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Centralized and Decentralized Detection with
Cost-Constrained Measurements

Eray Laz and Sinan Gezici

Abstract—Optimal detection performance of centralized and
decentralized detection systems is investigated in the presence of
cost constrained measurements. For the evaluation of detection
performance, Bayesian, Neyman-Pearson andJ-divergence cri-
teria are considered. The main goal for the Bayesian criterion is
to minimize the probability of error (more generally, the Bayes
risk) under a constraint on the total cost of the measurement
devices. In the Neyman-Pearson framework, the probabilityof
detection is to be maximized under a given cost constraint.
In the distance based criterion, theJ-divergence between the
distributions of the decision statistics under different hypotheses
is maximized subject to a total cost constraint. The probability
of error expressions are obtained for both centralized and
decentralized detection systems, and the optimization problems
are proposed for the Bayesian criterion. The probability of
detection and probability of false alarm expressions are ob-
tained for the Neyman-Pearson strategy and the optimization
problems are presented. In addition, J-divergences for both
centralized and decentralized detection systems are calculated
and the corresponding optimization problems are formulated.
The solutions of these problems indicate how to allocate the
cost budget among the measurement devices in order to achieve
the optimum performance. Numerical examples are presentedto
discuss the results.

Index Terms—Hypothesis testing, measurement cost, decen-
tralized detection, centralized detection, sensor networks.

I. I NTRODUCTION

In this manuscript, centralized and decentralized hypothesis-
testing (detection) problems are investigated in the presence
of cost constrained measurements. In such systems, decisions
are performed based on measurements gathered by multiple
sensors, the qualities of which are determined according to
assigned cost values. The aim is to develop optimal cost
allocation strategies for the Bayesian, Neyman-Pearson, and
J-divergence criteria under a total cost constraint. In the case
of centralized detection, a set of geographically separated
sensors send all of their measurements to a fusion center, and
the fusion center decides on one of the hypotheses [1]. On
the other hand, in decentralized detection, sensors transmit a
summary of their measurements to the fusion center [2]. For
quantifying the costs of measurement devices (sensors), the
model in [3] is employed in this study. According to [3], the
cost of a measurement device is basically determined by the
number of amplitude levels that it can reliably distinguish.
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This cost model can be used in sensor network applications in
which measurements are performed via various sensors. As an
example, for fire detection in a forest, there can exist a finite
number of sensors performing temperature measurements, and
according to these measurements, the decision on the presence
of fire is made. The accuracy of the decision depends on
the quality of the measurements collected by the sensors.
If the cost allocated to a sensor is higher, the measurement
becomes less noisy as modeled in [3]. Similar applications
can be considered in wireless cognitive radio, sonar and radar
systems.

Detection and estimation problems considering system re-
source constraints have extensively been studied in the lit-
erature [4]–[22]. In [4], measurement cost minimization is
performed under various estimation accuracy constraints.In
[5], optimal distributed detection strategies are studiedfor
wireless sensor networks by considering network resource
constraints, where it is assumed that observations at the
sensors are spatially and temporally independent and iden-
tically distributed (i.i.d.). Two types of constraints aretaken
into consideration related to the transmission power and the
communication channel. For the communication channel, there
exist two options, which are multiple access and parallel
access channels. It is shown that using a multiple access
channel with analog communication of local likelihood ratios
(soft decisions) is asymptotically optimal when each sensor
communicates with a constant power [5]. In [6], binary decen-
tralized detection problem is investigated under the constraint
of wireless channel capacity. It is proved that having a set of
identical sensor is asymptotically optimal when the observa-
tions conditioned on the hypothesis are i.i.d. and the number of
observations per sensor goes to infinity. In [7], a decentralized
detection problem is studied, where the sensors have side
information that affects the statistics of their measurements
and the network has a cost constraint. The author examines
wireless sensor networks with a cost constraint and a capacity
constraint separately. In both scenarios, the error exponent is
minimized under the specified constraints. The study in [7]
produces a similar result to that in [6] for the scenario with
the capacity constraint. In addition, [7] and [8] have the same
results for scenario with the power constraint. It is obtained
that having identical sensors which use the same transmission
scheme is asymptotically optimal when the observations are
conditionally independent given the state of the nature.

In [9], the decentralized detection problem is studied in the
presence of system level costs. These costs stem from pro-
cessing the received signal and transmitting the local outputs
to the fusion center. It is shown that the optimum detection
performance can be obtained by performing randomization
over the measurements and over the choice of the transmission



7

time. In [10], the aim is to minimize the probability of error
under communication rate constraints, where the sensors can
censor their observations. The optimum result is obtained by
censoring uninformative observations and sending informative
observations to the fusion center. In [11], the aim is to obtain
a network configuration that satisfies the optimum detection
performance under a given cost constraint. The cost constraint
depends on the number of sensors employed in the network.
In [12], the optimal power allocation for distributed detection
is studied, where both individual and joint constraints on the
power that sensors use while transmitting their decisions to
the fusion center are taken into consideration. The optimal
detection performance is obtained for the proposed power
allocation scheme. In [13], a binary hypothesis testing problem
is investigated under communication constraints. The proposed
algorithm determines a data reduction rate for transmitting
a reduced version of data and finds the performance of the
best test based on the reduced data. In [14], the decentral-
ized detection problem is investigated under both power and
bandwidth constraints. It is shown that combining many ‘not
so good’ local decisions is better than combining a few very
good local decisions in the case of large sensor systems.
In [15]–[17], the decentralized detection problem is studied
with fusion of Gaussian signals. It is stated that there is an
optimal number of local sensors that achieves the highest
performance under a given global power constraint, and in-
creasing the number of sensors beyond the optimal number
degrades the performance. In [18], the authors investigate
decentralized detection and fusion performance of a sensor
network under a total power constraint. It is shown that using
non-orthogonal communication between local sensors and the
fusion center improves fusion performance monotonically.In
[19], the optimization of detection performance of a sensor
network is studied under communication constraints, and itis
found that the optimal fusion rule is similar to the majority-
voting rule for binary decentralized detection. In [21], the
sensor (or, sample) selection problem is studied for distributed
detection. The authors seek the best subset of data samples
that results in a desired detection probability. To this aim,
the number of selected sensors that perform the sensing task
is minimized under a given probability of error constraint
for the Bayesian criterion and under false-alarm and miss-
detection rate constraints for the Neyman-Pearson criterion.
In addition, a dual problem is also proposed such that the
probability of error is minimized for a constant number of
selected sensors in the Bayesian criterion. For the Neyman-
Pearson criterion, it is aimed to minimize the probability of
miss detection under a given false alarm constraint and a fixed
number of selected sensors. It is found that for conditionally
independent observations, the best sensors are the ones with
the largest local average log-likelihood ratio and the smallest
local average root-likelihood ratio in the Neyman-Pearsonand
Bayesian setting, respectively. As in [21], the sensor selection
problem is studied in [22], where the aim is to find a subset of
p out of n sensors that yield the best detection performance.
The authors show numerically the validity of the Chernoff and
Kullback-Leibler sensor selection criteria by illustrating that
they lead to sensor selection strategies that are nearly optimal

both in the Bayesan and Neyman-Pearson sense.

Based on the cost function proposed in [3] for obtain-
ing measurements, various studies have been performed on
estimation with cost constraints [4], [20]. In particular,[4]
considers the costs of measurements and aims to minimize
the total cost under various estimation accuracy constraints.
In [20], average Fisher information maximization is studied
under cost constrained measurements. On the other hand, [23]
investigates the tradeoff between reducing the measurement
cost and keeping the estimation accuracy within acceptable
levels in continuous time linear filtering problems. In [24],
the channel switching problem is studied, where the aim is to
minimize the probability of error between a transmitter anda
receiver that are connected via multiple channels and only one
channel can be used at a given time. In that study, a logarithmic
cost function similar to that in [3] is employed for specifying
the cost of using a certain channel.

Although costs of measurements have been considered in
various estimation and channel switching problems such as
[4], [20], [23], [24], there exist no studies in the literature that
consider the optimization of both centralized and decentralized
detection systems in the presence of cost constrained mea-
surements based on a specific cost function as in [3]. In this
study, we first consider the centralized detection problem and
propose a general formulation for allocating the cost budget to
measurement devices in order to achieve the optimum perfor-
mance according to the Bayesian criterion. Also, a closed-
form expression is obtained for binary hypothesis testing
with Gaussian observations and generic prior probabilities. In
addition, it is shown that the probability of error expression
for the Gaussian case is convex with respect to the total
cost constraint in the case of equally likely binary hypotheses
(Lemma 1). Then, we investigate the decentralized detection
problem in the Bayesian framework with some common fusion
rules, and present a generic formulation that aims to minimize
the probability of error by optimally allocating the cost budget
to measurement devices. A numerical solution is proposed
for binary hypothesis testing with Gaussian observations.
As convexity is an important property for the optimization
problems, the convexity property is explored for the case
of two measurement devices (Lemma 2). Furthermore, the
Neyman-Pearson andJ-divergence criteria are investigated for
the cost allocation problem in order to achieve the optimum
detection performance. The general optimization problems
are proposed for both criteria and the Gaussian scenario is
investigated as a special case. As for the Bayesian criterion,
both centralized and decentralized detection systems are taken
into consideration.

The remainder of the manuscript is organized as follows:
In Section II, the optimal cost allocation among measurement
devices is studied for the Bayesian criterion. In Section III, the
problem is investigated in the Neyman-Pearson framework. In
Section IV, the optimization problems obtained according to
J-divergence are examined. In Section V, numerical exam-
ples that illustrate the obtained results are presented. Finally,
conclusions are presented in Section VI.
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Figure 1. Centralized detection system model.

II. COST ALLOCATION FOR BAYESIAN CRITERION

In this section, the cost allocation problem is investigated for
hypothesis-testing problems based on the Bayesian criterion.
When it is possible to assign costs to the decisions and when
the prior probabilities of the states of nature are known, the
Bayesian approach is a well-suited candidate for detection
criterion [25]. The aim in this section is to minimize the Bayes
risk for both centralized and decentralized detection systems
under a total cost constraint on measurements.

II.A. Centralized Detection

In centralized detection problems, all sensor nodes transmit
their observations to the fusion center, and the decision is
performed in the fusion center based on the data from all the
sensors. The system model for centralized detection is shown
in Fig. 1.

As illustrated in Fig. 1,x1, x2, . . . , xK represent the scalar
observations, ands1, s2, . . . , sK denote the sensors by which
the measurements are taken. The measurement at sensori
is represented asyi = xi + mi, where mi is the mea-
surement noise. The measurementy ∈ R

K is processed
by the fusion center to produce the final decisionγ(y),
where y = [y1, y2, . . . , yK ]T and γ(y) takes values from
{0, 1, . . . ,M − 1} for M -ary hypothesis testing.

In the Bayesian hypothesis-testing framework, the optimum
decision rule is the one that minimizes the Bayes risk, which
is defined as the average of the conditional risks [25]. The
conditional risk for a decision ruleδ(·) when the state of nature
is Hj is given by

Rj(δ) =

M−1
∑

i=0

c̃ijPj(Γi) , (1)

wherec̃ij is the cost of choosing hypothesisHi when the state
of nature isHj , and Pj(Γi) is the probability of deciding
hypothesisHi when Hj is correct, with Γi denoting the
decision region for hypothesisHi. Then, the Bayes risk can
be expressed as

r(δ) =

M−1
∑

j=0

πjRj(δ) , (2)

whereπj is the prior probability of hypothesisHj . For the
values of c̃ij , uniform cost assignment (UCA) is commonly
employed, which is stated as [25]

c̃ij =

{

0, if i = j

1, if i 6= j
. (3)

For UCA, the Bayes rule, which minimizes the Bayes risk
specified by (1) and (2), reduces to choosing the hypothesis
with the maximum a-posteriori probability (MAP), and the
corresponding Bayes risk can be stated, after some manipula-
tion, as

r(δB) = 1−
∫

RK

max
l={0,1,...,M−1}

πl pl(y) dy , (4)

whereδB denotes the Bayes rule, andpl(y) is the probability
distribution ofy under hypothesisHl [25].

In this section, the aim is to perform the optimal cost
allocation among the sensors in Fig. 1 in order to minimize the
Bayes risk expression in (4) under a total cost constraint. The
cost of measuring theith component of the observation vector,
xi, is given byCi = 0.5 log2(1 + σ2

xi
/σ2

mi
), whereσ2

xi
is the

variance ofxi andσ2
mi

is the variance of the noise introduced
by the ith sensor [3]. Then, the total cost is expressed as

C =

K
∑

i=1

Ci =
1

2

K
∑

i=1

log2

(

1 +
σ2
xi

σ2
mi

)

. (5)

As mentioned in Section I, the number of amplitude levels that
can be distinguished by the measurement device determines
the cost of the measurement. The dynamic range of the input
to the measurement devices has no effect on the cost of the
measurements provided that the number of resolvable levels
stays the same. The cost function in (5) uses the variances
of the observation and the measurement noise to describe the
number of distinguishable amplitude levels [3]. This is the
same motivation as that used by Hartley [26]. Moreover, the
cost function has the same form as Shannon’s capacity formula
for the Gaussian noise channel [27], wherexi is transmitted
across a communication channel that adds a noise termmi

to it. Apart from these, the cost function for each sensor
is monotonically decreasing, nonnegative, and convex with
respect toσ2

mi
for ∀σ2

mi
> 0 and∀σ2

xi
> 0. (The convexity

property of the cost function can easily be shown by examining
its Hessian matrix [28].) In addition, when the measurement
noise variance is low, the cost is high since the number of
amplitude levels that the device can distinguish gets high [3].
When σ2

mi
goes to infinity, the cost converges to zero and

whenσ2
mi

goes to zero, the cost approaches infinity.
Based on (4) and (5), the following optimization problem

is proposed for centralized detection problems:

max
{σ2

mi
}K
i=1

∫

RK

max
l={0,1,...,M−1}

πl pl(y) dy

subject to
1

2

K
∑

i=1

log2

(

1 +
σ2
xi

σ2
mi

)

≤ CT ,

(6)

whereCT is the (total) cost constraint. Hence, the optimal allo-
cation of the measurement noise variances,σ2

mi
, (equivalently,
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the costs,Ci) is to be performed under the total cost constraint.
It is also noted that the maximization of the objective function
in (6) corresponds to the minimization of the Bayes risk in (4),
which represents the probability of error for the Bayes rule.
When the optimization problem proposed in (6) is solved, the
optimum cost values for the measurement devices (sensors) are
obtained and these values achieve the optimum performance
for centralized detection.

In practical systems, the observations,x = [x1, . . . , xK ]T ,
are independent of the measurement noise,m =
[m1, . . . ,mK ]T . Hence, the conditional probability density
function (PDF) of the measurement vector when hypothesis
Hl is true can be obtained as the convolution of the PDFs of
m andx as follows:

pl(y) =
∫

RK

pM (m)pX(y − m|Hl)dm . (7)

In addition, if the sensors have independent noise,pM (m) can
be expressed aspM (m) = pM1(m1) · · · pMK

(mK).
As a special case, a centralized binary hypothesis-testing

problem is investigated in the presence of Gaussian observa-
tions and measurement noise, which is a common scenario
in practice. In this case, the distribution of observationx
under hypothesisH0 is Gaussian with mean vectorµ0 and
covariance matrixΣ, which is denoted byN (µ0,Σ). Simi-
larly, x is distributed asN (µ1,Σ) under hypothesisH1. In
addition, the measurement noise vector,m, is distributed as
N (0,Σm), whereΣm = diag{σ2

m1
, σ2

m2
, . . . , σ2

mK
}; that is,

the measurement noise is independent for different sensors[3].
Considering thatx andm are independent, the distribution of
the measurement,y = x+m, is denoted byN (µ0,Σ+Σm)
under hypothesisH0 and byN (µ1,Σ+Σm) underH1.

For the hypothesis-testing problem specified in the previous
paragraph, the Bayes risk corresponding to the Bayes rule can
be obtained as follows in the case of UCA [25, Chapter 3]:

r(δB) = π0Q

(

ln(π0/π1)

d
+

d

2

)

+ π1Q

(

d

2
− ln(π0/π1)

d

)

,

(8)
where

d ,

√

(µ1 − µ0)T (Σ+Σm)−1(µ1 − µ0) (9)

andQ(x) = (1/
√
2π )

∫∞

x
e−0.5t2dt denotes theQ-function.

It can be shown that the derivative ofr(δB) in (8) with
respect tod is negative for all values ofd; hence,r(δB) is
a monotone decreasing function ofd. Therefore, the min-
imization of r(δB) can be achieved by maximizingd. If
the observations are assumed to be independent; that is, if
Σ = diag{σ2

x1
, σ2

x2
, . . . , σ2

xK
}, thend can be expressed as

d =

√

√

√

√

K
∑

i=1

µ2
i

σ2
xi

+ σ2
mi

, (10)

whereµi represents theith component of the vectorµ1−µ0.
Hence, the optimization problem in (6) for this case is stated

as follows:

max
{σ2

mi
}K
i=1

K
∑

i=1

µ2
i

σ2
xi

+ σ2
mi

subject to
1

2

K
∑

i=1

log2

(

1 +
σ2
xi

σ2
mi

)

≤ CT .

(11)

The objective function in (11) is convex with respect toσ2
mi

for ∀σ2
mi

> 0 and∀σ2
xi

> 0 since the Hessian matrix of the
objective function,H = diag{2µ2

1/(σ
2
x1

+ σ2
m1

)3, 2µ2
2/(σ

2
x2

+
σ2
m2

)3, ..., 2µ2
K/(σ2

xK
+ σ2

mK
)3}, is positive definite. Since a

convex objective function is maximized over a convex set,
the solution lies at the boundary [20], [29]. Therefore, the
constraint function becomes an equality constraint and the
optimization problem can be solved by using the Lagrange
multipliers method [28], [29]. Based on this approach, the
optimal cost allocation algorithm is obtained as follows:

σ2
mi

=







σ4
xi

µ2
i
α−σ2

xi

, if σ2
xi

< µ2
iα

∞ , if σ2
xi

≥ µ2
iα

(12)

with

α =

(

22CT

∏

i∈SK

σ2
xi

µ2
i

)1/|SK |

, (13)

where setSK is given bySK = {i ∈ {1, 2, ...,K} : σ2
mi

6=
∞}, and|SK | represents the number of elements in the setSK .
The algorithm in (12) implies that if the observation variance
σ2
xi

is greater thanµ2
iα, the variance of the measurement

device (sensor) is set to infinity; that is, the observation is
not measured at all, and the cost of the measurement device is
zero. If the observation variance is smaller than the specified
threshold, the variance of the measurement noise is calculated
according to the expression in (12), which states that if the
observation variance is low, the variance of the measurement
device is assigned to be low. In other words, if the observation
variance is low, a device with a high cost is considered
to take measurements. Moreover, if the difference between
the means of the observations for the two hypotheses,µi,
is high and σ2

xi
< µ2

iα is satisfied, a low measurement
noise variance is assigned to the measurement device. If
µi is close to zero such thatσ2

xi
≥ µ2

iα, a measurement
device with zero cost is considered. Apart from this, if the
observations are i.i.d. given the hypothesis, the variances of
the measurement devices are chosen as equal, meaning that all
the devices are required to have equal costs in order to achieve
the optimum performance. The variances of the measurement
devices becomeσ2

m = σ2
x/(2

2CT /K−1) for i.i.d. observations.
In the following lemma, the probability of error correspond-

ing to the optimal cost allocation in (12) is shown to be convex
with respective to the total cost constraint,CT , for the case
of equal priors.

Lemma 1. Consider a binary hypothesis-testing problem in
the presence of independent Gaussian observations and mea-
surement noise. Then, for the optimal cost allocation strategy
in (12), the probability of error in(8) is a convex monotone
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decreasing function of the total cost constraintCT in the case
of equal priors; i.e.,π0 = π1 = 0.5.

Proof. In the case of equal priors, the probability of error
in (8) reduces toQ(d/2). Assume, without loss of general-
ity, that the firstN of K sensors have finite measurement
noise variances; that is,σ2

mi
< ∞ for i ∈ {1, . . . , N}.

Then, from (10), the probability of error can be written as

Pe = Q

(

1
2

√

∑N
i=1

µ2
i

σ2
xi

+σ2
mi

)

. When the optimalσ2
mi

values

obtained from (12) and (13) are inserted into the probability
of error expression, the optimal probability of error is stated
as

P ∗
e = Q





1

2

√

√

√

√

(

N
∑

i=1

µ2
i

σ2
xi

)

− τ 2−2CT /N



 , (14)

whereτ , N
(

µ2
1···µ

2
N

σ2
x1

···σ2
xN

)1/N

. The first order derivative ofP ∗
e

with respect to the total costCT is obtained as

∂P ∗
e

∂CT
= − (ln 2)τ2−2CT /N exp

(

− (β − τ2−2CT /N )/8
)

2
√
2πN

√

β − τ2−2CT /N
,

(15)

whereβ ,
µ2
1

σ2
x1

+ · · ·+ µ2
N

σ2
xN

. Then, the second order derivative

of P ∗
e with respect to the total costCT is calculated, after some

manipulation, as follows:

∂2P ∗
e

∂C2
T

=
τ√
2π

(

ln 2

N

)2

2−4CT /N

× (β − τ2−2CT /N )−1/2 exp

(

− (β − τ2−2CT /N )

8

)

×
(

τ

8
+ 22CT /N +

τ

2
(β − τ2−2CT /N )−1

)

. (16)

As the arithmetic mean is larger than or equal to the geometric
mean, β ≥ τ is obtained. Then,β > τ2−2CT /N since
2−2CT /N < 1. Therefore, it is observed from (15) and (16) that
the first and the second order derivatives ofP ∗

e with respect
to CT are negative and positive, respectively. Hence,P ∗

e is
a convex and monotone decreasing function of the total cost
constraintCT for all CT > 0.

Lemma 1 states the convexity property of the probability of
error corresponding to the optimal cost allocation strategy in
(12) for equally likely binary hypotheses and in the presence
of independent Gaussian observations and measurement noise.
It should be noted that the convexity property in Lemma 1 is
specific for the case of equal priors and non-convex behavior
can be observed for someCT for hypotheses with unequal
priors.

At this step, it is important to express the dual of the prob-
lem, which aims to find the minimum total measurement cost

s1

s2

sK

x2

xK

x1 u1

Fusion 

Center

u2

uK

Figure 2. Decentralized detection system model.

under the required detection performance. The optimization
problem for the case in Lemma 1 can be written as follows:

min
{σ2

mi
}K
i=1

1

2

K
∑

i=1

log2

(

1 +
σ2
xi

σ2
mi

)

subject to Q





1

2

√

√

√

√

K
∑

i=1

µ2
i

σ2
xi

+ σ2
mi



 ≤ Pec ,

(17)

wherePec represents the probability of error constraint. The
Lagrange multipliers method is used in order to solve the
problem in (17) as in the solution of the problem in (11). Then,
the optimal cost allocation strategy achieving the minimum
total measurement cost under the given probability of error
constraint is obtained as follows:

σ2
mi

=







σ4
xi

µ2
i
ξ−σ2

xi

, if σ2
xi

< µ2
i ξ

∞ , if σ2
xi

≥ µ2
i ξ

(18)

with

ξ =
|SK |

(

∑

i∈SK

µ2
i

σ2
xi

)

− 4(Q−1(Pec))2
, (19)

whereQ−1(·) represents the inverse of theQ-function.

II.B. Decentralized Detection

In contrast to centralized detection, local sensors send a
summary of their observations to the fusion center in decen-
tralized detection. For binary hypothesis-testing, localsensors
can send their binary decisions about the true hypothesis (0or
1) to the fusion center. The fusion center collects the binary
decisions of the sensors and decides on the hypothesis. The
fusion center can employ, e.g., OR, AND, or majority rules
[30], as discussed in the following. The system model in this
scenario is presented in Fig. 2. As in centralized detection,
sensori, si, measures the observation asyi = xi + mi.
Then, the sensors make local decisions about one of the
two hypotheses asγi(yi) = ui, whereui is equal to0 for
hypothesisH0 and 1 for hypothesisH1. The outputs of the
sensors,u1, u2, . . . , uK , are provided as inputs to the fusion
center, which makes the final decision denoted byΓ(u). The
fusion rule that is employed in this section is the majority rule
[30]. The majority rule is optimal when the noise components
of the sensors are i.i.d., the hypotheses are equally likely, and
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the observations are i.i.d. and independent of the noise of the
sensors [31]. The expression for the majority rule is given by

Γ(u1, u2, . . . , uK) =

{

1, if
∑K

i=1 ui ≥ t

0, if
∑K

i=1 ui < t
(20)

with t = ⌊K/2⌋ + 1, where⌊·⌋ represents the floor operator
that maps a real number to the largest integer lower than or
equal to itself. Although the majority rule is considered in
the following analysis, the results can easily be extended for
generic integer values oft in (20). (For t = 1 and t = K,
the rule in (20) reduces to the OR fusion rule and the AND
fusion rule, respectively.)

Considering independent but not necessarily identically
distributed measurements (yi’s), the probability of error (i.e.,
the Bayes risk for UCA) for the fusion rule in (20) can be
calculated as

r(Γ) = π0

K
∑

z=t

(Kz )
∑

c=1

K
∏

i=1

p i
l(z,c,i)0

+ π1

t−1
∑

z=0

(Kz )
∑

c=1

K
∏

i=1

p i
l(z,c,i)1

,

(21)
wherep i

l(z,c,i)j
denotes, for theith sensor, the probability of

choosing hypothesisHl(z,c,i) when hypothesisHj is true, and
l(z,c,i) corresponds to the element at thecth row and theith
column of matrixL(z), which has a dimension of

(

K
z

)

× K
and is formed as follows: The numbers of 1’s and 0’s in a
row arez andK − z, respectively, and the rows of the matrix
contain all possible combinations ofz 1’s andK − z 0’s. For
example, matrixL(z) for K = 5 and z = 3 can be given as
follows:

L (z) =

































1 1 1 0 0
1 1 0 0 1
0 1 1 1 0
0 0 1 1 1
1 0 1 0 1
1 1 0 1 0
0 1 0 1 1
0 1 1 0 1
1 0 1 1 0
1 0 0 1 1

































,

where, e.g.,l(3,1,3) = 1, l(3,4,2) = 0, andl(3,3,3) = 1. Although
matrix L(z) is not unique (e.g., the orders of the rows can be
changed), all theL(z) matrices result in the same probability
of error in (21).

For the case of i.i.d. measurements (yi’s) and identical
decision rules at the sensors, the probability of error for the
fusion rule in (20) can be expressed, as a special case of (21),
as follows:

r(Γ) = π0

K
∑

z=t

(

K

z

)

(p10)
z(p00)

K−z

+ π1

t−1
∑

z=0

(

K

z

)

(p11)
z(p01)

K−z , (22)

where p lj represents, for each sensor, the probability of
deciding for hypothesisHl when hypothesisHj is true.

In the decentralized detection framework, the aim is to
minimize the probability of error in (21) under the total cost
constraint; that is,

min
{σ2

mi
}K
i=1

π0

K
∑

z=t

(Kz )
∑

c=1

K
∏

i=1

p i
l(z,c,i)0

+ π1

t−1
∑

z=0

(Kz )
∑

c=1

K
∏

i=1

p i
l(z,c,i)1

subject to
1

2

K
∑

i=1

log2

(

1 +
σ2
xi

σ2
mi

)

≤ CT .

(23)
In order to solve this optimization problem, the conditional
probability densities are obtained and inserted in the objective
function. Then, an exhaustive search is applied to find the
measurement noise variances. In order to reduce the com-
putation time, parallel computing can be used. The solution
of (23) provides the optimum cost allocation strategy for the
considered decentralized detection system.

As a special case, the Gaussian scenario is investigated.
Suppose that the probability distributions of the observations
are independent when the hypothesis is given, and the dis-
tribution of the ith observation is denoted byN (µi0, σ

2
xi
)

and N (µi1, σ
2
xi
) under hypothesisH0 and hypothesisH1,

respectively. In addition, the distribution of theith measure-
ment noise is given byN (0, σ2

mi
), and the observations are

independent of the measurement noise. For the sensors, the
Bayes rule is employed assuming UCA and equally likely
priors [25]. In this setting, the probability distributionof ui

(i.e., the decision of theith sensor) given the hypotheses can
be specified as follows:

pj(ui) =















Q

(

(−1)j(µi0−µi1)

2
√

σ2
xi

+σ2
mi

)

, if ui = 0

Q

(

(−1)j(µi1−µi0)

2
√

σ2
xi

+σ2
mi

)

, if ui = 1
(24)

for j ∈ {0, 1}, wherepj(ui) represents the probability ofui

under hypothesesHj . Hence, the optimization problem can be
expressed for the Gaussian case as follows:

min
{σ2

mi
}K
i=1

1

2

K
∑

z=t

(Kz )
∑

c=1

K
∏

i=1

Q

(

β(z,c,i)
µi1 − µi0

2
√

σ2
xi

+ σ2
mi

)

+
1

2

t−1
∑

z=0

(Kz )
∑

c=1

K
∏

i=1

Q

(

− β(z,c,i)
µi1 − µi0

2
√

σ2
xi

+ σ2
mi

)

subject to
1

2

K
∑

i=1

log2

(

1 +
σ2
xi

σ2
mi

)

≤ CT , (25)

whereβ(z,c,i) = 2l(z,c,i)−1. The solution of this optimization
problem leads to the optimal performance for the considered
decentralized detection system by optimally allocating the cost
values to the measurement devices (sensors).

Remark 1. The decisions at the local sensors are made
according to the Bayesian criterion and the optimization is
performed for the given fusion rule, which is the majority rule.

In the following lemma, the convexity of the optimization
problem in (25) is investigated for the special case of two
sensors.
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Lemma 2. Consider the Gaussian scenario that leads to the
optimization problem in(25). In addition, suppose thatK = 2,
µi0 = 0, andµi1 = µ > 0 for i = 1, 2. Then, the problem in
(25) is a convex optimization problem ifσ2

xi
+ σ2

mi
≤ µ2/12

for i = 1, 2 and for all values ofσ2
mi

under the total cost
constraint.

Proof. Under the assumptions specified in the lemma, the
objective function in (25) can be expressed as

r(Γ) =
1

2
Q

(

µ

2
√

σ2
x1

+ σ2
m1

)

Q

(

µ

2
√

σ2
x2

+ σ2
m2

)

+
1

2

(

1−Q

(

− µ

2
√

σ2
x1

+ σ2
m1

)

Q

(

− µ

2
√

σ2
x2

+ σ2
m2

))

.

(26)
The Hessian matrixH of r(Γ) is stated as follows:

H =

(

rσ2
m1

,σ2
m1

rσ2
m1

,σ2
m2

rσ2
m2

,σ2
m1

rσ2
m2

,σ2
m2

)

, whererσ2
mi

,σ2
mj

represents

second-order derivative ofr(Γ) with respect toσ2
mi

andσ2
mj

. It
can be shown thatrσ2

m1
,σ2

m2
andrσ2

m2
,σ2

m1
are zero. Hence, the

diagonal terms must be positive for the convexity ofr(Γ) with
respect toσ2

m1
andσ2

m2
. After some manipulation,rσ2

mi
,σ2

mi

can be expressed fori ∈ {1, 2} as

rσ2
mi

,σ2
mi

=
µ

8
√
2π

exp

(

− µ2

8(σ2
xi

+ σ2
mi

)

)

× 1

(σ2
xi

+ σ2
mi

)5/2

(

µ2

8(σ2
xi

+ σ2
mi

)
− 3

2

)

.

(27)

From (27), the convexity condition forr(Γ) can be obtained as
µ2

σ2
xi

+σ2
mi

≥ 12 for i = 1, 2. That is, if this condition is satisfied

for all values of σ2
mi

under the total cost constraint, the
optimization problem becomes a convex optimization problem
as the constraint is already convex as discussed previously.

Lemma 2 presents conditions under which the optimal cost
allocation problem in (25) becomes a convex optimization
problem. In that case, the problem can be solved based
on convex optimization algorithms such as the interior-point
algorithm [28].

III. C OST ALLOCATION FOR NEYMAN -PEARSON

CRITERION

The Bayesian criterion considered in the previous section
is well-suited in the presence of prior probabilities of the
hypotheses and cost assignments for possible decisions (see
(1)–(3)). However, in some cases, the information about the
prior probabilities of the hypotheses may not be available or
assigning costs to possible decisions may not be suitable. In
such scenarios, the Neyman-Pearson approach can be adopted
for binary hypothesis-testing problems, where the aim is to
maximize the probability of detection while satisfying a con-
straint on the probability of false alarm [25]. In this section, the
Neyman-Pearson approach is employed for designing optimum
centralized and decentralized detection systems in the presence
of a cost constraint on measurement devices.

III.A. Centralized Detection

As described in Section II-A, the sensors in a centralized
detection system transmit all of their observations to the
fusion center and the fusion center decides on the hypothesis.
Therefore, it suffices to apply the Neyman-Pearson criterion to
the fusion center only. In this context, the aim is to maximize
the probability of detection subject to the constraints on the
probability of false alarm and the total cost, which is stated
by the following optimization problem:

max
{σ2

mi
}K
i=1

∫

Γ1

p1(y)dy

subject to
∫

Γ1

p0(y)dy ≤ αfc

1

2

K
∑

i=1

log2

(

1 +
σ2
xi

σ2
mi

)

≤ CT ,

(28)

whereΓ1 is the decision region for hypothesesH1, pi(y) is the
probability distribution of the observation underHi, wherei ∈
{0, 1}, andαfc is the false alarm constraint. The solution of
(28) yields the maximum value of the probability of detection
via optimal cost assignments for the local sensors under the
false alarm and total cost constraints.

Next, the Gaussian scenario is investigated as a special case
based on the same distributions and assumptions employed in
Section II-A. Due to the presence of separate constraints in
(28), the optimal NP decision rule can be obtained first, which
leads to a likelihood ratio test with the probability of false
alarm set toαfc [25]. For the considered Gaussian scenario,
the corresponding probability of detection can be obtained
as PD = Q(Q−1(αfc) − d), whered is given by (9) [25].
Therefore, the optimization problem in (28) can be expressed
as follows:

max
{σ2

mi
}K
i=1

Q
(

Q−1(αfc)− d
)

subject to
1

2

K
∑

i=1

log2

(

1 +
σ2
xi

σ2
mi

)

≤ CT .
(29)

In order to maximize the objective function, the term inside
Q function should be minimized which can be achieved by
increasingd in (9). This results in the same optimization
problem proposed in Section II-A; hence, the cost values of
the sensors are determined according to the algorithm given
in (12).

III.B. Decentralized Detection

In decentralized detection, all local sensors make their own
decisions, which are processed in the fusion center to decide
on the hypothesis. In Section II-B, local sensors make a
decision according to the Bayes rule and the majority fusion
rule is employed at the fusion center. In this part, decisions are
made according to the Neyman-Pearson criterion in the local
sensors and the fusion center uses a counting rule [32]. The
counting rule is specified in such a way that the probability
of false alarm is lower than a specified threshold. As an
example, the probability of false alarm in the fusion center
versus the value ofN (for theN out of K rule) is illustrated



13

0 2 4 6 8 10 12
−40

−35

−30

−25

−20

−15

−10

−5

0

X= 5
Y= −12.1038

N

lo
g 10

(P
F

A
)

Figure 3. Probability of false alarm versusN for the N out K fusion rule.

in Fig. 3 for a sensor network with12 local sensors. In the
figure, the probability of false alarm for the local sensors is
10−3 and the measurements of the sensors are independent.
For such a system to achieve an overall probability of false
alarm lower than10−12, the best fusion rule becomes5 out
of 12. Moreover, it is observed that the probability of false
alarm is a decreasing function ofN similar to the probability
of detection. In order to achieve the maximum probability of
detection,N is chosen to be the minimum of possible value
that satisfies constraint on the probability of false alarm,αfc.

The same assumptions and the probability distributions
used in Section II-B are employed in this section. Then, the
probability of false alarmPFAfc

at the fusion center for the
N out of K strategy is calculated as follows:

PFAfc
=

K
∑

z=N

(Kz )
∑

c=1

K
∏

i=1

|l(z,c,i) − 1|+ (2l(z,c,i) − 1)αi , (30)

whereαi is the probability of false alarm at theith sensor,
and l(z,c,i) corresponds to the element at thecth row and the
ith column of matrixL (z), as defined in Section II-B.

The proposed optimization problem aims to maximize the
probability of detection while keeping the total cost of thesen-
sors under a certain limit and guaranteeing that the probability
of false alarm is below the specified false alarm constraint.
Based on (30), the optimization problem is stated as

max
{σ2

mi
}K
i=1

K
∑

z=N

(Kz )
∑

c=1

K
∏

i=1

|l(z,c,i) − 1|+ (2l(z,c,i) − 1)PDi

subject to
1

2

K
∑

i=1

log2

(

1 +
σ2
xi

σ2
mi

)

≤ CT , (31)

wherePDi
is the probability of detection of theith sensor,

and the value ofN is equal to the minimum integer number
that satisfiesPFAfc

≤ αfc for theN out of K decision rule.
As a special case, the Gaussian scenario in Section II-B is

investigated. In this case, the detection threshold is calculated
based on the givenαi value by equating the probability

of false alarm toαi. Then, the probability of detection is
determined for the obtained detection threshold. In particular,
the probability of detection for theith sensor is calculated as
follows:

PDi
= Q

(

Q−1(αi)−
µi1 − µi0
√

σ2
xi

+ σ2
mi

)

. (32)

From (32), the optimization problem in (31) can be specified
as follows:

max
{σ2

mi
}K
i=1

K
∑

z=N

(Kz )
∑

c=1

K
∏

i=1

|l(z,c,i) − 1|

+ (2l(z,c,i) − 1)Q

(

Q−1(αi)−
µi1 − µi0
√

σ2
xi

+ σ2
mi

)

subject to
1

2

K
∑

i=1

log2

(

1 +
σ2
xi

σ2
mi

)

≤ CT , (33)

whereN is chosen as stated above. Exhaustive search with
parallel computing is used to solve the optimization problem
as in (23). The solution of (33) results in the maximum
probability of detection for the given cost and false alarm
constraints.

Remark 2. Neyman-Pearson hypothesis testing is employed at
the local sensors and the optimization problem is formulated
for the given fusion rule, which is the counting rule. As
another approach, the optimization problem can be formulated
over the fusion rule, local thresholds and measurement noise
variances. Although the latter optimization problem can lead
to improved performance, its computational complexity is
significantly higher than that of the former one.

IV. COST ALLOCATION FOR J -DIVERGENCE CRITERION

As alternatives to the Bayesian and NP criteria, distance
related bounds can be used for quantifying detection perfor-
mance. The distance related bounds provide upper and lower
bounds on the probabilities of detection and false alarm (or,
the probability of error). Some examples of these bounds are
the Bhattacharrya bound,J-divergence and Chernoff bound
[25]. These bounds belong to the Ali-Silvey class of distance
measures [33]. In this section, we employJ-divergence, firstly
introduced by Jeffreys [34], for the cost allocation problem.
The J-divergence is a commonly used metric for detection
performance [35]–[38]. It introduces a lower bound on the
probability of errorPe [37] as follows:

Pe > π0π1e
−J/2 , (34)

where π0 and π1 are the prior probabilities of hypothesis
H0 and hypothesisH1, respectively, andJ denotes theJ-
divergence, which is the symmetric version of the Kullback-
Leibler (KL) distance [39]. TheJ-divergence is defined be-
tween two probability densities,p andq, as follows:

J(p, q) = D(p‖q) +D(q‖p) , (35)

whereD(p‖q) is the KL distance betweenp andq, which is
calculated as

D(p‖q) =
∫

p(x) ln
p(x)

q(x)
dx . (36)
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According to the formula in (36), theJ-divergence is obtained
as follows:

J(p, q) =

∫

(p(x)− q(x)) ln
p(x)

q(x)
dx . (37)

In this section, the cost allocation problem is investigated
based on theJ-divergence criterion for both centralized and
decentralized detection systems.

IV.A. Centralized Detection

The aim is to maximize the detection performance at the
fusion center under a total cost constraint. To this aim, theJ-
divergence betweenp1(y) andp0(y) is to be maximized. The
optimization problem for centralized detection can be written
as follows:

max
{σ2

mi
}K
i=1

J(p1(y), p0(y))

subject to
1

2

K
∑

i=1

log2

(

1 +
σ2
xi

σ2
mi

)

≤ CT .
(38)

Although the J-divergence is useful especially in cases
where the error probabilities cannot easily be evaluated, it
is a metric that can be employed in any scenario. Since the
Gaussian distribution is commonly encountered in practice,
(38) is investigated for the Gaussian scenario in detail as
in the previous section. (TheJ-divergence for two Gaussian
distributions is considered for detection performance optimiza-
tion problems in the literature; e.g., [35].) TheJ-divergence
between densitiesp and q with distributionsN (µ0,Σ0) and
N (µ1,Σ1), respectively, is given as follows [40]:

J(p, q) =
1

2
(µ1 − µ0)

T (Σ0
−1 +Σ1

−1)(µ1 − µ0)

+
1

2
tr{Σ0

−1
Σ1 +Σ1

−1
Σ0 − 2I} ,

(39)

where I is the identity matrix with the same size as the
covariance matrices. For the Gaussian scenario described in
Section II-A, theJ-divergence is calculated as

J(p1(y), p0(y)) = (µ1 − µ0)
T
ΣT

−1(µ1 − µ0) , (40)

which is the same as the objective function in (11). Therefore,
the same optimization problem as in Section II-A and III-A is
obtained. As a result, the cost allocation strategy is determined
according to the algorithm in (12).

IV.B. Decentralized Detection

In this part, a decentralized detection system is examined
based on theJ-divergence criterion. The aim is to maximize
the J-divergence betweenp1(u) andp0(u) under a total cost
constraint. The mathematical description of the problem is
given by

max
{σ2

mi
}K
i=1

J(p1(u), p0(u))

subject to
1

2

K
∑

i=1

log2

(

1 +
σ2
xi

σ2
mi

)

≤ CT .
(41)

In order to solve this problem, the conditional density func-
tions of the local decisions should be determined. These
densities are given as follows:

p1(u) =
K
∏

i=1

Pui

Di
(1− PDi

)1−ui , (42)

p0(u) =
K
∏

i=1

Pui

FAi
(1− PFAi

)1−ui , (43)

wherePFAi
andPDi

represent the probability of false alarm
and the probability of detection at theith sensor, respectively.
The information aboutPFAi

and PDi
can be obtained by

using the Neyman-Pearson rule. The objective function in the
optimization problem can be expressed as follows:

J(p1(u), p0(u)) =

1
∑

u1=0

1
∑

u2=0

. . .

1
∑

uk=0

( K
∏

i=1

Pui

Di
(1− PDi

)1−ui −
K
∏

i=1

Pui

FAi
(1− PFAi

)1−ui

)

× ln

∏K
i=1 P

ui

Di
(1− PDi

)1−ui

∏K
i=1 P

ui

FAi
(1− PFAi

)1−ui

.

(44)
In order to examine the Gaussian scenario,PDi

is determined
in terms of the specified probability of false alarm as in (32).
Then, the givenPFAi

and the calculatedPDi
values can

be inserted into (44) in order to determine theJ-divergence
betweenp1(u) and p0(u). At this point, the obtainedJ-
divergence betweenp1(u) andp0(u) is inserted into (41) and
the optimization problem is solved numerically in order to
obtain the optimum detection performance in the sense ofJ-
divergence. As the numerical solution approach in the next
section, exhaustive search is employed.

V. NUMERICAL RESULTS

In this section, the performance of the proposed optimal
cost allocation strategies is evaluated via numerical examples.
Firstly, the results for centralized detection in the Bayesian
framework are presented. The distribution of the observation
x under hypothesisH0 is given by N (0,Σ), where 0 =
[0, 0, 0]T . Similarly, the distribution ofx under hypothesis
H1 is modeled asN (1,Σ), where1 = [1, 1, 1]T . In these
distributions,Σ represents the covariance matrix, which is
expressed as diag{σ2

x1
, σ2

x2
, σ2

x3
}. The values of the variances

σ2
x1

, σ2
x2

and σ2
x3

are set to0.2, 0.7, and 1.2, respectively.
Measurement noisem also has Gaussian distribution denoted
by N (0,Σm), whereΣm = diag{σ2

m1
, σ2

m2
, σ2

m3
}. Lastly,

the hypotheses are equally likely; i.e.,π0 = π1 = 0.5.
The strategies that are compared with the proposed optimal

cost allocation strategy are

• assignment of equal measurement variances to the mea-
surement devices (sensors), and

• assignment of all the cost to the sensor with the best
observation.

When the measurement devices have equal measurement noise
variances; i.e.,σ2

m = σ2
m1

= σ2
m2

= σ2
m3

, the varianceσ2
m can
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Figure 4. Probability of error vs. total cost constraint forBayesian centralized
detection.

be calculated by using the formula
∏3

i=1(1+σ2
xi
/σ2

m) = 22CT ,
where the varianceσ2

m corresponds to the smallest positive
root of this equation. After findingσ2

m, the probability of

error is calculated asr(δB) = Q(0.5
√

∑3
i=1 1/(σ

2
xi

+ σ2
m)).

In the second strategy, all the available cost is assigned tothe
measurement device having the observation with the smallest
variance. In this example,σ2

x1
has the smallest variance; hence,

all the cost is assigned to sensor1 andσ2
m1

= σ2
x1
/(22CT −1).

The other variancesσ2
m2

andσ2
m3

are set to infinity, and no
measurements are taken from the corresponding measurement
devices. The probability of error is obtained for this case as

r(δB) = Q(0.5
√
22CT − 1/

√

22CT σ2
x1
). The results obtained

for the centralized detection in the Bayesian framework are
presented in Fig. 4, which illustrates the probability of error
versus the total cost constraint,CT , for the optimal cost
allocation strategy and the two strategies described above. For
small values ofCT , assigning all the cost to the sensor with the
best observation converges the optimal solution since, when
CT is small, the optimal strategy allocates the total cost to the
sensors with the best observations. Moreover, the probability
of error for assigning all the cost to the sensor with the best
observation converges toQ(0.5/

√

σ2
x1
), which is equal to

Q(0.5/
√
0.2) = 0.1318 since σ2

m1
goes to zero asCT in-

creases. For high total cost constraints, the equal measurement
variances strategy converges to the optimal strategy. Similar
to the strategy that assigns all the cost to the sensor with the
best observation, whenCT is high, the measurement noise
variances become low and the probability of error converges
to r(δB) = Q(0.5

√

1/σ2
x1

+ 1/σ2
x2

+ 1/σ2
x3
) which is equal

to 0.0889 for the values specified above. Overall, the proposed
optimal cost allocation strategy yields the lowest probabilities
of error. In other words, the optimum performance according
to the Bayesian criterion is attained with the optimal cost
allocation strategy.

For the same setting as in Fig. 4, the results for decentralized
detection in the Bayesian framework are presented in Fig. 5.
As observed from Fig. 5, assigning all the cost to the sensor
with the best observation yields the worst performance in this
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Figure 5. Probability of error vs. total cost constraint forBayesian decentral-
ized detection.

case since all the sensors make their own decisions. When zero
cost is assigned to a sensor, the measurement noise variance
becomes infinity and the probability of error for that mea-
surement device becomes0.5. Then, the probability of error
converges tor(Γ) = 0.75Q(0.5/

√

σ2
x1
)+0.5Q(−0.5/

√

σ2
x1
)

for high cost constraints. Forσ2
x1

= 0.2, the probability of
error converges to0.3159. When the cost constraint is high,
the equal measurement variances strategy converges to the
optimal strategy. For high cost constraints, the probability of
error for the equal measurement variances strategy converges
to r(Γ) = ab + ac + bc − 2abc wherea = Q(0.5/

√

σ2
x1
),

b = Q(0.5/
√

σ2
x2
), and c = Q(0.5/

√

σ2
x3
). For the values

specified above,r(Γ) converges to0.1446. Overall, the optimal
cost allocation strategy yields the lowest probabilities of error
for decentralized detection, as well.

In the Neyman-Pearson framework, the probability of de-
tection achieved by the proposed algorithm is compared with
the two strategies explained above (that is, assignment of
equal measurement variances to the measurement devices and
assignment of all the cost to the sensor with the best observa-
tion). In centralized detection, the distribution of observation
x is specified byN (0,Σ) and N (2,Σ) for hypothesesH0

and H1, respectively. The covariance matrix is the same as
in the previous scenario; i.e.,Σ = diag{0.2, 0.7, 1.2}. The
probability of false alarm at the fusion center is required
to be less than or equal toαfc = 10−6. The results
obtained for centralized detection in the Neyman-Pearson
framework are presented in Fig. 6. Similar to the results
for the Bayesian criterion, assigning all the cost to the best
observation yields similar performance to the optimal algo-
rithm for low cost values. When the cost budget increases,
PD converges toQ(Q−1(αfc) − µ1/σx1); hence, for the
considered parameters, the probability of detection converges
to Q(Q−1(10−6) − 2/

√
0.2) = 0.3892. On the other hand,

the equal measurement variances strategy converges to the

same value ofQ(Q−1(αfc)−
√

µ2
1/σ

2
x1

+ µ2
2/σ

2
x2

+ µ2
3/σ

2
x3
)

as the optimal algorithm for high cost values. In partic-
ular, the optimal algorithm converges toQ(Q−1(10−6) −
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Figure 6. Probability of detection vs. total cost constraint for NP centralized
detection.
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Figure 7. Probability of detection vs. total cost constraint for NP decentralized
detection.

√

4/0.2 + 4/0.7 + 4/1.2) = 0.7377 as the total cost con-
straint increases. As a result, the optimal cost allocation
strategy produces the maximum probability of detection in all
cases and outperforms the other approaches.

In the next example, the optimality of the proposed algo-
rithm is illustrated for decentralized detection in the Neyman-
Pearson framework. The distribution of observationx is de-
noted asN (0,Σ) andN (4,Σ) for hypothesesH0 andH1,
respectively, whereΣ is the same as that in the centralized
detection case. All the local sensors have the same probability
of false alarm given byα1 = α2 = α3 = 10−4. It is required
to achieve a false alarm probability not exceeding10−7 at the
fusion center. In order to satisfy this false alarm probability
at the fusion center, the2 out 3 fusion rule must be used.
This fusion rule produces a false alarm probability of10−7.5,
which satisfies the requirement. The results related to this
scenario are shown in Fig. 7. It is observed that assigning
all the cost to the best observation has detection probability
close to zero since the sensors having zero cost have infinite
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Figure 8. J-divergence versus the total cost constraint for centralized
detection.

noise powers and the probability of detection for these sensors
is 10−4. When the total cost constraint is high, the equal
measurement variances strategy and the proposed algorithm
converge to the same probability of detection, specified by
PD = Pd1Pd2 + Pd1Pd3 + Pd2Pd3 − 2Pd1Pd2Pd3 , where
Pd1 = Q(Q−1(α1)− µ1/σx1), Pd2 = Q(Q−1(α2)− µ2/σx2)
andPd3 = Q(Q−1(α3)−µ3/σx3). For the values given above,
PD converges to 0.9240. Overall, the optimal cost allocation
algorithm yields the highest probabilities of detection inthis
scenario.

Next, the J-divergence criterion is considered and the
proposed algorithm is compared with the other two strategies.
In centralized detection, the distribution of observationvector
x is represented byN (0,Σ) andN (2,Σ) for hypothesesH0

andH1, respectively, where the covariance matrix is given by
Σ = diag{0.2, 0.7, 1.2}. The results for this case are shown
in Fig. 8. It is observed that assigning all the cost to the best
observation and the proposed optimal strategy achieve similar
performance for low cost values. When the total cost increases,
the J-divergence converges toµ2

1/σ
2
x1

= 20 for the strategy
that assigns all the cost to the best observation, which is
significantly lower than that achieved by the optimal strategy.
On the other hand, the performance of the equal measurement
variances strategy converges to that of the optimal algorithm
for high cost values; in particular, theJ-divergence converges
to
∑3

i=1 µ
2
i /σ

2
xi

= 29.0476. Overall, the proposed algorithm
yields the maximumJ-divergence for all cost values resulting
in the optimum performance.

In the final example, a decentralized detection problem is
considered according to theJ-divergence criterion. The distri-
bution of observationx is denoted byN (0,Σ) andN (4,Σ)
for hypothesesH0 andH1, respectively, whereΣ is the same
as in the centralized detection case. The probability of false
alarm for the local sensors is given byα1 = α2 = α3 = 10−4.
The results related to this scenario are presented in Fig. 9.It
is noted that assigning all the cost to the best observation
achieves improved performance in this case compared to the
decentralized detection examples in the Bayesian and Neyman-
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Figure 9. J-divergence vs. total cost constraint for decentralized detection.

Pearson frameworks Fig. 5 and Fig. 7, respectively. The main
reason for this observation is that no counting rule is applied
at the fusion center in this case. Similar to the centralized
detection case, the proposed algorithm and the algorithm
that assigns all the cost to the best observation yield similar
results for low cost values. As the cost increases, the equal
measurement variance strategy and the proposed algorithm
converges to the same value of39.177 while assigning all
the cost to the best observation leads to a convergence to
25.466 for high cost values. From Fig. 9, it is observed that the
proposed algorithm yields the maximumJ-divergence in all
the cases, and achieves the optimum detection performance.

VI. CONCLUSIONS

In this manuscript, centralized and decentralized detection
systems have been investigated in the presence of cost con-
strained measurements. Novel cost allocation strategies that
achieve the optimum detection performance according to the
Bayesian, Neyman-Pearson andJ-divergence criteria have
been proposed for both centralized and decentralized detection
systems. A closed form expression has been presented for
the measurement noise variances by considering centralized
detection in a Gaussian scenario. This expression indicates
that if the observation variance is low, using a measurement
device with a high cost is more beneficial. Also, the convexity
property of the objective and constraint functions has been
studied under certain conditions. For decentralized detection,
a general probability of error expression for the Bayesian
criterion and the probabilities of detection and false alarm
expressions for the Neyman-Pearson framework have been
presented according to the counting rules at the fusion center.
In addition, the J-divergence has been employed for the
distance based criterion. The Gaussian scenario has been
investigated as a special case and the optimization problems
have been proposed for all the criteria. The optimality of
the proposed cost allocation strategies has been shown via
numerical examples. Overall, the proposed cost allocation
strategies minimize the Bayes risk for the Bayesian criterion,

maximize the probability of detection (under a constraint
on the probability of false alarm) for the Neyman-Pearson
criterion, and maximize theJ-divergence for the distance
based criterion under given cost constraints, and they achieve
the optimum performance.
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