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Abstract—In this paper, a game theoretic framework is pro-
posed for wireless localization networks that operate in the
presence of jammer nodes. In particular, power control games
between anchor and jammer nodes are designed for a wireless
localization network in which each target node estimates its posi-
tion based on received signals from anchor nodes while jammer
nodes aim to reduce localization performance of target nodes.
Two different games are formulated for the considered wireless
localization network: In the first game, the average Craḿer-
Rao lower bound (CRLB) of the target nodes is considered as
the performance metric, and it is shown that at least one pure
strategy Nash equilibrium exists in the power control game.
Also, a method is presented to identify the pure strategy Nash
equilibrium, and a sufficient condition is obtained to resolve the
uniqueness of the pure Nash equilibrium. In the second game,
the worst-case CRLBs for the anchor and jammer nodes are
considered, and it is shown that the game admits at least one
pure Nash equilibrium. Numerical examples are presented to
corroborate the theoretical results.

Index Terms—Localization, jammer, power allocation, Nash
equilibrium, estimation, wireless network.

I. I NTRODUCTION

In recent years, research communities have developed a
significant interest in wireless localization networks, which
provide important applications for various systems and ser-
vices [1], [2]. To name a few, smart inventory tracking systems,
location sensitive billing services, and intelligent autonomous
transport systems benefit from wireless localization networks
[3]. In such a wide variety of applications, accurate and
robust position estimation plays a crucial role in terms of
efficiency and reliability. In the literature, various theoretical
and experimental studies have been conducted in order to
analyze wireless position estimation in the context of accuracy
requirements and system constraints; e.g., [4], [5].

In a wireless localization network, there exist two types
of nodes in general; namely, anchor nodes and target nodes.
Anchor nodes have known positions and their location in-
formation is available at target nodes. On the other hand,
target nodes have unknown positions, and each target node
in the network estimates its own position based on received
signals from anchor nodes (in the case of self localization
[3]). In particular, position estimation of a target node is
performed by using various signal parameters extracted from
received signals (i.e., waveforms). Commonly employed signal
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parameters are time-of-arrival (TOA) [6], [7], time-difference-
of-arrival (TDOA) [8], angle-of-arrival (AOA) [9], and re-
ceived signal strength (RSS) [10]. TOA and TDOA are time
based parameters which measure the signal propagation time
(difference) between nodes. AOA is obtained based on the
angle at which the transmitted signal from one node arrives at
another node. RSS is another signal parameter which gathers
information from power or energy of a signal that travels
between anchor and target nodes [4]. Since a signal traveling
from an anchor node to a target node experiences multipath
fading, shadowing, and path-loss, position estimates of target
nodes are subject to errors and uncertainty. As the Cramér-Rao
lower bound (CRLB) expresses a lower bound on the variance
of any unbiased estimator for a deterministic parameter, itis
also considered as a common performance metric for wireless
localization networks [11]–[13].

Besides anchor and target nodes, a wireless localization net-
work can contain undesirable jammer nodes, the aim of which
is to degrade the localization performance (i.e., accuracy)
of the network. In the literature, various studies have been
performed on the jamming of wireless localization networks.
The jamming and anti-jamming of the global positioning
system (GPS) are studied in [14] for various jamming schemes.
Similarly, in [15], an adaptive GPS anti-jamming algorithmis
proposed. In addition, the optimal power allocation problem is
investigated for jammer nodes in a given wireless localization
network based on the CRLB metric, and the optimal jamming
strategies are obtained in the presence of peak power and total
power constraints in [11].

In the literature, various studies have been conducted on
power allocation for wireless localization networks [16]–
[19]. In [16], the optimal anchor power allocation strategies
are investigated together with anchor selection and anchor
deployment strategies for the minimization of the squared
position error bound (SPEB), which identifies fundamental
limits on localization accuracy. The work in [17] provides a
robust power allocation framework for network localization in
the presence of imperfect knowledge of network parameters.
Based on the performance metrics SPEB and the directional
position error bound (DPEB), the optimal power allocation
problems are formulated in the consideration of limited power
resources and it is shown that the proposed problems can
be solved via conic programming. In [18], ranging energy
optimization problems are investigated for an unsynchronized
positioning network based on two-way ranging between a
sensor and beacons. In [19], the work in [18] is extended for a
positioning network in which the collaborative anchors added
to the system help sensors locate themselves.

In the presence of jammer nodes in a wireless localization
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network, anchor nodes can adapt their power allocation strate-
gies in response to the strategies employed by jammer nodes
and enhance the localization performance of the network.
On the other hand, jammer nodes can respond by updating
their corresponding power allocation strategies in order to
degrade the localization performance. These conflicting inter-
ests between anchor and jammer nodes can be analyzed by
employing game theory as a tool. In the literature, game the-
oretic frameworks have been applied for investigating power
allocation strategies of users in a competitive system. In [20],
competitive interactions between a secondary user transmitter-
receiver pair and a jammer are analyzed by applying a game-
theoretic framework in the presence of interference constraints,
power constraints, and incomplete channel gain information.
In particular, the strategic power allocation game betweenthe
two players is proposed first, and then it is presented that the
solution of the game corresponds to Nash equilibria points.
In [21], a zero-sum game is modeled between a centralized
detection network and a jammer in the presence of complete
information. It is obtained that the jammer has no effect on the
error probability observed at the fusion center when it employs
pure strategies at the Nash equilibrium.

Although there exist research papers that analyze the non-
cooperative behavior of system users and jammer nodes
in wireless communication networks in terms of successful
transmissions under a minimum signal-to-interference-plus-
noise ratio (SINR) constraint and error probability [20], [21],
no studies in the literature have investigated the interactions
between anchor nodes and jammer nodes in a wireless local-
ization network, where target nodes estimate their positions
based on signals received from anchor nodes and jammer
nodes try to degrade the localization performance of the
network. In the field of wireless localization, there exist some
recent studies (e.g., [13] and [22]) that analyze the interactions
of entities in a wireless localization network. However, no
jammer nodes are considered in those studies, which focus
on a cooperative localization network where the target nodes
share information with each other to improve their position
estimates. Therefore, the theoretical analyses presentedtherein
differ from the ones performed in this paper, which considers
non-cooperative localization where anchor and jammer nodes
compete for the localization performance of target nodes.

In this paper, power control games between anchor and jam-
mer nodes are designed based on a game-theoretic framework
by employing the CRLB metric. In particular, two different
games are formulated for the considered wireless localization
network: In the first game, the average CRLB of the target
nodes is considered as the performance metric whereas in
the second one, the worst-case CRLBs for the anchor and
jammer nodes are employed. As a solution approach, Nash
equilibria of the games are examined, and it is shown that a
pure Nash equilibrium exists in both of the proposed power
control games. In addition, for the game in which the anchor
and jammer nodes compete according to the average CRLB, a
method is presented to obtain a pure strategy Nash equilibrium
and a sufficient condition is provided to decide whether the
pure strategy Nash equilibrium is unique. Finally, numerical
examples are presented to demonstrate the theoretical results.

The main contributions of this work can be summarized as
follows:

• A game theoretic formulation is developed between an-
chor and jammer nodes in a wireless localization network
for the first time in the literature.

• Two types of power control games between anchor and
jammer nodes are proposed based on the average CRLB
and the worst-case CRLBs for the anchor and jammer
nodes.

• In a game-theoretic framework, the Nash equilibria of
the proposed games are analyzed and it is shown that
both of the games have at least one pure strategy Nash
equilibrium.

• For the game that employs the average CRLB as a
performance metric, an approach is developed to obtain
the pure strategy Nash equilibrium and a sufficient con-
dition is derived to determine whether the obtained Nash
equilibrium is a unique pure strategy Nash equilibrium.

The remainder of the paper is organized as follows: Sec-
tion II describes the wireless localization network and intro-
duces the network parameters. Section III first presents the
proposed game formulations, and then provides detailed theo-
retical analyses. Numerical results are described in Section IV,
which is followed by the concluding remarks in Section V.

II. SYSTEM MODEL

Consider a wireless localization network withNA anchor
nodes andNT target nodes at locationsyi ∈ R

2 for i ∈
{1, . . . , NA} andxi ∈ R

2 for i ∈ {1, . . . , NT }, respectively.
Each target node in the system estimates its position based
on received signals from the anchor nodes, the locations of
which are known by the target nodes (i.e., the target nodes
perform self-positioning [3]). Besides the anchor and target
nodes, there existNJ jammer nodes located atzi ∈ R

2 for
i ∈ {1, . . . , NJ} in the system. Contrary to the anchor nodes,
the aim of the jammer nodes is to reduce the localization per-
formance of the target nodes. In accordance with the common
approach in the literature [11], [23]–[25], it is assumed that
the jammer nodes transmit zero-mean white Gaussian noise
in order to distort the signals observed by the target nodes.
The reasons behind the use of a Gaussian noise model can be
explained as follows: In wireless localization systems, when
the knowledge of the ranging signals sent from the anchor
nodes to the target nodes is unavailable to the jammer nodes,
the jammer nodes can continuously transmit noise to degrade
the localization performance of the target nodes [11]. In the
literature, it is shown that the Gaussian noise is the worst-
case noise for generic wireless networks modeled with additive
noise that is independent of the transmit signals [26]–[28].
(In particular, the Gaussian distribution corresponds to the
worst-case scenario among all possible noise distributions in
terms of some metrics such as the mutual information and the
mean squared error since it minimizes the mutual information
between the input and the output when the input is Gaussian,
and maximizes the mean squared error of estimating the input
given the output for an additive noise channel with a Gaussian
input [29].) Therefore, the jammer nodes are expected to
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transmit Gaussian noise for efficient jamming [11]. Also, a
non-cooperative localization scenario is considered; that is, the
target nodes do not receive any signals from each other for
localization purposes.

Let Ai denote the connectivity set for target node
i, which is defined asAi , {j ∈ {1, . . . , NA} |
anchor nodej is connected to target nodei} for
i ∈ {1, . . . , NT }. Then, corresponding to the transmission
from anchor nodej, the received signal at target nodei can
be expressed as

rij(t) =

Lij
∑

k=1

αk
ij

√

PA
ij s(t− τkij) +

NJ
∑

l=1

γil

√

P J
l νilj(t) + nij(t)

(1)

for t ∈ [0, Tobs], i ∈ {1, . . . , NT}, and j ∈ Ai, where
Tobs is the observation time,Lij is the number of paths
between anchor nodej and target nodei, αk

ij andτkij represent,
respectively, the amplitude and the delay of thekth multipath
component between anchor nodej and target nodei, PA

ij

is the transmit power of the signal sent from anchor node
j to target nodei, andγil represents the channel coefficient
between jammer nodel and target nodei, which has a transmit
power ofP J

l [11]. Also, during the reception from anchor node
j, nij(t) denotes the measurement noise at target nodei and
νilj(t) represents the jammer noise at target nodei generated
by jammer nodel. It is assumed that the transmit signals(t) is
a known signal with unit energy, and the measurement noise
nij(t) and the jammer noiseνilj(t) are independent zero-
mean white Gaussian random processes, where the spectral
density levels ofnij(t) andνil(t) are equal toN0/2 and one,
respectively [11]. In addition, for each target node,nij(t)’s
are independent forj ∈ Ai, andvilj(t)’s are independent for
l ∈ {1, . . . , NJ} and j ∈ Ai.1 The delayτkij is expressed as
τkij , (‖yj −xi‖+ bkij)/c, wherebkij denotes the non-negative
range bias andc is the speed of propagation.

III. POWER CONTROL GAMES BETWEEN ANCHOR AND

JAMMER NODES

In this section, the aim is to design and analyze power
control games between anchor and jammer nodes. In the
proposed setting, the anchor nodes set their power levels in
order to maximize the localization performance of the target
nodes whereas the jammer nodes try to minimize the local-
ization performance via power allocation. The localization
performance is quantified by the average CRLB for the target
nodes, which is the metric according to which the anchor
and jammer nodes compete. In other words, the anchor nodes
(jammer nodes) try to minimize (maximize) the average CRLB
for the target nodes to improve (deteriorate) the localization
performance of the system. The use of the CRLB as the
performance metric can be justified based on the following
arguments: As investigated in [30], the ML location estimator
becomes asymptotically unbiased and efficient for sufficiently

1As in [11], it is assumed that the anchor nodes transmit at different time
intervals to prevent interference at the target nodes [4], and during those time
intervals, the channel coefficient between a jammer node anda target node is
assumed to be constant.

large SNRs and/or effective bandwidths, and consequently,it
achieves a mean-squared error (MSE) close to the CRLB. For
other cases, the CRLB may not provide a tight bound for
MSEs of ML estimators [31], [32]. Therefore, the CRLBs
obtained based on the optimal power strategies of the anchor
and jammer nodes provide performance bounds for the MSEs
of the target nodes. Another reason for the use of the CRLB
metric is that it leads to compact closed form expressions
for the optimization problems and consequently facilitates
theoretical analyses, which lead to intuitive explanations of
power control games between anchor and jammer nodes.
(Performance optimization based on the CRLB has been
considered in various studies in the literature such as [11],
[13], [33].)

To obtain the formulation of the proposed problem, the
CRLB expression for the target nodes is presented as a utility
function first, and then the game model is proposed.

A. CRLB for Location Estimation of Target Nodes

To provide the CRLB expression for target nodei, the
unknown parameters related to target nodei are defined as
[11]

θi ,

[

xT
i bTiAi(1) · · · bTiAi(|Ai|) α

T
iAi(1)

· · · αT
iAi(|Ai|)

]T

(2)

whereAi(j) represents thejth element of setAi, |Ai| denotes

the cardinality of setAi, αij =
[

α1
ij · · ·α

Lij

ij

]T

, and bij is
defined as

bij =











[

b2ij · · · b
Lij

ij

]T

, if j ∈ AL
i

[

b1ij · · · b
Lij

ij

]T

, if j ∈ ANL
i

(3)

with AL
i andANL

i representing the sets of anchors nodes that
are in the line-of-sight (LOS) and non-line-of-sight (NLOS) of
target nodei, respectively [11]. Then, the CRLB for estimating
the location of target nodei is given by

E{‖x̂i − xi‖
2} ≥ tr

{

[

F−1
i

]

2×2

}

, CRLBi (4)

wherex̂i denotes an unbiased estimate of the location of target
nodei, tr represents the trace operator, andF i is the Fisher
information matrix for vectorθi in (2). From [4] and [11],
[

F−1
i

]

2×2
can be expressed as

[

F−1
i

]

2×2
= J i

(

xi,p
A
i ,p

J
)−1

(5)

whereJ i

(

xi,p
A
i ,p

J
)

denotes the equivalent Fisher informa-
tion matrix, which is calculated as

J i

(

xi,p
A
i ,p

J
)

=
∑

j∈AL
i

PA
ij λij

N0/2 + aT
i pJ

φijφ
T
ij (6)
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with

λij ,
4π2|α1

ij |
2
∫∞

−∞ f2|S(f)|2df

c2
(1− ξj) , (7)

ai ,
[

|γi1|
2 · · · |γiNJ

|2
]T

, (8)

pA
i ,

[

PA
iAi(1)

· · · PA
iAi(|Ai|)

]T

, (9)

pJ ,
[

P J
1 · · · P J

NJ

]T
, (10)

φij , [cos ϕij sin ϕij ]
T

. (11)

In (7), S(f) denotes the Fourier transform ofs(t), and the
path-overlap coefficientξj is a number that satisfies0 ≤ ξj ≤
1 [17]. Also, in (11),ϕij corresponds to the angle between
target nodei and anchor nodej.

B. Power Control Game Model

Let G = 〈N , (Si)i∈N , (ui)i∈N 〉 denote the power control
game between anchor nodes (i.e., Player A) and jammer nodes
(i.e., Player J), whereN = {A, J} is the index set for the
players,Si is the strategy set for playeri, andui is the utility
function of playeri. For the anchor nodes, strategy setSA is
defined as

SA ,
{

pA ∈ R
K | 1TpA ≤ PA

T ∧ 0 ≤ eTi p
A ≤ PA

peak ,

∀i ∈ {1, . . . ,K}} (12)

with

pA ,

[

(

pA
1

)T
· · ·

(

pA
NT

)T
]T

(13)

wherepA
i is as defined in (9),1 is the vector of ones,ei is

the unit vector whoseith element is one,K is the dimension
of pA, PA

T is the total available power of the anchor nodes,
andPA

peak is the maximum allowed and attainable power (peak
power) for the anchor nodes. Similarly, strategy setSJ for the
jammer nodes is defined as

SJ ,
{

pJ ∈ R
NJ | 1TpJ ≤ P J

T ∧ 0 ≤ eTi p
J ≤ P J

peak ,

∀i ∈ {1, . . . , NJ}} (14)

wherepJ is as defined in (10),P J
T is the total available power

of the jammer nodes, andP J
peak is the maximum allowed and

attainable power (peak power) for the jammer nodes.
Let pA andpJ denote strategies of playerA and playerJ ,

respectively. Then, a strategy (action) profile of the game can
be denoted as(pA,pJ ) ∈ S, wherepA ∈ SA, pJ ∈ SJ , and
S = SA × SJ . For a given action profile, the utility functions
of playerA and playerJ are defined as

uA(p
A,pJ) = −

1

NT

NT
∑

i=1

tr
{

J i

(

xi,p
A
i ,p

J
)−1

}

, (15)

uJ(p
A,pJ) =

1

NT

NT
∑

i=1

tr
{

J i

(

xi,p
A
i ,p

J
)−1

}

. (16)

Namely, the average CRLB of the target nodes is employed in
the utility functions (see (4) and (5)). SinceuA(p

A,pJ) and
uJ(p

A,pJ) satisfy thatuA(p
A,pJ)+uJ(p

A,pJ ) = 0 ∀pA ∈
SA ∧ ∀pJ ∈ SJ , it is noted that the power control game

between playerA and playerJ corresponds to a two-player
zero-sum game.

C. Nash Equilibrium in Power Control Game

The Nash equilibrium is one of the solution approaches that
is commonly used for game theoretic problems [34]. In the
game-theoretic notation, a strategy profile of gameG, denoted
as (pA

⋆ ,p
J
⋆ ), is a Nash equilibrium if

uA(p
A
⋆ ,p

J
⋆ ) ≥ uA(p

A,pJ
⋆ ) , ∀pA ∈ SA , (17)

uJ(p
A
⋆ ,p

J
⋆ ) ≥ uJ(p

A
⋆ ,p

J) , ∀pJ ∈ SJ . (18)

At a Nash equilibrium, no player can improve its utility by
changing its strategy unilaterally. In other words, given the
power levels of playerJ (playerA), playerA (playerJ) does
not have any incentive to deviate from its power strategy at
a Nash equilibrium. Such an equilibrium does not necessarily
exist in infinite games. However, power control gameG admits
a pure Nash equilibrium as the following proposition states.

Proposition 1: A pure Nash equilibrium exists in power
control gameG.

Proof: The aim in the proof is to show that the game
has at least one pure-strategy Nash equilibrium. For that
reason, it is first noted that power control gameG in strategic
form 〈N , (Si)i∈N , (ui)i∈N 〉 admits at least one pure Nash
equilibrium if the following conditions are satisfied [35]:

• Strategy setSi is compact and convex for alli ∈ N ,
whereN = {A, J}.

• ui(p
A,pJ) is a continuous function in the profile of

strategies(pA,pJ) ∈ S for all i ∈ N .
• uA(p

A,pJ ) anduJ(p
A,pJ ) are quasi-concave functions

in pA andpJ , respectively.

Since setSA in (12) and setSJ in (14) are closed and bounded,
it can easily be shown that the sets in (12) and (14) are
compact and convex, which satisfies the first condition. Also,
uA(p

A,pJ ) in (15) is a concave function ofpA based on the
proof in [36] anduJ(p

A,pJ) in (16) is a linear (and concave)
function ofpJ based on [33]. Consequently, (15) and (16) are
continuous and quasi-concave functions, for which the second
and the third conditions hold. Therefore, it is concluded that
at least one Nash equilibrium exists in power control gameG.
�

Based on Proposition 1, the proposed power control game
has at least one Nash equilibrium. In order to analyze the Nash
equilibrium, first, best response strategies of playerA andJ
are discussed and then, a fixed point equation is obtained.

For a given power strategy of playerJ (i.e., power levels
of jammer nodes), the best response function of playerA can
be expressed as

pA
BR = BRA(p

J)

, arg max
pA∈SA

−
1

NT

NT
∑

i=1

tr
{

J i

(

xi,p
A
i ,p

J
)−1

}

. (19)
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On the other hand, for a given power strategy of playerA, the
best response function of playerJ is given as

pJ
BR = BRJ (p

A)

, arg max
pJ∈SJ

1

NT

NT
∑

i=1

tr
{

J i

(

xi,p
A
i ,p

J
)−1

}

. (20)

Let BR = (BRA,BRJ ) : S = SA×SJ → S be a mapping of
a function (correspondence)BR(p), wherep = (pA,pJ) ∈
S is a strategy profile of the power control game, andBRA

andBRJ are as in (19) and (20), respectively. Based on the
definition of the Nash equilibrium, the following fixed point
equation holds for the Nash equilibrium:

p⋆ = BR(p⋆) . (21)

In addition, the utility function in (15) is a concave function
of pA and the utility function in (16) is a linear (and concave)
function of pJ . Based on the utility functions in (15) and
(16), the game between playerA and playerJ is called
convex-concave game [37], [38]. In a convex-concave game,
the Nash equilibrium becomes the saddle-point equilibrium,
and if there exist multiple Nash equilibria, the value of the
game is unique for every Nash equilibrium. Therefore, the pure
Nash equilibrium of power control gameG can be obtained
as stated in the following proposition.

Proposition 2: Let p⋆ = (pA
⋆ ,p

J
⋆ ) denote the Nash equi-

librium of power control gameG in pure strategies. Then,p⋆

satisfies the following equation:

uJ(p
A
⋆ ,p

J
⋆ ) = −uA(p

A
⋆ ,p

J
⋆ ) =

min
pA∈SA

max
pJ∈SJ

1

NT

NT
∑

i=1

tr
{

J i

(

xi,p
A
i ,p

J
)−1

}

(22)

Proof: Since power control gameG is a two-player zero-
sum game anduA(p

A,pJ) in (15) is a concave function ofpA

anduJ(p
A,pJ) in (16) is a linear (and concave) function of

pJ , the following equality holds by von Neumann’s Minimax
Theorem [37], [39]:

min
pA∈SA

max
pJ∈SJ

1

NT

NT
∑

i=1

tr
{

J i

(

xi,p
A
i ,p

J
)−1

}

=

max
pJ∈SJ

min
pA∈SA

1

NT

NT
∑

i=1

tr
{

J i

(

xi,p
A
i ,p

J
)−1

}

. (23)

In addition,p⋆ = (pA
⋆ ,p

J
⋆ ) satisfying the equality in (23) is a

Nash equilibrium of power control gameG. �

Proposition 1 states that power control gameG admits at
least one Nash equilibrium in pure strategies. In order to
further analyze the equilibrium in power control gameG,
the uniqueness of the Nash equilibrium is investigated in the
consideration of pure strategies. The following proposition
provides a sufficient condition for the uniqueness of the pure
strategy Nash equilibrium.

Proposition 3: Suppose that the Fisher information matrix

in (6) is positive definite.2 Then, power control gameG has a
unique Nash equilibrium in pure strategies if all the elements
of w ,

∑NT

i=1 ria
T
i are different, whereri is defined as

ri , tr















∑

j∈AL
i

PA
ij λijφijφ

T
ij





−1










. (24)

Proof: In order to prove that the Nash equilibrium of
power control gameG is unique when the condition in
Proposition 3 is satisfied, it is first shown thatuA(p

A,pJ )
in (15) is a strictly concave function ofpA for a fixed pJ .
To that aim, choose arbitrarỹpA ∈ SA and p̄A ∈ SA with
p̃A 6= p̄A. Then, the following relations can be obtained for
anyα ∈ (0, 1):

uA(αp̃
A + (1− α)p̄A,pJ )

= −
1

NT

NT
∑

i=1

tr
{

J i

(

xi, αp̃
A
i + (1− α)p̄A

i ,p
J
)−1 }

(25)

= −
1

NT

NT
∑

i=1

tr

{

[

∑

j∈AL
i

(αP̃A
ij + (1− α)P̄ij)λij

N0/2 + aT
i pJ

φijφ
T
ij

]−1
}

(26)

= −
1

NT

NT
∑

i=1

tr

{

[

α
∑

j∈AL
i

P̃A
ij λij

N0/2 + aT
i pJ

φijφ
T
ij

+ (1 − α)
∑

j∈AL
i

P̄A
ij λij

N0/2 + aT
i pJ

φijφ
T
ij

]−1
}

(27)

> −
1

NT

NT
∑

i=1

αtr

{

[

∑

j∈AL
i

P̃A
ij λij

N0/2 + aT
i pJ

φijφ
T
ij

]−1
}

+ (1 − α)tr

{

[

∑

j∈AL
i

P̄A
ij λij

N0/2 + aT
i pJ

φijφ
T
ij

]−1
}

(28)

= αuA(p̃
A,pJ) + (1− α)uA(p̄

A,pJ ) (29)

where the equalities in (25) and (26) are due to the definitions
in (15) and (6), respectively, and the inequality in (28) follows
from the fact thattr{X−1} is a strictly convex function ofX
if X is a symmetric positive definite matrix [40]. It is noted
that α ∈ (0, 1), φijφ

T
ij is a symmetric positive semidefinite

matrix, and(P̃A
ij λij)/(N0/2+aT

i pJ ) and(P̄A
ij λij)/(N0/2+

aT
i pJ ) are always non-negative for alli ∈ {1, . . . , NT } and

j ∈ AL
i . Based on the relations in (25)–(29), it is proved that

uA(p
A,pJ ) in (15) is a strictly concave function ofpA for a

fixed pJ .

Next, it is obtained that there exists a unique maximizer
of uJ(p

A,pJ) in (16) for a givenpA when the condition
in Proposition 3 is satisfied. To that aim, consider the best
response function of playerJ in (20). Based on a similar
approach to that in [33], the solution of the optimization

2The Fisher information matrix is always positive semidefinite by definition.
The assumption in the proposition corresponds to practicalscenarios with a
sufficient number of anchor nodes and guarantees the invertibility of the Fisher
information matrix.
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problem in (20) can be expressed as

pJBR(h(j)) = min

{

P J
T −

j−1
∑

l=1

pJBR(h(l)), P
J
peak

}

(30)

for j = 1, . . . , NJ , where h(j) denotes the index of the
jth largest element of vectorw defined in Proposition 3,
pJBR(h(j)) represents theh(j)th element ofpJBR, and

∑0
l=1(·)

is defined as zero. For the condition that all the elements ofw

are different, index vectorh , [h(1)h(2) · · ·h(NJ)] becomes
unique and consequently the solution in (30) turns into a
unique maximizer ofuJ(p

A,pJ ) for a givenpA. Therefore,
based on the properties of gameG presented in the proof of
Proposition 1 and the statements proved above, it is concluded
that if the condition in Proposition 3 is satisfied, then the Nash
equilibrium of power control gameG is unique. �

It is important to note that the Nash equilibrium obtained
by (22) based on Proposition 2 may not be unique. However,
Proposition 3 provides a sufficient condition to check that the
obtained Nash equilibrium is a unique equilibrium of power
control gameG. If the condition in Proposition 3 is satisfied
for a given Nash equilibrium, then there exists a unique
equilibrium of gameG. Otherwise, the Nash equilibrium may
or may not be unique. The condition in Proposition 3 depends
on various system parameters such as the power strategy and
the locations of the anchor nodes, the properties of the signal
transmitted from the anchor nodes, the multipath components
between the anchor nodes and the target nodes, and the channel
coefficients between the jammer nodes and the target nodes.

In the presence of multiple Nash equilibria, the anchor
and jammer nodes may choose the desired Nash equilibrium
depending on the conditions and constraints in the specific
application. Although the average CRLB of the target nodes
(i.e., the value of the game) is the same for all Nash equilibria
based on Proposition 2, the anchor and jammer nodes may
prefer one Nash equilibrium over the others for the efficient
use of limited resources in the wireless localization network.

D. Power Control Game Based on Minimum and Maximum
CRLB

Instead of employing the average CRLB as the performance
metric, it is also possible to use the worst-case CRLBs for
the anchor and jammer nodes as the performance metrics.
In particular, from the viewpoint of the anchor nodes, the
target node with the maximum CRLB (i.e., with the worst
localization accuracy) can be considered with the aim of
minimizing the maximum CRLB (so that a certain level
of localization accuracy can be achieved by all the target
nodes). Similarly, the jammer nodes can aim to maximize
the minimum CRLB of the target nodes in order to degrade
the localization performance of the system. For this setting,
define a new gamēG which has the same players and the
same strategy sets for the players asG does, except for the
utility functions. For a given action profile, the utility functions

of playerA and playerJ in gameḠ are given by

uA(p
A,pJ) = − max

i∈1,...,NT

tr
{

J i

(

xi,p
A
i ,p

J
)−1

}

, (31)

uJ(p
A,pJ) = min

i∈1,...,NT

tr
{

J i

(

xi,p
A
i ,p

J
)−1

}

. (32)

As it can be noted from the utility functions for playerA
and playerJ in (31) and (32), the power control game based
on these utility functions is not a zero-sum game; that is,
uA(p

A,pJ ) + uJ(p
A,pJ) 6= 0, ∃pA ∈ SA ∧ ∃pJ ∈ SJ .

The utility functions in this scenario do not facilitate de-
tailed theoretical analyses as in the case of the average CRLB
based utility functions. However, the existence of a pure Nash
equilibrium is still guaranteed based on the following result.

Proposition 4: There exists at least one pure Nash equilib-
rium in gameḠ.

Proof: GameḠ admits at least one pure Nash equilibrium
if the conditions presented in the proof of Proposition 1 are
satisfied. GamēG satisfies the first condition since gamēG
has the same strategy sets for the players asG does. Also,
uA(p

A,pJ ) in (31) and uJ(p
A,pJ ) in (32) are concave

functions of pA and pJ , respectively, since the minimum
(maximum) of concave (convex) functions is also concave
(convex). Therefore, gamēG also satisfies the second and
third conditions. Consequently, based on the similar approach
employed in the proof of Proposition 1, it can be shown that
at least one pure-strategy Nash equilibrium exists in gameḠ.
�

IV. N UMERICAL RESULTS

In this section, numerical examples are provided in order
to corroborate the theoretical results obtained in the previous
section. To that aim, consider a wireless localization network
in which four anchor nodes, three target nodes, and three
jammer nodes are located as in Fig. 1. For the sake of
simplicity, it is assumed that each target node has LOS
connections to all of the anchor nodes. Also, the free space
propagation model is considered; that is,λij in (7) is equal to
λij = 100N0‖xi − yj‖

−2/2 [17]. In addition,|γij |2 is given
by ‖xi − zj‖−2/2 andN0 is set to2 [11].

In Fig. 2, the average CRLBs of the three target nodes
(i.e., the values of the game) are plotted versus the total
available power of the anchor nodes (i.e.,PA

T ) for various
peak powers of the anchor nodes whenP J

T = 20, P J
peak = 10,

and the anchor nodes and the jammer nodes operate at the
Nash equilibrium. From the figure, it is observed that as the
total power of the anchor nodes increases, the average CRLB
obtained in the Nash equilibrium reduces since more strategies
become available for the anchor nodes asPA

T increases. Also,
it can be deduced from the figure that for lower values of the
total power of the anchor nodes (e.g.,PA

T < 5), the average
CRLBs of the target nodes are the same for different values of
PA
peak due to the dominant effect of the total power constraint

on the game value. On the other hand, for higher values of the
total power of the anchor nodes (e.g.,PA

T ≥ 12 for PA
peak = 1),

the average CRLB of the localization system does not change
since the peak power constraint of the anchor nodes limits the
use of total power available for the anchor nodes.
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Fig. 1. The simulated network including four anchor nodes positioned at
[0 0], [10 0], [0 10], and [10 10]m., three jammer nodes positioned at[2 15],
[4 2], and[6 6]m., and three target nodes positioned at[2 4], [7 1], and[9 9]m.
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Fig. 2. Average CRLB of the target nodes versus total power ofthe anchor
nodes for the scenario in Fig. 1, whereP J

T
= 20, P

J

peak
= 10, and the

anchor nodes and the jammer nodes operate at Nash equilibrium in power
control gameG.

In order to observe the effects of the peak power constraint
of the anchor nodes on the average CRLB of the target nodes,
the average CRLBs of the target nodes are plotted in Fig. 3
versus the peak power of the anchor nodes for various values
of the total power of the anchor nodes whenP J

T = 20 and
P J
peak = 10. From Fig. 3, similar observations to those for

Fig. 2 are obtained. It is also stated that the average CRLBs
for different values of the total power of the anchor nodes are
the same when the peak power of the anchor nodes is below
a certain value since the peak power constraint of the anchor
nodes becomes more dominant than the total power constraint
in that case.

Similar to Fig. 2 and Fig. 3, the average CRLBs are plotted
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Fig. 3. Average CRLB of the target nodes versus peak power of the anchor
nodes for the scenario in Fig. 1, whereP J

T
= 20, P

J

peak
= 10, and the

anchor nodes and the jammer nodes operate at Nash equilibrium in power
control gameG.

versus the total power of the jammer nodes for various values
of the peak power and versus the peak power of the jammer
nodes for different values of the total power of the jammer
nodes in Fig. 4 and Fig. 5, respectively, wherePA

T = 20
andPA

peak = 10. Unlike the trends in Fig. 2 and Fig. 3, the
average CRLBs obtained in the Nash equilibria increase as
the total power of the jammer nodes and the peak power of
the jammer nodes increase in Fig. 4 and Fig. 5, respectively,
since the aim of the jammer nodes is to reduce the localization
performance; that is, to increase the average CRLB. Similarly,
from Fig. 4 and Fig. 5, the results related to the dominance of
the constraints for different total power and peak power levels
of the jammer nodes can be deduced. It is important to note
that the slope of the curves in Fig. 4 and Fig. 5 changes due
to the peak power and total power constraints. As an example,
consider the case (i.e., the red line) in Fig. 4, whereP J

peak =

10, PA
T = 20, andPA

peak = 10. The slope of the curve changes
whenP J

T = 10, P J
T = 20, andP J

T = 30. The reason for that
can be expressed as follows: ForP J

T ≤ 10, only one jammer
node with the highest impact on the system transmits noise
based on the optimization problem in (20). For10 < P J

T ≤ 20,
two jammer nodes are active in the system; that is, the jammer
node with the highest impact on the system transmits noise
at peak power (i.e.,P J

peak = 10) whereas the other jammer
node with the second highest impact on the system transmits
noise such that the total power of the two nodes is equal to
the total power constraint of the jammer nodes. Similarly, for
20 < P J

T ≤ 30, all the jammer nodes operate. Due to the peak
power constraint (i.e.,P J

peak = 10 for each jammer node), the
power strategies of the jammer nodes remain the same for
P J
T > 30. On the other hand, for the cases in Fig. 5, a similar

process can be considered in the reverse direction. Namely,
all the jammer nodes transmit noise for a lower peak power
of the jammer nodes and the number of active jammer nodes
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Fig. 4. Average CRLB of the target nodes versus total power ofthe jammer
nodes for the scenario in Fig. 1, wherePA
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= 20, PA
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= 10, and the

anchor nodes and the jammer nodes operate at Nash equilibrium in power
control gameG.
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Fig. 5. Average CRLB of the target nodes versus peak power of the jammer
nodes for the scenario in Fig. 1, wherePA

T
= 20, PA

peak
= 10, and the

anchor nodes and the jammer nodes operate at Nash equilibrium in power
control gameG.

in the system decreases gradually as the peak power for the
jammer nodes increases.

Table I presents the Nash equilibrium strategies of the
anchor and jammer nodes, which are located as in Fig. 1, for
various peak power and total power constraints of the anchor
and jammer nodes. It is important to note that in Table I, the
Nash equilibrium strategy of the anchor nodes (i.e., playerA)
denoted byp̄A

⋆ corresponds to the reshaped version ofpA
⋆ in

(17) and (18) for the purpose of a clear presentation. Namely,
pA is assumed to be defined aspA ,

[

pA
1 · · · pA

NT

]T

instead of the one in (13). Table I provides the strategies
for the anchor node and the jammer node for one Nash
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Fig. 6. The simulated network including four anchor nodes positioned at
[0 0], [10 0], [10 10], and [0 10]m., three jammer nodes positioned at[5 3],
[5 7], and[2 2]m., and three target nodes positioned at[3 5], [5 5], and[7 5]m.

equilibrium obtained in each case based on the peak power
and total power constraints. The results in Table I agree
with Proposition 1 on that power control gameG admits at
least one pure Nash equilibrium for each case as one Nash
equilibrium is provided for each case in Table I. Also, it
is obtained thatuJ(p

A
⋆ ,p

J
⋆ ) = −uA(p

A
⋆ ,p

J
⋆ ) for each case,

as Proposition 2 states. In addition, each obtained pure Nash
equilibrium in Table I is a unique pure Nash equilibrium based
on Proposition 3 since all the elements ofw presented in
Table I are different in each case.

In order to investigate that power control gameG can have
multiple pure Nash equilibria for some given peak power
and total power constraints, consider a wireless localization
network including four anchor nodes, three target nodes, and
three jammer nodes which are located as in Fig. 6. In Table II,
the Nash equilibria strategies of the anchor nodes and the
jammer nodes in Fig. 6 are provided for certain peak power
and total power constraints. It is obtained from Table II that
there exist multiple pure Nash equilibria for some peak power
and total power constraints of the anchor nodes and the
jammer nodes (e.g.,PA

T = 15, PA
peak = 10, P J

T = 15, and
P J
peak = 10). Also, the value of the game is unique for every

Nash equilibrium as Proposition 2 states. In addition, based on
Proposition 3, it can be argued that some of the elements of
w provided in Table II must be the same since power control
gameG has multiple pure strategy Nash equilibria for that
case, which complies with the results in Table II.

At this point, it would be useful to mention that the con-
ventional iterative algorithm based on best response dynamics
is employed in the numerical examples to obtain the Nash
equilibrium. In the best response dynamics, one player chooses
an arbitrary strategy first and then the other player plays the
best response to the opponent’s current best strategy. At each
round, each player employs the best response to the current
strategy of the opponent iteratively and the algorithm termi-
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TABLE I
VARIOUS STRATEGIES OBTAINED FOR THE SCENARIO INFIG. 1 WHEN THE ANCHOR NODES AND THE JAMMER NODES ARE AT ANASH EQUILIBRIUM IN

POWER CONTROL GAMEG .









PA
T

PA
peak

P J
T

P J
peak









p̄A
⋆ pJ

⋆ wT uJ(p
A
⋆ ,p

J
⋆ )

(

−uA(p
A
⋆ ,p

J
⋆ )
)









20
10
20
10













2.3908 4.2860 0.8796 0
0 1.6703 0 5.0111
0 2.5912 2.5912 0.5797









0
10
10









0.0065
0.0572
0.0371



 0.5698









10
10
20
10













1.1954 2.1430 0.4398 0
0 0.8352 0 2.5056
0 1.2956 1.2956 0.2898









0
10
10









0.0129
0.1145
0.0743



 1.1396









20
10
10
10













2.4470 4.3868 0.9002 0
0 1.7309 0 5.1928
0 2.4024 2.4024 0.5375









0
10
0









0.0066
0.0560
0.0378



 0.4450









20
1
20
10













1 1 1 1
1 1 1 1
1 1 1 1









0
10
10









0.0155
0.1420
0.0905



 1.4031









20
10
20
6













2.3341 4.1844 0.8586 0
0 1.6473 0 4.9420
0 2.7133 2.7133 0.6070









6
6
6









0.0064
0.0581
0.0368



 0.4564

nates when no players have an incentive to deviate from their
previous strategies, which corresponds to a Nash equilibrium
in the game. When the condition in Proposition 3 is satisfied,
the obtained Nash equilibrium is guaranteed to be unique.
On the other hand, when that condition is not satisfied, that
is, when some elements ofw are identical, the power levels
of the corresponding jammer nodes can be redistributed and
the resulting strategies for the anchor and jammer nodes are
checked to determine if another Nash equilibrium is achieved.
In order to verify that the resulting strategies constitutea
different Nash equilibrium, the best response strategy of the
anchor nodes to the resulting strategy of the jammer nodes
is determined first based on the best response function of
the anchor nodes in (19). Then, if the obtained strategy of
the anchor nodes does not differ from the strategy of the
anchor nodes in the previous Nash equilibrium, it is concluded
that the resulting strategies for the anchor and jammer nodes
obtained by redistributing the power levels of the jammer
nodes correspond to another Nash equilibrium. Otherwise, if
the strategies of the anchor nodes do not match, the resulting
strategies cannot be considered as a Nash equilibrium and

other possible strategies of the jammer nodes produced based
on redistribution of the power levels may be examined to find
another Nash equilibrium. In this way, multiple Nash equilibria
can be obtained, as in Table II.

To analyze power control gamēG in which the utility func-
tions of the players are based on the minimum and maximum
CRLBs instead of the average CRLB (see Section III-D),
consider the wireless localization network in Fig. 1. In Fig. 7,
the minimum and maximum CRLBs of the target nodes are
plotted versus the total available power of the anchor nodes
for various values of the peak power constraint of the anchor
nodes whenP J

T = 20 andP J
peak = 10. It is noted that for low

values of the total power constraint of the anchor nodes, the
utility functions of the anchor nodes and the jammer nodes
become equal in magnitude; that is, the sum of the utility
functions of the players is equal to zero. On the other hand,
the utility functions of the anchor nodes and the jammer nodes
are not equal for higher values of the total power constraint
of the anchor nodes. Then, in Fig. 8, the minimum and
maximum CRLBs of the target nodes are plotted versus the
peak power of the anchor nodes when the anchor nodes and the
jammer nodes operate at the Nash equilibrium,P J

T = 20, and
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TABLE II
VARIOUS STRATEGIES OBTAINED FOR THE SCENARIO INFIG. 6 WHEN THE ANCHOR NODES AND THE JAMMER NODES ARE AT ANASH EQUILIBRIUM IN

POWER CONTROL GAMEG .









PA
T

PA
peak

P J
T

P J
peak









p̄A
⋆ pJ

⋆ wT uJ(p
A
⋆ ,p

J
⋆ )

(

−uA(p
A
⋆ ,p

J
⋆ )
)









15
10
15
10













2.2220 0 0 2.2220
1.5280 1.5280 1.5280 1.5280

0 2.2220 2.2220 0









10
5
0









0.1801
0.1801
0.0690



 1.2715









15
10
15
10













2.2220 0 0 2.2220
1.5280 1.5280 1.5280 1.5280

0 2.2220 2.2220 0









7.5
7.5
0









0.1801
0.1801
0.0690



 1.2715









15
10
15
10













2.2220 0 0 2.2220
1.5280 1.5280 1.5280 1.5280

0 2.2220 2.2220 0









5
10
0









0.1801
0.1801
0.0690



 1.2715

P J
peak = 10. Unlike the previous figure, the utility functions

of the players in gamēG differ in magnitude for low values
of the peak power of the anchor nodes. On the other hand,
for high values of the peak power of the anchor nodes, the
sum of the utility functions of the anchor and jammer nodes
becomes zero. It is also important to emphasize that as the
total power of the anchor nodes increases, the CRLBs (i.e.,
the minimum of targets’ CRLBs for the jammer nodes and the
maximum of targets’ CRLBs for the anchor nodes) obtained
in the Nash equilibrium reduce. Similar plots to those in Fig. 7
and Fig. 8 are presented in Fig. 9 and Fig. 10 for the jammer
nodes considering various values of the total power and peak
power constraints of the jammer nodes whenPA

T = 20 and
PA
peak = 10. From Fig. 9 and Fig. 10, it is noticed that multiple

Nash equilibria can be observed for power control gameḠ
in some cases and the magnitude of the utilities obtained in
those Nash equilibria points can get the values representedin
the shaded regions of Fig. 9 and Fig. 10. However, for some
values of the constraints, the Nash equilibria may be unique
(e.g., for high values of the total power of the jammer nodes).
Lastly, the results in the figures comply with the statement in
Proposition 4 that power control gamēG has at least one pure
Nash equilibrium.

V. CONCLUDING REMARKS

In this paper, interactions between anchor and jammer
nodes have been analyzed for a wireless localization network.
Based on a game-theoretic framework, two types of power
control games between anchor and jammer nodes have been
investigated by employing the average CRLB and the worst-
case CRLBs of the target nodes (from the viewpoints of the
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Fig. 7. Minimum and maximum CRLBs (i.e., absolute utility values for the
jammer and anchor nodes, respectively) of the target nodes versus total power
of the anchor nodes for the scenario in Fig. 1, whereP

J

T
= 20, P J

peak
= 10,

and the anchor nodes and the jammer nodes operate at Nash equilibrium in
power control gamēG.

anchor and jammer nodes) as performance metrics. It has
been proved that both games have at least one pure strategy
Nash equilibrium. This implies that there exist deterministic
power allocation strategies for the anchor and jammer nodes
that lead to one or more Nash equilibria in both games. In
addition, an approach has been presented in order to figure
out the Nash equilibrium of the game which employs the
average CRLB as the performance metric, and a sufficient
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J

T
= 20, P J

peak
= 10,

and the anchor nodes and the jammer nodes operate at Nash equilibrium in
power control gamēG.
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Fig. 9. Minimum and maximum CRLBs (i.e., absolute utility values for the
jammer and anchor nodes, respectively) of the target nodes versus total power
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power control gamēG.

condition has been provided to determine the uniqueness of
the Nash equilibrium. The theoretical investigations havebeen
illustrated via numerical examples. As an interesting direction
for future work, uncertainty on various parameters of anchor
and jammer nodes can be incorporated into the game models,
and different game models such as stochastic and repetitive
games can be considered for the localization performance of
target nodes in the presence of jammer nodes in a wireless
localization network.
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and the anchor nodes and the jammer nodes operate at Nash equilibrium in
power control gamēG.
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