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Abstract—In this paper, optimal deterministic encoding of a
scalar parameter is investigated in the presence of an eavesdrop-
per. The aim is to minimize the expectation of the conditional
Cramér-Rao bound (ECRB) at the intended receiver while
keeping the mean-squared error (MSE) at the eavesdropper
above a certain threshold. First, the optimal encoding function
is derived in the absence of secrecy constraints for any given
prior distribution on the parameter. Next, the optimizatio n
problem is formulated under a secrecy constraint and various
solution approaches are proposed. Also, theoretical results on
the form of the optimal encoding function are provided under
the assumption that the eavesdropper employs a linear minimum
mean-squared error (MMSE) estimator. Numerical examples are
presented to illustrate the theoretical results and to investigate
the performance of the proposed solution approaches.

Index Terms—Parameter estimation, Craḿer-Rao bound
(CRB), secrecy, optimization.

I. I NTRODUCTION AND MOTIVATION

Security has been a crucial issue for communications. In a
secure communication system, the aim is to secretly transmit
secret data to an intended receiver in the presence of an
eavesdropper. Cryptographic protocols based on secret keys
have extensively been employed to prevent any third parties
from extracting secret data [1], [2]. In [3], Shannon proved
that the cryptographic approach known as one-time-pad can
achieve the perfect secrecy; that is, the original message and
the cypher text become independent, if the number of different
keys is at least as high as the number of messages. On the
other hand, physical layer secrecy relies on the characteristics
of the wireless channel and tries to ensure secret commu-
nications by exploiting varying channel conditions. In [4],
Wyner proved that when the channel between the transmitter
and the eavesdropper is a degraded version of the channel
between the transmitter and the intended receiver, then reliable
communication can be achieved without information leakage
to the eavesdropper. One common approach to measure the
amount of achieved secrecy is to use information theoretical
metrics and tools, such as mutual information, and to examine
the highest rates at which the transmitter can encode a message
while maintaining a certain equivocation level at the eaves-
dropper. Following Wyner’s work, a multitude of studies have
been performed based on this approach for various channel
and transmission scenarios [5]–[12]. In the literature, there
also exist quality-of-service (QoS) frameworks based on the
signal-to-noise ratio (SNR), which is used as a metric for
physical layer security [13], [14]. For example, in [14], a
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cooperative jamming scenario is considered for multiple-input
multiple-output (MIMO) broadcast channels with multiple
receivers and eavesdroppers, and the optimal friendly jammer
strategy is designed to keep signal-to-interference-plus-noise
ratio (SINR) at the eavesdroppers below a certain thresholdto
ensure secrecy.

As a common alternative approach, secrecy levels can be
quantified based on estimation theoretic metrics. In this case,
the aim is to optimize the estimation accuracy performance
of the estimator at the intended receiver, while keeping the
minimum mean-squared error (MMSE) at the eavesdropper
above a certain target. This setting has been employed in a
wide variety of problems [15]–[23]. In [15], the outputY of a
channel for a given inputX is encoded by a random mapping
PZ|Y in order to ensure that the MMSE for estimatingY based
onZ is minimized while the MMSE for estimatingX based on
Z is above(1− ǫ)V ar(X) for a givenǫ ≥ 0, whereV ar(X)
denotes the variance ofX . In [16], the secret communication
problem is considered for Gaussian interference channels in
the presence of eavesdroppers. The problem is formulated to
minimize the total MMSE at the intended receivers while
keeping the MMSE at the eavesdroppers above a certain
threshold, where joint artificial noise and linear precoding
schemes are used to satisfy the secrecy requirements.

Another application area of the estimation theoretic secrecy
is distributed inference networks, where the information com-
ing to a fusion center (FC) from various sensor nodes can
also be observed by eavesdroppers. The secrecy for distributed
detection and estimation can be ensured via various techniques
such as design of sensor quantizers and decision rules, stochas-
tic encoding, artificial noise to confuse eavesdroppers, and
MIMO beamforming [17]. In [18], the estimation problem
of a single point Gaussian source in the presence of an
eavesdropper is investigated for the cases of multiple transmit
sensors with a single antenna and a single sensor with multiple
transmit antennas. Optimal transmit power allocation policies
are derived to minimize the average mean-squared error (MSE)
for the parameter of interest while guaranteeing a target MSE
at the eavesdropper. Furthermore, in [19], the secrecy problem
in a distributed inference framework is investigated in terms
of distortion (and secrecy) outage, which is the probability
that the MMSE at the FC (eavesdropper) is above (below)
certain distortion levels. The optimal transmit power allocation
policies are derived to minimize the distortion outage at the
FC under an average transmit power and a secrecy outage
constraint at the eavesdropper. In [20], stochastic encryption
is performed based on the 1-bit quantized version of a noisy
sensor measurement to achieve secret communication, where
both symmetric and asymmetric bit flipping strategies are
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considered under the assumptions that the transmitter is aware
of the flipping probabilities and the eavesdropper is unaware of
the encryption. The effects of the flipping probabilities onthe
Cramér-Rao bound (CRB) and the maximum likelihood (ML)
estimator at the fusion center, and on the bias and the MSE
at the eavesdropper are investigated [20]. In [21], privacyof
households using smart meters is considered in the presenceof
adversary parties who estimate energy consumption based on
data gathered in smart meters. The house utilizes the batteries
to mask the real energy consumption. The Fisher information
is employed as a metric of privacy and the optimal policies for
the utilization of batteries are derived to minimize the Fisher
information to achieve privacy.

For estimation theoretic approaches, the Cramér-Rao
bounds provide useful theoretical limits for assessing perfor-
mance of estimators. It is known that when the parameter to
be estimated is non-random, the conditional CRB states that,
under some regularity conditions, the MSE of any unbiased
estimator is bounded by the inverse of the Fisher information
for each given value of the parameter [24]. On the other hand,
if the parameter to be estimated is random with a known prior
distribution, then the extended versions of the CRB, such asthe
Bayesian Cramér-Rao bound (BCRB) and the expectation of
the conditional Cramér-Rao bound (ECRB), can be employed
[25]. Even though the BCRB effectively takes the prior infor-
mation into account and can provide a useful lower bound for
the maximum a-posterior probability (MAP) estimator in the
low signal-to-noise ratio (SNR) regime, it does not exist for
some prior distributions due to the violation of an assumption
in its derivation. For example, the BCRB does not exist when
the parameter has a uniform prior distribution over a closed
set [25]–[27]. More importantly, when the conditional CRB is
a function of the unknown parameter, which is commonly the
case, the BCRB does not present a tight bound in the high
SNR regime.1 Therefore, for the parameter encoding problem
in this paper, the use of the BCRB as the objective function
may be misleading and can result in trivial bounds in some
cases. For these reasons, the ECRB is employed in this study,
which has widely been utilized in a variety of applications in
the literature; e.g., [29]–[31], [42]. The ECRB is known to
provide a tight limit for the MAP estimator asymptotically,
and converges to the Ziv-Zakai bound (ZZB) in the high
SNR regime [25]. Therefore, the optimization of parameter
encoding according to the ECRB metric leads to close-to-
optimal performance for practical MAP estimators in the high
SNR regime. Although the ZZB can provide a tight limit for all
SNRs, it has high computational complexity compared to the
ECRB [25], [28] and does not allow theoretical investigations
for achieving an intuitive understanding of the parameter
encoding problem.

In this paper, we consider the transmission of a scalar
parameter to an intended receiver in the presence of an eaves-
dropper. In order to ensure secret communications, we utilize
an encoding function (continuous and one-to-one) applied on
the original parameter. The aim is to minimize the ECRB at

1This is also a problem for the weighted Cramér-Rao bound (WCRB),
which is a generalized version of the BCRB using a weighting function, and
can be employed for the cases in which the BCRB does not exist [25], [27].

the intended receiver while ensuring a certain MSE target at
the eavesdropper. It is assumed that the eavesdropper uses a
linear MMSE estimator without being aware of the encoding.
An optimization problem is formulated to obtain the optimal
encoding function for given target MSE levels. At the first
step, the secrecy requirements are omitted and the optimiza-
tion problem is solved under no constraints. In that case, a
closed-form analytical solution is provided for the optimal
encoding function for any given prior distribution. Next, the
MSE constraint for the eavesdropper is included and various
solution approaches, such as polynomial approximation, piece-
wise linear approximation, and linear encoding are proposed.
Also, theoretical results are derived related to the structure
of the optimal encoding function under some assumptions.
Then, numerical results are provided for both uniform and
nonuniform prior distributions. The main contributions inthis
paper can be summarized as follows:

• The problem of optimal parameter encoding is proposed
by considering an ECRB metric at the intended receiver
and an MSE target level at the eavesdropper.

• Considering a generic prior distribution, a closed-form
expression is derived for the optimal encoding function
under no secrecy constraints.

• A closed form expression forE(|β̂(Z)−θ|2) is provided
when the eavesdropper employs the linear MMSE esti-
mator without being aware of the encoding, whereβ̂(Z)
is the estimator of the eavesdropper andθ is the true
value of the parameter. It is shown that the corresponding
ECRB and MSE value do not change if the domain of
the function is shifted. It is also proved that if the prior
distribution is symmetric on the domain, the search for
optimal encoding functions can be limited to decreasing
functions. In addition, a closed-form expression is derived
for the supremum ofE(|β̂(Z) − θ|2) over all feasible
encoding functions when the prior distribution is uniform.

• Three solution approaches are proposed to find the op-
timal encoding function. The polynomial and piecewise
linear approximations are used to calculate the optimal
encoding functions numerically, and linear functions are
employed to develop a suboptimal encoding scheme. It
is shown that the optimal linear encoding function can
be obtained simply by finding the roots of a polynomial
equation. In addition, solutions are provided based on
power functions in the numerical examples.

• Via numerical examples, the optimal ECRB values and
encoding functions are obtained based on the proposed
approaches for the case of a varying target MSE level
when eavesdropper’s channel quality is fixed, and for the
case of a varying eavesdropper’s channel quality when
the target MSE level is fixed.

The rest of the paper is organized as follows: The optimal
parameter encoding problem is formulated in Section II. Op-
timal encoding functions with and without secrecy constraints
are investigated in Section III. The solution approaches for
the optimal encoding problem are proposed in Section IV.
The numerical results are presented in Section V, and the
concluding remarks are given in Section VI.
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Fig. 1: System model for the parameter encoding problem.

II. PROBLEM FORMULATION

Consider the transmission of a scalar parameterθ ∈ Λ to an
intended receiver over a noisy and fading channel, where the
noise is denoted byNr and the instantaneous fading coefficient
of the channel is denoted by the constanthr. It is also assumed
that there exists an eavesdropper trying to estimate parameter
θ. The aim is to achieve accurate estimation of the parameter
at the intended receiver while keeping the estimation error
at the eavesdropper above a certain level. To that aim, the
parameter is encoded by a continuous, real valued, and one-
to-one functionf : Λ → Γ. Hence, the received signal at the
intended receiver can be written as

Y = hrf(θ) +Nr (1)

where Nr is modeled as a zero-mean Gaussian random
variable with varianceσ2

r , andNr and θ are assumed to be
independent. On the other hand, the eavesdropper observes

Z = hef(θ) +Ne (2)

wherehe is the fading coefficient for the eavesdropper, and
Ne is zero-mean Gaussian noise with varianceσ2

e , which
is independent ofθ and Nr. Also, the prior information on
parameterθ is represented by a probability density function
(PDF) denoted byw(θ) for θ ∈ Λ. The intended receiver tries
to estimate parameterθ based on observationY whereas the
eavesdropper uses observationZ for estimatingθ. The system
model is illustrated in Fig. 1. It is assumed that the channels
are slowly fading; that is, the channel coefficients are constant
during the transmission of the parameter.2

The following assumptions are made about the eavesdrop-
per’s strategy:

• f acts like a secret key between the transmitter and the
intended receiver and is not known by the eavesdropper.
Hence, the estimator at the eavesdropper actually tries to
estimatef(θ) , β without the knowledge off based on
observationZ = hef(θ) +Ne.

• The eavesdropper observes a scaled and noise corrupted
version of f(θ) (not θ) and it can only obtain prior
information related tof(θ) (e.g., based on previous
observations). It is assumed that the eavesdropper knows
only the mean and the variance off(θ), which are quite
easy to obtain compared to the PDF off(θ).

2Considering a block fading scenario in which the channel coefficients are
constant for a block of transmissions [6], [32]–[34], the parameter encoding
function should be designed for each block.

• Based on the previous assumption, the eavesdropper
employs the linear MMSE estimator, which requires the
prior knowledge of the mean and variance off(θ) due
to the independence ofθ andNe (see (24) and (25)).

According to this strategy, the MSE at the eavesdropper can
be written asE(|β̂(Z)− θ|2), whereβ̂(Z) is the estimator of
the eavesdropper andθ is the true value of the parameter.

For quantifying the estimation accuracy at the intended
receiver, the ECRB will be used in this study, as motivated
in Section I. The ECRB is defined as the expectation of the
conditional CRB with respect to the unknown parameter [25],
which is expressed as

Eθ

(

I(θ)−1
)

=

∫

Λ

w(θ)
1

I(θ)
dθ = ECRB (3)

wherew(θ) is the prior PDF ofθ, I(θ)−1 corresponds to the
conditional CRB for estimatingθ,3 andI(θ) denotes the Fisher
information, i.e.,

I(θ) =

∫
(

∂ log pY |θ(y)

∂θ

)2

pY |θ(y)dy (4)

with pY |θ(y) representing the conditional PDF ofY for a given
value ofθ [24].

The aim is to minimize the ECRB at the intended receiver
over the encoding functionf(·). However, the estimation
performance at the eavesdropper, which tries to estimate
the parameter by using its observationZ, should also be
considered. Therefore, the aim becomes the minimization of
the ECRB forθ at the intended receiver while keeping the
estimation error at the eavesdropper above a certain limit.
Therefore, when deciding on the encoding scheme by using
a one-to-one and continuous function in the presence of an
eavesdropper, the average error at the eavesdropper shouldbe
considered, as well. Hence, the overall optimization problem
is proposed as follows:

fopt = argmin
f

∫

Λ

w(θ)
1

I(θ)
dθ s.t. E

(

∣

∣β̂(Z)− θ
∣

∣

2
)

≥ α

(5)

where α is the MSE target at the eavesdropper and the
expectation is over the joint distribution ofθ and Z. In
addition, the parameter space and the intrinsic constraints on
the encoding functionf are specified as follows:

• θ ∈ Λ = [a, b].
• f(θ) ∈ [a, b].
• f is a continuous and one-to-one function.

Namely, it is assumed that the parameter space is a closed
set inR and the encoder function is an endofunction; that is,
the domain and the codomain of the encoder function are the
same. This is due to the practical concern that the transmitter
should use the same hardware structure in the presence and ab-
sence of encoding. Furthermore, the endofunction assumption
implies the peak power constraint on the encoder and it guar-
antees that the identity mappingf(θ) = θ (i.e., no encoding)
is a legal encoding function. It also preserves the maximum

3The conditional CRB presents a lower limit on the MSE of any unbiased
estimator ofθ based onY for everyθ ∈ Λ.
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range of the parameter,b− a. Note that it is actually possible
to impose different constraints (e.g., average power constraint,
boundedness) or assumptions (e.g., stochastic encoding) on
the encoding function depending on the design choice and
application.

The use of the ECRB as the performance metric for the
design of optimal encoding functions can be justified as
follows: (i) For sufficiently high SNRs, the MSE of the MAP
estimator converges to the ECRB [25]. (For low SNRs, the
MAP estimator depends mainly on the prior information;
hence, parameter encoding becomes ineffective.) (ii) Unlike
the MSE metric, the ECRB metric does not depend on a spe-
cific estimator structure. (iii) The use of the ECRB facilitates
theoretical investigations for achieving intuitive understanding
of the parameter encoding problem.

III. O PTIMAL ENCODING FUNCTION

In this section, the optimization problem in (5) is investi-
gated in detail. To that aim, the MSE of the eavesdropper in
the constraint of (5) is analyzed first.

E
(

∣

∣β̂(Z)− θ
∣

∣

2
)

= E
(

∣

∣β̂(Z)− f(θ) + f(θ)− θ
∣

∣

2
)

(6)

= E
(

∣

∣β̂(Z)− f(θ)
∣

∣

2
)

+ E
(

|f(θ)− θ|2
)

+ 2E
(

(

β̂(Z)− f(θ)
)

(f(θ)− θ)
)

. (7)

It is noted from (7) that the MSE of the eavesdropper is
determined by both the estimation error for estimatingf(θ)
(that is, β̂(Z)− f(θ)) and the distortion due to the encoding
function (that is,f(θ)−θ). The last term in (7) can be written
as

E
(

(

β̂(Z)− f(θ)
)

(f(θ)− θ)
)

= EθEZ|θ

(

(

β̂(Z)− f(θ)
)

(f(θ)− θ) | θ
)

(8)

= Eθ

(

(f(θ)− θ)EZ|θ

(

β̂(Z)− f(θ)
)

)

(9)

whereEθ denotes the expectation with respect toθ andEZ|θ

represents the conditional expectation with respect toZ given
θ. As a special case, if the estimator of the eavesdropper,
β̂(Z), satisfiesEZ|θ

(

β̂(Z)− f(θ)
)

= 0, ∀θ, then the term in
(9) becomes zero. This condition actually corresponds to the
definition of an unbiased estimator for estimatingf(θ) based
on Z; i.e., EZ|θ

(

β̂(Z)
)

= f(θ), ∀θ. In other words, when
the estimator of the eavesdropper is unbiased, its MSE in (6)
simply becomes the sum of the MSE for estimatingf(θ) (the
first term in (7)) and the mean-squared distortion toθ due to
the encoding functionf (the second term in (7)).

The observations in the previous paragraph lead to an
intuitive explanation of the proposed problem formulation. For
example, suppose that the transmitter is to send parameter
θ which is either 0 or 1 with equal probabilities, where
he = hr = σ2

e = σ2
r = 1. In addition, the estimator at the

eavesdropper is given by

β̂(Z) =

{

1, if Z ≥ 0.5

0, otherwise
. (10)

If the transmitter sends the parameter without any encoding;
that is, if f(θ) = θ, then the MSE of the estimator at the
eavesdropper can be calculated from (7) and (10) asQ(0.5) =
0.309 (the second and the third terms in (7) are zero), where
Q(x) = (1/

√
2π)

∫∞

x
e−u2/2du represents theQ-function. On

the other hand, if the transmitter employs an encoding function
specified byf(θ) = 1− θ, then the MSE at the eavesdropper
becomes1 − Q(0.5) = 0.691 (the first term in (7) is the
same as in the previous case, but the second term is1 and the
third term is−2Q(0.5)). Hence, the eavesdropper has a higher
MSE as a result of secret encoding, which is not known by the
eavesdropper (i.e., the eavesdropper thinks that the transmitted
value is the original parameterθ). The encoding function is
known by the intended receiver, which can use this information
to design its estimator accordingly. However, for a generic
encoding function, there can occur a penalty at the intended
receiver in terms of the estimation performance. Hence, in
the design of the encoding function, the trade-off between the
MSE at the eavesdropper and the estimation accuracy at the
intended receiver should be considered.

To specify the Fisher information in (5), the conditional
PDF of Y given θ is expressed from (1) as

pY |θ(y) =
1

√

2πσ2
r

e
− (y−hrf(θ))2

2σ2
r . (11)

Then, the Fisher information for parameterθ can be calculated
via (4) and (11) as follows:

I(θ) =
h2
r f

′(θ)2

σ2
r

(12)

wheref ′(θ) denotes the derivative off(θ).
Based on (7) and (12), the optimization problem in (5) can

be analyzed. However, before tackling the problem in (5), the
unconstrained version of it is investigated in the next section
to provide initial theoretical steps towards the analysis of the
generic case.

A. Optimization without Secrecy Constraints

Consider the optimization problem in (5) without the se-
crecy constraint; that is, by omitting the presence of the
eavesdropper. Then, the optimization problem is formulated
as

fopt = argmin
f

∫ b

a

w(θ)
1

I(θ)
dθ (13)

whereΛ = [a, b] is employed as specified in Section II. Based
on (12), the problem in (13) can be rewritten, by removing
the constant terms, as

fopt = argmin
f

∫ b

a

w(θ)
1

f ′(θ)2
dθ . (14)

The solutions of (14) are specified by the following proposi-
tion.

Proposition 1: The optimal encoding functions in the ab-
sence of an eavesdropper are given by

f(θ) = a+

∫ θ

a

g(θ)dθ and f(θ) = b −
∫ θ

a

g(θ)dθ (15)
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where

g(θ) ,
(b− a)w(θ)1/3
∫ b

a w(θ)1/3dθ
· (16)

Proof: Sincef is one-to-one and continuous, consider a
monotonically increasing (decreasing) function withf ′(θ) ≥ 0
(f ′(θ) ≤ 0), ∀θ ∈ [a, b].4 Also, due to the facts thatf(θ)
is monotone andf(θ) ∈ [a, b], the following relation can be
obtained:

∫ b

a
df
dθdθ = f(b)−f(a) ≤ b−a (f(b)−f(a) ≥ a−b).

Then, definingg(θ) , f ′(θ) (g(θ) , −f ′(θ)), the problem in
(14) becomes

min
g

∫ b

a

w(θ)
1

g(θ)2
dθ (17)

s.t.

∫ b

a

g(θ)dθ ≤ b− a (18)

g(θ) ≥ 0, ∀θ ∈ [a, b] (19)

Note that for allθ ∈ [a, b], increasing the value ofg(θ) does
not increase the value of the objective function; hence, the
constraint in (18) is satisfied with equality. Now, in order to
solve the optimization problem in (17)–(19), the calculus of
variations is employed, and the problem is expressed in the
form of

min
g≥0

〈

w,
1

g2

〉

s.t. 〈g, 1〉 = b − a . (20)

Then, the Lagrangian is obtained as

L(g, ǫ, t, λ) =

〈

w + ǫt,
1

(g + ǫt)2

〉

+ λ〈g + ǫt, 1〉 (21)

whereǫ, t, andλ represent the perturbation, the test function
and the Lagrange multiplier, respectively. The optimal solution
must satisfy ∂L

∂ǫ

∣

∣

ǫ=0
= 0 ∀t [35], [36]. Hence, the following

optimality condition is obtained:
〈

w,
−2t

(g + ǫt)3

〉

+ λ〈t, 1〉
∣

∣

∣

∣

ǫ=0

= 0 (22)

which leads to〈t, λ+ −2w
g3 〉 = 0. In order for this to hold for

all t, g = kw1/3 must be satisfied for some constantk ≥ 0.
From the equality constraint, the constant can be calculated as
k = (b− a)

/∫ b

a w(θ)1/3dθ. Note that thisg(θ) is valid, asθ
takes values in[a, b]; hence,w(θ) is not0 over a closed interval
in [a, b]. Since g(θ) = f ′(θ) and g(θ) = −f ′(θ) for the
monotone increasing and the monotone decreasing scenarios,
respectively, the solutions can be obtained as in (15) and (16).
�

Proposition 1 states that either of the two functions given
in (15) is an optimal solution for the minimization problem in
(14). As a corollary to Proposition 1, if the prior distribution
of the parameter is uniform over[a, b], the optimal encoding
functions can be found via (15) and (16) asf(θ) = θ and
f(θ) = a + b − θ. In other words, for the uniform prior,
parameter encoding is not needed for reducing the ECRB at
the intended receiver.

4Note thatf ′(θ) can be zero at certain points; however, it is not0 for a
closed interval in[a, b] due to the one-to-one property.

B. Optimization with Secrecy Constraints

In this part, the optimization problem in (5) is considered
without omitting the secrecy constraint, where the parameter
space is specified byΛ = [a, b] as before. Although the linear
MMSE estimator is assumed to be employed at the eavesdrop-
per in this study (see Section II), a corollary to Proposition 1 is
presented first for the case in which the eavesdropper employs
the MMSE estimator, defined aŝβ(z) = E(β|Z = z) with
β = f(θ).

Corollary 1 : Suppose that the eavesdropper employs the
MMSE estimator for a given encoding functionf(θ). Denote
the corresponding MSE at the eavesdropper asR(f+) when
the encoding function isf(θ) = a+

∫ θ

a g(θ)dθ , f+, and as

R(f−) when the encoding function isf(θ) = b−
∫ θ

a g(θ)dθ ,

f−, where g(θ) is as defined in Proposition 1. Then, the
following statements hold:

a) If the target MSE of the eavesdropper,α in (5), satisfies
α ≤ min{R(f+), R(f−)}, then bothf+ and f− are optimal
encoding functions.

b) If min{R(f+), R(f−)} ≤ α ≤ max{R(f+), R(f−)},
then the optimal encoding function isf+ if R(f+) > R(f−)
and it is f− otherwise.

Proof: Proposition 1 implies that iff+ or f− is admis-
sible by the constraint, it becomes the minimizer of the ob-
jective function. When the eavesdropper employs the MMSE
estimator,β̂(z) = E(β|Z = z), the MSE at the eavesdropper
can be calculated from (7) for a given encoding function.
For the special cases of encoding functionsf+ and f−, the
corresponding MSE values are denoted byR(f+) andR(f−),
respectively. Ifα is less than both ofR(f+) andR(f−), then
f+ andf− do not violate the constraints and solve (5). Ifα
is less than only one ofR(f+) or R(f−), then still one off+

and f− is admissible; hence, the optimal encoding function.
�

It is noted that whenα ≥ max{R(f+), R(f−)}, the
shortcut provided in Corollary 1 cannot be used, and it is
required to design another encoding function to satisfy the
secrecy constraint.

Remark 1: The statement in Corollary 1 in fact holds for
any estimator at the eavesdropper since the proof is not specific
to the MMSE estimator. In other words, as long as any of
the encoding functions in Proposition 1 results in an MSE
at the eavesdropper that is higher than the target MSEα, that
encoding function is also optimal for the problem in (5). Since
the MMSE estimator achieves the minimum MSE among all
estimators, it is concluded that if one of the encoding functions
in Proposition 1 is optimal when the eavesdropper employs
the MMSE estimator, then that encoding function is in fact
optimal for any other estimator at the eavesdropper.

Even though the MMSE estimator is the optimal estimator
according to the MSE metric, for implementing the MMSE
estimator, the eavesdropper must know the prior PDF off(θ),
which can be difficult to obtain (learn). In this study, it is
assumed that the eavesdropper has the knowledge of the mean
and variance off(θ). Therefore, the eavesdropper is assumed
to employ the linear MMSE estimator to estimateβ = f(θ)
based onZ, as noted in Section II. It is known that the linear
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MMSE estimator is the optimal linear estimator according to
the MSE metric [37]. Furthermore, it would actually be the
optimal MMSE estimator to estimateβ based onZ, E(β|Z =
z), if β andZ were jointly Gaussian random variables [24].
For the system model in this study, the MMSE estimator and
the linear MMSE estimator will have similar performance at
low SNRs if the prior is uniformly distributed.

When the linear MMSE estimator is employed at the
eavesdropper,̂β(z) can be expressed as

β̂(z) = k0 + k1z (23)

wherek0 andk1 are chosen to minimizeE
(

∣

∣β̂(Z)− β
∣

∣

2
)

=

E
(

∣

∣k0 + k1Z − β
∣

∣

2
)

as the eavesdropper does not know the
encoding. The resulting coefficients for the eavesdropper’s
estimator are given as (see Appendix A for the derivation)

k1 =
heV ar(β)

h2
eV ar(β) + σ2

e

(24)

k0 = (1 − k1he)E(β). (25)

Then, the resulting MSE between the estimate of the eaves-
dropper and the true value of parameterθ can be derived from
(23)–(25) and (7) as (see Appendix B for the derivation)

E
(

∣

∣β̂(Z)− θ
∣

∣

2
)

=
h2V (V − 2C)

h2V + 1
+ (E(β) − E(θ))2

+ V ar(θ) (26)

whereβ = f(θ), V = V ar(β), C = Cov(β, θ), and h =
he/σe.

It is observed that the MSE value at the eavesdropper
corresponding to the linear MMSE estimator depends on
both the encoding function and the channel qualityh at the
eavesdropper. It is noted that for a given encoding function
with V − 2C > 0, the first term in (26) is positive, and the
MSE at the eavesdropper becomes an increasing function of
h2. This means that as the channel quality for the eavesdropper
improves, the resulting MSE at the eavesdropper increases in
that scenario. This seemingly counterintuitive result is simply
due to the fact that the estimator of the eavesdropper is based
on the noisy observation of the distorted version of the original
parameter. Hence, one can transmit the inflicted distortion
more efficiently to the eavesdropper under good channel
conditions leading to a higher MSE. If the eavesdropper knew
the prior distribution of the original parameter and realized that
the transmitter sends the encoded version, it would simply stop
using the observation and setβ̂(Z) = E(θ), resulting in an
MSE of V ar(θ), which is lower than the value in (26) for
the case ofV − 2C > 0. However, the eavesdropper does
not have that knowledge and the channel observation is the
only information it can use to estimate the parameter, which
is utilized by the transmitter.

Remark 2: In the considered setting, the eavesdropper
employs the linear MMSE estimator and the transmitter is
aware of this situation. Then, to obtain the optimal encoding
function based on (5), (12), and (26), the transmitter should
have the knowledge of the prior PDF of the parameter and
the channel quality parameterh2

e/σ
2
e for the eavesdropper. In

practice, it can be challenging for the transmitter to have an
accurate knowledge of the channel quality for the eavesdrop-
per. In such cases, a conservative approach can be taken by
either increasing the MSE targetα in (5) or considering the
worst-case (minimum) value of the MSE at the eavesdropper
according to the uncertainty in the channel quality parameter.

The following proposition presents a shift invariance prop-
erty for the considered problem.

Proposition 2: Suppose that the unknown parameterθ
resides in[a, b] with a prior distribution specified byw(θ), and
the encoding functionf(θ) : [a, b] → [a, b] results in a certain
ECRB at the intended receiver and a certain MSE at the
eavesdropper, which employs the linear MMSE estimator. If the
parameterθ were defined in[0, b−a] with the prior distribution
ŵ(θ) = w(θ + a), then the use of the encoding function
f̂(θ) : [0, b−a] → [0, b−a] such thatf̂(θ) = f(θ+a)−a would
result in the same MSE at the eavesdropper and the same
ECRB at the intended receiver as in the original scenario.

Proof: The ECRB in the original scenario can be ex-
pressed from (12) and (13) as

σ2
r

h2
r

∫ b

a

w(θ)
1

f ′(θ)2
dθ (27)

which is equivalent to

σ2
r

h2
r

∫ b−a

0

w(θ + a)
1

((f(θ + a)− a)′)2
dθ (28)

since (f(θ + a) − a)′ = f ′(θ + a). As the expression in
(28) corresponds to the ECRB in the second scenario, the
equivalence of the ECRBs is established. To prove that the
MSE at the eavesdropper does not change, it is noted that
the parameter defined in[0, b − a] with the prior distribution
ŵ(θ) = w(θ+a) corresponds to shifting the original parameter
as θ − a. Also, let β̄ andβ denote the random variables for
the encoded versions of the shifted and original parameters
via encoding functionsf̄(θ) and f(θ), respectively. Then,
β̄ = β − a holds. Furthermore, it is noted that shifting the
specified random variables (θ and β = f(θ)) just changes
their means by the amount of the shift without modifying the
second order statisticsV andC. Hence, (26) reveals that the
MSE at the eavesdropper stays the same as in the original
scenario after the shift operations. �

Based on Proposition 2, the estimation of a parameter in
θ ∈ [0, b− a] can be considered without loss of generality for
the case of the linear MMSE estimator at the eavesdropper
(see Proposition 4).

The next proposition states that when the prior PDF ofθ ∈
[a, b] is symmetric around(a+ b)/2, parameter encoding via
a strictly decreasing function is more desirable than that via a
strictly increasing one.

Proposition 3: Suppose that the eavesdropper employs
the linear MMSE estimator andw(θ) is symmetric around
(a+b)/2. Then, for any given continuous and strictly increas-
ing encoding function, there exists a corresponding continuous
and strictly decreasing encoding function that yields the same
ECRB at the intended receiver with a higher MSE at the
eavesdropper.



7

Proof: Consider two encoding functionsf(θ) ands(θ) =
f(a + b − θ), whereθ ∈ [a, b] and f(θ) is a continuous and
monotonically increasing function. Sincew(θ) = w(a+b−θ)
due to the symmetry assumption ands′(θ) = −f ′(a+b−θ) by
definition, both encoding functions result in the same ECRB,
which can be proved via (14) as follows:
∫ b

a

w(θ)
1

s′(θ)2
dθ =

∫ b

a

w(a+ b− θ)
1

f ′(a+ b− θ)2
dθ

=

∫ b

a

w(θ)
1

f ′(θ)2
dθ (29)

where the final expression is obtained via a change of vari-
ables. To compare the MSEs corresponding to the two encod-
ing functions, defineβf , f(θ) andβs , s(θ), and letpβf

(x)
and pβs

(x) represent the PDFs ofβf and βs, respectively.
Then, it is noted thatpβf

(x) = pβs
(x) for x ∈ [a, b] since

w(θ) = w(a + b − θ) due to symmetry. Hence, bothβf

and βs have the same expectation and the variance. For the
covariance,Cov(β, θ) = E(βθ) − E(β)E(θ), the following
expression can be obtained:

E(βfθ)− E(βsθ)

=

∫ b

a

w(θ)f(θ)θdθ −
∫ b

a

w(θ)f(a + b− θ)θdθ (30)

=

∫ b

a

w(θ)f(θ)(2θ − a− b)dθ. (31)

where (30) follows from the definitions ofβf andβs, and (31)
is obtained from the symmetry ofw(θ). Sincef(a+b

2 − x) <
f(a+b

2 + x) for x ∈ (0, a+b
2 ], E(βfθ) − E(βsθ) > 0. Then,

Cov(βf , θ) > Cov(βs, θ) andE(|β̂f − θ|2) < E(|β̂s − θ|2)
according to (26). Therefore, it is always possible to achieve a
higher MSE by employings(θ) instead off(θ) while keeping
the ECRB the same. �

Proposition 3 implies that it is sufficient to search for the
optimal encoding function among strictly decreasing functions
if the prior distribution of the parameter satisfies the symmetry
condition (e.g., the uniform distribution). This is based on the
idea that for any given increasing encoding function that solves
(5), there exists a legitimate decreasing function obtained
by a simple transformation, which yields the same optimal
ECRB value with an increased MSE at the eavesdropper.
Hence, from a practical point of view, the search space for
the optimal encoding function can be confined to strictly
decreasing functions under the conditions in the proposition.

1) Special Case: Uniform Prior Distribution:For the spe-
cial case of a uniform prior distribution, the following result
characterizes the optimal encoding function when the eaves-
dropper employs the linear MMSE estimator.

Corollary 2 : Suppose that the parameter has uniform prior
distribution over [a, b] and the eavesdropper employs the
linear MMSE estimator. Then, if the target MSEα satisfies
α ≤ Vu

h2Vu+1 , then f(θ) = θ is an optimal encoding
function, whereVu , (b− a)2/12. On the other hand, if

α ≤ 4h2V 2
u+Vu

h2Vu+1 + (a+ b− 2E(θ))2, thenf(θ) = a+ b− θ is
an optimal encoding function.

Proof: From the expressions in Proposition 1, it can

be shown, for the uniform prior distribution, that either of
f(θ) = θ or f(θ) = a + b − θ is an optimal encoding
function in the absence of the constraint (i.e., in the absence of
the eavesdropper). When the eavesdropper employs the linear
MMSE estimator, the use off(θ) = θ leads to an MSE of

Vu

h2Vu+1 and the use off(θ) = a+ b− θ results in an MSE of
4h2V 2

u+Vu

h2Vu+1 +(a+ b− 2E(θ))2, which can be derived based on
(26). Then, based on similar arguments to those in Corollary
1, it is deduced that if the MSE corresponding tof(θ) = θ
is larger than or equal toα, f(θ) = θ is an optimal encoding
function. Similarly, if the MSE forf(θ) = a+ b− θ is larger
than or equal toα, f(θ) = a+ b − θ is an optimal encoding
function. �

The following proposition provides an upper bound on the
MSE at the eavesdropper, which employs the linear MMSE
estimator, when the parameter has uniform prior distribution.

Proposition 4: If the eavesdropper employs the linear
MMSE estimator andθ has uniform distribution over[0, γ],
then

sup
f

E
(

∣

∣β̂(Z)− θ
∣

∣

2
)

=











γ2

3
, γ ≤ 2

h
h2γ4

2h2γ2 + 8
+

γ2

12
, γ >

2

h

(32)

wheref(θ) : [0, γ] → [0, γ] is a continuous and one-to-one
function.

Proof: For an encoding functionf(θ) = β, let V =
V ar(β), C = Cov(β, θ), and µ = E(β). It can be shown
that for a random variable defined on the bounded interval of
[0, γ], the following relations hold forµ ∈ [0, γ]:

0 ≤ V ≤ µ(γ − µ) ≤ γ2

4
· (33)

In addition,C can be expressed as

C =
1

γ

∫ γ

0

f(θ)
(

θ − γ

2

)

dθ.

For a given continuous endofunction on[0, γ], it can be shown
thatC is in (−γ2/8, γ2/8). Also, from (26), the MSE at the
eavesdropper can be stated as

E
(

∣

∣β̂(Z)− θ
∣

∣

2
)

=
h2V (V − 2C)

h2V + 1
+
(

µ− γ

2

)2

+
γ2

12

≤ h2V (V − 2C)

h2V + 1
− V +

γ2

3

=
−V (1 + 2h2C)

h2V + 1
+

γ2

3
(34)

where the inequality holds for any continuous encoding
function defined on[0, γ]. Therefore, the upper bound on
E(|β̂(Z) − θ|2), specified in (34), holds for all possible
encoding functions. Next, the maximum of this generic upper
bound is to be found over the PDF ofβ, denoted bypβ , where
β = f(θ). It is observed that if(1 + 2h2C) > 0 for any
given pβ , the first term in (34) is nonpositive asV ≥ 0 and
h > 0; hence, the maximum of the upper bound isγ2/3. When
(1 + 2h2C) ≤ 0, then the first term in (34) is maximized by
increasingV and decreasingC at the same time. Therefore, if
V = γ2/4 andC = −γ2/8, the maximum of the upper bound
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is achieved. Thus, forγ ≤ 2/h, E(|β̂(Z)−θ|2) ≤ γ2/3 holds,
and forγ > 2/h,

E(|β̂(Z)− θ|2) ≤ h2γ4

2h2γ2 + 8
+

γ2

12
(35)

is obtained. Furthermore, in the first case (i.e.,γ ≤ 2/h),
f̃(θ) = 0 (or, f̃(θ) = γ) for θ ∈ [0, γ] attains the upper bound
on the MSE, that is,γ2/3. In the second case (i.e.,γ > 2/h),
it is possible to achieve the upper bound in (35) by usingf̃(θ)
defined as

f̃(θ) =

{

γ, 0 ≤ θ ≤ γ/2

0, γ/2 < θ ≤ γ
. (36)

Even though the maximum values for the upper bounds are
obtained and it is argued that they are exactly attained by
using f̃(θ), it should be noted that̃f(θ)’s are not in the
feasible function set as they do not satisfy the one-to-one
and continuity properties. However, it is possible to approach
arbitrarily close tof̃(θ) while staying in the feasible function
set (e.g., takeδ > 0, setf(θ) = γ− δθ, and letδ → 0 for the
first case). Furthermore, the objective is continuous functional
acting on the encoding function. Hence, the upper bound
values for the MSE cannot exactly be achieved; however, one
can get arbitrarily close to them by employing one-to-one
and continuous functions, which yield them as the supremum
values for the MSE at the eavesdropper, resulting in the
expression in (32). �

In addition to providing a closed form upper bound on the
distortion at the eavesdropper, Proposition 4 plays another
important role by helping us gain practical intuition about
the behavior of the optimal encoding function (variance min-
imizing modeor variance maximizing mode). As argued in
Proposition 3, if there are two alternative encoding functions
with the same ECRB, then it is better to choose the one which
yields the higher MSE. Note that given an encoding function
f(θ), one can shuffle the increments of the given function and
end up with an alternative encoding function with the same
ECRB. The alternative encoding function will possibly have
different (µ, V, C). Therefore, it is important to understand
how the MSE behaves asµ, V , andC change. Note that in
(32), the supremum changes depending on the value of the
channel quality of the eavesdropperh for a givenγ (h ≤ 2/γ
or h ≥ 2/γ). Let us investigate those two cases:

• If the channel qualityh is small enough, one can letβ →
0 (or γ) to maximize its MSE. This strategy is equivalent
to minimizing the variance and lettingE(β) → 0 (or γ).

• If the channel qualityh is large enough, then one can
increase the varianceV and decreaseC at the same time
to maximize its MSE (effectively maximizeE(|β−θ|2)).

This discussion becomes clearer at the extreme cases of the
value ofh2. For example, suppose thath2 is very small. Then,
(26) reveals thatE(|β̂(Z)−θ|2) ≈ (E(β)−E(θ))2+V ar(θ);
hence, it is possible to generate a larger MSE by makingE(β)
as close to the boundaries0 andγ as possible. This behavior
can be regarded as thevariance minimizing mode. If h2 is
very large, thenE(|β̂(Z) − θ|2) ≈ (V − 2C) + (E(β) −
E(θ))2+V ar(θ) = E((β−θ)2)+E(θ)2; hence, it is possible

to generate a higher MSE by maximizingE((β − θ)2). This
behavior can be regarded as thevariance maximizing mode.
Of course, if the resulting MSE is higher than the target MSE
α for a givenh, then one can use linear encodingf(θ) = γ−θ
for minimizing the ECRB.

It is important to note that Proposition 4 does not have
any constraints on the ECRB. The original problem tries to
minimize the ECRB for a target MSE. Among two candidates
with the same ECRB, the one yielding the larger MSE at the
eavesdropper is preferred in the search of the optimal encoder.
The feasible set for(µ, V, C) is specific to that ECRB value.
For example, one might not be able to letµ → 0 anymore.
However, one can generate a larger MSE by makingµ very
close to its limit in the feasible set for sufficiently smallh
values (e.g., by using a decreasing concave function) or by
makingE(|β − θ|2) as large as possible for sufficiently high
h values (e.g., by using a decreasing concave function for
β < γ/2 and a decreasing convex function forβ > γ/2).
Hence, the optimal encoding function will be in either of the
modes (variance minimizing or maximizing) described above.

Remark 3: The optimal value of the optimization problem
in (5) can be named asG(α) since the optimal ECRB value
depends on the target MSEα. That is,

G(α) ,
σ2
r

h2
r

∫ b

a

w(θ)
1

f
′

opt(θ)
2
dθ (37)

wherefopt(θ) is a solution to (5). Note that the optimal value
of the ECRB in the case of optimization without secrecy
constraints can be denoted byG(0). Then, G(α) has the
following properties:

• G(α) is constant between0 ≤ α ≤ αth with αth =
max{R(f+), R(f−)}, where R(f+) and R(f−) can
similarly be defined as in Corollary 1 except that the
linear MMSE is employed at the eavesdropper.

• G(α) is a non-decreasing function betweenαth ≤ α <

αmax, whereαmax = supf E
(

∣

∣β̂(Z)− θ
∣

∣

2
)

.

• G(α) → ∞ asα → αmax.
The second property follows from the following argument: Let
Sα1 andSα2 be the feasible sets forα1 andα2, respectively. If
α1 ≥ α2, thenSα1 ⊆ Sα2 ; hence,G(α1) ≤ G(α2). Note that
a closed form expression forαmax is provided in Proposition
4 for the special case of uniform prior distribution.

IV. SOLUTION APPROACHES

In general, the optimal parameter encoding problem for-
mulated by (5), (12), and (26) is a difficult optimization
problem as it requires a search over functions. Although the
theoretical results in the previous section can lead to closed-
form solutions or reductions in the search space in certain
scenarios, it may still be necessary to solve the problem
directly in some cases. Therefore, various solution approaches
are developed in this section for obtaining suboptimal solutions
of (5). In the proposed approaches, it is assumed that the
encoding functionf is picked among a family of functions
characterized by a certain number of parameters. Then, the
optimization problem becomes easier to solve as it involves
minimization over a few variables (instead of functions), which
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also leads to some analytical solutions, as discussed below.
However, the obtained encoding function will be suboptimal
in general since the actual solution of (5) may not be a function
from the assumed family of functions.

A. Linear Encoding Functions

One suboptimal encoding scheme is to employ a linear
encoding function to minimize the ECRB at the intended
receiver while satisfying the MSE constraint at the eaves-
dropper. To obtain analytical results for generic prior PDFs,
the eavesdropper is modeled to employ the linear MMSE
estimator as before, and the encoding function is assumed to
be a decreasing linear function. However, the analysis can also
be performed easily for increasing linear functions in a similar
fashion, which yields similar analytical results to those in
Proposition 5 and afterwards. (In practice, it is advised tosolve
the encoding problem restricted to decreasing linear functions
and to increasing linear functions separately, and select the one
with the lower objective value. However, when the prior PDF
of the parameter,w(θ), is symmetric around(a+ b)/2, where
θ ∈ [a, b], it is sufficient to consider decreasing functions only,
as shown in Proposition 3.)

For the considered model, the linear encoding function can
be expressed as

f(θ) = c0 +m(b− θ) (38)

where m ∈ (0, 1], c0 ≥ a, and c0 + m(b − a) ≤ b. In
other words, for a fixedm, c0 can be any real number in
[a, b −m(b − a)]. In addition, the random variableβ = f(θ)
has the following PDF:pβ(x) = 1

mw
(

c0+mb−x
m

)

for x ∈
[c0, c0 + m(b − a)]. For example, ifw(θ) is the uniform
PDF over [a, b], then β will have uniform distribution over
[c0, c0 +m(b− a)]; hence, its amplitude is 1

m(b−a) inside that
interval and0 elsewhere. Also, the value ofc0 does not change
this amplitude but only causes a shift in the domain ofβ. First,
the following proposition is presented aboutc0 for any given
input distributionw(θ).

Proposition 5: When the eavesdropper employs the linear
MMSE estimator, the MSE at the eavesdropper for the linear
encoding functionf(θ) = c0 +m(b− θ) is a convex function
of c0 for a fixedm > 0. Hence, the MSE is maximized either
at c0 = a (if E(θ) > (a+ b)/2) or at c0 = b −m(b − a) (if
E(θ) < (a+ b)/2).

Proof: The variance and the mean ofβ = f(θ) can be
calculated asV ar(β) = m2V ar(θ) andE(β) = c0 + mb −
mE(θ). Also, the covariance ofβ and θ can be obtained
as Cov(β, θ) = −mV ar(θ). In (26), only the second term
depends onc0. In addition,(E(β)−E(θ))2 = (c0−(E(θ)(1+
m) − mb))2 is a convex function ofc0 for a fixed m, and
it is equal to (a − E(θ) − m(E(θ) − b))2 at c0 = a and
(b−E(θ)−m(E(θ)− a))2 at c0 = b−m(b− a). Hence, for
a givenm ∈ (0, 1), the MSE is maximized either atc0 = a if
E(θ) > (a+b)/2 or atc0 = b−m(b−a) if E(θ) < (a+b)/2.
(If m = 1 or E(θ) = (a+ b)/2, it has the same value at both
of the boundaries, hence, there exist two maximizers in that
case.) �

Proposition 5 leads to the closed-form solution for the
optimal linear encoding function as follows: Since the ECRB

expression depends only on the derivative of the encoding
function (see (5) and (12)), it is proportional to1/m2 for the
linear encoding function in (38); hence, it does not depend on
c0. Therefore,c0 can be chosen to maximize the MSE at the
eavesdropper based on Proposition 5, which implies thatc0 is
equal to eithera or b−m(b−a) (which corresponds to either
f(b) = a or f(a) = b). Based on these observations, it is
sufficient to perform a search only over parameterm in order
to determine the optimal linear encoding function. Suppose
thatE(θ) > (a+b)/2 and model the linear encoding function
as f(θ) = a + m(b − θ) (see Proposition 5). (The case of
E(θ) < (a + b)/2 and f(θ) = b + m(a − θ) can be treated
similarly.) Then, the optimization problem specified by (5)and
(12) can be rewritten to find the optimalm as follows:

mopt = argmin
m

1

m2
s.t. E

(

∣

∣β̂(Z)− θ
∣

∣

2
)

≥ α, 0 < m ≤ 1

(39)

whereE(|β̂(Z)−θ|2) = h2m2V (m2V+2mV )
h2m2V+1 +V +(a−E(θ)−

m(E(θ)− b))2 with V = V ar(θ) due to (26). Obviously, the
optimalm is the largestm that satisfies the constraints. After
some algebra, the first constraint can be expressed as

(

tV 2 + κ2
1tV

)

m4 +
(

2tV 2 + 2tV κ1κ2

)

m3

+
(

tV 2 + (κ2
2 − α)tV + κ2

1

)

m2 + (2κ1κ2)m

+
(

κ2
2 + V − α

)

≥ 0 (40)

wheret , h2, κ1 , b−E(θ), andκ2 , a−E(θ). Hence, the
optimalm is the largestm in (0, 1] satisfying (40). This op-
timal value can be obtained algebraically by finding the roots
of the fourth degree polynomial in (40). For example, when
h = 1, a = 0, b = 1, w(θ) is uniform, andα = 0.15, (40)
becomesm4−m3+9.55m2−18m+6.6 ≥ 0. This polynomial
has roots at1.3001, 0.4915, and−0.3958±3.1895i, implying
that the constraint holds whenm ≥ 1.3001 or m ≤ 0.4915;
thus, the optimalm is given by m = 0.4915. Overall, it
is concluded that considering an encoding function among
the family of linear functions, the optimal solution can be
obtained by finding the roots of a polynomial equation without
performing any functional optimization.

Remark 4: One alternative approach could be to consider
an encoding function in the form off(θ) = a + p

(

b−θ
b−a

)q
,

where the function is parameterized byp andq. Hence, instead
of trying to optimize over functions, one can try to use this
family of power functions, and perform optimization overp ∈
(0, b − a] and q ∈ (0, 3/2). Even though this will lead to
a suboptimal encoding function, it is still easier to perform
optimization via a 2-dimensional search than optimizing over
functions as in (5). On the other hand, this approach will have
higher computational complexity than the one that employs
(38).

B. Polynomial Approximation

The second approach for obtaining a suboptimal solu-
tion of (5) is to use a polynomial approximation method.
Approximating a function via polynomials is a well-known
numerical analysis method [39]–[41]. To apply this method
to the parameter encoding problem, it is assumed that the
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encoding function is in the form of a polynomial. In fact,
any continuous real-valued function defined on[a, b] can be
uniformly approximated by polynomials in that interval [38].
That is, for a given continuous and bounded functionf(x)
and ǫ > 0, there exists a polynomialP (x) on [a, b] such
that supx |f(x) − P (x)| < ǫ. Motivated by this fact, the
encoding function is expressed byKth degree polynomials,
i.e.,P (x) =

∑K
n=0 cnx

n, and the aim becomes the calculation
of the optimal coefficientscn for n = 0, 1, . . . ,K. Hence, by
usingf(θ) =

∑K
n=0 cnθ

n, the optimization problem specified
by (5) and (12) can be rewritten to find the optimal coefficients
as follows:

c
opt = arg min

c0,c1,...,cK

∫

Λ

w(θ)

(

K
∑

n=0

ncnθ
n−1

)−2

dθ

s.t. E
(

∣

∣β̂(Z)− θ
∣

∣

2
)

≥ α (41)

After finding the optimal coefficients, the encoding function
can be written asfopt(θ) =

∑K
n=0 c

opt
n θn, wherecoptn repre-

sents thenth element ofcopt. Note that the resulting encoding
function should also satisfy the implicit conditions, thatis,
f(θ) ∈ [a, b] and the monotonicity.

C. Piecewise Linear Approximation:

Finally, a third approach is proposed, which is based on the
idea that any continuous bounded function can be uniformly
approximated by piecewise linear functions. Therefore, the
parameter space[a, b] is partitioned intoM intervals and
the optimal increment (or, decrement) is found in each in-
terval, which results in an approximation of the encoding
function f via a piecewise linear function. In particular, the
increments/decrements are defined as∆xk = f(a + k∆θ) −
f(a+(k− 1)∆θ), and the optimization is performed overM
variables,∆x1,∆x2, . . . ,∆xM . As M increases, more accu-
rate approximation is achieved; however, the computational
complexity of solving the optimization problem increases,as
well. Note that, forM = 1, this approach reduces to the linear
encoding function case in Section IV-A. The optimization
problem specified by (5) and (12) can be stated to find the
optimal increments as follows:

∆xopt = arg min
∆x1,∆x2,...,∆xM

M
∑

k=1

1

∆x2
k

∫ a+k∆θ

a+(k−1)∆θ

w(θ)dθ

s.t. E
(

∣

∣β̂(Z)− θ
∣

∣

2
)

≥ α (42)

Similar to the previous case, the resulting encoding function
should also satisfy the implicit conditions, that is,f(θ) ∈ [a, b]
and the monotonicity. For example, if a decreasing encoding
function is used, then all the elements in∆xopt should be
negative. In order to solve the problems given in (41) and (42),
we have used the Global Optimization Toolbox of MATLAB.
As the initial point, the linear solution, which is calculated
analytically, can be used. It is noted that the objective function
given in (14) is a convex operation onf ; however, the feasible
set does not need to be convex. This discussion holds for both
of the problems in (41) and (42).

Remark 5: Most of the theoretical results in this paper can
be extended, under certain conditions, to scenarios in which
the eavesdropper employs an arbitrary affine estimator,β̂(z) =
R0+R1z, instead of the linear MMSE estimator. In this case,
after some manipulation, the MSE of the eavesdropper can be
obtained for givenR1 andR0 as

E
(

∣

∣β̂(Z)− θ
∣

∣

2
)

= R2
1(h

2
eV + σ2

e)− 2R1heC + V ar(θ)

+ (R1heE(β) − E(θ) +R0)
2 (43)

whereV = V ar(β) andC = Cov(β, θ). Then, the results can
be extended as follows:

• Proposition 2 does not hold for generalR1 and R0.
However, for the special case ofR1 = 1/he, it holds
for any R0, and for R0 = E(β)(1 − R1he), it holds
for anyR1. It is noted that the second case implies that
E(β̂(z)) = E(β).

• Proposition 3 holds ifR1he > 0. If R1he < 0, then the
reverse of the argument holds; that is, for a given strictly
decreasing function, one can find a simple transformation
such that the resulting encoding function has a lower
MSE. Corollary 2 can also be generalized in a similar
fashion.

• Proposition 4 is particular to the assumption of the linear
MMSE estimator; hence, it cannot be generalized directly
for arbitrary R1 and R0. However, an upper limit can
be found as follows by consideringR1 andR0 as given
constants:

sup
f

E
(

∣

∣β̂(Z)− θ
∣

∣

2
)

= sup
f

(

E
(

|R1heβ − θ
∣

∣

2
)

+ 2R1R0heE(β) + g(R0, R1)
)

whereg(R0, R1) = R2
1 − 2R0E(θ). Next, letR1he = k

andk > 0. Then, for a fixedE(β) = α with α ∈ [0, γ],

E
(

|kβ − θ
∣

∣

2
)

is maximized ifβ = γ for θ < α and0

otherwise. Then, the analysis can be completed by finding
the optimalα.

• Finally, if R1he > 0, Proposition 5 can also be gener-
alized. Namely, the MSE is a convex function ofc0 for
a fixed m > 0 and is maximized either atc0 = a or
c0 = b−m(b− a).

V. NUMERICAL RESULTS

In this section, numerical examples are provided to investi-
gate the theoretical results in Section III and to compare the
proposed approaches in Section IV. Throughout the simula-
tions,hr andσ2

r are set ashr = σ2
r = 1.

First, we consider a scenario in which the channel param-
eters for the receiver and the eavesdropper are fixed, and
investigate the relation between the ECRB and the secrecy
limit α by using different encoding strategies. It is assumed
that the parameterθ has uniform distribution over[0, 1] and
h = he/σe = 1. Also, the eavesdropper employs the linear
MMSE estimator for the encoded parameterβ = f(θ). The
theoretical results derived in Section III can be applied for
this example. In particular, based on Proposition 1, it is
known that if there is no secrecy constraint, eitherf(θ) = θ



11

0.1 0.15 0.2 0.25 0.3

1

200

400

600

800

1000

1200

1400

α

E
C

R
B

 

 

Poly. K=10
Linear
Power
PWL M=100

0.12 0.14 0.16 0.18 0.2 0.22 0.24

5

10

15

20

 

 

Fig. 2: ECRB versusα for various solution approaches, where
h = 1 and0.1 ≤ α ≤ 0.32.

or f(θ) = 1 − θ is an optimal encoding function. Also,
Proposition 3 states that the optimal encoding function can
be searched among monotonically decreasing functions as
the uniform distribution satisfies the symmetry condition.In
addition, Corollary 2 reveals that ifα ≤ 4/39 = 0.1026, then
f(θ) = 1 − θ is the optimal encoding function since such a
secrecy level can be guaranteed by usingf(θ) = 1 − θ. Fur-
thermore, Proposition 4 claims that it is not possible to achieve
a secrecy limitα higher than1/3 as γ = 1 < 2/he = 2 in
this scenario.

For obtaining the encoding function based on the proposed
approaches in Section IV, the linear and power encoding
functions, and the polynomial and piecewise linear (PWL) ap-
proximations are considered. For the linear encoding,f(θ) =
1 − mθ is used due to Proposition 5. Then, (39) provides a
simple tool for the solution. For the power encoding function,
f(θ) = p(1−θ)q is employed, and the optimalp andq values
are found for a given targetα value (see Remark 4). For the
polynomial approximation (with a degree ofK = 10) and
the piecewise linear approximation (withM = 100 intervals),
the formulations in (41) and (42) are utilized, respectively.
In Fig. 2, the relation between the target levelα and the
optimal ECRB value can be observed. Whenα = 0.10, it is
noted that the optimal ECRB is1, which can be achieved with
f(θ) = 1−θ. As α increases, the optimal ECRB increases ex-
ponentially. For example, whenα = 0.25, the optimal ECRB
is found to be25.06 and it becomes1182.3 whenα = 0.32
for the piecewise linear approximation. Hence, the ECRB
goes to infinity asα goes to the theoretical bound of1/3,
as expected.5 In Fig. 3, the encoding functions corresponding
to the proposed solution approaches are presented for various
values ofα. It is observed that the polynomial approximation

5In this example, the optimal ECRB value should not directly be taken as
equal to the MSE at the estimator of the intended receiver sincehr/σr is not
sufficiently high. Here, the ECRB is merely used as an objective function to
represent generic estimation accuracy.
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Fig. 3:fopt(θ) versusθ for various solution approaches, where
α = 0.1, 0.2, and0.3.

and the piecewise linear approximation yield almost the same
function, which can also be deduced from the performance
graph in Fig. 2. It is also seen that whenα = 0.1, all the
methods lead tof(θ) = 1− θ. Whenα = 0.2, the difference
between the solutions of the linear encoding and the approxi-
mation methods becomes noticeable. Since the approximation
methods can use higher degrees of freedom than the linear
encoding, they can achieve lower ECRBs. However, the linear
encoding provides a simple solution for this scenario. For
example, whenα = 0.2, the optimal linear encoding function
can be obtained by finding the largestm ∈ (0, 1] that satisfies
m4 − m3 + 9.4m − 18m + 4.8 ≥ 0, yielding m = 0.3184
due to (40); hence,f(θ) = 1 − 0.3184 θ. It is also observed
that the performance of the optimal power encoding approach
in terms of the ECRB and the computational complexity is in
between those of the optimal linear encoding and the other
two approaches.

Next, the effects of the channel qualityh of the eaves-
dropper on the optimal ECRB and encoding function are
investigated for a given value ofα. For this purpose,α =
0.15 is used and the ECRB performance is evaluated versus
h = he/σe in Fig. 4. As discussed before, ash increases, the
distortion due to encoding is transmitted to the eavesdropper
more effectively and the intended MSE can be generated
with a lower ECRB. Some interesting observations can be
made in Fig. 4. First, three different regions are noted for
the ECRB. In the first region, the ECRB slowly decreases
ash increases for all the solution approaches. In the second
region, for the power and the approximation approaches, the
ECRB decreases more rapidly and finally whenh is above
some threshold value,f(θ) = 1 − θ becomes sufficient to
generate the MSE value ofα = 0.15 at the eavesdropper.
Actually, this threshold can be calculated analytically based
on Corollary 2. For the parameters in the considered sce-
nario, Vu = 1/12, E(θ) = 1/2, and α = 0.15; hence,
hth =

√

48/11 = 2.09. It is observed that the performance
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Fig. 4: ECRB versush for various solution approaches when
α = 0.15 with uniform prior distribution.
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Fig. 5:fopt(θ) versusθ for the piecewise linear approximation
whenα = 0.15 with uniform prior distribution.

of the polynomial approximation is very similar to that of
the piecewise linear approximation; however, in the second
region, it is slightly worse than that of the piecewise linear
approximation. The optimal encoding function corresponding
to the piecewise linear approximation approach is presented
in Fig. 5, which reveals that the encoding function changes
characteristics ash increases. This also explains why the
polynomial approximation is slightly worse than the piecewise
linear approximation for medium values ofh. Namely, for the
polynomial approximation, it is harder to correctly implement
the sudden decrease aroundθ = 0.5 while it has sufficient
degrees of freedom to produce an encoding function required
for smallerh values as it can also be observed in Fig. 3. It
is also noted that the encoding function is still continuous;

that is, it has a finite but large derivative aroundθ = 0.5. In
addition, it is seen that whenh = 2, the encoding function is
almost linear.

Next, a scenario with a nonuniform prior distribution is
considered, and the prior PDF of parameterθ is modeled as
w(θ) = 2θ for θ ∈ [0, 1]. Similar to the uniform distribution
case, the characteristics of the optimal encoding functionare
investigated for the fixedα and fixed h cases. First, it is
assumed thath = 1 and the optimal encoding function is
presented for variousα values in Fig. 6 by using the piece-
wise linear approximation approach. The theoretical optimal
solution f(θ) = 1 − θ4/3 for the no constraint case is also
shown in the figure, which is calculated based on Proposition
1 for the given prior distribution. It is observed that when
the target level is small; i.e.,α = 0.1, the optimal encoding
function calculated via the piecewise linear approximation is
exactly the same as the theoretical solution. Asα increases, in
order to satisfy the target secrecy level, the optimal encoding
function mapsθ to lower values. It is noted that higher targetα
levels are achievable for this prior distribution as compared to
the uniform distribution whenh = 1. In particular, the secrecy
limit is 1/2 instead of1/3 in this example. Then,α is fixed
asα = 0.34, and the ECRB performance is investigated with
respect toh in Fig. 7. It is noted that the performance trends
of the different solution approaches are similar to those inthe
uniform case presented in Fig. 4; however, unlike the uniform
distribution case, a sharp decrease to the minimum ECRB does
not exist in this scenario (see Fig. 7). This is mainly due to
the fact the optimal functions for the various function families
yielding that minimum ECRB in the absence of an eavesdrop-
per actually could not satisfy the secrecy requirement evenif
h gets large. For example, if the linear encoding withm = 1
is used, it can be shown that ash → ∞, the resulting MSE
is 1/3, and if the theoretical solution for the no constraint
case (that is,f(θ) = 1 − θ4/3) is used, the resulting MSE is
0.318 as h → ∞. It is known that the linear encoding with
m = 1 would yield an ECRB value of1 andf(θ) = 1− θ4/3

would yield an ECRB value of27/32 = 0.844. However,
unlike the previous example, since the targetα value is too
high to achieve with those encoding functions, these minimum
ECRB values cannot be attained even ifh gets arbitrarily large;
hence, a slow decay with a floor is observed in the ECRB
instead of a sudden decrease. The ECRB floor values are found
to be 1.5625, 1.0482, and 0.8835 for the linear encoding,
the power encoding, and the piecewise linear approximation,
respectively. Also, it is noted that the performance differences
between the different solution approaches are small whenh
is low, which become more significant for medium values
of h. Finally, the optimal solutions via the piecewise linear
approximation are provided for varioush values in Fig. 8.
It is noted that the characteristics of the optimal encoding
function are different for small, medium, and large values of
h. One interesting observation is that for medium values of
h, it is seen that the sudden decrease in the optimal encoding
function does not necessarily happen at0.5 unlike the uniform
prior distribution case.

Finally, we provide the simulation times for obtaining the
solutions of the various methods and the resulting ECRB
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Solution Method ECRB Time (ms.) Solution Method ECRB Time (ms.)
Linear Encoding 4.1395 0.35 Power Encoding 3.7730 35

Poly. App.(K = 2) 3.6170 33 PWL App (M = 5) 3.5634 159
Poly. App.(K = 4) 3.5263 142 PWL App (M = 10) 3.5289 302
Poly. App.(K = 6) 3.5163 763 PWL App (M = 25) 3.5159 750
Poly. App.(K = 8) 3.5139 4680 PWL App (M = 50) 3.5134 1483
Poly. App.(K = 10) 3.5135 5540 PWL App (M = 100) 3.5125 6220
Poly. App.(K = 14) 3.5129 18102 PWL App (M = 200) 3.5123 23687

TABLE I: ECRB values and simulation times for various approaches, whereα = 0.15.
.
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is the optimal function under no secrecy constraints according
to Proposition 1.
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Fig. 7: ECRB versush for various solution approaches when
α = 0.34 for w(θ) = 2θ for θ ∈ [0, 1].
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values in Table I for the scenario considered in Fig. 2 with
α = 0.15.6 We observe that the linear and power encoding
approaches have shorter solution times while they provide
suboptimal solutions. For the polynomial and piecewise linear
approximations, asK andM increase, the simulation times
increase and lower ECRB values can be obtained. However, it
is observed that after a certain value, the improvement in the
ECRB is not significant. Therefore, it makes sense to choose
the values of these parameters considering the solution times
as well. In this study, we have usedK = 10 andM = 100.

VI. CONCLUSION AND FUTURE WORK

The optimal parameter encoding problem has been stud-
ied in the presence of an eavesdropper, where the aim is
to minimize the ECRB at the intended receiver under the
constraint of a target MSE value at the eavesdropper. A closed-
form expression has been derived for the optimal encoding
function when there is no secrecy constraint. When a certain
secrecy level is to be guaranteed at the eavesdropper, first a
sufficient condition has been provided for the case in which
the optimal encoding function under no secrecy constraints
is still optimal. Next, a closed-form expression for the MSE
of the eavesdropper has been derived under the assumption

6The simulations are performed with Intel Core i5-4590 CPU 3.30 GHz
processor and Matlab R2017B.
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that the eavesdropper employs the linear MMSE estimation.
Based on this result, the shift invariance property has been
shown for generic prior PDFs, and it has been proved that
it is sufficient to restrict the search to decreasing encoding
functions if the prior distribution of the parameter has a
certain symmetry property. In addition, an upper limit has
been obtained for the MSE of the eavesdropper for the
uniform prior distribution. This result implies that the optimal
encoding function either maximizes or minimizes the variance
of the encoded parameter depending on the channel quality
parameter and the length of the range interval for the encoding
function. In order to calculate the optimal encoding function
numerically, various solution approaches have been consid-
ered; namely, linear encoding, polynomial approximation,and
piecewise linear approximation. It has also been shown that
the optimal solution for the linear encoding function can be
obtained algebraically. Numerical results have considered both
uniform and nonuniform parameter distributions, and provided
the optimal solutions based on the proposed techniques. The
future work is to investigate the extension of the analytical
results to the cases in which the eavesdropper employs the
MMSE estimator. Another interesting extension would be to
formulate the problem in a game theoretic framework, where
the eavesdropper has some partial information about transmit-
ter’s strategy and the transmitter considers this possibility in
the design of the encoding function.

APPENDIX

A. Derivation of (24) and (25)

The linear MMSE estimator̂β(Z) to estimateβ based on
Z can be expressed as [37]

β̂(Z) = E(β) +
Cov(β, Z)

V ar(Z)
(Z − E(Z)) (44)

FromZ = heβ +Ne, the following relations are obtained:

β̂(Z) = E(β) +
Cov(β, heβ +Ne)

V ar(heβ +Ne)
(Z − heE(β)) (45)

= E(β) +
heV ar(β)

h2
eV ar(β) + σ2

e

(Z − heE(β))

=
heV ar(β)

h2
eV ar(β) + σ2

e

Z +

(

1− he
heV ar(β)

h2
eV ar(β) + σ2

e

)

E(β)

where the second inequality is due to the independence ofβ
andNe.

B. Derivation of (26)

The eavesdropper is modeled to employ the linear MMSE
estimator specified bŷβ(z) = k0 + k1z, wherek1 and k0
are given by (24) and (25), respectively. Definingβ = f(θ),
V = V ar(β), C = Cov(β, θ), andh = he/σe, the MSE at
the eavesdropper can be written as

E
(

∣

∣β̂(Z)− θ
∣

∣

2
)

= E
(

(k1Z + k0 − θ)2
)

(46)

= E
(

k21Z
2 + 2k1k0Z + k20 + θ2 − 2(k1Z + k0)θ

)

(47)

= k21E
(

h2
eβ

2 + 2heβN +N2
)

+ 2k1k0heE(β)

+ k20 + E(θ2)− 2k1heE(θβ) − 2k0E(θ) (48)

where (48) follows from that facts thatZ = heβ + N and
E(Z) = heE(β). In addition, it is known thatE(N2) = σ2

e ,
andθ andN are independent random variables withE(N) =
0; hence,E(βN) = 0. Then, the expression in (48) is further
processed as follows:

E
(

∣

∣β̂(Z)− θ
∣

∣

2
)

= k21h
2
eE(β2) + k21σ

2
e + 2k1k0heE(β)

+ k20 + E(θ2)− 2k1heE(θβ) − 2k0E(θ) (49)

= k21h
2
eE(β2) + k21σ

2
e + 2k1(1− k1he)heE(β)2

+ E(β)2(1 + k21h
2
e − 2k1h) + E(θ2)

− 2k1heE(θβ) − 2(1− k1he)E(β)E(θ) (50)

= k21h
2
e(E(β2)− E(β)2) + k21σ

2
e + E(θ2)

+ E(β)2 − 2k1he(E(βθ) − E(β)E(θ))

− 2E(β)E(θ) = k21h
2
eV + k21σ

2
e − 2k1heC

+ E(θ2)− E(θ)2 + E(θ)2 + E(β)2 − 2E(β)E(θ) (51)

= k21(h
2
eV + σ2

e)− 2k1heC + V ar(θ) + (E(β) − E(θ))2

(52)

=
h2
eV

2 − 2h2
eV C

h2
eV + σ2

e

+ V ar(θ) + (E(β) − E(θ))2 (53)

=
(he/σe)

2V (V − 2C)

(he/σe)2V + 1
+ V ar(θ) + (E(β) − E(θ))2 (54)

=
h2V (V − 2C)

h2V + 1
+ V ar(θ) + (E(β)− E(θ))2 (55)

where (49) follows directly from (48), (50) is obtained by
inserting (25) into (49), (51) follows by rearranging the terms
and adding and subtractingE(θ)2 in (50), (53) is obtained by
inserting (24) into (52), and finally (55) is due to the use of
h = he/σe in (54). �
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