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Abstract—In this paper, we consider secure transmission of a to quantify the amount of achieved secrecy, various types of

deterministic vector parameter from a transmitter to an intended

receiver in the presence of a smart eavesdropper. The aim is

to determine the optimal power allocation and optimal linea
encoding strategies at the transmitter to maximize the estiation
performance at the intended receiver under constraints on he
estimation performance at the eavesdropper and on the tramit
power. First, the A-optimality criterion is adopted by util izing
the Cramér-Rao lower bound (CRLB) as the estimation perfor-
mance metric, and the optimal power allocation and optimal
linear encoding strategies are characterized theoreticgl. Then,
corresponding to the D-optimality criterion, the determinant of
the Fisher information matrix is considered as the estimatn
performance metric. It is shown that the optimal linear encaling
and optimal power allocation strategies lead to the same adtion
for this criterion. In addition, extensions of the theoretical results

metrics, such as information, detection, or estimatiot&gc
metrics, can be used.

Information theoretic metrics for quantifying secrecy are
commonly based on mutual information, secrecy rate, or
capacity [8]-[18]. For example, it is shown in [8] that when
the channel between the transmitter and the eavesdropper is
a degraded version of the channel between the transmitter
and the intended receiver, a non-zero secrecy rate can be
achieved between the transmitter and the intended receiver
while providing zero information to the eavesdropper. Ih [9
and [10], secure information transmission problems aresnv
tigated by considering communications over fading chanel

are provided to cases with statistical knowledge of systems and secrecy capacities are characterized in various scenar

parameters. Numerical examples are provided to investigat the
optimal power allocation and optimal linear encoding straegies
in different scenarios.

Index Terms—Cramér-Rao lower bound (CRLB), estimation,
Fisher information, parameter encoding, power allocation se-
crecy.

I. INTRODUCTION
A. Literature Review

ios. Also, physical layer secrecy is studied from a number
of information theoretic perspectives for Gaussian wpeta
broadcast, and interference channels in [12]-[18]. In tamidi

to information theoretic metrics, the secrecy outage prdiha

is adopted as a secrecy metric in various studies such as
[19] and [20]. Moreover, [21]-[23] specify the secrecy leve
based on the signal-to-noise ratio (SNR) metric in a quality
of-service (QoS) framework, while [24] utilizes the Bayasi

and Neyman-Pearson frameworks for investigating secrecy

Eavesdropping is one of the most common threats for se¢nstrained distributed detection problems.
rity of communication systems [1]. In many applicationstsuc

as internet of things (IoT), smart homes and cities, and sel

¢ Estimation theoretic metrics, such as Fisher informatiush a
mean-squared error (MSE), have been employed in a multitude

driving cars, it is crucial to secretly send informationrfra : e - :
\pf studies related to secure transmission of information. |

transmitter to an intended receiver in the presence of aasea A ;
dropper. In the literature, a common precaution againsﬂe$av[25]' Gaussian interference channels with vector paramete

dropping is to employ key-based cryptographic approacties [27€ co_nsider_ed in_the_: presence of eavesdroppers by ass_uming
[3]. However, key generation and distribution can be costfg@ussian prior distribution for the vector parameters in a
and challenging in heterogenous and dynamic networks wigyesian estimation framework. The aim is to minimize the
large numbers of connections [4], [5]. In addition, for lowst 08l Minimum mean-squared error (MMSE) at the intended
and battery operated devices with stringent power, barttiwid €Celvers under a constraint on the MMSE at the eavesdrspper
and/or latency constraints, cryptographic approaches moay by using joint artificial noise and linear encoding schenfes.

be well-suited to provide security [6]. In such scenario$26], by adopting a nonrandom (i.e., non-Bayesian) paramet
physical layer secrecy can be considered as an alternafdmation framework, the Fisher information is employed
or complementary approach to design secure communicatfsh @ Metric of privacy in a smart-grid network in which
systems. Physical layer secrecy exploits varying chariatiss  20Versary parties try to estimate energy consumption based

of wireless channels related to the intended receiver aad ! data gathered from smart meters. Secrecy in a distributed

eavesdropper for ensuring secure communications [7].daror Nference framework is considered in [27] and [28], where
the information coming to a fusion center from various senso

E. Mehdipour Abadi and S. Gezici are with the Department @fcEical

and Electronics Engineering, Bilkent University, BilkeAnkara, Turkey, Tel:

+90 (312) 290-3139 (e-mailq:abadi,gezici@ee.bilkent.edu.tr).

C. Goken is with the Department of Communications and Inferm

tion Technologies, Aselsan Inc., Ankara 06800, Turkey @¥mcgo-
ken@aselsan.com.tr).

C. Ozturk is with the Department of Electrical and Computen- E

gineering, Northwestern University, Evanston, IL 60208SAJ (e-mail:
cuneyd.ozturk@northwestern.edu).

nodes are also observed by eavesdroppers. In particuigr, [2
focuses on the estimation of a single point Gaussian source
under a Bayesian estimation framework in the presence of an
eavesdropper. Optimal transmit power allocation polices
presented for minimizing the average MSE for the parameter
of interest while guaranteeing a target MSE at the eavesdrop
per. In [28], the asymptotic secrecy and estimation problem



is investigated in a non-Bayesian framework when the sengiarencryption for facilitating estimation of vector paratars.
measurements are quantized and the channel between sergof4l], a randomized mapping between two one-to-one and
and receivers are assumed to be binary symmetric channetsmtinuous functions is employed for encoding a random
In this setting, sensor quantization thresholds are dedign scalar parameter at the transmitter for estimation th&oret
achieve perfect secrecy for an asymptotically large nurobersecure transmission. The aim is to minimize the estimation
Sensors. error at the intended receiver under a secrecy constratheat

One of the most common estimation theoretic metrics f&vesdropper, which is fully aware of the encoding strategy

the Cramér-Rao lower bound (CRLB), which is based the transmitter. By considering linear MMSE estimation
the Fisher information matrix (FIM) ar’ld provides a lowe or small numbers of observations and the ECRB metric for

bound on MSEs of unbiased estimators [29]. In [30], thiarge numbers of observations, optimal encoder randorizat

CRLB is employed as a performance metric for analyzin’i)trategles are developed.
the secure inference problem for deterministic parameters
loT systems under spoofing and man-in-the-middle-attao&. TB. Contributions

secure estimation of a random parameter in the presence of aAlthough optimal parameter encoding problems are inves-
eavesdropper is investigated in Bayesian estimatiomgstth  tigated for secure transmission edndom parameters with
[31] and [32]. Specifically, the optimal deterministic edewy  known prior distributions in [31]-[33], [41], a power allation

of a random scalar parameter is proposed in [31] based §fproach for optimal transmission of multipteterministic
the minimization of expectation of the conditional Cfaméfparameters has recently been developed in [34] by consigleri
Rao bound (ECRB) at the intended receiver while keeping eavesdropper that is unaware of the power allocation
the estimation error of the linear MMSE (LMMSE) estimatoktrategy at the transmitter. In this work, we propose optima
at the eavesdropper above a certain threshold. For the safRBoding problems for secure transmission of multifséer-
setting, [32] develops a robust parameter encoding approaginistic parameters in the presence obmart eavesdropper
by employing the worst-case CRLB of the parameter as theat is aware of the encoding function at the transmittesoAl
performance metric at the intended receiver. The work i} [33e consider two scenarios in which the encoding is via either
extends the results in [31] to vector parameter estimatiobd power allocatioror linear encodingln addition, we adopt two
lems. In [34], estimation of a deterministic vector paraenetFisher information based optimality criteria for quanitify the

is considered by utilizing the CRLB metric at the intendegdstimation performance at the intended receiver and theseav
receiver and the MSE of the maximum likelihood (ML)gropper. In particular, the trace of the inverse FIM, nantlg
estimator at the eavesdropper. An algorithm is proposed ¢®R| B, and the determinant of the FIM are considered as two
perform optimal power allocation for secure estimation of-m gajternative performance metrics, which are also referoeaist
tiple deterministic parameters under a total power coimstra A-optimality and D-optimality criteria [42]. In both scerias
The common assumption in [31]-[34] is that the eavesdroppg{d for both optimality criteria, the optimal power allcicat

is unaware of the encoding function at the transmitter. TR linear encoding solutions are characterized theatistic

FIM or MSE based performance metrics are also employedtfe presence of constraints on the estimation performahce o
numerous other studies, such as [35] and [36], in the abseRgg eavesdropper and on the transmit power. Also, extesision
of eavesdropping. For example, the distributed estimatdn zre provided in the presence of statistical knowledge dksys

a vector parameter is studied in [35] for wireless sensgarameters. The main contributions and novelty of this pape
networks (WSNSs) in the Bayesian framework. By modelingan pe summarized as follows:

the prior distribution of the vector parameter as Gaussian, For secure transmission of a deterministic vector pa-
Bayesian FIM based performance metrics, namely, the trace rameter, we explicitly characterize the optimal power
and the log-determinant of the Bayesian FIM, are used to aIIocatio’n strategy that minimizes the CRLB at an in-

optlmlze_the transmit powers of the sensors in the WSN.  tanded receiver under constraints on the CRLB at a smart
!n .[36]’ I!near estimation of correlated Qausglan paransete eavesdropper and on the transmit power (Proposition 1).
IS |_nvest|gated "’T“d _ach_levgt_lle pOV\_/er-d!stortlon regiores a  Although a similar problem was analyzed in [34], the
derived by con5|der_|ng 'Pd""d“a' d|§tort|on Congtralrmq eavesdropper was modeled to be unaware of the power
an average MSE dlstort_lon constraint. In addmo_n, optimal = 15c4tion strategy at the transmitter in that work, which
power allocation strategies that achieve the minimum total leads to a different solution as the CRLB metric cannot
transmission power are obtained under the proposed distort be utilized to quantify secrecy in that setting. (From a

criteria. practical perspective, the problem considered in this pape
Stochastic encoding and encryption can also be utilized as corresponds to a worst-case scenario for the estimation
a defense mechanism against eavesdropping for estimation system since the eavesdropper is smart and can learn the
theoretic secrecy [37]-[41]. For example, stochasticytan power allocation strategy instantly.)
is performed in [38] based on the 1-bit quantized version e For the first time in the literature, we perform the optimal
of a noisy sensor measurement of a deterministic parameter linear encoding of a deterministic vector parameter under
to realize secure communication. It is shown that biased a transmit power limit by minimizing the CRLB at
estimation and large errors can be induced at the eavesslropp an intended receiver while constraining the CRLB at a
via symmetric and asymmetric bit flipping strategies which a smart eavesdropper (Proposition 2). We also show that
unknown to the eavesdropper. In [39], the binary stochastic optimal linear encoding can provide significant perfor-
encryption approach in [38] is extended to non-binary siseh mance improvements over the optimal power allocation



approach in some cases. Even though generic encodimgasurement¥,. andY . with respect to the parameter vector
operations were considered in [33], the vector parame#yrwhich are given by [34], [43], [44, Lemma 5]

was modeled as a random vector with a known prior dis- 1T
tribution and the eavesdropper was modeled as unaware I(Y;;0) =PF,X'F, P 3)
of the encoding (i.e., not smart). Accordingly, ECRB and I(Y.;0) = PF.X_'FI'P 4)
LMMSE metrics were utilized in [33], leading to different .
formulations. Based on the FIM, two popular a_nd useful performance_ metrics
« We propose optimal power allocation and linear encodi e the CRLB and the determinant of the FIM, which are

problems for secure transmission of deterministic vectd ferred to as the A-optimality and D-optimality criteria,

parameters according to the D-optimality criterion fOFespectlver [42]. . . .
the first time in the literature. and show that these The CRLB provides a lower bound on covariance matrices

problems admit the same equal power allocation soluti&ﬁ unbiased estimators as follows [29]:

(Proposition 3). Cov(@(YT)) >171(Y,:6) (5)
o We show that when system parameters are not known ~ .
perfectly, all the theoretical results can still be applied Cov(0(Y.)) 2T (Y;0) (6)

there exists statistical knowledge of system parameterg, ..o 5(YT) and §(Ye) denote any unbiased estimators
In addition, numerical examples are presented to illusteaid of 9 based on measurement€, and Y., respectively.

compare the proposed optimal solutions in various settingssjnce Cov(g(yr)) — E[(@(YT) —0)(0(Y,) — 0)7] and
Cov(6(Y.)) = E[(6(Y.) — 8)(8(Y.) — 6)T] due to un-
C. Organization biasedness, the lower bounds on the MSEs of the vector

The remainder of the paper is organized as follows. '%arameter can be obtained from (5) and (6) as follows:

fSec:tioln I, the syste(rjn mgdel is described andlthmroblem E[”g(yr) —0)2] > tr{I" (Y, 0)} @)
ormulations are introduced. In Section IIl, optimal powadio- = _

cation and linear encoding approaches are developed acgord E[HB(YE) B 0”2] > r{I(Ye;0)} (8)

to the A-optimality criterion. Then, Section IV employs thenccording to the CRLB metric (i.e., A-optimality criteripn
D-optimality criterion and presents the solution of theim@all e aim to design the optimd@ at the transmitter that mini-
power allocation and the linear encoding problem. The #teormjzes the CRLB at the intended receiver subject to consggrain
ical results are extended in Section V to cases with stedisti on the CRLB at the eavesdropper and on the average power.

knowledge of system parameters. Finally, various numkrigaom (7) and (8), this problem is formulated as follows:
examples are presented in Section VI, and concluding resnark

are made in Section VII. min tr{I7'(Y,;0)} (9a)
st. tr{PPT} < Py (9b)
Il. SYSTEM MODEL AND PROBLEM FORMULATION tr{Ifl(Ye;O)} > (9c)

Consider a vector of unknown deterministic parametersh is th . al
represented by = [61,....6,]7 € R* with k > 2 where0 < Ps;, < oo IS the power constraint, antl< n < oo

Measurements are obtained at an intended receiver andSRRCifi€s the secrecy constraint for the eavesdropper.
eavesdropper via the following linear models [34]-[36]: . On the.ot.her hand, for the D-optimality cntenon,lthe aim
is to maximize the determinant of the FIM for the intended
Y, =F'Po +N, (1) receiver [42], [43], [45, Sec. 7.5.2], [46]. This correspen
Y. = F’'PO+ N, ) to minimizing the volume of the ellipsoid representing the
¢ maximum confidence region for the ML estimate of the
whereY, € R™ andY,. € R" denote the measurements atnknown parameters [42], [45, Sec. 7.5.2], [47, Sec. IlI-C]
the intended receiver and the eavesdropper, respectigly, Accordingly, the following constrained optimization pietn
and F. are, respectivelyk x n, and k x n. real matrices is proposed for the D-optimality criterion:
with full row ranks ¢ < n, and k& < n.), which are
assumed to be knownN, € R™ and N. € R" are the max  det (I(Y,:6)) (10a)
additive Gaussian noise vectors at the intended receivér an st. tr{PPT} < Py (10b)
the eavesdropper, respectively, which are distributedraatg det (I(Y..; 0)) < i (10¢)
to A/(0,3,) andN (0,3, ) with ., 3, = 0, andP is akx k @ =1
symmetric positive definite matrix, which is to be optimiz“ed where(0 < 71 < oo specifies the secrecy constraint for the
Other than the preceding specifications, there are no addlti eavesdropper.
assumptions o, F., X,, andX.. The main motivations behind the use of the A-optimality
To quantify the estimation performance at the intendeghd D-optimality criteria can be summarized as follows:
receiver and the eavesdropper, we utilize the FIMs for thgs FIM based metrics are employed in these criteria, generic
approaches can be obtained with no dependence on specific

It is noted thatF in (1) (and F. in (2)) can represent the combined estimator structureii) The use of these metrics facilitates
effects of pre-processing at the transmitter (if any) arddfiects of channel.

Via matrix P, the parameter vector (data) is transformed into anothetove theoretical a_nalyses, |ea_d'ng_ to Intuitive explanatlcém) The
of the same size without changing any other blocks at thestnitter. CRLB used in the A-optimality framework corresponds to the



MSE of the ML estimator for linear systems models witlalso knowsP and investigate the optimal design Bf when

additive Gaussian noise as in (1) and (2) [29], [3&]lso, the it is known by the eavesdropper, as well.

determinant of the FIM used in the D-optimality framework

is related to the volume of the ellipsoid representing thg|. PowERALLOCATION AND LINEAR ENCODING BASED

maximum confidence region for the ML estimator [42]. (Please ON A-OPTIMALITY

see [47, Sec. lI-C] for motivations behind the use of the D-

optimality criterion.) o
We investigate the proposed problems in (9) and (10) in t\/\é@

different scenarios as follows:

In this section, we consider the CRLB metric, i.e., the A-

timality criterion, and focus on the problem in (9). For

nvenience of notation, system dependent matrices can be

_ _ _ _ defined asA, £ (F, =, 'F7) "' andA, £ (F.5,'F7) ",

« Scenario 1:P is assumed to be a diagonal matrix as igvhich are assumed to be positive definite matrices. Then, the
[34], which is given byP = diag{./p1,...,/Px}, Where jnverses of the FIMs in (3) and (4) can be stated as

p; > 0forie{1,...,k}. We can consider the problem . » .
in this scenario as theptimal power allocatiorproblem I (Y,;0) =P AP (11)
for parameter estimation [34]. I_l(Ye; 0) =P 1A P! (12)

e Scenario 2: P is assumed to be a symmetric matrix L L i ) .
which is positive definité. We regard the problem in In order to eliminate scenarios in which the design of magrix

this scenario as theptimal linear encodingroblem for Pecomes trivial, it is assumed that, 7 A, for any¢ € R;
parameter estimation [33]. that is, A, is not a scaled version dA.. SinceA, and A,
de;?end on the channels related to the intended receiver and

Since _Scenarlo 1 can be cons!dered_ as a sp_eC|a_I casqng@ eavesdropper, respectively, this assumption holdsoist m
Scenario 2, the performance achieved in Scenario 2 is alwi

) . . = ctical cases.
superior or equgl to_ that in Scenarlo_ 1. Investigation of Based on (11) and (12), we can express the problem in (9)
these two scenarios is useful to determine whether the m Eollows:

general linear encoding approach has advantages over the
power allocation approach according to the A-optimalitg an min tr{P~'A, P!} (13a)
D-optimality criteria. P T

Remark 1: In this work, it is assumed that the intended st. tr{PP"} < Py (13b)
receiver knowsF,, 3, and P, the eavesdropper knows,, tr{P 'AP '} > 9 (13c)

i% ?Qgtiéla{:) dézgutr:qagst?al\;t?rr]:r;gggeﬂe’re?;;i\?grdli] %‘mllt where P is a diagonal matrix in Scenario 1 and a positive
P > definite matrix in Scenario 2. We investigate the problem in

and can learr¥,. and P as itis in _colIaborann with the (13) under Scenario 1 and Scenario 2 in the following sestion
transmitter. However, it is challenging for the eavesdeypp

to learnF. and P, which may require obtaining some prior

knowledge about the transmitter location and the chanrfel Scenario 1: A-Optimal Power Allocation

model, and/or eavesdropping of messages (signal exchanges this section,P is assumed to be diagonal & =
between the transmitter and the intended receiver. By angrrUiag{\/p—h VP25 -5 +/Pr} With p; > 0 for i € {1,... k}.
the knowledge ofF., X., and P at the eavesdropper, weThen, the problem in (13) reduces to

effectively consider a worst-case scenario; i.e., a snmak®e .

dropper, since the estimation performance of any eavepdrop min @ (14a)
is bounded by that of the smart eavesdropper. Related to the i, = pi

knowledge ofF,., F., X,, andX, at the transmittery,. and Zk

F, can be learned via feedback from the intended receiver.

However, it can be challenging for the transmitter to learn st Z;pz =Py (14b)
3. and F., which may require prior knowledge related to 1;

the estimator employed at the eavesdropper and the location Z Bi > (14c)
of the eavesdropper (and a suitable channel model). If the — Di

transmitter does not have accurate knowledg&gfandF., pi_> 0, i=1... ..k (14d)

this inaccuracy can be modeled by statistical knowledge as

in Section V and the optimal power allocation and optimalhere«; and 3; are defined as théh diagonal elements of

linear encoding can be performed in the presence of statistiA, and A ., respectively; that isy; £ [A,];; and3; 2 [Aci.

knowledge. Since A, and A, are assumed to be positive definitg,> 0

The assumptions in Remark 1 are similar to those in [3@hd3; > 0 for all i € {1,...,k} in (14a) and (14c).

except that the eavesdropper is modeled to be unawake of As it is assumed thaf\, is not a scaled version oA.,

in [34]. In this paper, we consider a smart eavesdropper thiats known that3L, ..., 5= are not all the same. Then, the
solution of (14) is speciﬁed by the following proposition.

2Namely, the CRLB in (9a) is the MSE of the ML estimator @rbased Proposition 1: If Zf—l Bi Zpy‘:l Y @ > n, then the solution
onY,, and the CRLB in (9c) is the MSE of the ML estimator f@rbased = e

ony.. of (14)is
3We consider symmetric matrices in order to have a lower nummbeesign PE\/E
parameters. Similarly, positive definite matrices are @meslifor obtaining a p;‘ ==Vt = 1,....k (15)

closed-form (hence, low-complexity) solution in the A-opdlity framework. 2571 \/Of_j )



Otherwise, the solution of14) is given by First, we present the following lemma, which will be useful

for finding the solution of (20).
Psvo; — 1wt p; . ..
pi = kz = pf , i=1,...,k (16) Lemma 1: Let ymin be the minimum value gf > 0 such
Zj:l Vaj — B that the minimum eigenvalue &, — A, is equal to zero.
A _
where* is the unique solution of Then,h(p) = tr {(A, - /‘Ae)l/Q}_tr {Ae(.AT — nAc) 12
is a continuous and monotone increasing functionuofor
i Wz’“: Bi P (17) i € [0, imin)- INn addition, the derivative ofi(u) with respect
Qi — HPi = — 'S to 1 is equal to zero if and only i\, is a scaled version of
i=1 =1 V% et A:'L g y
for p € [0, mineqy,. 1y ai/ﬂi): Proof: Please see Appendix B.
Proof: Please see Appendix A. Then, we provide the following proposition, which specifies

Proposition 1 characterizes the solution of (14) explicitl the solution of (20) by utilizing Lemma 1.
and also illustrates that the optimal power allocation @@ph  pronogition 2: Let V* and ®* represent the solution of
- . ] k * ’
utilizes all the available power; i.ej;_,p; = Px under A v — v such that the columns &* are orthonormal
the assumption tha'[%la---a@—k are not all the same. It gigenvectors ofA,, and ®* is a diagonal matrix with the

k . .
can be noted from [43, Eq. (20)] that the solution in (15qrresponding eigenvalues &, in its diagonals. Also, let
in Proposition 1 corresponds to the situation in which thg« pe given by
secrecy constraint in (14c) is not effectiv&/hen the secrecy
constraint becomes effective, the solution of (14) is gibgn Pe(@/2 |
(16), which requires a one-dimensional search to obt&in * = M (21)
from (17). Since the expression on the left-hand-side of (€7 tr{(®")/2}
monotone increasing (as shown in the proof of Proposition 1)

the bisection algorithm [50] can be implemented to solve (11 tr{(V*)"A.V*D*} > 5, thenV* and D* are the solution

rapidly. of (20). Otherwise, the solution is given By* andD*, where
-1
B. Scenario 2: A-Optimal Linear Encoding D* — < Py(®,-)'? ) (22)
In this scenario,P is assumed to be a positive definite tr{(‘I’u*)l/Q}
matrix, and (13) is stated as )
. ) . and the columns ofV* are orthonormal eigenvectors of
i, tr{P7"A, P} (18a) (A, — u*A.). Here, ¥, is the diagonal matrix consisting
of the eigenvalues dqfA, — u*A.) and p* denotes the unique
st. tr{PPT} < Py (18b)  ¢oution of
tr{P 1A P} > 1 (18c)
1/2 —-1/2\ _
where M™ denotes the set of positive definite matrices. tr{(AT — A }tr {Ae(AT — A~ } =nPy
Let P be expressed aB = VAV, where the columns 23)

of V are orthonormal eigenvectors Bf, and A is a diagonal

matrix containing the corresponding eigenvaluesiyfi.e., for 11 € [0, ftmin), Whereumin is as defined in Lemma 1
A = diag{)i,..., \x}. Then, (18) can be transformed into o I’Dlenfige; cee Ap[ﬁadix c '

the following problem after some manipulation: . . .
gp P Once the optimalV and D are determined as described

min tr{VITA, VA~?} (19a) in Proposition 2, the optimal is obtained as the square-
V. (A root of D~!; that is, A = D~!/2, and the optimal linear
k encoding matrix (i.e., the solution of (18)) can be calcedat
st Y AN <Py (19b) asP = VAVT. It is noted that the solutions in Proposition 2
i=1 satisfy the constraint in (20b) with equality; hence, thé fu
tr{VTA.VA™?} > ¢ (19¢) power utilization property is observed (as in Section I)I-A
VIV =1 (19d) under the assumption tha,. is not a scaled version ..

. . _ By comparing the results in Proposition 1 and Proposi-
Furthermore, to express the problem in (19) in an altereatijon 2, it is noted that A-optimal linear encoding provides

form, we defineD asD £ A~7. Then, (19) becomes a more generic approach than A-optimal power allocation
min  tr{VTA,VD} (20a) since the former considers all the information in matrices
V.D A, and A, whereas the latter depends only on the diagonal
st. tr{D7'} < Py (20b) elements ofA, and A.. As A, and A, depend on the
tr{VTA,VD} > 1 (20c) channel matrices and the noise covariancg matrices (namely

_ -1 _ 1 .
A, = (F,3,'FI)" andA. = (F.3_'FT) "), A-optimal
linear encoding is expected to outperform A-optimal power
4 o N . . allocation unless the noise components are uncorrelatéd an
The solution in (15) has a similar intuition to the waterifidj solution h | . di L (i . £
[49] that more power is allocated for a parameter when thditguaf the C_ annel matrices are diagona (|'e" no interference among
channel related to that parameter is higher. different channels).

viv =1 (20d)



V. POWERALLOCATION AND LINEAR ENCODING BASED wherev > 0, u > 0 andg; > 0 for i € {1,...,k} are
ON D-OPTIMALITY the Lagrange multipliers. Based on (27), the stationanitgt a
According to the D-optimality criterion, the determinarit ocomplementary slackness conditions can be derived asvillo
the FIM is considered as the performance metric, which is Stationarity conditions:

related to the volume of the ellipsoid that represents the-ma ) 2
imum confidence region for the ML estimate of the unknown 9£ -2 H 1 ¢ 12U
parameters [42]. As argued in [47], the D-optimality ciitber d\i  det(A,) N DV !

. . . . =1
also characterizes the estimation performance similarihée !

CRLB. In the D-optimality framework, the optimal linear 9 k 1
encoding problem can be formulated from (3), (4), and (10) + _r H Al —=0, i=1,...,k (28)

2

as follows: det(Ac) \ 5 Ai
Jnax det (PA;'P) (24a) Complementary slackness conditions:
st tr{PPT} < Py (24b) Ghi=0, ie{l,....k} (29)
det (PA_'P) <7 24c
(PAP)<i (240 v -py)| =0 (30)
where M* denotes the set of positive definite matrices, =
A7 = F,.X'FT and A = F. X 'F! (as defined in 9
Sectlon ). _
As in Section III-B, letP be expressed aB = VAVT, I det H Al —n =0 (31)

where the columns oV are the orthonormal eigenvectors of

P, and A is a diagonal matrix containing the corresponding For the maximization of the objective function in (25a)

eigenvalues oP; i.e., A = diag{\1,..., \x}. SinceV is an : .
none of the); terms should be zero, i.e\;, > 0 for all 7 €
orthonormal matrix, the determmanthcan be calculated as{1 ., k}. Therefore, (29) implies that; — 0 for all i €

follows: det(P) = det(VVT)det(A) = det(A) = HZ 1 i

Then, (24) can be stated as {1,...,k}. Hence, the stationary conditions in (28) become
2 2
1 5 .
=VA; =1,...,k
{i?ﬁci] det (H)\ ) (252) (det(Ar) det ) H Aj AT Y
(32)
2
Z/\i < Py (25b) which implies thatA; = --- = X\;. Consequently, the
9 solution of (25) can be obtained as in (26) by considering
1 b N the constraints in (25b) and (25c). It can be verified that the
det(A,) H i =7 (25¢)  solution in (26) is feasible and satisfies all the KKT corutis.
i=1

Aiz 0, i=1...k (25d) SinceP = A as discussed above, Proposition 3 implies that

Since the selection of the orthonormal eigenvectors, i.#he solution of the D-optimal linear encoding problem in)(24
matrix V, does not affect the optimization problem in (25)(equivalently, the solution of the D-optimal power alldoat
we can selecV = I without loss of generality. Hence, for theproblem) is given by
D-optimality criterion, the optimal linear encoding prebt in
(24) reduces to the optimal power allocation problem in (25) P* = min < 4 /E, (7 det(Ae));Tc I (33)
i.e., P becomes a diagonal matrix &= A, and Scenario 1 k
and Scenario 2 become identical.

In the following proposition, the solution of (25) is pre-

sented.
Proposition 3: The solution of(25) is given by

It is noted that the same power level is assigned to all the
parameters in the D-optimality framework, which considers
the volume of the ellipsoid that represents the maximum con-
fidence region for the ML estimate of the unknown parameters.
. i Ps a On the other hand, for the A-optimality criterion, which eon
A; = min { V% (”det(AE))%} (26)  siders the MSE of unbiased estimators, different powerlseve
are assigned to parameters in general and linear encoding

fori=1,....k. rE)rovides a more general approach than power allocation.

Proof: The Lagrangian function for the problem in (25) ca

be expressed as follows:
V. EXTENSIONS TOCASES WITH STATISTICAL

2 KNOWLEDGE OFSYSTEM PARAMETERS
({/\ }1 b {9}1 LY ’“) det H - Zgi/\i In the previous sections, it is assumed tgt and A, are
- 9 =t known exactly at the transmitter. In the presence of stegist
k k information aboutA, and A., we can extend the theoretical
T Tt det H Ai

k

2 ~
Z > =1 (27)  results as follows. Suppose thAt. takesM,. possible values
i=1 and A, takesM, possible values with known probabilities. In



particular,A, = AY) with probabilityp) for j = 1,. .., M,, 10°,

and A. = AY) with probability () for j = 1,...,Me. VN
In this setup, for the A-optimality criterion, we can coresid sy gt g e oA
the average CRLBs as the performance metrics for both  10*: R e P

the intended receiver and the eavesdropper, and update th
expressions in (13a) and (13c) as follows:

M,
S {P*1 Agﬂpfl} =t {PT'A, P!} (34)
Jj=1

CRLB at Intended Receiver

Me
S wOu{PAVP T —u {(PTAPTY) (39) At
J=1 1074 ’@j%,:gc:@'/’ —A—0PA, 710" — < OLE, =1 | |
”%"? —6—0PA, =102 G-optimality
whereA, £ 30 pNAY andA, 2y kWAY) . Since CoTomem L e
— ¥ ~OLE, =10 X MLE, 7=102
(34) and (35) are in the form of (13a) and (13c), respectjvely — ot w07+ ME L
the results in Section IlI-A and Section IlI-B can also be . s 8 10 12 14 18 18 2
employed for this setup by replacing, with A, and A, k
with A, and assuming tha.. is not a scaled version of..
If A, andA. have continuous distributions with probability T B S S U - S W S
density functionsf,.(-) and f.(-), respectively, then (34) and
(35) can be updated as
. 10
/fT(AT)tr{P_lATP_l}dAT =tr {P7'A, P} (36)
/fe(Ae)tr{P’lAeP’l}dAe:tr{P”XeP’l} (37) g 102 °
whereA, 2 [A,.f(A,)dA, andA. £ [A.f(A d
Hence, the structure of the problem remains the same. Ta cove 3 10° ek
the cases of both discrete and continuous distributidnsand © PrEatEE o A
A. in (34)—(37) can be stated &, = E{A,} andA, = Py ey
E{Ae}' 104e—% — —A—o0opa, n=1oi“ —< —OLE, =1
. ) ) . ) ) —6—0PA, =107 G-optimality
Regarding the D-optimality criterion, we can consider the —>—OPAEL  t WLE 107
average values for the determinants of the FIMs as the :Z:giwjgj . mti-vjﬂ
performance metrics, and modify the expressions in (24d) an T o '"‘1‘4 " 1"8" "
(24c) as follows: K
- 1 k : My p) Fig. 1. CRLBs achieved by the OPA and OLE hes vérsoisvari
i i\ — _ ’ 1g. 1. S achieve Yy the an approacnes v ISvarious
Z P('j) det (P (AEJ)) P) - <H Ai) Z € values ofn, wherePs; = 10. Also, the performance of the G-optimality based
j i=1 j=1 det (AT ) power allocation is presented for comparison purposesdditian, the MSEs

(38) of the ML estimators for the OPA and OLE approaches are ithisd.

M k 2 M -
<, - © (4)
ZH(J) det (p(Aga)) 1p) _ <H /\Z_) Z K - VI. NUMERICAL RESULTS
j=1 i=1 j=1 det (Ae ) In this section, we scrutinize the theoretical results dase
(39)  various numerical examples. As in [34], the system matrices

Then, by following similar steps to those in the proof ofor the intended receiver and the eavesdropper, Fg.,in
Proposition 3, the D-optimal linear encoding (equivalgnt! (1) andF. in (2), consist of i.i.d. uniform random variables

power allocation) can be obtained as follows: over [—0.1,0.1], which are generated as a single realization
. in MATLAB with seed 1. Also, the additive noise vectors at
~ 2k the intended receiver and the eavesdropper, Ne.and N,
P* = min Pe ___n 1 (40) in (1) and (2), are modeled as zero-mean and independent
k- ZMG r0) Gaussian random vectors with i.i.d. components, where each

I=1 det (AD)) ; iy o
component has a variance 89~°. In addition, the numbers

For the case ofA, and A, with continuous distributions, of measurements in (1) and (2) are setto= n, = 2k with
similar derivations can be performed to obtain the D- optlmé denoting the number of parameters [34].

linear encoding (equivalently, power allocation) as First, the A-optimality criterion is considered, and the
} optimal power allocation (OPA) approach in Proposition #&l an

1
* . P, n * the optimal linear encoding (OLE) approach in Proposition 2
P* = — == I 41
i {\/ ko (E{l/det(Ae)}) } (1)
5The following MATLAB code is used for generatinB, andF.: “rng(1);
whereE{1/ det(A.)} = [ fo(Ac)/det (A.)dA.. F=(rand(20,80)-0.5)/5; Fr=F(L:k,1:nr); Fe=F(1:k,(ny:€ar+ne));".



are evaluated. Fig. 1 presents the CRLBs at the intendec 10°

receiver and at the eavesdropper that are achieved by th IR 3
OPA and OLE approaches versus the number of parameters I /A
k, for three different values of the secrecy constrajrand w5 o o]
for Px = 10 (see (9)). It is noted that OLE can provide lower - Gopumaly, ks Vi
CRLBs at the intended receiver than OPA while satisfying ¥ Goptmalty, k20 v
the same secrecy constraints. This is expected as OLE is : © Mo {4

102 +  MLE, k=20 v o

more general approach than OPA, and the system matrice:
are not diagonal in the considered scenario (even though the
noise components are i.i.d.). In addition, whegs: 10~4, the

secrecy constraint becomes ineffective for the OPA approac
when k > 4 and for the OLE approach wheh > 3. In

these situations, the first cases in Propositions 1 and 2 (i.e
(15) and (21)) become valid. In all other cases, the secrecy
constraint is effective as noted from Fig. 1, and the sohgio ‘ ‘ ‘ ‘ ‘
are obtained as described in the second cases in Propssitior 10 10 107 10 10 10 10°
1 and 2. For comparison purposes, we also present a powe.
allocation approach according to the G-optimality crieri

CRLB at Intended Receiver

N
<
&

10%%

10°

[42], where the aim is to minimize the largest diagonal entry e

of the CRLB at the intended receiver under the average powel A

constraint. (Namelyming, . max;eq1,.ky i/p: such that TyIoEks

Sk pi < Poandp; > 0,0 = 1,....k (cf. (14)).) From w0l s o

Fig. 1, it is noted that whenever the secrecy constraint is - G-optimaliy, k=10

active (that is, whemy = 10~* and k € {4,5,...,20}), g MY i

the proposed OLE approach outperforms the power allocatior  § w2-| & it o

approach based on G-optimality. Furthermore, we implement g

the ML estimators for the OPA and OLE approaches (based o

on 5000 Monte-Carlo trials) and present their MSEs in Fig. 1. & N

As expected, the MSEs coincide with the CRLBs due to the  * 4 -g-4- ¢ -3-5/, . :

consideration of linear systems models with additive Ganss | e T B Bt

noise [29] AN U e U D/ SN R IR I SRUIL SR SN ¢
For the same setting, Fig. 2 illustrates the CRLBs at the ? | ‘ ‘ ‘ ‘

intended receiver and at the eavesdropper achieved by th 10° 10° 10 10° 107 10 107

OPA and OLE approaches versus the secrecy constraint K

wherek = 5,10, _20 "fmd Py = 10'_ For small Valu_els of), the Fig. 2. CRLBs achieved by the OPA and OLE approaches ver$oisvarious
secrecy constraint is not effective, and the minimum CRLBilues ofk, wherePs. = 10. Also, the performance of the G-optimality based

is achieved at the intended receiver under the average powrer allocation is presented for comparison purposesdditian, the MSEs
limit. In this region, the CRLBs are highest fér= 20 and of the ML estimators for the OPA and OLE approaches are ittest.

lowest fork = 5 in accordance with Fig. 1 (seg= 107%).

However, after a certain value of, the secrecy constraint Next, the CRLBs at the intended receiver and the eaves-
becomes effective, and the CRLBs increase in order to gatisropper achieved by the OPA and OLE approaches are plotted
the secrecy constraint. In that regime, the CRLB at the eav&§rsus the average power constraifit, in Fig. 3 for various
dropper is always equal t9, and the CRLB at the receivervalues ofn and fork = 10. As Px increases, the secrecy
depends on the system dependent matrkgsnd A, which ~constraint becomes effective and the CRLB at the receiver
are determined b¥',, F., and the covariance matrices of thecannot be reduced below certain levels after some values of
noise components. For example, it is noted that for largeesal Psx- It is also noted that the performance difference between
of n, the CRLBs achieved by OLE are lowest for= 10 OLE and OPA is more significant for high average power
and highest fork = 5. This behavior is in compliance with constraints. Moreover, the performance of the G-optipalit
Fig. 1 (see ‘OLE,y = 10~2 and OLE,n = 1), and it is based power allocation is presented for comparison puspose
due to the random generation of the system matriéesind Furthermore, as in the previous scenarios, the MSEs of the ML
F.. Fig. 2 also shows that the OLE approach achieves lowegtimators for the OPA and OLE approaches coincide with the
CRLBs at the intended receiver than the OPA approach foRLBs.

all values ofy. For comparison purposes, the performance of Finally, the D-optimality criterion is considered, and the
the G-optimality based power allocation is also presented @ptimal approach in (33) (see Proposition 3) is evaluated.
Fig. 2, which corresponds to a constant value for eactue (Optimal linear encoding and optimal power allocation are
to the omission of the secrecy constraint. Moreover, the MSEquivalent for this criterion.) Fig. 4 presents the deteanis

of the ML estimators for the OPA and OLE approaches acd FIM at the intended receiver and at the eavesdropper that
illustrated in the figure, which coincide with the CRLBs asre achieved by the optimal approach versus the number
expected. of parametersk, for four different values of the secrecy
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Fig. 3. CRLBs achieved by the OPA and OLE approaches versudor  Fig. 4. Determinant of FIM achieved by the optimal approaensusk for
various 7 values, wherek = 10. Also, the performance of the G-optimality various values ofj, where Ps; = 0.01. Also, the solution in the absence
based power allocation is presented for comparison puspdseddition, the Of the secrecy constraint (labeled as ‘Insecure’) is presefor comparison
MSEs of the ML estimators for the OPA and OLE approaches argtiiited.  purposes.

for k = 10 in compliance with the results in Fig. 4. Again,
constraint; and for Ps; = 0.01 (see (10)). It is noted that the optimal solution in the absence of the secrecy constrain
higher determinants of FIM are obtained sncreases; i.e., is also presented for comparison purposes.
as the secrecy constraint is relaxed. Also, the secrecyreams By comparing the results for the A-optimality and D-
is effective at all points in the figure except fgr= 10° with  optimality criteria, it is deduced that the performancdetif
k =2 andk = 3 and for; = 10* with k£ = 2. In addition, the ence between the intended receiver and the eavesdropper can
fluctuations in the determinants of FIM at the intended nemei be made more significant in the A-optimality framework in
are due to the random generation of the system matiites most cases. This is due to the optimization of all the element
andF ., as mentioned previously. For comparison purposes, tbematrix P in (1) and (2) by the OLE approach employed
optimal solution in the absence of the secrecy constraigt,(e for the A-optimality criterion. On the other hand, the D-
similar to [35, Eq. (4)]) is also presented in Fig. 4 (labeledptimality criterion always results in a diagorRlwith equal
as ‘Insecure’), which leads tp; = Py /k fori =1,... k. It diagonal elements, leading to limited flexibility to achéev
is noted that the determinant of the FIM increases wittor improved performance over the eavesdropper. Hence, it is
both the intended receiver and the eavesdropper in this casére challenging to perform secure estimation according to
resulting in a violation of the secrecy constraint. In Fig. She D-optimality criterion.
the determinants of FIM at the intended receiver and at the
eavesdropper are plotted versi’s by considering various
values of7; and k. It is observed that the secrecy constraint
becomes effective a$s; increases, and the determinants of The secure transmission of deterministic vector pararseter
FIM at the intended receiver are larger for= 5 than those has been investigated in the presence of a smart eavesdroppe

VII. CONCLUDING REMARKS



10

1025

the A-optimal linear encoding and power allocation protdem

o kfﬁ,‘f*l [ 2 [ ‘ A
= *;;;é:gj v oA depends on which of th&/ secrecy constraints are active, and
ol gk v P Rt the computational complexity can get high in the presence of
I k=5, Insecure
3 kda v i many eavesdroppers.
g k=107-10 | ¥ e As another extension, worst-case design approaches can be
& gsf| e k=10=10" | - ' i . . .. . .
310 L v k=10 dnseare] ¥ = considered in the presence of statistical information al#ou
g v s and A, instead of the average performance based approach
% 1o i . ] in Section V. In particular, for the A-optimality criterioithe
I & worst-case design problem becomes
f vy i t d blem b
5 v
i tr{P~'A, P! 42a
£ min  max tr{ P} (42a)
5 st. tr{PPT} < Px (42b)
in tr{P AP '} > 42¢c
ot P >0 (42c)
: : : : 1 M,
10 10 1072 107 100 10t where Sr = {Ag )a ceey A7(" )} and Se =
& {Agl), .. .,AEMC)}. Similarly, for the D-optimality criterion,
the worst case design problem can be formulated as follows:
10%° . . s .
' 5 in det (PA.'P 43a
S v A max iy - det (PA,TP) (432)
102 [ 2 k2 T S at st. tr{PPT} < Py (43b)
- ) k=10,7=1 A
S w jmax det (PA.'P) <) (43c)
E v T it Obtaining a closed-form solution for (42) is difficult in geal,
% v N which is considered as a possible direction for future work.
E“’ i v L= ] On the other hand, the problem in (43) can easily be solved
2 iE & since it is equivalent to the following problem, which is het
§ WA same form as (24):
g E//ZK, PAPSUNPNPNPSPSPSPIP PSPPIV PSP SP 4 ml:é}x det (P(A:)flp) (4461)
100 L
oF st. tr{PPT} < Py (44b)
] | | | | det (P(A})™'P) <7 (44c)
10 10 102 10t 10° 10t N N
Py where A* = argmaxdet(A,) and A £ argmindet(A.).
A, A.

Fig. 5. Determinant of FIM achieved by the optimal approaeisus Ps;
for various 7] and k values. Also, the solution in the absence of the secrecy APPENDIX
constraint (labeled as ‘Insecure’) is presented for coreparpurposes.

A. Proof of Proposition 1

according to the A-optimality and D-optimality criteriairgt, ~ To obtain the relations that a solution of (14) must satisfy,
the optimal power allocation and optimal linear encodinée€ KKT conditions can be considered. To that aim, the
strategies have been characterized theoretically for the lsagrangian function for (14) is expressed as follows:

optimality criterion. It has been stated that the optimaé#r k k
: A o o
encoding can provide improved estimation performance com- r ({pz‘}f:l, {c:}e v, M) — Z A Sipi
pared to the optimal power allocation in general. Then, & ha Pl "
been shown that the optimal linear encoding and the optimal k k 3
power allocation lead to the same equal power allocation Ny Zpi —Ps | +puln- Z a2 (45)
solution for the D-optimality criterion. In addition, extsions =1 =1 Pi

have been provided to cases W|.th statistical knowledgg Ohere » >0, p>0andg > 0fori € {1,....k)

systems parameters. Via numerical examples, the optimal . ’ )

i . . . : are the Lagrange multipliers. From (45), the stationaritd a

power allocation and optimal linear encoding strategiegeha i, .

. . -~ ; complementary slackness conditions can be derived asv&illo
been investigated in different scenarios.

) . . Stationarity conditions:
Although the presence of a single eavesdropper is consid-
ered in this work, the case of multiple eavesdroppers can als oL i 0. =1 k 46
be treated based on similar theoretical approaches. licpart  9p; p; p;
ular, by considering an individual secrecy constraint facte
eavesdropper, a Straightforward extension can be perﬂ)rmeelf the average CRLB pe_rformance is considered for the imdndacei_ver
in the D-optimality framework. On the other hand. in th and the worst-case CRLB is em_ployed for the eavesdroppertothmulatlon
In the p y : ) %orresponds to the A-optimal linear encoding problem in phesence of

A-optimality framework, the complexity of the solutions ofmultiple eavesdroppers.
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Complementary slackness conditions: In addition, from (54) and the condition (Ele Bi/pi =,
v can also be stated as

api =0, ie{l,...,k} 47) 0
k Vv = -k B (56)
v <sz - PE) =0 (48) D1 Tam
i=1 Then, equating the expressions in (55) and (56), the foligwi
kB condition is obtained:
M<W—ZE>—O (49)
= / A
Sincea; > 0 for all ¢« € {1,...,k}, p; cannot be zero for e = Z ﬁlz \/Oéz Bi 9() &7

minimizing the objective function in (14a); hengg,> 0. As
a result, according to (47), it is concluded that= 0 for all The expressionin (57) leads to unlque squtlon/joas proved

1 € {1,...,k}. Therefore, the stationary conditions in (465n the following. First,g(0) = Zl ! \/O‘—ZZZ 1 BifVai <

become nPs due to the condition of " , BT%J < n. (Other-
@i — pfi : he sol Case 1 would be valid.) Also, for th
SRy =1,k (50) Wise, the solution in Case 1 would be valid.) Also, for the max
v; imum value ofy specified in (53), it can be shown from (57)
Then, the following two cases are investigated: thatg(minie 1. ky @i/ i) =o00.1n addition,g(y) is a contin-
Case 1(u = 0): uously differentiable function fop € [0, min;e(y,.. xy @i/Bi)

In this case, (50) S|mpI|f|es to = a;/p?, implying that @nd its derivative can be obtained from (57) as
v > 0. Hence, (48) leads t§:1:1pZ Ps. Accordingly, the d

2
following relation is obtained: AVl A Z
k V& ﬂz

1
V=52 v (51) B
Py ; +5 (Z} Vi — m) <Z} - u&-)?’/?) (58)

hich results in (15) sincg; = /a; . The solution in (15 . L
i ults in (15) since; = /ai/ /v ution in (15) From Cauchy-Schwarz inequality, it can be shown that

valid wheneveer:1 Bi/p; > n, leading to the statement at,(,) . i
the beginning of Proposition 1 by consideripg in (15). > 0 forall [O’mlnie{l’”"k} @i/ ). (The equality

Case 2(u > 0): condition in Cauchy-Schwarz inequality, i.e% = 0,
In this case, (49) leads to the condition®f;_, i/p; =n. holds if B; = K(a; — pp;) for eachi, which leads to
At this point, two sub-cases can be investigated as followsx: = (u + 1/K)B;. However, this is in contrary to the

Case 2-a:Suppose thaEl i < Psz. Then, based on assumption thag:’s are not all the same.) Therefoigu) is a
(48), v = 0 holds. Therefore, the stationarity conditions irffontinuous and monotone increasing functiop.dfom . = 0

(50) become to p = min;eqy,. xy i/Bi. Since it starts from a value less
=B, i=1,...k (52) than orequal t07Pz and goes to infinity, it is guaranteed that

(57) has a unique solution denoted b¥, as specified in (17)

implying that 3%, ..., 3% are all the same. However, this isin Proposition 1. Oncg* is obtained from (57) (i.e., (17)), the

not possible under the assumption th&t is not a scaled correspondlng/ can be calculated from (55). Then, inserting
version ofA., as stated before Proposition 1. (In other wordshis ,* into (54) yields the solution in (16) of Proposition 1.
SF_ pi < P is possible only wherg’s are all the same. In |t should be emphasized that even though the problem
that case, the expressions in (14a) and (14c) are alwaysdscah (14) is not convex (due to the constraint in (14c)), the
version of each other, and the optimization problem becomeRT conditions become both necessary and sufficient for
trivial and achieves the mlnlmum ObJeCUVG value;of).) the minimizer since they lead to a unique structure and the
Case 2-b: Suppose thai>"!_, p; = Ps. Then, (48) problem admits a minimizer over the feasible region.
implies thatr > 0. Therefore, the stationarity conditions in

(50) can be utilized to conclude that, — u5; > 0 for all B. Proof of Lemma 1

i € {1,...,k}. Hence,; can be bounded from above as _ o _
p < ai/fs forall i e {1,...,k}, which can also be written ~AS A, — A, is positive definite foru € [0, pumin), it can
as be diagonalized as follows:
o
< {r{nn 0B (53) k
1€{1,..., %
_ A, —pAe =D diwa(wai(p)” (59)
Besidesp; can be calculated from (50) as —

. oy — B where; (1) andq, (1) denote theith eigenvalue and théh
Py = T’ eigenvector ofA,. — uA., respectively, and the eigenvectors

are chosen as orthonormal vectors. From (34);) defined
From (54) and the condition 0§_"_ p; = Ps, v can be in the lemma can be expressed as

calculated as
1 & . " tr{Aeqi (Wai ()7}
= 5o > Vai— b (55) hp) =Y \Jei(w) D 00 (60)
=1 7

j=1 i=1

i=1,....k (54)
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To compute the derivative df(x), we need to calculate thewherery; ;(u) = /(1) /¥i(p). From (68), the derivative of
derivatives ofi; (1) andq,(u) with respect tou. To this aim, tr{A.q;(ux)q;(©)* } can be calculated as
the orhonormality condition ofy; ()" q; (1) = 1 is employed

first in order to obtain the following relation: gtr{AeQi(ﬂ)Qi(M)T}
o
9qi(1)"ai(p) _ 70%(p) _
— on 2q; (1) o 0. (61) = Zautr {Ac (qj T qi(p )qJ(u)T)}
Hence,qi(u)Taqai—(f‘) = 0 for anyi € {1,...,k}. Also, by
taking the derivative of both sides of the equatigh, — o ZQa”qZ Aca(p) (70)

1Ac)gi (1) = ¥i(r)ai(p), we obtain
5 5 5 From the results given in (65) and (66), (70) can be rewritten
(A,—pA.) il;l(ﬁ)_Ae d() = %‘(M) )+ Qz( )wz( ) as follows:

62) &
After multiplying both sides of (62) withy; (1) and using 22%% Acq;(pn) =2 Z aijQi ()" Aeqy (1)
(61), the following relation is derived: JESi ,
eqz(u))
Oy =2 (72)
D )" A & Z; ~ilh)

whereS; £ {j : v; () # ¥i(w)} fori € {1,...,k}.
Based on (70) and (71), the summation in the first term of
(69) can be calculated as follows:

Moreover, if we multiply both sides of (62) with; () for
any j # i and employ the fact thatj;(1)"q;(n) = 0 for
j # 1, the following equation is reached:

, I
(5 (1) — Wi () ()" a(giﬂ) =q;(1)" Acai(p)  (64) ; ) gy A ailn ' (72)
Wheni # j, (64) can be interpreted as follows: - 2zk: 3 ()" Acai(r0)” (73)
=1 s, Vi) (5 () — vi(p)
i) =05 (n) = aj()" Acqi(p) =0 (65)

In addition, it is observed that whet; (1) # ¢;(u), the

; , (or0ailn) g Acai(n) following inequality must hold:
Vilw) #9051 = a;(w)” —5 = = () = () wing inequality mu

(66) (0 ()" Acqi(p ))2 (i (w) TAe% ))2
It is noted that sincgq; (1)}, form an orthonormal basis, Vile) (05 () 2 Vi) (¥ Vi)
there exists{a;;}:; € R such that _ (a;(w) Aeqz(u)) ( 11 )
i) =vil)  \ Vi) Vi)
5% Z .
aija; (1 (67) (4" Avqi()” 1
\/7/)] + \/7/)1( \/1/11 > 0 (74)

It is known thata;; = 0 by (61), and ify; (1) and«;(u) are The relations in (73) and (74) imply that
different, a;; is given by (66). From (67), the derivative of

i ()T with respect tou can be expressed as b
%lk)a: 1) pect toy P > s solAaa)’} =0 (1)
3(?11 1 . . T . _ . . .
— Z% q;(p )+ ai(pw)a; (1)) Hence, it is concluded that the first term in (69) is non-
(68) negative; i.e.,

Based on (60), the derivative df(x) with respect tou is

k
expressed as >\ viw)

1 0

—tr{Acq; ()i ()"} >0 (76)

HM?r

= { V/Yi(u) O
< 1 6tf{A i () ai ()"} i i i
—\7 el ! Regarding the the second term in (69), the derivative; 6f 1)
; vilk Z T Vi o with respect tou can easily be computed as follows:
k el 0900() _ /D) () — ()
+ZZ ” D1 (1) A g5 (u)ags ()7} (69) Vg (1) _ Vi) (Tt () — (e 77
= On 20/ ()i ()? o



wherer; £ q; ()T Acq;(p) forie {1,...,
write the following chain of equations:

k}. Thus, we can

k

> 87” D) 1 4 (st} (78)

Jj=1 ;71 . ,

Xy (79)
1O O V) (o (1) = m3064(1)
9 - Ti 80
2; g T (b (80)
1 k k 7_12 2
5; \/wj(:u); 1/1i(ﬂ)3/2 - <Z \/1/11—)

(81)

where (80) follows from (77) and (81) is due to the Cauchy
Schwarz inequality. By combining (69), (76), and (81), it is o

proved that

onip) _

. (82)

13

Then, the following chain of equations must be true:
k

x"Ay = CY  miyithi(n) (88)
=1

k
x"Avy = (14 4C) Y wiyithi(p) (89)

=1

This means that for any,y € R¥,
C
T _ T

x Ay = 1+HOX Ay (90)
By takingx = e, andy = e,,, it is evident thatfA.]; ,, =

C/(1+ pC)[Ar]em, for any ¢, m, wheree, ande,, are unit-
norm vectors with only theth and themth elements being
equal to one, respectively. Therefore, it is shown tAatis a
scaled version ofA. in this cases. Hence, it is proved that

h . .
Oh(p) =0 <= A, is a scaled version oA..

(91)

C. Proof of Proposition 2
For the problem in (20), the Lagrangian can be expressed

Equality Case: To determine when the derivative in (82)2S [51]
becomes zero, we investigate the conditions under which tbgv D,u,v,C) = tr{VTA VD! + pu(n — tr{VTA VD})

inequalities in (74) and (81) are satisfied with equality. By

considering (74), it is noted that whenevgfy) # ; (1), we
must havey; ()T A.q; (1) = 0. Also, by (65), it is known that

wheni # j and;(u) # ¢;(u), we haveq; ()" Acq;(p) =
0. That is, (74) is satisfied with equality if and only if

qi() " Aeqj(p) =0 (83)

for any i # j. On the other hand, to satisfy the inequality
in (81) with equality,; /¢;(x) must be a constant for each

i € {1,...,k}. Let that constant be denoted lay € R. In
other words, (81) is satisfied with equality if and only if
ai(1) " Acai(n) = O () (84)

foranyi € {1,...,
it is obtained that

ag—if)—o = qi(1)"Aeq;(p) = {2:1/)( ) :;i;
(85)

If the condition in (85) is satisfied, by multiplying both sisl

of the equation( A, — nA.)q; (1) = ¥i(p)qi(p) with q; (1)”,
we can reach the following equation:

0, if i £ j

A+ pCyn(), =y O

ai ()" Arq;(p) = {

As {q;(u)}%_, form an orthonormal basis, for anyy € R¥,
there exist{z;}*_,, {y;}*_, € R such that

X = Z xlql Z Yiqi (M)
=1

) andy = (87)

k}. Therefore, by combining (83) and (84),

D}
(92)

with C being a diagonal matrix, whege> 0, v > 0, and the
diagonal elements of are the Lagrange multipliers. Consid-
ering the KKT conditions, we can express the complementary
slackness conditions for (20) as [45]

+v(tr{D™!'} - Pg) —tr{CT(VTV —

pwin —tr{VIA,VD}) =0 (93)
v(tr{D"'} = Pg) =0 (94)
In addition, the stationarity conditions can be stated & [4
oL oL
v % - ° 93)
which, after some manipulation of (92), lead to
g—é =2A, VD — 24A. VD — 2VC = 0 (96)
gé VIA, V- yVIAV—-1vD2=0 (97)

The expressions in (96) and (97) can be stated, respegtively
as

(A, — pA,)V =VCD™! (98)
VI(A, — pA)V = vD 2 (99)

Since VI'V = 1, (98) and (99) also imply tha€D~!
vD~2; that is,

CD =1 (100)

It is observed that a solution of (20) cannot satigfy= 0
andv = 0 simultaneously (which would implW7” A,V =0
due to (99); i.e.,A,. = 0). Therefore, we can investigate the
following two cases:

Case 1(u = 0):
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In this casey > 0; hence, (94) implies that{D~!} = Ps. which are the corresponding eigenvalues (&, — uA.).
In addition, the stationarity conditions in (98)—(100) bee Then, by combining the conditions af{VTA.VD} = 5
A,V = VCD! andCD = v1. Sincer > 0 andC is a andtr{D~!} = Px, the following relation is obtained:
diagonal matrix, it can be inferred from (100) tHatmust be ]

a diagonal_matrii. Let @ be defined asp £ CD!, which P = tr {_(\I;H)l/?} tr {\/;V;J:Aev,u.(‘ll,u.)_l/2}
is also a diagonal matrix. Then, it is noted thatV = V& Vv
holds, meaning that the columns & are the eigenvectors (106)
of A, and the diagonal elements & are the corresponding The expression in (106) can be shown to be equivalent to
eigenvalues ofA,.. Since A,. is symmetric, the eigenvectors
can be chosen to be orthonormal to satisfy (20d). W&t Pgp = tr {(Ar - MAe)l/Q} tr {Ae(Ar — MAe)_l/Q} 2 h(p)
denote the solution oA,V = V& such that the columns of (107)
V* are orthonormal eigenvectors &f,.. Also, let¢q, ..., ¢k
denote the diagonal elements®fi.e., the eigenvalues ok,; To show that there exists a unique valueotthat satisfies
that is,® = diag{¢1, ..., ¢x}. Similarly, C andD can be ex- (107), we first note thak(0) < Pgn since Case 1 (with
pressed a€ = diag{ci,...,cx} andD = diag{dy,...,dx}. # = 0) would give the optimal solution otherwise. Also,
Then, we can summarize the relations in this case as follovitscan be deduced from (106) th&f(umin) = oo, where
ko tmin 1S a@s defined in Lemma 1. In addition, siné&p)
—1y _ L is a continuous and monotone increasing functiory.ofor
tr{D™'} = Py = Z d; =rr (101) u € [0, umin) according to Lemma 1, it is concluded that
there exists a unique solution of (107). Lgt represent the
unique value ofu that satisfies (107) for € [0, pimin)- (It is

J=1

CD=vl = c¢idj=v, je{l,....,k} (102)

®=CD! = ¢;= ﬁ, je{l,...,k} (103) noted thatu cannot be larger thap,,;, due to (99).) Then,
d; from ¥, = vD~2 andtr{D~'} = P, the solution of (20)
By combining (102) and (103), we first obtairid; = \/¢;/v Can be specified as
for j € {1,...,k}. (Sincer > 0 and A, is assumed to be TR
positive definite, the square roots ¢f /v exist.) Then, we D* = < Pe (¥, ) . (108)
utilize (101) and ob]'gainzl’;:1 V¢j/v = Ps, which leads tr{ (@ ,-)1/2}
to Vv = (1/Pg) ¥ ;_, \/¢;. Therefore, optimald;’s are  Qyerall, the optimal solution of (20) in Case 2 is given
calculated as by V* and D*, where the columns oV* are orthonormal
Z’f_l Vi eigenvectors of(A, — p*A.), and D* is given by (108)
dj = ==—— (104) with ¥,. denoting the diagonal matrix consisting of the
Ps/o; q

eigenvalues of A, — u*A.), wherep* is obtained by solving
for j € {1,...,k}. Hence,D* in (21) of Proposition 2 is (107)2
obtained. Acknowledgement: The authors would like to thank Prof.
Overall, the optimal solution of (20) in Case 1 is given brhan Arikan and Prof. Tolga Mete Duman from Bilkent
V* andD*, where the columns o¥* are orthonormal eigen- University for their insightful comments.
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