
β| + |Sn

α| is an odd number, |Sn
β| + |S

p
α| > 0, |Sn

α| + |S
p
β | > 0 and

min
j∈Sn

β∪S
p
α

(
F2( j)ISn

β
( j) + G2( j)ISp

α
( j)

) ∏
l∈Sn

β∪S
p
β∪S

n
α∪Sp

α\{ j}

(
F1(l)ISn

β∪S
p
β
(l) + G1(l)ISn

α∪Sp
α
(l)

)
> max

j∈Sp
β∪S

n
α

(
F2( j)ISp

β
( j) + G2( j)ISn

α
( j)

) ∏
l∈Sn

β∪S
p
β∪Sn

α∪Sp
α\{ j}

(
F1(l)ISn

β∪S
p
β
(l) + G1(l)ISn

α∪Sp
α
(l)

)
.

(41)
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• |Sn
β| + |Sn

α| is an even number, |Sn
β| + |S

p
α| > 0, |Sn

α| + |S
p
β | > 0 and

min
j∈Sp

β∪S
n
α

(
F2( j)ISp

β
( j) + G2( j)ISn

α
( j)

) ∏
l∈Sn

β∪S
p
β∪Sn

α∪Sp
α\{ j}

(
F1(l)ISn

β∪S
p
β
(l) + G1(l)ISn

α∪Sp
α
(l)

)
> max

j∈Sn
β∪S

p
α

(
F2( j)ISn

β
( j) + G2( j)ISp

α
( j)

) ∏
l∈Sn

β∪S
p
β∪Sn

α∪Sp
α\{ j}

(
F1(l)ISn

β∪S
p
β
(l) + G1(l)ISn

α∪Sp
α
(l)

)
.

(42)

Proof: Please see Appendix A.3.

According to Proposition 5, whenever the two conditions in the proposition are satisfied, it is guaran-

teed that the detection performance can be improved via additive noise. Although the expression in the

proposition can seem complicated at first, it is noted that, after defining the sets in (29)-(40), it is simple to

check the conditions stated in the proposition. An example application of Proposition 5 is provided in the

next section.

The following improvability condition can be obtained as a corollary of Proposition 5.

Corollary 1: Assume that F(x), Fθ1i(x), i = 1, 2, . . . ,N, and Gθ0i(x), i = 1, 2, . . . , M are second-order

continuously differentiable around x = 0 and that min
i∈{1,2,...,N}

Fθ1i(0) > β and max
i∈{1,2,...,M}

Gθ0i(0) < α . Let f

denote the gradient of F(x) at x = 0. Then, the detector is improvable

• if f , 0; or,

• if F(x) is not concave around x = 0 .

Proof: Please see Appendix A.4.

4. Numerical Results

In this section, the binary hypothesis-testing problem considered in [19] is studied in order to illustrate

theoretical results in the previous sections. The hypotheses are specified as follows:

H0 : X = V , H1 : X = Θ + V (43)
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where X ∈ R, Θ is the unknown parameter, and V is symmetric Gaussian mixture noise that has the follow-

ing p.d.f.

pV (v) =
Nm∑
i=1

ωi ψi(v − mi) , (44)

where ωi ≥ 0 for i = 1, . . . ,Nm,
∑Nm

i=1 ωi = 1, and ψi(x) = 1/(
√

2πσi) exp
(
−x2/(2σ2

i )
)

for i = 1, . . . ,Nm.

Since noise V is symmetric, its parameters satisfy ml = −mNm−l+1, ωl = ωNm−l+1 and σl = σNm−l+1 for

l = 1, . . . , ⌊Nm/2⌋, where ⌊y⌋ denotes the largest integer smaller than or equal to y. (If Nm is an odd number,

m(Nm+1)/2 is set to zero for symmetry.)

The unknown parameter Θ in (43) is modeled as a random variable with the following p.d.f.

w1(θ) = ρ δ(θ − A) + (1 − ρ) δ(θ + A) (45)

where A is a positive constant that is known exactly, whereas ρ is known with some uncertainty. (Please see

[19] for the motivations of this model.)

Based on the preceding problem formulation, the parameter sets under H0 and H1 are specified as

Λ0 = {0} and Λ1 = {−A, A}, respectively. Also, the conditional p.d.f. of the original observation X for a

given value of Θ = θ is obtained as

pX
θ (x) =

Nm∑
i=1

ωi√
2πσi

exp
−(x − θ − mi)2

2σ2
i

 . (46)

Suppose that the following detector is employed.

ϕ(y) =


0 , A/2 > y > −A/2

1 , otherwise

, (47)

where y = x + n, with n representing the additive noise term. This is a reasonable detector for the model

in (43) since noise V is zero mean, and Θ is either A of −A. Although it is not the optimal detector for the
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specified problem, it can be employed in practical scenarios due to its simplicity.

From (10), (12), and (14), Fθ1i for θ11 = A and θ12 = −A, Gθ0i for θ01 = 0, and F can be calculated as

follows:

FA(n) =
Nm∑
i=1

wi

(
Q

(
−A/2 − mi − n

σi

)
+ Q

(
3A/2 + mi + n

σi

) )
, (48)

F−A(n) =
Nm∑
i=1

wi

(
Q

(
3A/2 − mi − n

σi

)
+ Q

(
−A/2 + mi + n

σi

) )
,

G0(n) =
Nm∑
i=1

wi

(
Q

(
A/2 − mi − n

σi

)
+ Q

(
A/2 + mi + n

σi

) )
,

F(n) = ρ FA(n) + (1 − ρ) F−A(n) ,

where Q(x) = (1/
√

2π )
∫ ∞

x e−t2/2dt is the Q-function.

In the numerical example, Nm = 4 is considered for the symmetric Gaussian mixture noise, and the

mean values of the Gaussian components in the mixture noise are specified as [0.01 0.6 −0.6 −0.01] with

the corresponding weights of [0.25 0.25 0.25 0.25]. Also, the variances of the Gaussian components in the

mixture noise are assumed to be the same; i.e., σi = σ for i = 1, . . . ,Nm.

In Figures 1, 2, and 3, average detection probabilities are plotted with respect to σ for various values of

β in the cases of α = 0.35, α = 0.4, and α = 0.45, respectively, where A = 1 and ρ = 0.8. It is observed that

the use of additive noise enhances the average detection probability, and significant improvements can be

achieved via additive noise for low values of the standard deviation, σ. As the standard deviation increases,

the amount of improvement in the average detection probability reduces. In fact, after some values of σ,

the constraints on the minimum detection probability or the false alarm probability are not satisfied; hence,

the restricted NP solution does not exist after certain values of σ. (Therefore, the curves are plotted up

to those specific values in the figures.) Another observation from the figures is that the average detection

probabilities decrease as β increases. This is expected since a larger value of β imposes a more strict

constraint on the worst-case detection probability (see (3)), which in turn reduces the average detection

probability. In other words, there is a tradeoff between β and the average detection probability, which is an

essential characteristics of the restricted NP approach [19].
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Figure 1: Average detection probability versus σ for various values of β, where α = 0.35, A = 1 and ρ = 0.8.
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Figure 2: Average detection probability versus σ for various values of β, where α = 0.4, A = 1 and ρ = 0.8.
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Figure 3: Average detection probability versus σ for various values of β, where α = 0.45, A = 1 and ρ = 0.8.
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Table 1: Optimal additive noise p.d.f.s, in the form of pN(n) = λ1 δ(n− n1)+λ2 δ(n− n2)+ (1−λ1 −λ2) δ(n− n3), for various values
of σ, where β = 0.82, α = 0.35, A = 1 and ρ = 0.8.

σ λ1 λ2 n1 n2 n3

0 0.4181 0.3019 0.1136 0.4887 -0.4807
0.01 0.5043 0.2157 0.4146 0.1718 -0.4115
0.1 0.6886 0.3114 0.2818 -0.2818 –

0.15 0.6032 0.3968 0.2544 -0.2544 –
0.2 0.5481 0.4519 0.1796 -0.1796 –

Table 2: Optimal additive noise p.d.f.s, in the form of pN(n) = λ1 δ(n− n1)+λ2 δ(n− n2)+ (1−λ1 −λ2) δ(n− n3), for various values
of σ, where β = 0.8, α = 0.4, A = 1 and ρ = 0.8.

σ λ1 λ2 n1 n2 n3

0 0.6098 0.1902 0.4750 0.2088 -0.2804
0.05 0.5375 0.2624 0.3002 0.2956 -0.2755
0.1 0.7689 0.2311 0.2821 -0.2821 –
0.2 0.6653 0.3347 0.1796 -0.1796 –
0.3 1 – 0.0384 – –

Tables 1, 2, and 3 illustrate the optimal additive noise p.d.f.s for various values of σ in the cases of

β = 0.82 with α = 0.35 , β = 0.80 with α = 0.40, and β = 0.78 with α = 0.45 respectively, where A = 1 and

ρ = 0.8. From Proposition 4, it is known that the optimal additive noise in this example can be represented

by a discrete probability distribution with at most three point masses (since Λ0 = {0} and Λ1 = {−A, A}; i.e.,

M = 1 and N = 2). Therefore, it can be expressed as pN(n) = λ1 δ(n−n1)+λ2 δ(n−n2)+(1−λ1−λ2) δ(n−n3).

It is observed from the tables that the optimal additive noise p.d.f.s have three point masses for certain

values of σ, whereas they have two point masses or a single point mass for other σ’s. These results are

in accordance with Proposition 4, which states that an optimal p.d.f. can be represented by a probability

distribution with at most three point masses for the considered scenario.

In order to determine if any of the conditions in Proposition 2 are satisfied for the example above, the

numerical values of f (2), f (2)
θ1

, and g(2)
θ0

are calculated and tabulated in Table 4.3 It is observed that, in this

specific example, Fθ1(0) has two minimizers; one is at θ1 = −A and the other is at θ1 = A. Therefore, sets

L1 and L0 in Proposition 2 are defined as L1 = {−A, A} and L0 = {0}, respectively. Hence, the conditions

in Proposition 2 must hold for two groups: f (2), f (2)
A , g(2)

0 and f (2), f (2)
−A , g

(2)
0 . From Table 4, it is noted that

3Because scalar observations are considered, the signs of f (2), f (2)
θ1

, and g(2)
θ0

in (22)-(24) do not depend on z; hence, z = 1 is
used for Table 4.
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Table 3: Optimal additive noise p.d.f.s, in the form of pN(n) = λ1 δ(n− n1)+λ2 δ(n− n2)+ (1−λ1 −λ2) δ(n− n3), for various values
of σ for β = 0.78, α = 0.45, A = 1 and ρ = 0.8.

σ λ1 λ2 n1 n2 n3

0 0.4510 0.12 0.2209 -0.2763 0.4344
0.05 0.5888 0.2912 0.2955 0.2848 -0.2895
0.15 0.7734 0.2266 0.2547 -0.2547 –
0.35 1 – 0.0608 – –
0.45 1 – 0.0238 – –

Table 4: Numerical values of the auxiliary functions defined for Proposition 2.

σ f (1) f (1)
A f (1)

−A g(1)
0 f (2) f (2)

A f (2)
−A g(2)

0
0.05 0.1614 0.2694 -0.2705 0.0011 10.8 10.8 10.8 -21.6
0.10 0.3627 0.6046 -0.6052 6.049×10−4 6.0489 6.0489 6.049 -12.1
0.15 0.3225 0.5376 -0.5378 2.25×10−4 2.25 2.25 2.25 -4.5
0.20 0.2905 0.4841 -0.4842 5.502×10−5 0.5507 0.5507 0.5507 -1.1
0.25 0.2856 0.4759 -0.4759 -2.758×10−5 -0.2669 -0.2669 -0.2669 0.5515
0.30 0.2683 0.4772 -0.4771 -5.764×10−5 -0.5395 -0.5395 -0.5395 1.153

f (2), f (2)
A and f (2)

−A are always positive whereas g(2)
0 is always negative for the given values of σ. For this

reason, the third condition in Proposition 2 is satisfied for both groups for those values of σ, implying that

the detector is improvable as a result of the proposition, which is also verified from Figures 1–3.

Finally, the conditions in Proposition 5 are checked in the following. We consider the Gaussian mixture

noise in (43) with σ = 0.05, and calculate the values of f (1), f (1)
A , f (1)

−A , g(1)
0 , f (2), f (2)

A , f (2)
−A , and g(2)

0 . These

values are tabulated in Table 4. From the signs of the first derivatives it is straightforward to construct the

following sets:

• Sz
β = ∅, Sn

β = −A, Sp
β = { f (1), A}

• Sz
α = ∅, Sn

α = ∅, S
p
α = {0}

Now the conditions in Proposition 5 are checked.

1. Since both Sz
β and Sz

α are empty sets, the first condition is automatically satisfied.

2. The first bullet of the second condition is not satisfied. Since |Sn
β| + |Sn

α| = 1 is an odd number, we
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have to check the condition in the second bullet, which reduces, for this example, to the following:

min{F2(−A)F1(A)G1(0) f (1),G2(0)F1(A)F1(−A) f (1)} >

max{ f (2)F1(A)F1(−A)G1(0), F2(A)F1(−A)G1(0) f (1)} . (49)

Due to the signs of the derivatives, it turns out that the two inputs of the min function on the left-hand

side are positive whereas the two inputs of the max function on the right-hand side are negative so

that the inequality is satisfied.

Hence, the detector is improvable as a result of Proposition 5. Moreover, when σ = 0.10, σ = 0.15, or

σ = 0.20, the signs of the derivatives are the same as those in the case of σ = 0.05. Therefore, for all these

cases the detector is improvable.

Now consider the case in which σ = 0.25. Again, the values of f (1), fA
(1), f−A

(1), g0
(1), f (2), fA

(2), f−A
(2),

and g0
(2) are tabulated in Table 4. In this scenario, the sets are obtained as follows:

• Sz
β = ∅, Sn

β = −A, Sp
β = { f (1), A}

• Sz
α = ∅, Sn

α = {0}, S
p
α = ∅

Then, the conditions in Proposition 5 are checked as follows:

1. Since both Sz
β and Sz

α are empty sets, the first condition is satisfied.

2. The first bullet of the second condition is not satisfied. Since |Sn
β| + |Sn

α| = 2 is an even number, we

have to check the condition in the third bullet, which, reduces, for this example, to the following:

min{F2(A)F1(−A)G1(0) f (1),G2(0)F1(A)F1(−A) f (1), f (2)F1(A)F1(−A)G1(0)} >

max{F2(−A)F1(A)G1(0) f (1)} (50)

For this case it turns out that all three inputs of the min function on the left-hand side are positive

and the single input to the max function on the right-hand side is negative so that the inequality is not

satisfied.
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Hence, the improvability conditions in Proposition 5 are not satisfied for this scenario. Similar calculations

show that the same holds for σ = 0.30 as well.

5. Concluding Remarks

Noise enhanced hypothesis-testing has been studied in the restricted NP framework. A problem formu-

lation has been presented for the p.d.f. of optimal additive noise. Generic improvability and nonimprov-

ability conditions have been derived to determine if additive noise can provide performance improvements

over cases in which no additive noise is employed. Also, when the number of possible parameter values

is finite, it has been stated that the optimal additive noise can be represented by a discrete random variable

with a certain number of point masses. In addition, more specific improvability conditions have been de-

rived for this scenario. Finally, the theoretical results have been investigated over a numerical example and

improvements via additive noise have been illustrated.

Appendix A. Appendices

Appendix A.1. Proof of Proposition 2

For the improvability of a detector in the restricted NP framework, there must exist a noise p.d.f. pN(n)

that satisfies E{F(N)} > F(0), min
θ∈Λ1

E{Fθ(N)} ≥ β, and max
θ∈Λ0

E{Gθ(N)} ≤ α, which can be expressed as∫
RK pN(n) F(n) dn > F(0),

∫
RK pN(n) Fθ(n) dn ≥ β, ∀θ ∈ Λ1 , and

∫
RK pN(n) Gθ(n) dn ≤ α, ∀θ ∈ Λ0 .

Employing a similar approach to that in the proof of Theorem 2 in [7], we consider a noise p.d.f. with L

infinitesimal noise components, pN(n) =
∑L

j=1 λ j δ(n − ϵ j). Then, the conditions above become

L∑
j=1

λ j F(ϵ j) > F(0) ,
L∑

j=1

λ j Fθ(ϵ j) ≥ β , ∀θ ∈ Λ1 ,

L∑
j=1

λ j Gθ(ϵ j) ≤ α , ∀θ ∈ Λ0 . (A.1)

As ϵ j’s are infinitesimally small, F(ϵ j), Fθ(ϵ j), and Gθ(ϵ j) can be approximated via the Taylor series ex-

pansion as F(0)+ ϵTj f + 0.5 ϵTj Hϵ j, Fθ(0)+ ϵTj fθ + 0.5 ϵTj Hf
θϵ j, and Gθ(0)+ ϵTj gθ + 0.5 ϵTj Hg

θϵ j, respectively,

where H (Hf
θ, Hg

θ) and f (fθ, gθ) are the Hessian and the gradient of F(x) (Fθ(x), Gθ(x)) at x = 0, respec-
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tively. Hence, (A.1) leads to

L∑
j=1

λ j ϵ
T
j Hϵ j + 2

L∑
j=1

λ j ϵ
T
j f > 0 ,

L∑
j=1

λ j ϵ
T
j Hf

θϵ j + 2
L∑

j=1

λ j ϵ
T
j fθ ≥ 2 (β − Fθ(0)) , ∀θ ∈ Λ1 ,

L∑
j=1

λ j ϵ
T
j Hg

θϵ j + 2
L∑

j=1

λ j ϵ
T
j gθ ≤ 2 (α −Gθ(0)) , ∀θ ∈ Λ0 . (A.2)

Express ϵ j as ϵ j = ρ j z for j = 1, 2, . . . , L, where ρ j for j = 1, 2, . . . , L are infinitesimal real numbers,

and z is a K-dimensional real vector. Then, based on the definitions in (19)-(24), the conditions in (A.2) can

be simplified to the following:

(
f (2)(x, z) + c f (1)(x, z)

) ∣∣∣∣x=0
> 0 , (A.3)(

f (2)
θ (x, z) + c f (1)

θ (x, z)
) ∣∣∣∣x=0

>
2 (β − Fθ(0))∑L

j=1 λ j ρ
2
j

, ∀θ ∈ Λ1 , (A.4)

(
g(2)
θ (x, z) + c g(1)

θ (x, z)
) ∣∣∣∣x=0

<
2 (α −Gθ(0))∑L

j=1 λ j ρ
2
j

, ∀θ ∈ Λ0 , (A.5)

where c , 2
∑L

j=1 λ j ρ j
/∑L

j=1 λ j ρ
2
j . Because β = Fθ(0) for θ ∈ L1 (α = Gθ(0) for θ ∈ L0) and β <

min
θ∈Λ1\L1

Fθ(0)
(
α > max

θ∈Λ0\L0
Gθ(0)

)
, the right-hand-side of (A.4) ((A.5)) goes to minus infinity for {θ ∈ Λ1 | θ <

L1} (plus infinity for {θ ∈ Λ0 | θ < L0} ). Hence, we should consider only the θ ∈ L1 case for θ ∈ Λ1 and the

θ ∈ L0 case for θ ∈ Λ0. Thus, (A.3), (A.4), and (A.5) can be expressed as

(
f (2)(x, z) + c f (1)(x, z)

) ∣∣∣∣x=0
> 0 (A.6)(

f (2)
θ1

(x, z) + c f (1)
θ1

(x, z)
) ∣∣∣∣x=0

> 0 (A.7)(
g(2)
θ0

(x, z) + c g(1)
θ0

(x, z)
) ∣∣∣∣x=0

< 0 . (A.8)

Note that c can take any real value by definition via the selection of appropriate λi and infinitesimal ρi values

for i = 1, 2, . . . , L . Then, based on (A.6)-(A.8), the following conclusions are made for the three bullets in

the proposition:
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• If the conditions in the first bullet of Proposition 2 are satisfied, c can be set to a sufficiently large

positive number to satisfy the inequalities in (A.6)-(A.8).

• If the conditions in the second bullet of Proposition 2 are satisfied, c can be set to a sufficiently large

negative number to satisfy the inequalities in (A.6)-(A.8).

• If the conditions in the first bullet of Proposition 2 are satisfied, c can set to zero to satisfy the

inequalities in (A.6)-(A.8). �

Appendix A.2. Proof of Proposition 3

As J(t) in (25) and H(t) in (26) are second-order continuously differentiable around t = α̃, one can find

ϵ > 0, n1, and n2 such that max
θ∈Λ0

Gθ(n1) = α̃ + ϵ and max
θ∈Λ0

Gθ(n2) = α̃ − ϵ [7]. Then, in the following, it is

proved that an additive noise component with pN(n) = 0.5 δ(x − n1) + 0.5 δ(x − n2) improves the detector

performance according to the restricted NP criterion (i.e., under the worst-case detection and false alarm

constraints). First, under the condition of H
′′
(α̃) ≥ 0, the minimum value of the detection probability and

the maximum value of the false alarm probability in the presence of additive noise are shown not to remain

below β and exceed α, respectively:

min
θ∈Λ1

E{Fθ(N)} ≥ E
{

min
θ∈Λ1

Fθ(N)
}
≥ 0.5H(α̃ + ϵ) + 0.5H(α̃ − ϵ) ≥ H(α̃) = β̃ ≥ β (A.9)

max
θ∈Λ0

E{Gθ(N)} ≤ E
{

max
θ∈Λ0

Gθ(N)
}
= 0.5(α̃ + ϵ) + 0.5(α̃ − ϵ) = α̃ ≤ α . (A.10)

In addition, due to the assumptions in the proposition, J(t) is convex in an interval around t = α̃. As E{F(N)}

can achieve the value of 0.5 J(α̃ + ϵ) + 0.5 J(α̃ − ϵ), which is always larger than J(α̃) due to convexity, it is

concluded that E{F(N)} > J(α̃). Since J(α̃) ≥ F(0) by definition of J(t) in (25), E{F(N)} > F(0) is satisfied.

Therefore, the detector is improvable. �

Appendix A.3. Proof of Proposition 5

A similar approach to the proof of Theorem 2 in [7] can be employed. According to Proposition 4, the

optimal additive noise has a discrete probability distribution with at most M + N point masses. Then, a
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detector is improvable if there exists a noise p.d.f. pN(n) =
∑M+N

l=1 λl δ(n−nl) that satisfies E{F(N)} > F(0),

min
i∈{1,2,...,N}

E{Fθ1i(N)} ≥ β, and max
i∈{1,2,...,M}

E{Gθ0i(N)} ≤ α, which can be stated as

M∑
l=1

λl F(nl) > F(0)

min
i∈{1,2,...,N}

M+N∑
l=1

λl Fθ1i(nl) ≥ β

max
i∈{1,2,...,M}

M+N∑
l=1

λl Gθ0i(nl) ≤ α . (A.11)

Similarly to the approach in the proof of Proposition 2 in Appendix A.1, consider the improvability

conditions in (A.11) for infinitesimal noise components, nl = ϵl = ρl z for l = 1, 2, . . . , M + N, where ρl’s

are infinitesimal real numbers, and z is a K-dimensional real vector. Then, based on similar manipulations

to those in Appendix A.1, the following conditions are obtained:

(
f (2)(x, z) + c f (1)(x, z)

) ∣∣∣∣x=0
> 0 (A.12)(

f (2)
i (x, z) + c f (1)

i (x, z)
) ∣∣∣∣x=0

>
2
(
β − Fθ1i(0)

)∑M
j=1 λ j ρ

2
j

, i = 1, 2, . . . ,N (A.13)

(
g(2)

i (x, z) + c g(1)
i (x, z)

) ∣∣∣∣x=0
<

2
(
α −Gθ0i(0)

)∑M
j=1 λ j ρ

2
j

, i = 1, 2, . . . , M (A.14)

where c , 2
∑M

j=1 λ j ρ j
/∑M

j=1 λ j ρ
2
j .

Because Fθ1i(0) > β, ∀i ∈ S̄β and Gθ0i(0) < α, ∀i ∈ S̄α, the right-hand-side of (A.13) and (A.14)

becomes minus infinity for i ∈ S̄β and plus infinity for i ∈ S̄α, respectively. Therefore, it is sufficient to

consider i ∈ Sβ and i ∈ Sα only. Hence, (A.12)-(A.14) can be expressed as

(
f (2)(x, z) + c f (1)(x, z)

) ∣∣∣∣x=0
> 0 (A.15)(

f (2)
i (x, z) + c f (1)

i (x, z)
) ∣∣∣∣x=0

> 0, ∀i ∈ Sβ (A.16)(
g(2)

i (x, z) + c g(1)
i (x, z)

) ∣∣∣∣x=0
< 0, ∀i ∈ Sα. (A.17)
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From the definitions in (33) and (34), (A.15)-(A.17) can be written as

(
F2( j) + cF1( j)

)∣∣∣∣x=0
> 0 for j = 1, 2, . . . , |Sβ| + 1 (A.18)(

G2( j) + cG1( j)
)∣∣∣∣x=0

< 0 for j = 1, 2, . . . , |Sα| . (A.19)

It is again observed that c can take any real value by selecting appropriate λi and infinitesimal ρi values for

i = 1, 2, . . . , M + N. Therefore, from (35) and (38), it is concluded that for the conditions in (A.18) and

(A.19) to hold,

F2( j)
∣∣∣x=0 > 0 ∀ j ∈ Sz

β and G2( j)
∣∣∣x=0 < 0 ∀ j ∈ Sz

α (A.20)

must be satisfied, which is the first condition in the proposition.

In addition to (A.20), one of the following conditions must be satisfied for the improvability conditions

in (A.18) and (A.19) to hold:

• When any three of |Sn
β|, |S

p
β |, |Sn

α|, and |Sp
α| are zero, as stated in the first part of the second condition in

Proposition 5, all the second terms that are nonzero in (A.18) and (A.19) are either all non-negative or

all non-positive and the corresponding signs of the inequalities are the same. Therefore, there always

exists a c that satisfies the improvability conditions in (A.18) and (A.19) when the first condition in

Proposition 5 (cf. (A.20)) is satisfied.

When |Sn
β| + |S

p
α| = 0, as stated in the first part of the second condition in Proposition 5, assume that

|Sn
α| is an odd number (this does not reduce the generality of the result in the proposition). Then,
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(A.18) and (A.19) can be stated after some manipulations as

F2( j)
∣∣∣∣x=0

> 0, ∀ j ∈ Sz
β (A.21)

G2( j)
∣∣∣∣x=0

< 0, ∀ j ∈ Sz
α (A.22)(

F2( j)
∏

l∈Sp
β∪Sn

α\{ j}

(
F1(l)ISp

β
(l) + G1(l)ISn

α
(l)

)
+ c

∏
l∈Sp

β∪Sn
α

(
F1(l)ISp

β
(l) + G1(l)ISn

α
(l)

))∣∣∣∣x=0
< 0, ∀ j ∈ Sp

β

(A.23)(
G2( j)

∏
l∈Sp

β∪S
n
α\{ j}

(
F1(l)ISp

β
(l) + G1(l)ISn

α
(l)

)
+ c

∏
l∈Sp

β∪S
n
α

(
F1(l)ISp

β
(l) + G1(l)ISn

α
(l)

))∣∣∣∣x=0
< 0, ∀ j ∈ Sn

α.

(A.24)

In obtaining (A.23) and (A.24), (A.18) and (A.19) are multiplied by
∏

l∈Sp
β∪S

n
α\{ j}

(
F1(l)ISp

β
(l)+G1(l)ISn

α
(l)

)
,

which is a positive (negative) quantity when j ∈ Sn
α ( j ∈ Sp

β) since |Sn
α| is an odd number. The con-

ditions in (A.21) and (A.22) are satisfied from the first condition in Proposition 5. Therefore, there

always exists a c that satisfies the improvability conditions in (A.23) and (A.24) as the second terms

and the sign of the inequalities in (A.23) and (A.24) are the same. When |Sn
α| is an even number, only

the sign of the inequalities (A.23) and (A.24) change; hence, the same result is valid as well.

When |Sp
β | + |Sn

α| = 0, as stated in the first part of the second condition in Proposition 5, via similar

manipulations as in the previous paragraph, it can be proved that the detector is improvable with the

first condition in Proposition 5.

• When |Sn
β| + |Sn

α| is an odd number, |Sn
β| + |S

p
α| > 0, |Sn

α| + |S
p
β | > 0, (A.18) and (A.19) can be written
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as

F2( j)
∣∣∣∣x=0

> 0, ∀ j ∈ Sz
β (A.25)

G2( j)
∣∣∣∣x=0

< 0, ∀ j ∈ Sz
α (A.26)((

F2( j)ISn
β
( j) + G2( j)ISp

α
( j))

) ∏
l∈Sn

β∪S
p
β∪Sn

α∪Sp
α\{ j}

(
F1(l)ISn

β∪S
p
β
(l) + G1(l)ISn

α∪Sp
α
(l)

)
+c

∏
l∈Sn

β∪S
p
β∪S

n
α∪Sp

α

(
F1(l)ISn

β∪S
p
β
(l) + G1(l)ISn

α∪Sp
α
(l)

))∣∣∣∣x=0
> 0, ∀ j ∈ Sn

β ∪ S
p
α (A.27)

((
F2( j)ISp

β
( j) + G2( j)ISn

α
( j))

) ∏
l∈Sn

β∪S
p
β∪Sn

α∪Sp
α\{ j}

(
F1(l)ISn

β∪S
p
β
(l) + G1(l)ISn

α∪Sp
α
(l)

)
+c

∏
l∈Sn

β∪S
p
β∪S

n
α∪Sp

α

(
F1(l)ISn

β∪S
p
β
(l) + G1(l)ISn

α∪Sp
α
(l)

))∣∣∣∣x=0
< 0, ∀ j ∈ Sp

β ∪ S
n
α . (A.28)

In obtaining (A.27) and (A.28), (A.18) and (A.19) are multiplied by
∏

l∈Sn
β∪S

p
β∪S

n
α∪Sp

α\{ j}

(
F1(l)ISn

β∪S
p
β
(l)+

G1(l)ISn
α∪Sp

α
(l)

)
, which is a positive (negative) quantity when j ∈ Sn

β∪Sn
α ( j ∈ Sp

β∪S
p
α) since |Sn

β|+|Sn
α|

is an odd number. The conditions in (A.25) and (A.26) are satisfied from the first condition in the

proposition. Also, under the condition in (41), there always exists a c that satisfies the improvability

conditions in (A.27) and (A.28).

• When |Sn
β| + |Sn

α| is an even number, |Sn
β| + |S

p
α| > 0, and |Sn

α| + |S
p
β | > 0 (A.18) and (A.19) can be

expressed by four conditions similar to those in (A.25)-(A.28) with the only difference being that the

signs of the inequalities in (A.27) and (A.28) are switched. In that scenario, the first and the second

conditions are satisfied from the first condition in the proposition. In addition, under the condition in

(42), there always exists a c that satisfies the third and the fourth conditions. �

Appendix A.4. Proof of Corollary 1

Because min
i∈{1,2,...,N}

Fθ1i(0) > β and max
i∈{1,2,...,M}

Gθ0i(0) < α , the right-hand-side of (A.13) and (A.14) in the

proof of Proposition 5 become minus infinity and plus infinity for any i, respectively. Then, it is sufficient
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to consider the condition in (A.12) only; namely,

(
f (2)(x, z) + c f (1)(x, z)

) ∣∣∣∣x=0
> 0 . (A.29)

This condition can be expressed as zT Hz + c zT f > 0 in terms of the gradient f and the Hessian H of

F(x) at x = 0. As c can take any real value by definition as discussed before and as z can be chosen

arbitrarily small, the improvability condition is always satisfied if f , 0 . On the other hand, if f = 0,

the improvability condition becomes zT Hz > 0 . In that case, if F(x) is not concave around x = 0 , H is

not negative semidefinite. Then, there exists z such that zT Hz > 0 is satisfied. Therefore, the detector is

improvable. �
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