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Abstract—In this paper, optimal deterministic encoding of a cooperative jamming scenario is considered for multiplesi
scaIaTrhpara_me_ter is m_vest_lgaterc]i in the Dfe$en09} O:,an ea:jl?_ﬁph multiple-output (MIMO) broadcast channels with multiple
per. The aim is to minimize the expectation of the condition p ; ; ;
Cramér-Rao bound (ECRB) at the intended receiver while rfcetlvers. ar:jd e_avesdd:opli)ers, gnd tIh? qulmfal frlendl)‘lllmm
keeping the mean-squared error (MSE) at the eavesdropper strategy IS designed 1o keep signal-to-interierence-puse
above a certain threshold. First, the optimal encoding funton ratio (SINR) at the eavesdroppers below a certain thresoold
is derived in the absence of secrecy constraints for any gie ensure secrecy.
prior distribution on the parameter. Next, the optimization As a common alternative approach, secrecy levels can be
problem is formulated under a secrecy constraint and varios quantified based on estimation theoretic metrics. In thieca

solution approaches are proposed. Also, theoretical restsl on the aim is t timize th timati f
the form of the optimal encoding function are provided under € aim IS 1o optimize the estimation accuracy periformance

the assumption that the eavesdropper employs a linear minimm  Of the estimator at the intended receiver, while keeping the
mean-squared error (MMSE) estimator. Numerical examples &2 minimum mean-squared error (MMSE) at the eavesdropper

presented to illustrate the theoretical results and to invetigate above a certain target. This setting has been employed in a
the performance of the proposed solution approaches. wide variety of problems [15]—[23]. In [15], the outptit of a
Index Terms—Parameter estimation, Cramér-Rao bound channel for a given inpuk is encoded by a random mapping
(CRB), secrecy, optimization. Py in order to ensure that the MMSE for estimatirighased
on Z is minimized while the MMSE for estimating based on
Z is above(l —€)Var(X) for a givene > 0, whereVar(X)
denotes the variance df. In [16], the secret communication
Security has been a crucial issue for communications. Inygohlem is considered for Gaussian interference channels i
secure communication system, the aim is to secretly transiie presence of eavesdroppers. The problem is formulated to
secret data to an intended receiver in the presence of @fimize the total MMSE at the intended receivers while
eavesdropper. Cryptographic protocols based on secret kR¥eping the MMSE at the eavesdroppers above a certain
have extensively been employed to prevent any third partigseshold, where joint artificial noise and linear precadin
from extracting secret data [1], [2]. In [3], Shannon provegchemes are used to satisfy the secrecy requirements.
that the cryptographic approach known as one-time-pad camnother application area of the estimation theoretic sacre
achieve the perfect secrecy; that is, the original messede & distributed inference networks, where the informatiome
the cypher text become independent, if the number of differeng to a fusion center (FC) from various sensor nodes can
keys is at least as high as the number of messages. On 4 pe observed by eavesdroppers. The secrecy for distlibu
other hand, physical layer secrecy relies on the charatitesi getection and estimation can be ensured via various teebsiq
of the wireless channel and tries to ensure secret cCOmMMyrch as design of sensor quantizers and decision rulebastoc
nications by exploiting varying channel conditions. In,[4}tic encoding, artificial noise to confuse eavesdroppers, an
Wyner proved that when the channel between the transmitigmo beamforming [17]. In [18], the estimation problem
and the eavesdropper is a degraded version of the chamgjely single point Gaussian source in the presence of an
betWeen the transmitter and the intended receiver, thmbfel eavesdropper is investigated for the cases of mu|t|p|$m
communication can be achieved without information leakag@nsors with a single antenna and a single sensor with reultip
to the eavesdropper. One common approach to measure (tBsmit antennas. Optimal transmit power allocationgiedi
amount of achieved secrecy is to use information theoletiGge derived to minimize the average mean-squared error ]MSE
metrics and tools, such as mutual information, and to examigyr the parameter of interest while guaranteeing a targeE MS
the highest rates at which the transmitter can encode a g®ssg the eavesdropper. Furthermore, in [19], the secrecyl@rob
while maintaining a certain equivocation level at the eaveg, g distributed inference framework is investigated iner
dropper. Following Wyner’s work, a multitude of studies Bavpf distortion (and secrecy) outage, which is the probabilit
been performed based on this approach for various changglt the MMSE at the FC (eavesdropper) is above (below)
and transmission scenarios [5]-[12]. In the literatureréh certain distortion levels. The optimal transmit power adiion
also exist quality-of-service (QoS) frameworks based an thyjicies are derived to minimize the distortion outage @ th
signal-to-noise ratio (SNR), which is used as a metric f¢fC under an average transmit power and a secrecy outage
physical layer security [13], [14]. For example, in [14], &onstraint at the eavesdropper. In [20], stochastic etictyp
_ _ o is performed based on the 1-bit quantized version of a noisy
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Bilkent University, Bilkent, Ankara 06800, Turkey, Tel: 8812-290-3139, sensor measurement to achieve secret communication, where
Fax: +90-312-266-4192, E-mail§cgoken,gezidi@ee.bilkent.edu.tr. both symmetric and asymmetric bit flipping strategies are

I. INTRODUCTION AND MOTIVATION



considered under the assumptions that the transmitteraseawthe intended receiver while ensuring a certain MSE target at
of the flipping probabilities and the eavesdropper is unawér the eavesdropper. It is assumed that the eavesdropper uses a
the encryption. The effects of the flipping probabilitiestbe linear MMSE estimator without being aware of the encoding.
Cramér-Rao bound (CRB) and the maximum likelihood (MLAn optimization problem is formulated to obtain the optimal
estimator at the fusion center, and on the bias and the M8Ecoding function for given target MSE levels. At the first

at the eavesdropper are investigated [20]. In [21], privaky step, the secrecy requirements are omitted and the optimiza
households using smart meters is considered in the presénction problem is solved under no constraints. In that case, a

adversary parties who estimate energy consumption basedctosed-form analytical solution is provided for the optima
data gathered in smart meters. The house utilizes the ieatteencoding function for any given prior distribution. Nexhet

to mask the real energy consumption. The Fisher informatiMSE constraint for the eavesdropper is included and various
is employed as a metric of privacy and the optimal policies feolution approaches, such as polynomial approximati@tepi

the utilization of batteries are derived to minimize thehieis wise linear approximation, and linear encoding are progose

information to achieve privacy.

Also, theoretical results are derived related to the stimect

For estimation theoretic approaches, the Cramér-Rabthe optimal encoding function under some assumptions.
bounds provide useful theoretical limits for assessindggper Then, numerical results are provided for both uniform and
mance of estimators. It is known that when the parameterionuniform prior distributions. The main contributionstris
be estimated is non-random, the conditional CRB states tha&per can be summarized as follows:

under some regularity conditions, the MSE of any unbiased
estimator is bounded by the inverse of the Fisher infornmatio
for each given value of the parameter [24]. On the other hand,
if the parameter to be estimated is random with a known prior
distribution, then the extended versions of the CRB, sutheas
Bayesian Cramér-Rao bound (BCRB) and the expectation of
the conditional Cramér-Rao bound (ECRB), can be employed
[25]. Even though the BCRB effectively takes the prior infor
mation into account and can provide a useful lower bound for
the maximum a-posterior probability (MAP) estimator in the
low signal-to-noise ratio (SNR) regime, it does not exist fo
some prior distributions due to the violation of an assuopti
in its derivation. For example, the BCRB does not exist when
the parameter has a uniform prior distribution over a closed
set [25]-[27]. More importantly, when the conditional CRB i
a function of the unknown parameter, which is commonly the
case, the BCRB does not present a tight bound in the high
SNR regimée: Therefore, for the parameter encoding problem
in this paper, the use of the BCRB as the objective function
may be misleading and can result in trivial bounds in some*®
cases. For these reasons, the ECRB is employed in this study,
which has widely been utilized in a variety of applications i
the literature; e.g., [29]-[31], [42]. The ECRB is known to
provide a tight limit for the MAP estimator asymptotically,
and converges to the Ziv-Zakai bound (ZZB) in the high
SNR regime [25]. Therefore, the optimization of parameter
encoding according to the ECRB metric leads to close-to-
optimal performance for practical MAP estimators in thehhig
SNR regime. Although the ZZB can provide a tight limit for all
SNRs, it has high computational complexity compared to the
ECRB [25], [28] and does not allow theoretical investigatio
for achieving an intuitive understanding of the parameter
encoding problem.

In this paper, we consider the transmission of a scalar

The problem of optimal parameter encoding is proposed
by considering an ECRB metric at the intended receiver
and an MSE target level at the eavesdropper.

« Considering a generic prior distribution, a closed-form

expression is derived for the optimal encoding function
under no secrecy constraints.

« A closed form expression faE(|3(Z) — 6|?) is provided

when the eavesdropper employs the linear MMSE esti-
mator without being aware of the encoding, whé(é?)

is the estimator of the eavesdropper ahds the true
value of the parameter. It is shown that the corresponding
ECRB and MSE value do not change if the domain of
the function is shifted. It is also proved that if the prior
distribution is symmetric on the domain, the search for
optimal encoding functions can be limited to decreasing
functions. In addition, a closed-form expression is detive
for the supremum ofE(|3(Z) — 6|2) over all feasible
encoding functions when the prior distribution is uniform.
Three solution approaches are proposed to find the op-
timal encoding function. The polynomial and piecewise
linear approximations are used to calculate the optimal
encoding functions numerically, and linear functions are
employed to develop a suboptimal encoding scheme. It
is shown that the optimal linear encoding function can
be obtained simply by finding the roots of a polynomial
equation. In addition, solutions are provided based on
power functions in the numerical examples.

« Via numerical examples, the optimal ECRB values and

encoding functions are obtained based on the proposed
approaches for the case of a varying target MSE level
when eavesdropper’s channel quality is fixed, and for the
case of a varying eavesdropper’s channel quality when
the target MSE level is fixed.

parameter to an intended receiver in the presence of an-eaveJhe rest of the paper is organized as follows: The optimal
dropper. In order to ensure secret communications, weetiliparameter encoding problem is formulated in Section Il. Op-
an encoding function (continuous and one-to-one) applied timal encoding functions with and without secrecy constisai
the original parameter. The aim is to minimize the ECRB aire investigated in Section IIl. The solution approaches fo
the optimal encoding problem are proposed in Section IV.
The numerical results are presented in Section V, and the
concluding remarks are given in Section VI.

1This is also a problem for the weighted Cramér-Rao bound RBC
which is a generalized version of the BCRB using a weightimgcfion, and
can be employed for the cases in which the BCRB does not 263t [27].



h, N, o Based on the previous assumption, the eavesdropper
l l employs the linear MMSE estimator, which requires the
0 ) oo @) v prior knowledge of the mean and variance fa¥) due
4 U to the independence ¢fand N, (see (24) and (25)).
According to this strategy, the MSE at the eavesdropper can
@ @ A be written asE(|3(Z) — 6|?), whereB(Z) is the estimator of
T T the eavesdropper arillis the true value of the parameter.
h N For quantifying the estimation accuracy at the intended

receiver, the ECRB will be used in this study, as motivated
Fig. 1: System model for the parameter encoding problerﬁn Section I. The ECRB is defined as the expectation of the
conditional CRB with respect to the unknown parameter [25],
which is expressed as
Il. PROBLEM FORMULATION

1

Consider the transmission of a scalar paramgterA to an Lo (1(9)_1) = /Aw(e)mde = ECRB ®3)
intended receiver over a noisy and fading channel, where the ) ]
noise is denoted by, and the instantaneous fading coefficient/nerew(®) is the prior PDF of, 1(6)~" corresponds to the
of the channel is denoted by the constantlt is also assumed conditional CRB for estimating,® and/(¢) denotes the Fisher
that there exists an eavesdropper trying to estimate paeaméformation, i.e.,
6. The aim is to achieve accurate estimation of the parameter dlog py|o(y)
at the intended receiver while keeping the estimation error 1(0) = / (T
at the eavesdropper above a certain level. To that aim, the
parameter is encoded by a continuous, real valued, and oWéh pys(y) representing the conditional PDF Bffor a given
to-one functionf : A — I'. Hence, the received signal at the/alue off [24].

2
) Py o(y)dy (4)

intended receiver can be written as The aim is to minimize the ECRB at the intended receiver
over the encoding functiory(-). However, the estimation
Y = h,f(0) + N, 1) performance at the eavesdropper, which tries to estimate

where N, is modeled as a zero-mean Gaussian randdRf Parameter by using its observatiah should also be
variable with variances2, and N, and § are assumed to be considered. Therefore, the aim becomes the minimization of
T

independent. On the other hand, the eavesdropper observd@€ ECRB forf at the intended receiver while keeping the
estimation error at the eavesdropper above a certain limit.
Z = hef(0) + Ne (2) Therefore, when deciding on the encoding scheme by using

where h. is the fading coefficient for the eavesdropper, anfy One-to-one and continuous function in the presence of an

N, is zero-mean Gaussian noise with variangg which eave_sdropper, the average error at the eave_sdrop_per should
is independent of and N,.. Also, the prior information on considered, as well. Hence, the overall optimization pobl

parameterd is represented by a probability density functiof proposed as follows:

(PDF) denoted byu(9) for 6 € A. The intended receiver tries . . / R 37— o2 >

to estimate paramet#r based on observatiori whereas the Jopt = argmfm Aw(e)l(e)de st B (]B(Z) 9‘ ) =«
eavesdropper uses observatidffior estimatingd. The system (5)

model is illustrated in Fig. 1. It is assumed that the cha®ing|are o is the MSE target at the eavesdropper and the
are slowly fading; that is, the channel coefficients are taonts expectation is over the joint distribution of and Z. In

during the trgnsmlssmn O_f the parameter. addition, the parameter space and the intrinsic conssraint
The following assumptions are made about the eavesdrqlpé encoding functiorf are specified as follows:

per’s strategy: e h =l
. = |a .
« f acts like a secret key between the transmitter and the X
: ) . o f(0) € [a,b].
intended receiver and is not known by the eavesdropper.

. h » f is a continuous and one-to-one function.
Hence, the estimator at the eavesdropper actually tries to

estimatef (4) 2 3 without the knowledge of based on Namely, it is assumed that the parameter space is a closed
observationZ = h. f(8) + N, set inR and the encoder function is an endofunction,; that is,

« The eavesdropper observes a scaled and noise corruﬂ'fbpddomain and the codomain of the encoder function are the
version of f(8) (not §) and it can only obtain prior same. This is due to the practical concern that the trarsmitt
information related tof(¢) (e.g., based on previousShOU|d use the same hardware structure in the presence and ab

observations). It is assumed that the eavesdropper knows1C€ Of encoding. Furthermore, the endofunction assampti
only the mean and the variance pf¢), which are quite implies the peak power constraint on the encoder and it guar-

easy to obtain compared to the PDF f4). _antees that the |_dent|ty m_applrfqe) =4 (i.e., no encodm_g)
is a legal encoding function. It also preserves the maximum
2Considering a block fading scenario in which the channeffioients are

constant for a block of transmissions [6], [32]-[34], thegaeter encoding  3The conditional CRB presents a lower limit on the MSE of anpiased
function should be designed for each block. estimator of¢ based onY” for every 6 € A.



range of the parametdr— a. Note that it is actually possible If the transmitter sends the parameter without any enceding
to impose different constraints (e.g., average power cainst that is, if f(§) = 6, then the MSE of the estimator at the
boundedness) or assumptions (e.g., stochastic encodimg)eavesdropper can be calculated from (7) and (1@ @s5) =
the encoding function depending on the design choice af@09 (the second and the third terms in (7) are zero), where
application. Qz) = (1/V2m) [° e~%"/2dy represents th@-function. On
The use of the ECRB as the performance metric for thke other hand, if the transmitter employs an encoding fanct
design of optimal encoding functions can be justified apecified byf(6) =1 — 6, then the MSE at the eavesdropper
follows: (i) For sufficiently high SNRs, the MSE of the MAPbecomesl — Q(0.5) = 0.691 (the first term in (7) is the
estimator converges to the ECRB [25]. (For low SNRs, trgame as in the previous case, but the second teinaisl the
MAP estimator depends mainly on the prior informatiorthird term is—2 Q(0.5)). Hence, the eavesdropper has a higher
hence, parameter encoding becomes ineffective.) (ii) KenliMSE as a result of secret encoding, which is not known by the
the MSE metric, the ECRB metric does not depend on a spgavesdropper (i.e., the eavesdropper thinks that thenitied
cific estimator structure. (iii) The use of the ECRB factita value is the original paramet#). The encoding function is
theoretical investigations for achieving intuitive unstanding known by the intended receiver, which can use this inforomati
of the parameter encoding problem. to design its estimator accordingly. However, for a generic
encoding function, there can occur a penalty at the intended
receiver in terms of the estimation performance. Hence, in
the design of the encoding function, the trade-off betwéen t
In this section, the optimization problem in (5) is investiMSE at the eavesdropper and the estimation accuracy at the
gated in detail. To that aim, the MSE of the eavesdropper iimtended receiver should be considered.
the constraint of (5) is analyzed first. To specify the Fisher information in (5), the conditional

A . PDF of Y givend is expressed from (1) as
E(|32)-0]") = E(|3(2) - 10 + 10) = 0]")  (6) e

= 5(15@2) - 160)") + B (150) - oP) o) ==

+2F ((B(Z) — £(0)(f(8) — 9)) . (7) Then, the Fisher information for parametecan be calculated

via (4) and (11) as follows:
It is noted from (7) that the MSE of the eavesdropper is

I1l. OPTIMAL ENCODING FUNCTION

(11)

2 g/ 2
determined by both the estimation error for estimatji{g) 1(0) = w (12)
(that is,8(Z) — f(6)) and the distortion due to the encoding Ir
function (that is,f (#) — ¢). The last term in (7) can be writtenwhere f’(6) denotes the derivative of(6).
as Based on (7) and (12), the optimization problem in (5) can
. be analyzed. However, before tackling the problem in (5, th
E ((B(Z) B f(@))(f(@) - 9)) unconstrained version of it is investigated in the nextisact
— EgEzp ((B(Z) _ f(@))(f(g) —0) |9) 8) to provide initial theoretical steps towards the analysishe

generic case.

= B ((£(6) — 0)Ez (3(2) - 1(6))) ©)

. . A. Optimization without Secrecy Constraints
where Ey denotes the expectation with respecttand Ez g ] R ) )
represents the conditional expectation with respecf given ~ Consider the optimization problem in (5) without the se-
0. As a special case, if the estimator of the eavesdropp€fcY constraint; that is, by omitting the presence of the
B(2), satisfiesEy (3(Z) — £(8)) = 0, V6, then the term in eavesdropper. Then, the optimization problem is formdlate
(9) becomes zero. This condition actually corresponds ¢o t#S
definition of an unbiased estimator for estimatifi) based [ 1
on Z; i.e., Ez4(B(2)) = f(6), V6. In other words, when Fopt = argmfm/a w(@)mde (13)
the estimator of the eavesdropper is unbiased, its MSE in (,9
simply becomes the sum of the MSE for estimatjf(@) (the
first term in (7)) and the mean-squared distortiord tdue to
the encoding functiorf (the second term in (7)).

PlereA = [a, b] is employed as specified in Section Il. Based
on (12), the problem in (13) can be rewritten, by removing
the constant terms, as

The observations in the previous paragraph lead to an B [P 1
intuitive explanation of the proposed problem formulatiBar Jop = arg mfm u w(®) 1/(0)2 9. (14)
example, suppose that the transmitter is to send Parametgt, oo\utions of (14) are specified by the following proposi-

6 which is either0 or 1 with equal probabilities, where .

tion.
— 42 42 it i
he = hr = 9e = 9r = 1. In addition, the estimator at the Proposition 1. The optimal encoding functions in the ab-
eavesdropper is given by

sence of an eavesdropper are given by

X 1, if Z>05 0 0
ﬂ(Z)—{O’ otherwise (10) f(9):a+/a g(0)dd and f(@):b—/a g()do (15)



where B. Optimization with Secrecy Constraints

s (b= a)w(®)/*
) (16)

In this part, the optimization problem in (5) is considered
without omitting the secrecy constraint, where the paramet
space is specified by = [a, b] as before. Although the linear

Proof: Since f is one-to-one and continuous, consider §IMSE estimator is assumed to be employed at the eavesdrop-
monotonically increasing (decreasing) function withio) > 0 per in this study (see Section I1), a corollary to Propositlais
(f'(6) < 0), V6 € [a,b].* Also, due to the facts thaf(d) presented first for the case in which the eavesdropper employ

is monotorge and'(f) € [a,b], the following relation can be the MMSE estimator, defined a&z) = E(8|Z = z) with

obtained:[, £.do = f(b)—f(a) < b—a (f(b)—f(a) > a—b). B = f(0).
Then, definingg(6) £ f/(6) (9(9) = —f'(6)), the problem in  Corollary 1: Suppose that the eavesdropper employs the
(14) becomes MMSE estimator for a given encoding functig(¥). Denote
b 1 the corresponding MSE at the eavesdropper/{g ") when
mgin/ w(9)g(9)2 do (17) the encoding function ig(0) = a + [’ g(9)d0 £ f, and as
ab R(f~) when the encoding function j§¢) = b—ff g(0)do =
s.t./ g(0)dd <b—a (18) f~, where ¢g(#) is as defined in Proposition 1. Then, the
a following statements hold:
g9(0) =0, V0 € [a, b] (19) a) If the target MSE of the eavesdroppearin (5), satisfies

Note that for allg € [a,b], increasing the value qf(9) does @ < min{R(f™), R(f7)}, then bothf™ and f~ are optimal
not increase the value of the objective function; hence, tg8coding functions.

constraint in (18) is satisfied with equality. Now, in order t b) If min{R(f), R(f7)} < o < max{R(f"), R(f7)},
solve the optimization problem in (17)~(19), the calculds ¢hen the optimal encoding function " if R(f*) > R(f7)
variations is employed, and the problem is expressed in tA8d it is f/~ otherwise.

form of Proof: Proposition 1 implies that iff = or f~ is admis-
1 sible by the constraint, it becomes the minimizer of the ob-
m>118 <w, 2> st. {(9,1)=b—a. (20) jective function. When the eavesdropper employs the MMSE
9=z

estimator,3(z) = E(8|Z = z), the MSE at the eavesdropper
Then, the Lagrangian is obtained as can be calculated from (7) for a given encoding function.
1 For the special cases of encoding functigits and f—, the
m> + Mg +et,1)  (21) corresponding MSE values are denotedity ™) and R(f ™),
respectively. Ifa is less than both oR(f*) andR(f ™), then
wheree, t, and A represent the perturbation, the test functiogx+ and £~ do not violate the constraints and solve (5)alf
and the Lagrange multiplier, respectively. The optimalisoh  js |ess than only one aR(f+) or R(f~), then still one off+
must satisfy 9| _ = 0 vt [35], [36]. Hence, the following and /-~ is admissible; hence, the optimal encoding function.

optimality condition is obtained: n
—2t
<w’ m> + A1) =0 (22)  shortcut provided in Corollary 1 cannot be used, and it is
required to design another encoding function to satisfy the
which leads to{t, A + _g%w> = 0. In order for this to hold for secrecy constraint.
all t, g = kw'/* must be satisfied for some constant- 0. Remark 1: The statement in Corollary 1 in fact holds for
From the equality constraint, the constant can be calaliate any estimator at the eavesdropper since the proof is noifspec
E=(b- a)/fj w(0)'/3dh. Note that thisg(6) is valid, asf to the MMSE estimator. In other words, as long as any of
takes values ifiu, b]; henceyw(6) is not0 over a closed interval the encoding functions in Proposition 1 results in an MSE
n [a,b]. Sinceg(d) = f'(0) and g(0) = —f'(¢) for the at the eavesdropper that is higher than the target MStat
monotone increasing and the monotone decreasing scenawpgoding function is also optimal for the problem in (5).&in
respectively, the solutions can be obtained as in (15) a@j (1the MMSE estimator achieves the minimum MSE among all
n estimators, it is concluded that if one of the encoding fiomast
Proposition 1 states that either of the two functions given Proposition 1 is optimal when the eavesdropper employs
in (15) is an optimal solution for the minimization problem i the MMSE estimator, then that encoding function is in fact
(14). As a corollary to Proposition 1, if the prior distribrt  optimal for any other estimator at the eavesdropper.
of the parameter is uniform oveéd, b], the optimal encoding  Even though the MMSE estimator is the optimal estimator
functions can be found via (15) and (16) #&) = ¢ and according to the MSE metric, for implementing the MMSE
f(@) = a+b— 0. In other words, for the uniform prior, estimator, the eavesdropper must know the prior PDF(67,
parameter encoding is not needed for reducing the ECRBwatich can be difficult to obtain (learn). In this study, it is
the intended receiver. assumed that the eavesdropper has the knowledge of the mean
and variance off (9). Therefore, the eavesdropper is assumed

“Note thatf’(6) can be zero at certain points; however, it is fotor a to employ the linear MMSE_eStimat(_)r to estimate= f(9>
closed interval ina, b] due to the one-to-one property. based onZ, as noted in Section Il. It is known that the linear

L(g,e, t,\) = <w + et,

It is noted that whena > max{R(f"),R(f)}, the

e=0




MMSE estimator is the optimal linear estimator according tpractice, it can be challenging for the transmitter to hawe a
the MSE metric [37]. Furthermore, it would actually be theccurate knowledge of the channel quality for the eavesdrop
optimal MMSE estimator to estimatebased orZ, E(8|Z = per. In such cases, a conservative approach can be taken by
z), if 8 and Z were jointly Gaussian random variables [24]either increasing the MSE targetin (5) or considering the

For the system model in this study, the MMSE estimator awabrst-case (minimum) value of the MSE at the eavesdropper
the linear MMSE estimator will have similar performance according to the uncertainty in the channel quality paramet

low SNRs if the prior is uniformly distributed. The following proposition presents a shift invariance prop
When the linear MMSE estimator is employed at therty for the considered problem.
eavesdropper;(z) can be expressed as Proposition 2: Suppose that the unknown parameter

YU resides infa, b] with a prior distribution specified by (8), and
Ble) = ko + ka2 @3 the enco<j[ing]functi0[ﬁ(9) : [a,b] — [a, b] results in :Eu):ertain
wherek, andk, are chosen to minimiz& (\B(Z) _5’2) _ ECRB at the int(_anded receiver gnd a certain MSE at the
5 eavesdropper, which employs the linear MMSE estimatdrelf t
E (’ko +kiZ - | ) as the eavesdropper does not know thgarameterd were defined if0, b—a] with the prior distribution
encoding. The resulting coefficients for the eavesdropper(f) = w(# + a), then the use of the encoding function
estimator are given as (see Appendix A for the derivation) £(9) : [0, b—a] — [0, b—a] such thatf (0) = f(0+a)—a would

heVar(B) result in the same MSE at the eavesdropper and the same
ki = W (24) ECRB at the intended receiver as in the original scenario.
. N Proof: The ECRB in the original scenario can be ex-
ko = (1 — k1he)E(DB). 25
0= the) B(6) (25) pressed from (12) and (13) as
Then, the resulting MSE between the estimate of the eaves- o b ]
dropper and the true value of parametaran be derived from U_g w(6)— sdf (27)
(23)—(25) and (7) as (see Appendix B for the derivation) hi Ja f(0)
. B2V (V — 20 which is equivalent to
B (152) - o) = 2+ (B (5) - B )Y o s 1
— 0+ do 28
+Var() (26) A e
where 8 = f(0), V = Var(8), C = Cov(B,0), andh = since (f(6 + a) —a) = f'(6 + a). As the expression in
he/oe. (28) corresponds to the ECRB in the second scenario, the

It is observed that the MSE value at the eavesdropp%uwalence of the ECRBs is established. To prove that the
corresponding to the linear MMSE estimator depends OASE at the eavesdropper does not change, it is noted that
both the encoding function and the channel qualitat the the parameter defined iiv, b — a] with the prior distribution
eavesdropper. It is noted that for a given encoding functi¢#(?) = w(0+a) corresponds to shifting the original parameter
with V — 2C' > 0, the first term in (26) is positive, and the@S ¢ — a. Also, let 5 and 5 denote the random variables for
MSE at the eavesdropper becomes an increasing functionl €ncoded versions of the shifted and original parameters
h2. This means that as the channel quality for the eavesdropfr €ncoding functionsf(¢) and f(0), respectively. Then,
improves, the resulting MSE at the eavesdropper increases’i = # — @ holds. Furthermore, it is noted that shifting the
that scenario. This seemingly counterintuitive resultiispdy ~SPecified random variables) (and 5 = f(6)) just changes
due to the fact that the estimator of the eavesdropper isdbalf2eir means by the amount of the shift without modifying the
on the noisy observation of the distorted version of theipaly S€cond order statistice and C'. Hence, (26) reveals that the
parameter. Hence, one can transmit the inflicted distortidh>E at the eavesdropper stays the same as in the original
more efficiently to the eavesdropper under good chanr@enario after the shift operations. u
conditions leading to a higher MSE. If the eavesdropper knewBased on Proposition 2, the estimation of a parameter in
the prior distribution of the original parameter and readizhat 6 € [0,b— a] can be considered without loss of generality for
the transmitter sends the encoded version, it would sintply s the case of the linear MMSE estimator at the eavesdropper
using the observation and sgtZ) = E(f), resulting in an (see Proposition 4).

MSE of Var(#), which is lower than the value in (26) for The next proposition states that when the prior PDP ef
the case of’ — 2C' > 0. However, the eavesdropper doesq, b] is symmetric arounda + b)/2, parameter encoding via
not have that knowledge and the channel observation is thetrictly decreasing function is more desirable than theaiav
only information it can use to estimate the parameter, whidtrictly increasing one.

is utilized by the transmitter. Proposition 3. Suppose that the eavesdropper employs

Remark 2: In the considered setting, the eavesdroppéie linear MMSE estimator and)(#) is symmetric around
employs the linear MMSE estimator and the transmitter {&+b)/2. Then, for any given continuous and strictly increas-
aware of this situation. Then, to obtain the optimal encgdining encoding function, there exists a corresponding carttirs
function based on (5), (12), and (26), the transmitter sthhouhnd strictly decreasing encoding function that yields thms
have the knowledge of the prior PDF of the parameter aftCRB at the intended receiver with a higher MSE at the
the channel quality parametgf /o2 for the eavesdropper. In eavesdropper.



Proof: Consider two encoding functior§#) ands(f) = be shown, for the uniform prior distribution, that either of
fla+b—0), wheref € [a,b] and f(0) is a continuous and f(6) = 6 or f(8) = a + b — 6 is an optimal encoding
monotonically increasing function. Sineg¢) = w(a+b—6) function in the absence of the constraint (i.e., in the abserf
due to the symmetry assumption asi(h) = — f'(a+b—0) by the eavesdropper). When the eavesdropper employs the linea
definition, both encoding functions result in the same ECRRJMSE estimator, the use of (f) = ¢ leads to an MSE of
which can be proved via (14) as follows: and the use of (6) = a+b— 6 results in an MSE of

b 1 b 1 v T (atb— 2E(6))?2, which can be derived based on
/ w(9)s,(—9)2d9 = / w(a+b— 9)md9 (26). Then, based on similar arguments to those in Corollary
“ “ 1, it is deduced that if the MSE corresponding () = 6

Vu
R2V, 11
4h2V2E4V,

b
= / w(e)%de (29) is larger than or equal te, f(f) = 6 is an optimal encoding
a 119 function. Similarly, if the MSE forf(0) = a+ b— 6 is larger
where the final expression is obtained via a change of vatfiran or equal tax, f(0) = a + b — 6 is an optimal encoding
ables. To compare the MSEs corresponding to the two encdaAction. [ |

ing functions, defingg; £ f(#) and3, £ s(f), and letps, (x) The following proposition provides an upper bound on the
and pg, () represent the PDFs of; and g, respectively. MSE at the eavesdropper, which employs the linear MMSE
Then, it is noted thapg, (v) = pg,(x) for z € [a,b] since estimator, when the parameter has uniform prior distriuti
w(f) = w(a + b —6) due to symmetry. Hence, both; Proposition 4: If the eavesdropper employs the linear

and ﬁ§ have the same expectation and the variance._For ORISE estimator and has uniform distribution ovefo, 4],
covariance Cov(3,0) = E(80) — E(B)E(0), the following ihen

expression can be obtained: .2 9
3 — ~ ) Y S r
E(ﬂff) E(850) b sup (I3 -6") =1 3 ah 2 b (32
_ / w(0)£(6)8d6 — / w(®)f(a+b—0)0d0  (30) s 12 7 h
s ‘ where f(#) : [0,4] — [0,v] is a continuous and one-to-one
= / w(0)f(0)(20 — a — b)db. (31) function.

o Proof: For an encoding functiorf(d) = 3, let V =
yvhere _(30) follows from the definitions qj_if andﬂi,band (31) Var(8), C = Cov(B,0), andy = E(B). It can be shown
IS g_lt:lt)amed from the symr?etry af(0). Sincef(“5~ = =) < hat for a random variable defined on the bounded interval of
fl&7 + @) for x € (0, %57], E(Bs0) — E(B:0) > 0. Then, 15 .1 the following relations hold fop: € [0,~]:
Cov(By,0) > Cov(Bs,0) and E(|3; — 0%) < E(|8s — 0]?)

according to (26). Therefore, it is always possible to aghie 0<V<puly—p) < 7_2 ) (33)
higher MSE by employing(0) instead off (#) while keeping 4
the ECRB the same. B In addition,C can be expressed as
Proposition 3 implies that it is sufficient to search for the 1 [ 5
optimal encoding function among strictly decreasing fioret C= 5 /0 f(0) (9 - 5) do.

if the prior distribution of the parameter satisfies the syatm ] ) ) )
condition (e.g., the uniform distribution). This is basedthe FOr @ given continuous endofunction (i), it can be shown

idea that for any given increasing encoding function thateso thatC' is in (—7%/8,7%/8). Also, from (26), the MSE at the
(5), there exists a legitimate decreasing function obthin€avesdropper can be stated as

by a simple trapsformgtion, which yields the same optimal 2 (15021 — o1 — RV (V —20) Y\2 A2
ECRB value with an mcre_ased MSE at the eavesdropper. (ﬁ( )~ ‘ ) T TRV 1 + (/‘_ §) + 12
Hence, from a practical point of view, the search space for R2V(V —20) ~2
the optimal encoding function can be confined to strictly STyl + 3
decreasing functions under the conditions in the propositi V(1 +2h2C) A2

1) Special Case: Uniform Prior DistributionFor the spe- T T v+l 3 (34)

cial case of a uniform prior distribution, the following et here the inequality holds for anv continuous encodin
characterizes the optimal encoding function when the eav% q Y y 9

. . nction defined on[0,~]. Therefore, the upper bound on
dr%ppelrl em';'f“és the "”esr Mr':/'SE eSt'matof:' <o E(3(Z) = 0), specified in (34), holds for all possible
_Corollary 2: Suppose that the parameter has uniform prloéncoding functions. Next, the maximum of this generic upper
distribution over [a,] and the eavesdropper employs the . qis to be found over the PDF 6f denoted by, where
linear MMSE estimator. Then, if the target MSE satisfies B = f(6). It is observed that if(1 + 242C) > 0 f'or any

a < VAT thenAf(G) = 0 is an optimal encoding given pg, the first term in (34) is nonpositive d@§ > 0 and
function, whereV,, = (b — a)®/12. On the other hand, if ;, - o hence, the maximum of the upper bound?g3. When
a < % +(a+b—2E(9))* thenf(f) =a+b—0is (1 +2h2C) < 0, then the first term in (34) is maximized by
an optimal encoding function. increasingV’ and decreasing at the same time. Therefore, if

Proof: From the expressions in Proposition 1, it caW = ~2/4 andC = —~?2/8, the maximum of the upper bound



is achieved. Thus, for < 2/h, E(|3(Z)—6|?) < 42/3 holds, to generate a higher MSE by maximizitg( (3 — #)2). This

and fory > 2/h, behavior can be regarded as th@riance maximizing mode
R B2ad 9 Of course, if the resulting MSE is higher than the target MSE
E(3(Z) - 6% < % +L (35) «fora givenh, then one can use linear encodifi@) = v—6
2h*yt+8 12 for minimizing the ECRB.
is obtained. Furthermore, in the first case (i®.< 2/h), It is important to note that Proposition 4 does not have

£(8) =0 (or, f(8) = ~) for 6 € [0, ~] attains the upper boundany constraints on the ECRB. The original problem tries to
on the MSE, that isy2/3. In the second case (i.ey,> 2/h), minimize the ECRB for a target MSE. Among two candidates
it is possible to achieve the upper bound in (35) by usi() with the same ECRB, the one yielding the larger MSE at the

defined as eavesdropper is preferred in the search of the optimal emcod
R {7 0<6<~/2 The feasible set fofu, V, C) is specific to that ECRB value.
f@O)=<" - . (36) For example, one might not be able to Jet— 0 anymore.
0, 7/2<0=ny However, one can generate a larger MSE by makingery

Even though the maximum values for the upper bounds &@se to its limit in the feasible set for sufficiently small
obtained and it is argued that they are exactly attained glues (e.g., by using a decreasing concave function) or by
using f(6), it should be noted thaf(6)'s are not in the making E(|3 — 6|*) as large as possible for sufficiently high
feasible function set as they do not satisfy the one-to-ofievalues (e.g., by using a decreasing concave function for
and continuity properties. However, it is possible to apgto 3 < 7/2 and a decreasing convex function f6r> ~/2).
arbitrarily close tof(#) while staying in the feasible function Hence, the optimal encoding function will be in either of the
set (e.g., také > 0, setf(f) = v — 6, and lets — 0 for the Mmodes (variance minimizing or maximizing) described above
first case). Furthermore, the objective is continuous fonel ~ Remark 3: The optimal value of the optimization problem
acting on the encoding function. Hence, the upper bouffti (5) can be named aS(«) since the optimal ECRB value
values for the MSE cannot exactly be achieved; however, ofi@pends on the target MSE That is,

can get arbitrarily close to them by employing one-to-one o2 [P

and continuous functions, which yield them as the supremum G(a) & h—; / (9),792d9 (37)
values for the MSE at the eavesdropper, resulting in the rJa Fopt (0)

expression in (32). B wheref,,:(0) is a solution to (5). Note that the optimal value

In addition to providing a closed form upper bound on thef the ECRB in the case of optimization without secrecy
distortion at the eavesdropper, Proposition 4 plays amotle@nstraints can be denoted Hy(0). Then, G(a) has the
important role by helping us gain practical intuition abouiollowing properties:

the behavior of the optimal encoding functioratiance min- o G(a) is constant betweefi < a < ay, With oy =
imizing modeor variance maximizing modleAs argued in max{R(f*), R(f~)}, where R(f*) and R(f~) can
Proposition 3, if there are two alternative encoding fumtsi similarly be defined as in Corollary 1 except that the

with the same ECRB, then it is better to choose the one which linear MMSE is employed at the eavesdropper.
yields the higher MSE. Note that given an encoding function « G(«) is a non-decreasing function betweep, < a <
f(0), one can shuffle the increments of the given functionand , \wherea,,,, = sup; (|B(Z) _ 9‘2)_
end up with an alternative encoding function with the same | G(a) = o0 asa — a
ECRB. The alternative encoding function will possibly have e .
) Lo he second property follows from the following argumentt Le
different (u, V, C). Therefore, it is important to understand : .
. S., andS,, be the feasible sets far, andas, respectively. If
how the MSE behaves gs V, andC change. Note that in = 2 )
. > aw, thenS,, C S,,; hence,G(a1) < G(az). Note that
(32), the supremum changes depending on the value of ! 2 . . : o,
. . a cClosed form expression fa,,,, is provided in Proposition
channel quality of the eavesdroppefor a giveny (h < 2/v : . X o
) : . 4 for the special case of uniform prior distribution.
or h > 2/v). Let us investigate those two cases:

« If the channel quality: is small enough, one can I6t— IV. SOLUTION APPROACHES
0 (or 7) to maximize its MSE. This strategy is equivalent | general, the optimal parameter encoding problem for-

to minimizing the variance and letting(5) — 0 (0r 7). nyjated by (5), (12), and (26) is a difficult optimization
« If the channel quality’ is large enough, then one can, ohiem as it requires a search over functions. Although the
increase the variandé and decreas€’ at the same2t|me theoretical results in the previous section can lead toedlos
to maximize its MSE (effectively maximiz&(|3—0["))-  torm solutions or reductions in the search space in certain
This discussion becomes clearer at the extreme cases of dbenarios, it may still be necessary to solve the problem
value ofh2. For example, suppose thiat is very small. Then, directly in some cases. Therefore, various solution apgires
(26) reveals thaf(|3(Z) —0]?) ~ (E(8) — E(0))?>+Var(9); are developed in this section for obtaining suboptimaltsahs
hence, it is possible to generate a larger MSE by makifyg) of (5). In the proposed approaches, it is assumed that the
as close to the boundariésand~ as possible. This behaviorencoding functionf is picked among a family of functions
can be regarded as thariance minimizing moddf A2 is characterized by a certain number of parameters. Then, the
very large, thenE(|3(Z) — 0|?) ~ (V — 2C) + (E(B) — optimization problem becomes easier to solve as it involves
E(9))?+Var(9) = E((3—60)%)+ E()?; hence, it is possible minimization over a few variables (instead of functionshjeh



also leads to some analytical solutions, as discussed belewpression depends only on the derivative of the encoding
However, the obtained encoding function will be suboptimdlinction (see (5) and (12)), it is proportional tgm? for the
in general since the actual solution of (5) may not be a fancti linear encoding function in (38); hence, it does not depemd o

from the assumed family of functions. co. Thereforecy can be chosen to maximize the MSE at the
. . _ eavesdropper based on Proposition 5, which impliesdhi
A. Linear Encoding Functions equal to either or b —m (b —a) (which corresponds to either

One suboptimal encoding scheme is to employ a line@(b) = a or f(a) = b). Based on these observations, it is
encoding function to minimize the ECRB at the intendesufficient to perform a search only over parametein order
receiver while satisfying the MSE constraint at the eave® determine the optimal linear encoding function. Suppose
dropper. To obtain analytical results for generic prior BDFthat E(6) > (a+b)/2 and model the linear encoding function
the eavesdropper is modeled to employ the linear MMSEs f(0) = a + m(b — 6) (see Proposition 5). (The case of
estimator as before, and the encoding function is assumedi@) < (a + b)/2 and f() = b + m(a — ) can be treated
be a decreasing linear function. However, the analysis ksan asimilarly.) Then, the optimization problem specified by &)
be performed easily for increasing linear functions in ailsim (12) can be rewritten to find the optimal as follows:
fashion, which yields similar analytical results to those i 1 ) )

Proposition 5 and afterwards. (In practice, it is advisesiye ~ opt = argmin — s.t. E(\ﬂ(Z) =4 ) >a, 0<m<1
the encoding problem restricted to decreasing linear fanst (39)
and to increasing linear functions separately, and sdiecbhe . y o s

with the lower objective value. However, when the prior PDRhereE(|3(Z)—6]?) = 1 ,E/Q%‘Y:fmv) +V+(a—E(9)—

of the parameteny(6), is symmetric arounda + b)/2, where m(E(#) —b))? with V = Var(9) due to (26). Obviously, the
0 € [a, b], it is sufficient to consider decreasing functions onlygptimalm is the largesin that satisfies the constraints. After
as shown in Proposition 3.) some algebra, the first constraint can be expressed as

For the considered model, the linear encoding function can
be expressed as

(tV? + &3tV) m* + (2tV? + 2tV k1 k) m®
+ (tV? + (k3 — a)tV + kT) m® + (2k1K2)m
f(0) =co+m(b—10) (38) (KB4 V—a) >0 (40)
wherem € (0,1], ¢¢ > a, andco + m(b — a) < b. In
other words, for a fixedn, ¢y can be any real number in
[a,b — m(b— a)]. In addition, the random variablé = f(6)
has the following PDFpg(z) = Lw(9t2=1) for z €
[co,co + m(b — a)]. For example, ifw(#) is the uniform
PDF over|a, b], then 8 will have uniform distribution over
[co, co +m(b—a)]; hence, its amplitude ig;— inside that
interval and) elsewhere. Also, the value af does not change
this amplitude but only causes a shift in the domaim ofFirst,
the following proposition is presented abaygtfor any given
input distributionw(6).

wheret = h2, k1 2 b— E(6), andky = a — E(6). Hence, the
optimal m is the largestn in (0, 1] satisfying (40). This op-
timal value can be obtained algebraically by finding the soot
of the fourth degree polynomial in (40). For example, when
h=1,a=0,b=1, w(#) is uniform, anda = 0.15, (40)
becomesn® —m3+9.55m2 —18m+6.6 > 0. This polynomial
has roots at.3001, 0.4915, and—0.3958 + 3.18954, implying

that the constraint holds when > 1.3001 or m < 0.4915;
thus, the optimalm is given by m = 0.4915. Overall, it

is concluded that considering an encoding function among

Proposition 5. When the eavesdropper employs the Iineépe f_amily Of_ quear functions, the °F’“m‘?" squtiqn can be
MMSE estimator, the MSE at the eavesdropper for the line§Ptained by finding the roots of a polynomial equation withou

encoding functiory (§) = co + m(b — 0) is a convex function performing any functional _optimization. .
of ¢o for a fixedm > 0. Hence, the MSE is maximized either Remark 4: One alternative approach could be to consider

atco = a (if B(6) > (a+b)/2) of at co — b—m(b—a) Gf 2" €ncoding function in the form of(0) = a+ p(l‘;_—z)q,
E(0) < (a+b)/2). Wherg the funct_|0r_1 is parameterl_zedpymdq. Hence, mstead_
Proof: The variance and the mean 6f= f(¢) can be of trying to optimize over functions, one can try to use this
calculated ag/ar(8) = m2Var(9) and E(B) = co + mb — family of power functionsand perform optimization over €
mE(#). Also, the covariance off and # can be obtained (0,6 —a] andq € (0,3/2). Even though this will lead to
as Cov(B,0) = —mVar(é). In (26), only the second term & s_ub_opt!mal _encodm_g fun(_:tlon, it is still eaS|er_t0_ pelmior
depends omy. In addition,(E(3)— E(8))? = (co— (E(8)(1+ optlmlzatmn via a 2-dimensional search _than 0pt|m|2|n_gr0v
m) — mb))? is a convex function of, for a fixed m, and fu_nctlons as in (5). On the othe_r hand, this approach wilehav
it is equal to(a — E(0) — m(E(®) — b))? at ¢y = a and higher computational complexity than the one that employs
(b— E(6) —m(E(6) —a))? atco = b—m(b—a). Hence, for (38):
a givenm € (0,1), the MSE is maximized either at = a if . o
E(0) > (a+b)/2 or atcy = b—m(b—a) if E(0) < (a+b)/2. B- Polynomial Approximation
(If m =1 or E() = (a+b)/2, it has the same value at both The second approach for obtaining a suboptimal solu-
of the boundaries, hence, there exist two maximizers in than of (5) is to use a polynomial approximation method.
case.) B Approximating a function via polynomials is a well-known
Proposition 5 leads to the closed-form solution for theumerical analysis method [39]-[41]. To apply this method
optimal linear encoding function as follows: Since the ECRB the parameter encoding problem, it is assumed that the
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encoding function is in the form of a polynomial. In fact, Remark 5: Most of the theoretical results in this paper can
any continuous real-valued function defined [anb] can be be extended, under certain conditions, to scenarios intwhic
uniformly approximated by polynomials in that interval [38 the eavesdropper employs an arbitrary affine estimﬁ(m), =

That is, for a given continuous and bounded functjpfx) Ry + Rz, instead of the linear MMSE estimator. In this case,
and e > 0, there exists a polynomiaP(z) on [a,b] such after some manipulation, the MSE of the eavesdropper can be
that sup, |f(z) — P(x)] < e. Motivated by this fact, the obtained for givenk; and R, as

encoding function is expressed liyth degree polynomials, . 9 5o )
ie., P(z) = Y% ¢,a", and the aim becomes the calculation £ ( B(2) - 0| ) = Ri(heV +0c) = 2R1heC + Var(6)

of the optimal coefficients,, forn =0,1,..., K. Hence, by + (R1he E(B) — E(0) + Ro)? (43)
using f(0) = Zf;o ¢, 0™, the optimization problem specified

by (5) and (12) can be rewritten to find the optimal coefficientvhereV’ = Var(8) andC = Cov(3,0). Then, the results can

as follows: be extended as follows:
% -2 « Proposition 2 does not hold for gener&l;, and Rj.
Pt — arg min /w(9)<z ncn9"_1> do However, for the special case @t; = 1/he, ?t holds
€0,C1 e J A — for any Ry, and for Ry = E(8)(1 — Ryhe), it holds
. 2 for any R;. It is noted that the second case implies that
st B(|52)-0f) za @D B(Be) = B).
After finding the optimal coefficients, the encoding funatio * Proposition 3 holds it i > 0. If Rihe <0, then the
can be written agop(0) = Zf:o coPtgn | wherecoP repre- reverse of the argument holds; that is, for a given strictly
sents theath element ok°Pt. Note that the resulting encoding ~ decreasing function, one can find a simple transformation
function should also satisfy the implicit conditions, that such that the resulting encoding function has a lower
£(8) € [a,b] and the monotonicity. ][\ASrI]E Corollary 2 can also be generalized in a similar
ashion.

« Proposition 4 is particular to the assumption of the linear
MMSE estimator; hence, it cannot be generalized directly
for arbitrary R, and Ry,. However, an upper limit can

Finally, a third approach is proposed, which is based on the pe found as follows by considering; and R, as given
idea that any continuous bounded function can be uniformly constants:

approximated by piecewise linear functions. Thereforg, th

C. Piecewise Linear Approximation:

5 2 2
parameter spacéu,b] is partitioned into M intervals and SL}}PE (‘5(2) — 0| ) - S‘J}P (E (|theﬁ — 0| )
the optimal increment (or, decrement) is found in each in-
terval, which results in an approximation of the encoding +2R1RoheE(ﬁ)+g(Ro,Rl))

function f via a piecewise linear function. In particular, the
increments/decrements are definedas, = f(a + kA9) —
fla+ (k—1)A#0), and the optimization is performed ovf

whereg(Ro, R1) = R? — 2RoE(0). Next, let Rih, = k
andk > 0. Then, for a fixedE(8) = o with a € [0, 7],

2\ . L .
variables, Az, Az, ..., Azy. As M increases, more accu- £ (|kﬂ_— 0| 2 is maximized if 5 = for § < a and0
rate approximation is achieved; however, the computationa otherwise. Then, the analysis can be completed by finding
complexity of solving the optimization problem increasas, the optimala.

well. Note that, forM = 1, this approach reduces to the linear « Finally, if R;h. > 0, Proposition 5 can also be gener-
encoding function case in Section IV-A. The optimization alized. Namely, the MSE is a convex function &f for
problem specified by (5) and (12) can be stated to find the a fixedm > 0 and is maximized either aty = a or

optimal increments as follows: co=b—m(b—a).
Moy a+kAO
Ax,p =  arg min _2/ w()db V. NUMERICAL RESULTS
Ay Ava...ban (7 BT Jat(k-1)20 In this section, numerical examples are provided to investi
st. E (\B(Z) _ 9’2) > o (42) gate the theoretical res_ults in _Section [l and to compaee th
proposed approaches in Section V. Throughout the simula-

Similar to the previous case, the resulting encoding famncti tions, . ando? are set as,. = 02 = 1.

should also satisfy the implicit conditions, that j£6) € [a, b] First, we consider a scenario in which the channel param-
and the monotonicity. For example, if a decreasing encodietgrs for the receiver and the eavesdropper are fixed, and
function is used, then all the elements &x,,,; should be investigate the relation between the ECRB and the secrecy
negative. In order to solve the problems given in (41) and,(42imit « by using different encoding strategies. It is assumed
we have used the Global Optimization Toolbox of MATLABthat the parametef has uniform distribution ove|0, 1] and

As the initial point, the linear solution, which is calcwddt h = h./o. = 1. Also, the eavesdropper employs the linear
analytically, can be used. It is noted that the objectivefiom MMSE estimator for the encoded parameter= f(6). The
given in (14) is a convex operation gh however, the feasible theoretical results derived in Section Il can be applied fo
set does not need to be convex. This discussion holds for btils example. In particular, based on Proposition 1, it is
of the problems in (41) and (42). known that if there is no secrecy constraint, eittféf) = 6
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Fig. 2: ECRB versus for various solution approaches, whereig. 3: f,,,,(9) versusd for various solution approaches, where
h=1and0.1 <« <0.32. a=0.1,0.2, and0.3.

or f(f) = 1 — 0 is an optimal encoding function. Also, and the piecewise linear approximation yield almost theesam
Proposition 3 states that the optimal encoding function c@@inction, which can also be deduced from the performance
be searched among monotonically decreasing functions @gph in Fig. 2. It is also seen that when= 0.1, all the
the uniform distribution satisfies the symmetry condititm. methods lead tgf(0) = 1 — 6. Whena = 0.2, the difference
addition, Corollary 2 reveals that if < 4/39 = 0.1026, then petween the solutions of the linear encoding and the approxi
f(8) =1 — 6 is the optimal encoding function since such gation methods becomes noticeable. Since the approximatio
secrecy level can be guaranteed by usjitd) = 1 — 6. Fur- methods can use higher degrees of freedom than the linear
thermore, Proposition 4 claims that it is not possible td@@ encoding, they can achieve lower ECRBs. However, the linear
a secrecy limita higher thanl/3 asy = 1 < 2/h. = 2'in encoding provides a simple solution for this scenario. For
this scenario. example, wherv = 0.2, the optimal linear encoding function
For obtaining the encoding function based on the proposegh be obtained by finding the largeste (0, 1] that satisfies
approaches in Section 1V, the linear and power encodifg! — 3 + 9.4m — 18m + 4.8 > 0, yielding m = 0.3184
functions, and the polynomial and piecewise linear (PWL) agye to (40); hencef(f) = 1 — 0.318446. It is also observed
proximations are considered. For the linear encodfitg) = that the performance of the optimal power encoding approach
1 —md is used due to Proposition 5. Then, (39) providesig terms of the ECRB and the computational complexity is in
simple tool for the solution. For the power encoding fungtio hetween those of the optimal linear encoding and the other
f(8) =p(1—0)7 is employed, and the optimalandg values two approaches.
are found for a given target value (see Remark 4). For the Next, the effects of the channel quality of the eaves-
polynomial approximation (with a degree @f = 10) and gropper on the optimal ECRB and encoding function are
the piecewise linear approximation (wiftf = 100 intervals), investigated for a given value af. For this purposeq =
the formulations in (41) and (42) are utilized, respectivel() 15 js used and the ECRB performance is evaluated versus
In Fig. 2, the relation between the target Ie\LeIand. t_he h = he/o. in Fig. 4. As discussed before, asincreases, the
optimal ECRB value can be observed. When= 0.10, it is gjstortion due to encoding is transmitted to the eavesdopp
noted that the optlmal ECRB 5 Wh|c_h can be ac_h|eved With more effectively and the intended MSE can be generated
f(0) = 1-6. As avincreases, the optimal ECRB increases exgith a lower ECRB. Some interesting observations can be
ponentially. For example, whem = 0.25, the optimal ECRB made in Fig. 4. First, three different regions are noted for
is found to be25.06 and it becomed182.3 whena = 0.32  the ECRB. In the first region, the ECRB slowly decreases
for the piecewise linear approximation. Hence, the ECRE j, increases for all the solution approaches. In the second
goes to infinity asa goes to the theoretical bound @f3, region, for the power and the approximation approaches, the
as expected.In Fig. 3, the encoding functions correspondingcrB decreases more rapidly and finally whieris above
to the proposed solution approaches are presented fousarigome threshold valuef(§) = 1 — 6 becomes sufficient to
values ofa. It is observed that the polynomial approximatio%]em.rate the MSE value af = 0.15 at the eavesdropper.
Actually, this threshold can be calculated analyticallysdxh

5In this example, the opti_mal ECRB ve_ilue should not dire_cttytd_(en as on Corollary 2. For the parameters in the considered sce-
equal to the MSE at the estimator of the intended receiveedin /o, is not . - 9 E(0) = 1/2 d - 15 h

sufficiently high. Here, the ECRB is merely used as an objediinction to nario, Vi, = 1/1 ) ( ) - / » and o = 0.15; hence,
represent generic estimation accuracy. hen = /48/11 = 2.09. It is observed that the performance
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that is, it has a finite but large derivative aroufé= 0.5. In

45 m———————r addition_, it is seen that whel = 2, the encoding function is
—— Linear almost linear.
a Power Next, a scenario with a nonuniform prior distribution is
—@=PWL, M=100 considered, and the prior PDF of parametes modeled as

w(f) = 26 for § € [0, 1]. Similar to the uniform distribution
case, the characteristics of the optimal encoding funciien
investigated for the fixedv and fixed h cases. First, it is
assumed thath = 1 and the optimal encoding function is
presented for varioua values in Fig. 6 by using the piece-
wise linear approximation approach. The theoretical ogtim
solution f(#) = 1 — 6%/ for the no constraint case is also
1 shown in the figure, which is calculated based on Proposition
1 for the given prior distribution. It is observed that when
1 the target level is small; i.eq = 0.1, the optimal encoding
function calculated via the piecewise linear approxintai®

ECRB

1 ‘ ‘ ‘ PY exactly the same as the theoretical solutioncAscreases, in
0 0.5 1 15 2 25 3 order to satisfy the target secrecy level, the optimal emzpd
h=he/o function map9 to lower values. It is noted that higher target

Fig. 4: ECRB versug for various solution approaches wherlévels are achievable for this prior distribution as coneplaio
o = 0.15 with uniform prior distribution. the uniform distribution wherh = 1. In particular, the secrecy

limit is 1/2 instead of1/3 in this example. Theny is fixed
asa = 0.34, and the ECRB performance is investigated with
respect toh in Fig. 7. It is noted that the performance trends
of the different solution approaches are similar to thosthén
uniform case presented in Fig. 4; however, unlike the umfor
distribution case, a sharp decrease to the minimum ECRB does
not exist in this scenario (see Fig. 7). This is mainly due to
the fact the optimal functions for the various function fhes
yielding that minimum ECRB in the absence of an eavesdrop-
per actually could not satisfy the secrecy requirement éven
h gets large. For example, if the linear encoding with= 1

is used, it can be shown that &s— oo, the resulting MSE

0.3 h=2 i is 1/3, and if the theoretical solution for the no constraint
h=1.6 case (that isf(f) = 1 — #*/3) is used, the resulting MSE is
0.2 +E:135 ' ] 0.318 ash — oco. It is known that the linear encoding with
01 —e— h=1 ] m = 1 would yield an ECRB value of and f(#) = 1 — §*/3
—e— 1=0.05 & would yield an ECRB value oR7/32 = 0.844. However,
% 02 oa 0.6 0.8 1 unlike the previous example, since the targevalue is too
6 high to achieve with those encoding functions, these minimu

) ) o ~_  ECRB values cannot be attained eveh dets arbitrarily large;
Fig. 5: fop1(6) versusy for the piecewise linear approximationyence, a slow decay with a floor is observed in the ECRB
whena = 0.15 with uniform prior distribution. instead of a sudden decrease. The ECRB floor values are found

to be 1.5625, 1.0482, and 0.8835 for the linear encoding,

of the polynomial approximation is very similar to that othe power encoding, and the piecewise linear approximation
the piecewise linear approximation; however, in the secongspectively. Also, it is noted that the performance déferes
region, it is slightly worse than that of the piecewise linesbetween the different solution approaches are small when
approximation. The optimal encoding function correspagdi is low, which become more significant for medium values
to the piecewise linear approximation approach is presentf h. Finally, the optimal solutions via the piecewise linear
in Fig. 5, which reveals that the encoding function changepproximation are provided for various values in Fig. 8.
characteristics ag increases. This also explains why thdt is noted that the characteristics of the optimal encoding
polynomial approximation is slightly worse than the pietsv function are different for small, medium, and large valués o
linear approximation for medium values bf Namely, for the h. One interesting observation is that for medium values of
polynomial approximation, it is harder to correctly implem £, it is seen that the sudden decrease in the optimal encoding
the sudden decrease aroutid= 0.5 while it has sufficient function does not necessarily happei &tunlike the uniform
degrees of freedom to produce an encoding function requinedor distribution case.
for smallerh values as it can also be observed in Fig. 3. It Finally, we provide the simulation times for obtaining the
is also noted that the encoding function is still continyousolutions of the various methods and the resulting ECRB
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Solution Method ECRB | Time (ms.) Solution Method ECRB | Time (ms.)

Linear Encoding | 4.1395 0.35 Power Encoding 3.7730 35
Poly. App.(K =2) | 3.6170 33 PWL App (M =5) | 3.5634 159
Poly. App.(K =4) | 3.5263 142 PWL App (M =10) | 3.5289 302
Poly. App.(K = 6) | 3.5163 763 PWL App (M =25) | 3.5159 750
Poly. App.(K =38) | 3.5139 4680 PWL App (M =50) | 3.5134 1483
Poly. App. (K = 10) | 3.5135 5540 PWL App (M = 100) | 3.5125 6220
Poly. App. (K =14) | 3.5129 18102 PWL App (M = 200) | 3.5123 23687

TABLE I: ECRB values and simulation times for various apmtoes, wherey = 0.15.

1 . . .
T~ - A -h=50

a=0.4
0.9 —0—a=0.3 1
a=0.2
08 e f(g)= 1- 8%
0.7 —6—a=0.1

0 0.2 0.4 0.6 0.8 1
6

0 0.2 0.4 0.6 0.8 1

0 Fig. 8: fop(0) versusé for piecewise linear approximation

Fig. 6: fop(0) versusd for piecewise linear approximationWhenO‘ = 0.34 with w(6) = 26 for ¢ € [0, 1].

(M = 100), wherea = 0.1, 0.2, 0.3, and0.4. f(§) = 1—6*/3
is the optimal function under no secrecy constraints adagrd
to Proposition 1.

values in Table | for the scenario considered in Fig. 2 with
a = 0.15.° We observe that the linear and power encoding
approaches have shorter solution times while they provide
suboptimal solutions. For the polynomial and piecewisedin
approximations, a¥ and M increase, the simulation times
7 . increase and lower ECRB values can be obtained. However, it
—&— Poly, K=10 . . . .
—0— Linear is observed that after a certain value, the improvementén th
Power ECRB is not significant. Therefore, it makes sense to choose
—O— PWL, M=100 the values of these parameters considering the solutiogstim

as well. In this study, we have usdd = 10 and M = 100.

VI. CONCLUSION AND FUTURE WORK

ECRB

The optimal parameter encoding problem has been stud-
ied in the presence of an eavesdropper, where the aim is
to minimize the ECRB at the intended receiver under the
constraint of a target MSE value at the eavesdropper. A dlose
form expression has been derived for the optimal encoding
function when there is no secrecy constraint. When a certain
secrecy level is to be guaranteed at the eavesdropper, first a
sufficient condition has been provided for the case in which
the optimal encoding function under no secrecy constraints
is still optimal. Next, a closed-form expression for the MSE
Fig. 7: ECRB versug for various solution approaches wherof the eavesdropper has been derived under the assumption
a = 0.34 for w(f) = 260 for 6 € [0, 1].

h=h_ /o
e e

5The simulations are performed with Intel Core i5-4590 CPBO3GHz
processor and Matlab R2017B.
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that the eavesdropper employs the linear MMSE estimatiomhere (48) follows from that facts that = h.5 + N and
Based on this result, the shift invariance property has beéitZ) = h.E(3). In addition, it is known thatZ(N?) = o2,
shown for generic prior PDFs, and it has been proved thetdf and N are independent random variables wiEiN) =

it is sufficient to restrict the search to decreasing enapdif; hence,E(8N) = 0. Then, the expression in (48) is further
functions if the prior distribution of the parameter has processed as follows:

certain symmetry property. In addition, an upper limit has R 9

been obtained for the MSE of the eavesdropper for thé“j(ﬁ(z) _9‘ )

uniform prior distribution. This result implies that thetopal = k2h2E(B?) + k202 + 2k1koh  E(B)
encoding function either maximizes or minimizes the varéan 9 9

of the encoded parameter depending on the channel qualit?f k02+2E(92) B 2151};8]3(%) — 2o E(0) )
parameter and the length of the range interval for the emgodi = F1he E(87) + kiog + 2k1(1 — k1he)he E(3)
function. In order to calculate the optimal encoding fuoti  + E(3)%(1 + k?h% — 2k, h) + E(6?)
numerically, various solution approaches have been censid_ ok, 1 £(08) — 2(1 — kb, )E(B)E(6)

ered; namely, linear encoding, polynomial approximatemmg 2R2(B(B2) — B(B)2) + k2o + B(6%)
piecewise linear approximation. It has also been shown that™ “1'"e 17
the optimal solution for the linear encoding function can be+ E(8)” — 2k1he(E(80) — E(B)E(0))

obtained algebraically. Numerical results have consilleath ~ — 2E(B)E(0) = kih2V + kio? — 2k1h.C

uniform and nonuniform parameter distributions, and patedi 1 E(0?) — E(0)? + E0)? + E(B)? — 2E(B)E(0) (51)

the optimal solutions based on the proposed techniques. The , N 9
future work is to investigate the extension of the analytica — ki(heV +0%) = 2kiheC + Var(6) + (E(8) — E(G)()52)

results to the cases in which the eavesdropper employs the - )
MMSE estimator. Another interesting extension would be to  heV* —2hVC 2
. : =< —+Var(d E(B)—E(0
formulate the problem in a game theoretic framework, where h2V + o2 +Var(9) + (B(8) (9))
the eavesdropper has some partial information about trignsm (he/o)?V(V —20)
ter’s strategy and the transmitter considers this pogsibii = (he/oe)2V + 1

the design of the encoding function. B2V (V — 20
= hﬁviﬂ) + Var(9) + (E(8) — E(9))”
where (49) follows directly from (48), (50) is obtained by
) inserting (25) into (49), (51) follows by rearranging thens
to estimate based On 514 adding and subtractirig(6)? in (50), (53) is obtained by
inserting (24) into (52), and finally (55) is due to the use of
h = he/o. In (54). [

(49)

(50)

(53)

+ Var(0) + (E(B) — E(0))* (54)

(55)
APPENDIX

A. Derivation of (24) and (25)

The linear MMSE estimatoB(Z)
Z can be expressed as [37]

B(2) = B@) + G

From Z = h.58 + N., the following relations are obtained:
N Cov(B, hef + N.)

(Z - E(2)) (44)
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