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Abstract—In this paper, a game theoretic framework is pro- parameters are time-of-arrival (TOA) [6], [7], time-difeance-
posed for wireless localization networks that operate in te of-arrival (TDOA) [8], angle-of-arrival (AOA) [9], and re-
presence of jammer nodes. In particular, power control game ceived signal strength (RSS) [10]. TOA and TDOA are time
between anchor and jammer nodes are designed for a wireless . . . .
localization network in which each target node estimates # posi- be}sed parameters which measure t_he S|gnal propagation time
tion based on received signals from anchor nodes while jamme (difference) between nodes. AOA is obtained based on the
nodes aim to reduce localization performance of target node angle at which the transmitted signal from one node arrives a
Two different games are formulated for the considered wirebss another node. RSS is another signal parameter which gathers
localization network: In the first game, the average Cranér- information from power or energy of a signal that travels

Rao lower bound (CRLB) of the target nodes is considered as bet h dt t nod 41 Si . 't i
the performance metric, and it is shown that at least one pure etween anchor and target nodes [4]. Since a signal travelin

strategy Nash equilibrium exists in the power control game. from an anchor node to a target node experiences multipath
Also, a method is presented to identify the pure strategy Nds fading, shadowing, and path-loss, position estimatesrgeta
eqyilibrium, and a sufficient conditi_o_n i_S obtained to resole the nodes are subject to errors and uncertainty. As the Cr&aér-
uniqueness of the pure Nash equilibrium. In the second game, |\ver hound (CRLB) expresses a lower bound on the variance
the worst-case CRLBs for the anchor and jammer nodes are . . o L
considered, and it is shown that the game admits at least one of any un_b'ased estimator for a deterministic pa_ramete§ it
pure Nash equilibrium. Numerical examples are presented to @lso considered as a common performance metric for wireless
corroborate the theoretical results. localization networks [11]-[13].
Index Terms—Localization, jammer, power allocation, Nash Besides anchpr and tgrget npdes, a wireless Ioca}lizatibn ne
equilibrium, estimation, wireless network. work can contain undesirable jammer nodes, the aim of which
is to degrade the localization performance (i.e., accyracy
of the network. In the literature, various studies have been
|. INTRODUCTION performed on the jamming of wireless localization networks

In recent years, research communities have develope(;”}sle jamming and an_t|-ja.mm|ng of the g!obal .posmonlng
significant interest in wireless localization networks, ieth system (G_PS) are studied n [14] forvanQUSJa.mmlng sghemes
provide important applications for various systems and semilarty, in [15], an adaptive GPS anti-jamming algorithsn
vices [1], [2]. To name a few, smart inventory tracking syste _proposed. In ad<_j|t|on, the optlm_al power allpcatlon pr(r_b_le
location sensitive billing services, and intelligent andgnous investigated for jammer nodes in a given wireless locabrat

transport systems benefit from wireless localization néet&/o network based on the CRLB metric, and the optimal jamming

[3]. In such a wide variety of applications, accurate anﬁtrategies are obtained in the presence of peak power ald tot

robust position estimation plays a crucial role in terms &owerhcolr}stralnts n [1,1]' dies h b d d
efficiency and reliability. In the literature, various thietical In the literature, various studies have been conducted on

and experimental studies have been conducted in orderPRver allocation for wireless localization networks [16]—
In [16], the optimal anchor power allocation stratgi

analyze wireless position estimation in the context of sacy [19]'_ ) ; .
requirements and system constraints; e.g., [4], [5]. are investigated together with arllc.ho.r sglectlon and anchor
In a wireless localization network, there exist two typegep_lqyment strategies for the ml!'nmllzatlo_n. of the squared
of nodes in general; namely, anchor nodes and target nocrfé%s."t'on error.bOl_Jnd (SPEB), which 'dem'f'es funda_mental
imits on localization accuracy. The work in [17] provides a

bust power allocation framework for network localizatio

Anchor nodes have known positions and their location i

formation is available at target nodes. On the other harl :
target nodes have unknown positions, and each target n presence of imperfect knowledge of network parameters.

in the network estimates its own position based on receiv &S.?.d on the Eerfo;maDnF?EBme:;:cs SI;EBI and the (ljllrec?_onal
signals from anchor nodes (in the case of self localizatigPS'on error boun ( . ), the optimal power aflocation
[3]). In particular, position estimation of a target node ig)roblems are formulated in the consideration of limited pow

performed by using various signal parameters extracted fr(%esources af’d It IS shawn tha’? the proposed p_roblems can
e solved via conic programming. In [18], ranging energy

received signals (i.e., waveforms). Commonly employedai o . : .
g ( ) y employ g optimization problems are investigated for an unsynctzeahi
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Academicians. In the presence of jammer nodes in a wireless localization



network, anchor nodes can adapt their power allocatiotestra The main contributions of this work can be summarized as
gies in response to the strategies employed by jammer noft@kows:

and enhance the localization performance of the network., A game theoretic formulation is developed between an-
On the other hand, jammer nodes can respond by updating chor and jammer nodes in a wireless localization network
their corresponding power allocation strategies in order t  for the first time in the literature.

degrade the localization performance. These ConﬂiCtiW'in « TWO types of power control games between anchor and
ests between anchor and jammer nodes can be analyZEd by jammer nodes are proposed based on the average CRLB
employing game theory as a tool. In the literature, game the- and the worst-case CRLBs for the anchor and jammer
oretic frameworks have been applied for investigating powe  podes.

allocation strategies of users in a competitive system20),[ , |n a game-theoretic framework, the Nash equilibria of

competitive interactions between a secondary user tratesmi the proposed games are analyzed and it is shown that
receiver pair and a jammer are analyzed by applying a game- poth of the games have at least one pure strategy Nash
theoretic framework in the presence of interference cairgs, equilibrium.

power constraints, and incomplete channel gain informatio , For the game that employs the average CRLB as a
In particular, the strategic power allocation game betwiben performance metric, an approach is developed to obtain

two players is proposed first, and then it is presented theat th  the pure strategy Nash equilibrium and a sufficient con-
solution of the game corresponds to Nash equilibria points. dition is derived to determine whether the obtained Nash
In [21], a zero-sum game is modeled between a centralized equilibrium is a unique pure strategy Nash equilibrium.
_detectior_w network an_d a jammer i_n the presence of complete].he remainder of the paper is organized as follows: Sec-
information. It Is obtained that the jammer has no eﬁ_ectttm Ltion I describes the wireless localization network anddat
error probability observed at the fusion center when it @y®l § cos the network parameters. Section Ill first presents the

pure strategies at thg Nash equilibrium. roposed game formulations, and then provides detailent the
Although there exist research papers that analyze the n Hical analyses. Numerical results are described in &ett,
cooperative behavior of system users and jammer no

o . i Fich is followed by the concluding remarks in Section V.
in wireless communication networks in terms of successful

transmissions under a minimum signal-to-interferencespl
noise ratio (SINR) constraint and error probability [2@1],
no studies in the literature have investigated the inteast  Consider a wireless localization network wiffi4 anchor
between anchor nodes and jammer nodes in a wireless localdes andNr target nodes at locationg, € R? for i €
ization network, where target nodes estimate their positio{1,..., N4} andz; € R? for i € {1,..., N7}, respectively.
based on signals received from anchor nodes and jamri@rch target node in the system estimates its position based
nodes try to degrade the localization performance of tloa received signals from the anchor nodes, the locations of
network. In the field of wireless localization, there existr® which are known by the target nodes (i.e., the target nodes
recent studies (e.g., [13] and [22]) that analyze the ioteoas perform self-positioning [3]). Besides the anchor and ¢arg
of entities in a wireless localization network. However, naodes, there exislV; jammer nodes located at; € R? for
jammer nodes are considered in those studies, which focus {1,..., N;} in the system. Contrary to the anchor nodes,
on a cooperative localization network where the target sodie aim of the jammer nodes is to reduce the localization per-
share information with each other to improve their positioformance of the target nodes. In accordance with the common
estimates. Therefore, the theoretical analyses prestheegin approach in the literature [11], [23]-[25], it is assumedtth
differ from the ones performed in this paper, which considethe jammer nodes transmit zero-mean white Gaussian noise
non-cooperative localization where anchor and jammer sioda order to distort the signals observed by the target nodes.
compete for the localization performance of target nodes. The reasons behind the use of a Gaussian noise model can be
In this paper, power control games between anchor and jaexplained as follows: In wireless localization systemsgwh
mer nodes are designed based on a game-theoretic framevtbek knowledge of the ranging signals sent from the anchor
by employing the CRLB metric. In particular, two differentnodes to the target nodes is unavailable to the jammer nodes,
games are formulated for the considered wireless locaizatthe jammer nodes can continuously transmit noise to degrade
network: In the first game, the average CRLB of the targ#te localization performance of the target nodes [11]. k& th
nodes is considered as the performance metric whereaditerature, it is shown that the Gaussian noise is the worst-
the second one, the worst-case CRLBs for the anchor acabke noise for generic wireless networks modeled with medit
jammer nodes are employed. As a solution approach, Nasbise that is independent of the transmit signals [26]-[28]
equilibria of the games are examined, and it is shown that(la particular, the Gaussian distribution correspondshe t
pure Nash equilibrium exists in both of the proposed powerorst-case scenario among all possible noise distribsition
control games. In addition, for the game in which the anchterms of some metrics such as the mutual information and the
and jammer nodes compete according to the average CRLBneaan squared error since it minimizes the mutual informatio
method is presented to obtain a pure strategy Nash equitibribetween the input and the output when the input is Gaussian,
and a sufficient condition is provided to decide whether thend maximizes the mean squared error of estimating the input
pure strategy Nash equilibrium is unique. Finally, numaric given the output for an additive noise channel with a Gaussia
examples are presented to demonstrate the theoretic#istesinput [29].) Therefore, the jammer nodes are expected to

Il. SYSTEM MODEL



transmit Gaussian noise for efficient jamming [11]. Also, lrge SNRs and/or effective bandwidths, and consequently,
non-cooperative localization scenario is considered;ithahe achieves a mean-squared error (MSE) close to the CRLB. For
target nodes do not receive any signals from each other fither cases, the CRLB may not provide a tight bound for

localization purposes. MSEs of ML estimators [31], [32]. Therefore, the CRLBs

Let A; denote the connectivity set for target nodebtained based on the optimal power strategies of the anchor
i, which is defined asA; = {j € {l,...,Na} | andjammer nodes provide performance bounds for the MSEs
anchor nodg is connected to target nodé for of the target nodes. Another reason for the use of the CRLB
it € {1,...,Nr}. Then, corresponding to the transmissiometric is that it leads to compact closed form expressions
from anchor nodgj, the received signal at target nodean for the optimization problems and consequently facilgate
be expressed as theoretical analyses, which lead to intuitive explanatiar

L, N, power control games petween anchor and jammer nodes.
rii (1) :Zak‘\/ﬁs(t_fk')+Z'7il\/P7[]Vilj(t)+nij(t) (Perfprmanc_e opt_lmlzauon_ba;ed on_the CRLB has been
i v considered in various studies in the literature such as, [11]
(1) [13],[33])
for t € [0,Tops), @ € {1,...,Np}, andj € A;, where To obtain the formulation of the proposed problem, the
Tows is the observation timef;; is the number of paths CRLB expression for the target nodes is presented as ayutilit
between anchor nodeand target node o, andr}: represent, function first, and then the game model is proposed.
respectively, the amplitude and the delay of ftle multipath
component between anchor nogeand target node, P;;-‘
is the transmit power of the signal sent from anchor node
J to target node, and~; represents the channel coefficient
between jammer nodeand target nodé which has a transmit
power of P [11]. Also, during the reception from anchor nodéd. CRLB for Location Estimation of Target Nodes
J, ni;(t) denotes the measurement noise at target ricated
v;;(t) represents the jammer noise at target nbdenerated ] ) )
by jammer nodé. It is assumed that the transmit signé) is 10 Provide the CRLB expression for target nodethe

a known signal with unit energy, and the measurement noldgknown parameters related to target nadare defined as
n;;(t) and the jammer noise;;(t) are independent zero- 11

mean white Gaussian random processes, where the spectbalé [mT b7 T o ol }T
density levels of;;(t) andv; (t) are equal taVy/2 and one, ~*— [7F TeA(D) WA (JA]) AL A (JAi])
respectively [11]. In addition, for each target nodsg;(t)’s 2
are independent fof € A;, andvy;(t)'s are independent for here 4, () represents thgth element of se;, |.A; | denotes
le€{l,...,N;} andj € A;.! The delayffj is expressed as

T
inali s = lal ..ol
75 £ (lly; — x| +bf;) /e, wherebj; denotes the non—negativethe cardinality of setd;, {a” “ij }  andb; is

range bias and is the speed of propagation. defined as
[bZ, b.Lf‘J}T if j € AL
[1l. POWER CONTROL GAMES BETWEEN ANCHOR AND bij =" el ’ (3)
JAMMER NODES [bgj bfjf} , if j e ANE

In this section, the aim is to design and analyze power. )
: h AF and AN’ representing the sets of anchors nodes that
control games between anchor and jammer nodes. In i i
g : aje in the line-of-sight (LOS) and non-line-of-sight (NL}DS

proposed setting, the anchor nodes set their power levels e velv 1111, Th he CRLEB f T
order to maximize the localization performance of the targ rgetno_ 8, respectively [, .]' . en, the or estimating
je location of target nodeis given by

nodes whereas the jammer nodes try to minimize the local-
ization performance via power allocation. The localizatio E{||&; — x|} > tr { [F-‘l} } 2 CRLB, (4)
performance is quantified by the average CRLB for the target o foexe

nodes, which is the metric according to which the anchwarheret; denotes an unbiased estimate of the location of target
and jammer nodes compete. In other words, the anchor nodeslei, tr represents the trace operator, afigdis the Fisher
(jammer nodes) try to minimize (maximize) the average CRLBformation matrix for vectord; in (2). From [4] and [11],

for the target nodes to improve (deteriorate) the locabrat [FZ—‘ 1] can be expressed as

performance of the system. The use of the CRLB as the .

performance metric can be justified based on the following [Ffl}gxg =J; (wupf,p‘l) (5)
arguments: As investigated in [30], the ML location estionat
becomes asymptotically unbiased and efficient for sufftbjen

2X2

whereJ; (z;, pi, p’) denotes the equivalent Fisher informa-
tion matrix, which is calculated as

1As in [11], it is assumed that the anchor nodes transmit &réifit time PAN. .
intervals to prevent interference at the target nodes [, during those time J: (w A J) = #d) ¢T (6)
. . . . 7 i»Pi D T oo J 7] 7]
intervals, the channel coefficient between a jammer nodeagiadget node is — N0/2 +a; p
assumed to be constant. JEA;



with between playerd and playerJ corresponds to a two-player

47T2|0411-|2 ji’ooo f2|S(f)|2df Zero-sum game.
Aij = ’ 2 (1-&) ., (7)
T
a; £ [|%‘1|2 |%‘NJ|2] ) (8)
T C. Nash Equilibrium in Power Control Game
pl & {P{iuu) Piﬁu(\Ail)} ; 9) g
p’ & [P/ - p]\J[JT ’ (10) The Nash equilibrium is one of the _solution approaches that
a . T 11 is commonly used for game theoretic problems [34]. In the

bij = [cos iy sin @i (11)  game-theoretic notation, a strategy profile of gafnelenoted
In (7), S(f) denotes the Fourier transform eft), and the as(py,p;), is a Nash equilibrium if
path-overlap coefficierd; is a number that satisfigs< ¢; < A IS A T A 17
1 [17]. Also, in (11),¢;; corresponds to the angle between uA(p;’p*]) - uA(pA,p;), VPJ €5, (17)
target node and anchor nodg. us(py,py) = ui(pe,p”), Vp© €5;. (18)

At a Nash equilibrium, no player can improve its utility by

B. Power Control Game Model changing its strategy unilaterally. In other words, givée t

power levels of played (player A), player A (player.J) does
HOt have any incentive to deviate from its power strategy at
& Nash equilibrium. Such an equilibrium does not necegsaril
exist in infinite games. However, power control gaghadmits

a pure Nash equilibrium as the following proposition states

Proposition 1: A pure Nash equilibrium exists in power
control gameg.
Sa2{p* eR¥ [1Tp? <P N 0<e]p” < P, Proof: The aim in the proof is to show that the game
Vie{l,...,K}} (12) has at least one pure-strategy Nash equilibrium. For that
_ reason, it is first noted that power control gagén strategic
with form (N, (Si)ienr, (ui)ien) admits at least one pure Nash
ph L [(P‘fl)T (PQT)T}T (13) equilibrium if the following conditions are satisfied [35]:

Let G = (N, (S:)ien (ui)ien’) denote the power control
game between anchor nodes (i.e., Player A) and jammer no
(i.e., Player J), wheré/' = {A, J} is the index set for the
players,S; is the strategy set for playeéy andw; is the utility
function of playeri. For the anchor nodes, strategy $et is
defined as

) ) . . ) « Strategy setS; is compact and convex for ail € N,
wherep? is as defined in (9)1 is the vector of onesg; is where N = {4, J}.

the linit vf(‘agtor whoséth element is onek is the dimension | u;(pA,p’) is a continuous function in the profile of
of p ,APT_ is the total available power of the anchor nodes, strategiegp”, p’) € S for all i € N

and P}, is the maximum allowed and attainable power (peak , us(p”, p’) anduy(p?, p’) are quasi-concave functions
power) for the anchor nodes. Similarly, strategy Sgtfor the in pA andp’, respectively.

jammer nodes is defined as
Since sefS4 in (12) and sef5; in (14) are closed and bounded,
Sy & {p’ eRY [1Tp’ <PJ A 0<elp’ <PJ.. it can easily be shown that the sets in (12) and (14) are
Vie{l,...,N;}} (14) compactand convex, which satisfies the first condition. Also
ua(p?,p’) in (15) is a concave function @i based on the
wherep” is as defined in (10)P] is the total available power proof in [36] andu(p?, p”) in (16) is a linear (and concave)
of the jammer nodes, an;,.,,. is the maximum allowed and fynction of p’ based on [33]. Consequently, (15) and (16) are
attainable power (peak power) for the jammer nodes. continuous and quasi-concave functions, for which the rsgco
Let p” andp’ denote strategies of player and player/, and the third conditions hold. Therefore, it is concludeat th

respectively. Then, a strategy (action) profile of the gaare cat |east one Nash equilibrium exists in power control g@me
be denoted agp”,p’) € S, wherep? € S4, p’ € S;, and g

S =54 x S;. For a given action profile, the utility functions

. Based on Proposition 1, the proposed power control game
of player A and playerJ are defined as posit prop pow 9

has at least one Nash equilibrium. In order to analyze thé Nas
1 &z . equilibrium, first, best response strategies of playjeand ./

ua(p?,p’) = N Ztr{Ji (zi,p". p”) }7 (15) are discussed and then, a fixed point equation is obtained.
Tt For a given power strategy of playér (i.e., power levels

Nt . .
1 -1 of jammer nodes), the best response function of playean
A gy 1 . A T

us(p”,p’) = N z;tr{JZ (i, 21", p’) } (16) be expressed as
Namely, the average CRLB of the target nodes is employed imhAr = BRa(p”)
the utility functions (see (4) and (5)). Sinee,(p“,p”’) and 1 Nz .
uy(p?, p’) satisty thatua (p*, p”)+u, (p*, p”) = 0 ¥p* € £arg max — 53 e (@)} (19
Sa AVp? € Sy, it is noted that the power control game pAESa =



in (6) is positive definité. Then, power control gamé has a
unigue Nash equilibrium in pure strategies if all the eletsen
of w £ Z?fl r;al are different, where-; is defined as

On the other hand, for a given power strategy of plajyethe
best response function of playéris given as

péR = BR, (PA) )

A T
> PNty e

jeAE

Nt
A A g1
< arg max — Y treJ; (z;,pi,p .
pJGSJ T ; { ( ) }
Let BR = (BR4,BRy): S =S4 xS; — S be amapping of o
a function (correspondenc@R(p), wherep = (p?,p’) € Proof: In order to prove that the Nash equilibrium of
S is a strategy profile of the power control game, dbi, POWer control gameg is unique when the conciitior; in
andBR; are as in (19) and (20), respectively. Based on tHgoposition 3 is satisfied, it is first shoxvn that; (p 7P'])
definition of the Nash equilibrium, the following fixed pointih (15) is a strictly concave function g for a fixed p-
equation holds for the Nash equilibrium: To that aim, choose arbitrarg™ € S, andp” € Sa with
. N ﬁA # p*. Then, the following relations can be obtained for
p" = BR(p"). (21) anya e (0,1):

In addition, the utility function in (15) is a concave furmii ,, (ap* + (1 — )p?, p”)
of p# and the utility function in (16) is a linear (and concave)
function of p’/. Based on the utility functions in (15) and _ _
(16), the game between playet and playerJ is called

(20) (24)

r; = tr

LSl ot + - at’) '} @

convex-concave game [37], [38]. In a convex-concave game, 1 lNTl _ (aﬁf‘ (1= )P\ 1
the Nash equilibrium becomes the saddle-point equilibyium= — _—_ tr{ Z i — ZJ * ¢ij¢;€} }
and if there exist multiple Nash equilibria, the value of the T Ljear No/2+aj p '
game is unique for every Nash equilibrium. Therefore, theepu ' (26)
Nash equilibrium of power control gamg& can be obtained N ) PAL.
as stated in the following proposition. _ ig \iJ T

g prop =N thr{ _04 ‘ZL N0/2+azﬂpJ¢ij¢ij

Proposition 2: Let p* = (p2,p/) denote the Nash equi- = e -
librium of power control gamg in pure strategies. Them* P{;‘)\ij T !
satisfies the following equation: +(1-a) _XA:L No/2+ aT p’ ¢ij¢ij} (27)
JEA]

A T A T ~
Uj(p*7p ):_UA(p 3p*): 1 Nt PAAl -1
' B >——Y atd | Y — L —0,.0);
: A -1 Nr « “—~ No/2+ajp’ """V
min max — Ztr{Ji (:ci,pi ,P ) } (22) i=1 JEAF
pAeSa p’esS; Nt =1 PAN -1
ij Nij T
+(1 —a)tr{[ > N0/2+G_ij¢ij¢i,j} } (28)
Proof: Since power control gam@ is a two-player zero- jeAL v

sum game and 4 (p“, p”) in (15) is a concave function gf4

= aua(p*,p?) + (1 — a)us(p*, p’)

(29)

andu;(p#,p”) in (16) is a linear (and concave) function of o o

p”, the following equality holds by von Neumann's Minimaxvhere the equalities in (25) and (26) are due to the defirsition

Theorem [37], [39]: in (15) and (6), respectively, and the inequality in (28)duis
from the fact thatr{ X ~'} is a strictly convex function ofX

) Nt 7 4 -1 if X is a symmetric positive definite matrix [40]. It is noted
pAeS, pres, Ny ;tr{ i (zi,p,p”) } thata € (0,1), ¢,,¢,, is a symmetric positive semidefinite

matrix, and(P/\;;)/(No/2+ al p’) and (PA;)/(No/2+

N, T J i ;
n — Sl J, (z.p2p” -1 } 23) @ P ) are always non-negative for alle {1, s Nr} and
1312;‘(] pglelgA T ; r{ R R (23) j € AL. Based on the relations in (25)—(29), it is proved that

N o o ~ua(p?,p’) in (15) is a strictly concave function gi* for a
In addition,p* = (p2, p/) satisfying the equality in (23) is a fixed p’.

Nash equilibrium of power control ganté Next, it is obtained that there exists a unique maximizer

Proposition 1 states that power control gagadmits at ©f “J(pA’_p_J) in (16) for a givenp” when the condition
least one Nash equilibrium in pure strategies. In order {B Proposition 3 is satisfied. To that aim, consider the best
further analyze the equilibrium in power control garge reSPonse function of playes in (20). Based on a similar
the uniqueness of the Nash equilibrium is investigated & t@PProach to that in [33], the solution of the optimization
consideration of pure strategies. The following propositi
provides a sufficient condition for the uniqueness of thespur

strategy Nash equmbrlum. The Fisher information matrix is always positive semidéditdy definition.

The assumption in the proposition corresponds to practicaharios with a
o ) ) ] _ sufficient number of anchor nodes and guarantees the inWigytdf the Fisher
Proposition 3: Suppose that the Fisher information matrixnformation matrix.



problem in (20) can be expressed as of player A and playerJ in gameg are given by

Jj—1 A T A g\
. . ua\p -, p = — max ftr JZ Ti,P; P ) (31)
pEgr(h(j)) = min {le - g p]‘gR(h(l)),chak} (30) al ) i€l,...,Nr { ( ) }
=1

UJ(PAva) = min tr{Ji (l’z‘,pzAaP'})_l } . (32)
for j = 1,...,Ny;, where h(j) denotes the index of the i€l Ny

jth largest element of vectow defined in Proposition 3, As it can be noted from the utility functions for playet
pir (h(4)) represents thé(j)th element oy, and>")_,(-) and playerJ in (31) and (32), the power control game based
is defined as zero. For the condition that all the elements ofon these utility functions is not a zero-sum game; that is,
are different, index vectak £ [h(1) h(2) - - - h(N;)] becomes ua(p?,p’) +u;(p?,p”) #0, IpA € Sx A Ip? € S,.

unigue and consequently the solution in (30) turns into aThe utility functions in this scenario do not facilitate de-
unique maximizer ofu;(p“, p”) for a givenp?. Therefore, tailed theoretical analyses as in the case of the averagdlBCRL
based on the properties of gargepresented in the proof of based utility functions. However, the existence of a purstNa
Proposition 1 and the statements proved above, it is coadludquilibrium is still guaranteed based on the following tesu
that if the condition in Proposition 3 is satisfied, then tressN Proposition 4: There exists at least one pure Nash equilib-

equilibrium of power control gam§ is unique. B rium in gameg.

It is important to note that the Nash equilibrium obtained =~ Proof: Gameg admits at least one pure Nash equilibrium
by (22) based on Proposition 2 may not be unique. Howev&rthe conditions presented in the proof of Proposition 1 are
Proposition 3 provides a sufficient condition to check tiat t Satisfied. Gamej satisfies the first condition since garge
obtained Nash equilibrium is a unique equilibrium of powe?@S tz‘e same strategy sets fgr tk}le playersj atoes. Also,
control gameg. If the condition in Proposition 3 is satisfied%A(®”;P") 'nA(31) aan us(p?,p”) in (32) are concave
for a given Nash equilibrium, then there exists a unigf¥nctions of p” and p-, respectively, since the minimum
equilibrium of gameg. Otherwise, the Nash equilibrium may(maximum) of concave (convex) functions is also concave
or may not be unique. The condition in Proposition 3 depenétPnvex). Therefore, gamg also satisfies the second and
on various system parameters such as the power strategy 4@ conditions. Consequently, based on the similar apgto
the locations of the anchor nodes, the properties of theasigfMPIoyed in the proof of Proposition 1, it can be shown that
transmitted from the anchor nodes, the multipath companeff /€ast one pure-strategy Nash equilibrium exists in ggme
between the anchor nodes and the target nodes, and the thaMne
coefficients between the jammer nodes and the target nodes.

In the presence of multiple Nash equilibria, the anchor
and jammer nodes may choose the desired Nash equilibriumin this section, numerical examples are provided in order
depending on the conditions and constraints in the specil[Q;COI’I’ObOI’ate the theoretical results obtained in theiptesv
application. Although the average CRLB of the target nodé€ction. To that aim, consider a wireless localization oetw
(i.e., the value of the game) is the same for all Nash eqialibin which four anchor nodes, three target nodes, and three
based on Proposition 2, the anchor and jammer nodes nj@§mer nodes are located as in Fig. 1. For the sake of
prefer one Nash equilibrium over the others for the efficiestmplicity, it is assumed that each target node has LOS
use of limited resources in the wireless localization nekwo connections to all of the anchor nodes. Also, the free space

propagation model is considered; thatis; in (7) is equal to
Aij = 100No||z; — y;||2/2 [17]. In addition, |v;;|* is given
by ||z; — z;||72/2 and N, is set to2 [11].
In Fig. 2, the average CRLBs of the three target nodes
D. Power Control Game Based on Minimum and Maximule . the values of the game) are plotted versus the total

IV. NUMERICAL RESULTS

CRLB available power of the anchor nodes (i.€;) for various
peak powers of the anchor nodes wheh = 20, P}:;Icak =10,

Instead of employing the average CRLB as the performanaed the anchor nodes and the jammer nodes operate at the
metric, it is also possible to use the worst-case CRLBs folash equilibrium. From the figure, it is observed that as the
the anchor and jammer nodes as the performance metricsal power of the anchor nodes increases, the average CRLB
In particular, from the viewpoint of the anchor nodes, thebtained in the Nash equilibrium reduces since more stiegeg
target node with the maximum CRLB (i.e., with the worsbecome available for the anchor nodesiasincreases. Also,
localization accuracy) can be considered with the aim d@fcan be deduced from the figure that for lower values of the
minimizing the maximum CRLB (so that a certain levetotal power of the anchor nodes (e.®; < 5), the average
of localization accuracy can be achieved by all the targERLBs of the target nodes are the same for different values of
nodes). Similarly, the jammer nodes can aim to maximizlép“iak due to the dominant effect of the total power constraint
the minimum CRLB of the target nodes in order to degradm the game value. On the other hand, for higher values of the
the localization performance of the system. For this sgttintotal power of the anchor nodes (e.g;; > 12 for Prﬁak =1),
define a new gam& which has the same players and théhe average CRLB of the localization system does not change
same strategy sets for the playerssloes, except for the since the peak power constraint of the anchor nodes limés th

utility functions. For a given action profile, the utilityffictions use of total power available for the anchor nodes.
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Fig. 1. The simulated network including four anchor nodesifmned at Fig. 3. Average CRLB of the target nodes versus peak powelne)hnchor

[00], [10 0], [0 10], and[10 10]m., three jammer nodes positioned[2tL5], nodes for the scenario in Fig. 1, whefe/ = 20, P’ . = 10, and the

[42], and[6 6]m., and three target nodes positioned2at], [71], and[99]m. anchor nodes and the jammer nodes operate at Nash equiliniypower
control gameg.

—_pA
a5l P;ﬁ‘ak : | versus the total power of the jammer nodes for various values
T 'P/r;eak 2 of the peak power and versus the peak power of the jammer
3t Poeak = ° || nodes for different values of the total power of the jammer

nodes in Fig. 4 and Fig. 5, respectively, whePg' = 20
and PA .« = 10. Unlike the trends in Fig. 2 and Fig. 3, the
average CRLBs obtained in the Nash equilibria increase as
the total power of the jammer nodes and the peak power of
the jammer nodes increase in Fig. 4 and Fig. 5, respectively,
since the aim of the jammer nodes is to reduce the localizatio
performance; that is, to increase the average CRLB. Silpilar
e et from Fig. 4 and Fig. 5, the results related to the dominance of
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ | the constraints for different total power and peak poweelev
of the jammer nodes can be deduced. It is important to note
0 5 10 15 20 25 30 35 40 that the slope of the curves in Fig. 4 and Fig. 5 changes due
Total Power for Anchor Nodes to the peak power and total power constraints. As an example,
consider the case (| e., the red line) in Fig. 4, Whé?g%}
Fig. 2. Average CRLB of the target nodes versus total powethofanchor
nodes for the scenario in Fig. 1, Whefélu = 20, P eak = 10, and the 10, PT =20, andP, pedk =10.The S|0pe of the curve Changes
anchor nodes and the jammer nodes operate at Nash equiiiiipower when PT] =10, PT] = 20, andP:ﬂ = 30. The reason for that
control gameg. can be expressed as follows: FBf. < 10, only one jammer
node with the highest impact on the system transmits noise
based on the optimization problem in (20). Ror< PJ < 20,

In order to observe the effects of the peak power constratato jammer nodes are active in the system; that is, the jammer
of the anchor nodes on the average CRLB of the target nodesde with the highest impact on the system transmits noise
the average CRLBs of the target nodes are plotted in Fig.aB peak power (i.e. Péledk = 10) whereas the other jammer
versus the peak power of the anchor nodes for various valuesie with the second highest impact on the system transmits
of the total power of the anchor nodes wh&d = 20 and noise such that the total power of the two nodes is equal to
PJ .« = 10. From Fig. 3, similar observations to those fothe total power constraint of the jammer nodes. Similady, f
Flg 2 are obtained. It is also stated that the average CRLB® < P; < 30, all the jammer nodes operate. Due to the peak
for different values of the total power of the anchor nodes apower constramt (. ePI;]eak = 10 for each jammer node), the
the same when the peak power of the anchor nodes is belpawer strategies of the jammer nodes remain the same for
a certain value since the peak power constraint of the anchigf > 30. On the other hand, for the cases in Fig. 5, a similar
nodes becomes more dominant than the total power constrgirdicess can be considered in the reverse direction. Namely,
in that case. all the jammer nodes transmit noise for a lower peak power

Similar to Fig. 2 and Fig. 3, the average CRLBs are plottaaf the jammer nodes and the number of active jammer nodes
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Fig. 4. Average CRLB of the target nodes versus total poweheffammer Fig. 6. The simulated network including four anchor nodesifmmed at
nodes for the scenario in Fig. 1, whefe? = 20, PAeak = 10, and the [00], [100], [10 10], and [0 10]m., three jammer nodes positioned|at3],
anchor nodes and the jammer nodes operate at Nash equiliniypower  [57], and[22]m., and three target nodes positioned34d], [55], and[7 5]m.
control gameg.

equilibrium obtained in each case based on the peak power

oS and total power constraints. The results in Table | agree
o6l | with Proposition 1 on that power control gandeadmits at
least one pure Nash equilibrium for each case as one Nash
055 SRR SRR ] equilibrium is provided for each case in Table I. Also, it
~ ST is obtained thatu;(p2,p/) = —ua(p2,p/) for each case,
§, 05F e 1 as Proposition 2 states. In addition, each obtained puré Nas
z ol equilibrium in Table I is a unique pure Nash equilibrium lzase
O 045r RS RIS I 1 .. . .
) PP on Proposition 3 since all the elements @f presented in
g 04l s | Table | are different in each case.
< // Pl=5 In order to investigate that power control gagean have
0351 — =P =10]] multiple pure Nash equilibria for some given peak power
‘‘‘‘‘ bl s and total power constraints, consider a wireless locadinat
0.3f T i . -
““““ P = 20 network including four anchor nodes, three target noded, an
0.25 i i i ! three jammer nodes which are located as in Fig. 6. In Table II,
o 5 10 15 20 25

the Nash equilibria strategies of the anchor nodes and the
jammer nodes in Fig. 6 are provided for certain peak power
Fig. 5. Average CRLB of the target nodes versus peak powenefammer and tOta.l po""er constraints. It is O.t.)ta.med from Table littha
nodes for the scenario in Fig. 1, whefg® = 20, PA_ = 10, and the there exist multiple pure Nash equilibria for some peak gowe
anchor nodes and the jammer nodes operate at Nash equiliinipower and total power constraints of the anchor nodes and the
control gameg. jammer nodes (e.gP;' = 15, Pi,, = 10, P} = 15, and
Péleak = 10). Also, the value of the game is unique for every
Nash equilibrium as Proposition 2 states. In addition, Base
in the system decreases gradually as the peak power for Breposition 3, it can be argued that some of the elements of
jammer nodes increases. w provided in Table Il must be the same since power control
Table | presents the Nash equilibrium strategies of tlgameG has multiple pure strategy Nash equilibria for that
anchor and jammer nodes, which are located as in Fig. 1, fase, which complies with the results in Table II.
various peak power and total power constraints of the anchorat this point, it would be useful to mention that the con-
and jammer nodes. It is important to note that in Table |, thentional iterative algorithm based on best response diagsam
Nash equilibrium strategy of the anchor nodes (i.e., pl#)er is employed in the numerical examples to obtain the Nash
denoted bypZ corresponds to the reshaped versiorpgdfin  equilibrium. In the best response dynamics, one playersé®mo
(17) and (18) for the purpose of a clear presentation. Namedy arbitrary strategy first and then the other player plags th
p” is assumed to be defined gs' £ [p{' --- p;‘@T}T best response to the opponent’s current best strategy.oht ea
instead of the one in (13). Table | provides the strategiesund, each player employs the best response to the current
for the anchor node and the jammer node for one Nastrategy of the opponent iteratively and the algorithm term

Peak Power for Jammer Nodes P’
peak



TABLE |
VARIOUS STRATEGIES OBTAINED FOR THE SCENARIO INFIG. 1 WHEN THE ANCHOR NODES AND THE JAMMER NODES ARE AT ANASH EQUILIBRIUM IN
POWER CONTROL GAMEG .

PA

AT ( A J)
P U

peak —=A J ’LUT J\P% » Py
Py P P (—ua(p,pl))
Ppcak

207 . - - - -

10 2.3908 4.2860 0.8796 0 0 0.0065

20 0 1.6703 0 5.0111 10 0.0572 0.5698
ol | Lo 25912 25012 05797] | [10] | [0.0371]

[10] - - -

10 1.1954 2.1430 0.4398 0 0 0.0129

20 0 0.8352 0 2.5056 10 0.1145 1.1396
ol | L 0 1205 12956 0.2898) | [10] | [0.0743]

[20] - N -

10 2.4470 4.3868 0.9002 0 0 0.0066

10 0 1.7309 0 5.1928 10 0.0560 0.4450
ol | Lo 24024 24024 05375 | [0] | [0.0378]

210 1111 [0 | [0.0155]

20 11 1 1 10 0.1420 1.4031
0 1111 110] | [0.0905]

[20] - -

10 2.3341 4.1844 0.8586 0 6 0.0064

20 0 1.6473 0 4.9420 6 0.0581 0.4564
6 0 2.7133 2.7133 0.6070 6 10.0368 |

nates when no players have an incentive to deviate from thether possible strategies of the jammer nodes producedi base
previous strategies, which corresponds to a Nash equitibri on redistribution of the power levels may be examined to find
in the game. When the condition in Proposition 3 is satisfiednother Nash equilibrium. In this way, multiple Nash eduik
the obtained Nash equilibrium is guaranteed to be uniqumn be obtained, as in Table II.
On the other hand, when that condition is not satisfied, thatTo analyze power control ganggin which the utility func-
is, when some elements @f are identical, the power levelstions of the players are based on the minimum and maximum
of the corresponding jammer nodes can be redistributed 8BBLBs instead of the average CRLB (see Section IlI-D),
the resulting strategies for the anchor and jammer nodes aomsider the wireless localization network in Fig. 1. In.Fig
checked to determine if another Nash equilibrium is actdevehe minimum and maximum CRLBs of the target nodes are
In order to verify that the resulting strategies constitate plotted versus the total available power of the anchor nodes
different Nash equilibrium, the best response strategyhef tfor various values of the peak power constraint of the anchor
anchor nodes to the resulting strategy of the jammer nodesdes wherP; = 20 andPlgfeak = 10. It is noted that for low
is determined first based on the best response functionvedues of the total power constraint of the anchor nodes, the
the anchor nodes in (19). Then, if the obtained strategy wfility functions of the anchor nodes and the jammer nodes
the anchor nodes does not differ from the strategy of tiecome equal in magnitude; that is, the sum of the utility
anchor nodes in the previous Nash equilibrium, it is conetud functions of the players is equal to zero. On the other hand,
that the resulting strategies for the anchor and jammer srodke utility functions of the anchor nodes and the jammer sode
obtained by redistributing the power levels of the jammere not equal for higher values of the total power constraint
nodes correspond to another Nash equilibrium. Otherwise,of the anchor nodes. Then, in Fig. 8, the minimum and
the strategies of the anchor nodes do not match, the regultmaximum CRLBs of the target nodes are plotted versus the
strategies cannot be considered as a Nash equilibrium agrehk power of the anchor nodes when the anchor nodes and the
jammer nodes operate at the Nash equilibridtd,= 20, and
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TABLE Il
VARIOUS STRATEGIES OBTAINED FOR THE SCENARIO INFIG. 6 WHEN THE ANCHOR NODES AND THE JAMMER NODES ARE AT ANASH EQUILIBRIUM IN
POWER CONTROL GAMEG .

PA
AT ( A I)
P " ,
peak =A J ’LUT J\D% s Py
Py s P (—ua(pd,pl))
Ppcak
15] - - - ]
10 2.2220 0 0 2.2220 10 0.1801
15 1.5280 1.5280 1.5280 1.5280 5 0.1801 1.2715
ol Lo 22220 22220 0 || [0] | [0.0690]
157 | ¢ - - -
10 2.2220 0 0 2.2220 7.5 0.1801
15 1.5280 1.5280 1.5280 1.5280 7.5 0.1801 1.2715
ol Lo 2220 2220 0 || [0] | [0.0690)
[15] i - - -
10 2.2220 0 0 2.2220 5 0.1801
15 1.5280 1.5280 1.5280 1.5280 10 0.1801 1.2715
ol Lo 22220 22220 0 || [0] | [0.0690]

P = 10. Unlike the previous figure, the utility functions

of the players in gamg differ in magnitude for low values 35 ‘ pA
of the peak power of the anchor nodes. On the other hai Anchor, Ppeq =1
for high values of the peak power of the anchor nodes, tl 3r —#— Jammer, P, = 1|1

— — — Anchor, PA k=2

peal

sum of the utility functions of the anchor and jammer node

becomes zero. It is also important to emphasize that as 25y = % —Jammer, Pl =2 ]
total power of the anchor nodes increases, the CRLBs . | -~~~ | == Anchor, PP =5
the minimum of targets’ CRLBs for the jammer nodes and tt ‘€ 2r ‘== Jammer, P’ =5 ]
maximum of targets’ CRLBs for the anchor nodes) obtaine g e

O 15

in the Nash equilibrium reduce. Similar plots to those in.Fig
and Fig. 8 are presented in Fig. 9 and Fig. 10 for the jamm
nodes considering various values of the total power and pe

. . I i e
power constraints of the jammer nodes whefi = 20 and N TR AT S sk k= ok k= K-k — K

Prﬁak = 10...Fr-0m Fig. 9 and Fig. 10, it is noticed that multiple oSy e e ¥__*__;%__¥
Nash equilibria can be observed for power control gayne o ‘ ‘ ‘ ‘ ‘ ‘

in some cases and the magnitude of the utilities obtained 0 10 20 30 40 50 60 70
those Nash equilibria points can get the values represémtec Total Power for Anchor Nodes P

the shaded regions of Fig. 9 and Fig. 10. However, for some o _ . N

values of the constraints, the Nash equilibria may be unig{: 7 Minimum and maximum CRLBS (i.e., absolute utilitylues for the
. . Jammer and anchor nodes, respectively) of the target noglssiy total power

(e.g., for high values of the total power of the jammer nodes the anchor nodes for the scenario in Fig. 1, whege = 20, Pl i = 10,

Lastly, the results in the figures comply with the statemant and the anchor nodes and the jammer nodes operate at Nadbriomiin

Proposition 4 that power control gangehas at least one pureP°Wer control game.

Nash equilibrium.

anchor and jammer nodes) as performance metrics. It has
been proved that both games have at least one pure strategy
In this paper, interactions between anchor and jammiash equilibrium. This implies that there exist determntinis
nodes have been analyzed for a wireless localization nktwopower allocation strategies for the anchor and jammer nodes
Based on a game-theoretic framework, two types of powtrat lead to one or more Nash equilibria in both games. In
control games between anchor and jammer nodes have baddition, an approach has been presented in order to figure
investigated by employing the average CRLB and the worgut the Nash equilibrium of the game which employs the
case CRLBs of the target nodes (from the viewpoints of tteverage CRLB as the performance metric, and a sufficient

V. CONCLUDING REMARKS
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Fig. 8. Minimum and maximum CRLBs (i.e., absolute utilitylwes for the Fig. 10. Minimum and maximum CRLBs (i.e., absolute utiliglwes for the
jammer and anchor nodes, respectively) of the target noelssiy peak power jammer and anchor nodes, respectively) of the target noelssiy peak power

of the anchor nodes for the scenario in Fig. 1, whefe= 20, P/, =10, of the jammer nodes for the scenario in Fig. 1, whBré = 20, P2 | = 10,
and the anchor nodes and the jammer nodes operate at Nasbromiin  and the anchor nodes and the jammer nodes operate at Nasbriomiin
power control game. power control game.
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