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Abstract—In this paper, we consider secure transmission of a
deterministic vector parameter from a transmitter to an int ended
receiver in the presence of a smart eavesdropper. The aim is
to determine the optimal power allocation and optimal linear
encoding strategies at the transmitter to maximize the estimation
performance at the intended receiver under constraints on the
estimation performance at the eavesdropper and on the transmit
power. First, the A-optimality criterion is adopted by util izing
the Cramér-Rao lower bound (CRLB) as the estimation perfor-
mance metric, and the optimal power allocation and optimal
linear encoding strategies are characterized theoretically. Then,
corresponding to the D-optimality criterion, the determinant of
the Fisher information matrix is considered as the estimation
performance metric. It is shown that the optimal linear encoding
and optimal power allocation strategies lead to the same solution
for this criterion. In addition, extensions of the theoretical results
are provided to cases with statistical knowledge of systems
parameters. Numerical examples are provided to investigate the
optimal power allocation and optimal linear encoding strategies
in different scenarios.

Index Terms—Cramér-Rao lower bound (CRLB), estimation,
Fisher information, parameter encoding, power allocation, se-
crecy.

I. I NTRODUCTION

A. Literature Review

Eavesdropping is one of the most common threats for secu-
rity of communication systems [1]. In many applications such
as internet of things (IoT), smart homes and cities, and self-
driving cars, it is crucial to secretly send information from a
transmitter to an intended receiver in the presence of an eaves-
dropper. In the literature, a common precaution against eaves-
dropping is to employ key-based cryptographic approaches [2],
[3]. However, key generation and distribution can be costly
and challenging in heterogenous and dynamic networks with
large numbers of connections [4], [5]. In addition, for low-cost
and battery operated devices with stringent power, bandwidth,
and/or latency constraints, cryptographic approaches maynot
be well-suited to provide security [6]. In such scenarios,
physical layer secrecy can be considered as an alternative
or complementary approach to design secure communication
systems. Physical layer secrecy exploits varying characteristics
of wireless channels related to the intended receiver and the
eavesdropper for ensuring secure communications [7]. In order
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to quantify the amount of achieved secrecy, various types of
metrics, such as information, detection, or estimation theoretic
metrics, can be used.

Information theoretic metrics for quantifying secrecy are
commonly based on mutual information, secrecy rate, or
capacity [8]–[18]. For example, it is shown in [8] that when
the channel between the transmitter and the eavesdropper is
a degraded version of the channel between the transmitter
and the intended receiver, a non-zero secrecy rate can be
achieved between the transmitter and the intended receiver
while providing zero information to the eavesdropper. In [9]
and [10], secure information transmission problems are inves-
tigated by considering communications over fading channels,
and secrecy capacities are characterized in various scenar-
ios. Also, physical layer secrecy is studied from a number
of information theoretic perspectives for Gaussian wiretap,
broadcast, and interference channels in [12]–[18]. In addition
to information theoretic metrics, the secrecy outage probability
is adopted as a secrecy metric in various studies such as
[19] and [20]. Moreover, [21]–[23] specify the secrecy level
based on the signal-to-noise ratio (SNR) metric in a quality-
of-service (QoS) framework, while [24] utilizes the Bayesian
and Neyman-Pearson frameworks for investigating secrecy
constrained distributed detection problems.

Estimation theoretic metrics, such as Fisher information and
mean-squared error (MSE), have been employed in a multitude
of studies related to secure transmission of information. In
[25], Gaussian interference channels with vector parameters
are considered in the presence of eavesdroppers by assuming
Gaussian prior distribution for the vector parameters in a
Bayesian estimation framework. The aim is to minimize the
total minimum mean-squared error (MMSE) at the intended
receivers under a constraint on the MMSE at the eavesdroppers
by using joint artificial noise and linear encoding schemes.In
[26], by adopting a nonrandom (i.e., non-Bayesian) parameter
estimation framework, the Fisher information is employed
as a metric of privacy in a smart-grid network in which
adversary parties try to estimate energy consumption based
on data gathered from smart meters. Secrecy in a distributed
inference framework is considered in [27] and [28], where
the information coming to a fusion center from various sensor
nodes are also observed by eavesdroppers. In particular, [27]
focuses on the estimation of a single point Gaussian source
under a Bayesian estimation framework in the presence of an
eavesdropper. Optimal transmit power allocation policiesare
presented for minimizing the average MSE for the parameter
of interest while guaranteeing a target MSE at the eavesdrop-
per. In [28], the asymptotic secrecy and estimation problem
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is investigated in a non-Bayesian framework when the sensor
measurements are quantized and the channel between sensors
and receivers are assumed to be binary symmetric channels.
In this setting, sensor quantization thresholds are designed to
achieve perfect secrecy for an asymptotically large numberof
sensors.

One of the most common estimation theoretic metrics is
the Cramér-Rao lower bound (CRLB), which is based on
the Fisher information matrix (FIM) and provides a lower
bound on MSEs of unbiased estimators [29]. In [30], the
CRLB is employed as a performance metric for analyzing
the secure inference problem for deterministic parametersin
IoT systems under spoofing and man-in-the-middle-attack. The
secure estimation of a random parameter in the presence of an
eavesdropper is investigated in Bayesian estimation settings in
[31] and [32]. Specifically, the optimal deterministic encoding
of a random scalar parameter is proposed in [31] based on
the minimization of expectation of the conditional Cramér-
Rao bound (ECRB) at the intended receiver while keeping
the estimation error of the linear MMSE (LMMSE) estimator
at the eavesdropper above a certain threshold. For the same
setting, [32] develops a robust parameter encoding approach
by employing the worst-case CRLB of the parameter as the
performance metric at the intended receiver. The work in [33]
extends the results in [31] to vector parameter estimation prob-
lems. In [34], estimation of a deterministic vector parameter
is considered by utilizing the CRLB metric at the intended
receiver and the MSE of the maximum likelihood (ML)
estimator at the eavesdropper. An algorithm is proposed to
perform optimal power allocation for secure estimation of mul-
tiple deterministic parameters under a total power constraint.
The common assumption in [31]–[34] is that the eavesdropper
is unaware of the encoding function at the transmitter. The
FIM or MSE based performance metrics are also employed in
numerous other studies, such as [35] and [36], in the absence
of eavesdropping. For example, the distributed estimationof
a vector parameter is studied in [35] for wireless sensor
networks (WSNs) in the Bayesian framework. By modeling
the prior distribution of the vector parameter as Gaussian,
Bayesian FIM based performance metrics, namely, the trace
and the log-determinant of the Bayesian FIM, are used to
optimize the transmit powers of the sensors in the WSN.
In [36], linear estimation of correlated Gaussian parameters
is investigated and achievable power-distortion regions are
derived by considering individual distortion constraintsand
an average MSE distortion constraint. In addition, optimal
power allocation strategies that achieve the minimum total
transmission power are obtained under the proposed distortion
criteria.

Stochastic encoding and encryption can also be utilized as
a defense mechanism against eavesdropping for estimation
theoretic secrecy [37]–[41]. For example, stochastic encryption
is performed in [38] based on the 1-bit quantized version
of a noisy sensor measurement of a deterministic parameter
to realize secure communication. It is shown that biased
estimation and large errors can be induced at the eavesdropper
via symmetric and asymmetric bit flipping strategies which are
unknown to the eavesdropper. In [39], the binary stochastic
encryption approach in [38] is extended to non-binary stochas-

tic encryption for facilitating estimation of vector parameters.
In [41], a randomized mapping between two one-to-one and
continuous functions is employed for encoding a random
scalar parameter at the transmitter for estimation theoretic
secure transmission. The aim is to minimize the estimation
error at the intended receiver under a secrecy constraint atthe
eavesdropper, which is fully aware of the encoding strategy
at the transmitter. By considering linear MMSE estimation
for small numbers of observations and the ECRB metric for
large numbers of observations, optimal encoder randomization
strategies are developed.

B. Contributions

Although optimal parameter encoding problems are inves-
tigated for secure transmission ofrandom parameters with
known prior distributions in [31]–[33], [41], a power allocation
approach for optimal transmission of multipledeterministic
parameters has recently been developed in [34] by considering
an eavesdropper that is unaware of the power allocation
strategy at the transmitter. In this work, we propose optimal
encoding problems for secure transmission of multipledeter-
ministic parameters in the presence of asmart eavesdropper
that is aware of the encoding function at the transmitter. Also,
we consider two scenarios in which the encoding is via either
power allocationor linear encoding. In addition, we adopt two
Fisher information based optimality criteria for quantifying the
estimation performance at the intended receiver and the eaves-
dropper. In particular, the trace of the inverse FIM, namely, the
CRLB, and the determinant of the FIM are considered as two
alternative performance metrics, which are also referred to as
A-optimality and D-optimality criteria [42]. In both scenarios
and for both optimality criteria, the optimal power allocation
and linear encoding solutions are characterized theoretically in
the presence of constraints on the estimation performance of
the eavesdropper and on the transmit power. Also, extensions
are provided in the presence of statistical knowledge of system
parameters. The main contributions and novelty of this paper
can be summarized as follows:

• For secure transmission of a deterministic vector pa-
rameter, we explicitly characterize the optimal power
allocation strategy that minimizes the CRLB at an in-
tended receiver under constraints on the CRLB at a smart
eavesdropper and on the transmit power (Proposition 1).
Although a similar problem was analyzed in [34], the
eavesdropper was modeled to be unaware of the power
allocation strategy at the transmitter in that work, which
leads to a different solution as the CRLB metric cannot
be utilized to quantify secrecy in that setting. (From a
practical perspective, the problem considered in this paper
corresponds to a worst-case scenario for the estimation
system since the eavesdropper is smart and can learn the
power allocation strategy instantly.)

• For the first time in the literature, we perform the optimal
linear encoding of a deterministic vector parameter under
a transmit power limit by minimizing the CRLB at
an intended receiver while constraining the CRLB at a
smart eavesdropper (Proposition 2). We also show that
optimal linear encoding can provide significant perfor-
mance improvements over the optimal power allocation
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approach in some cases. Even though generic encoding
operations were considered in [33], the vector parameter
was modeled as a random vector with a known prior dis-
tribution and the eavesdropper was modeled as unaware
of the encoding (i.e., not smart). Accordingly, ECRB and
LMMSE metrics were utilized in [33], leading to different
formulations.

• We propose optimal power allocation and linear encoding
problems for secure transmission of deterministic vector
parameters according to the D-optimality criterion for
the first time in the literature, and show that these
problems admit the same equal power allocation solution
(Proposition 3).

• We show that when system parameters are not known
perfectly, all the theoretical results can still be appliedif
there exists statistical knowledge of system parameters.

In addition, numerical examples are presented to illustrate and
compare the proposed optimal solutions in various settings.

C. Organization

The remainder of the paper is organized as follows. In
Section II, the system model is described and the problem
formulations are introduced. In Section III, optimal powerallo-
cation and linear encoding approaches are developed according
to the A-optimality criterion. Then, Section IV employs the
D-optimality criterion and presents the solution of the optimal
power allocation and the linear encoding problem. The theoret-
ical results are extended in Section V to cases with statistical
knowledge of system parameters. Finally, various numerical
examples are presented in Section VI, and concluding remarks
are made in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a vector of unknown deterministic parameters
represented byθ = [θ1, . . . , θk]

T ∈ R
k with k ≥ 2.

Measurements are obtained at an intended receiver and an
eavesdropper via the following linear models [34]–[36]:

Yr = FT
r Pθ +Nr (1)

Ye = FT
e Pθ +Ne (2)

whereYr ∈ R
nr andYe ∈ R

ne denote the measurements at
the intended receiver and the eavesdropper, respectively,Fr

and Fe are, respectively,k × nr and k × ne real matrices
with full row ranks (k ≤ nr and k ≤ ne), which are
assumed to be known,Nr ∈ R

nr and Ne ∈ R
ne are the

additive Gaussian noise vectors at the intended receiver and
the eavesdropper, respectively, which are distributed according
to N (0,Σr) andN (0,Σe) with Σr,Σe ≻ 0, andP is ak×k
symmetric positive definite matrix, which is to be optimized.1

Other than the preceding specifications, there are no additional
assumptions onFr, Fe, Σr, andΣe.

To quantify the estimation performance at the intended
receiver and the eavesdropper, we utilize the FIMs for the

1It is noted thatFr in (1) (andFe in (2)) can represent the combined
effects of pre-processing at the transmitter (if any) and the effects of channel.
Via matrix P, the parameter vector (data) is transformed into another vector
of the same size without changing any other blocks at the transmitter.

measurementsYr andYe with respect to the parameter vector
θ, which are given by [34], [43], [44, Lemma 5]

I(Yr; θ) = PFrΣ
−1
r FT

r P (3)

I(Ye; θ) = PFeΣ
−1
e FT

e P (4)

Based on the FIM, two popular and useful performance metrics
are the CRLB and the determinant of the FIM, which are
referred to as the A-optimality and D-optimality criteria,
respectively [42].

The CRLB provides a lower bound on covariance matrices
of unbiased estimators as follows [29]:

Cov
(
θ̂(Yr)

)
≥ I−1(Yr; θ) (5)

Cov
(
θ̂(Ye)

)
≥ I−1(Ye; θ) (6)

where θ̂(Yr) and θ̂(Ye) denote any unbiased estimators
of θ based on measurementsYr and Ye, respectively.
Since Cov

(
θ̂(Yr)

)
= E

[
(θ̂(Yr) − θ)(θ̂(Yr) − θ)T

]
and

Cov
(
θ̂(Ye)

)
= E

[
(θ̂(Ye) − θ)(θ̂(Ye) − θ)T

]
due to un-

biasedness, the lower bounds on the MSEs of the vector
parameter can be obtained from (5) and (6) as follows:

E
[
‖θ̂(Yr)− θ‖2

]
≥ tr{I−1(Yr; θ)} (7)

E
[
‖θ̂(Ye)− θ‖2

]
≥ tr{I−1(Ye; θ)} (8)

According to the CRLB metric (i.e., A-optimality criterion),
we aim to design the optimalP at the transmitter that mini-
mizes the CRLB at the intended receiver subject to constraints
on the CRLB at the eavesdropper and on the average power.
From (7) and (8), this problem is formulated as follows:

min
P

tr{I−1(Yr; θ)} (9a)

s.t. tr{PPT } ≤ PΣ (9b)

tr{I−1(Ye; θ)} ≥ η (9c)

where0 < PΣ < ∞ is the power constraint, and0 ≤ η < ∞
specifies the secrecy constraint for the eavesdropper.

On the other hand, for the D-optimality criterion, the aim
is to maximize the determinant of the FIM for the intended
receiver [42], [43], [45, Sec. 7.5.2], [46]. This corresponds
to minimizing the volume of the ellipsoid representing the
maximum confidence region for the ML estimate of the
unknown parameters [42], [45, Sec. 7.5.2], [47, Sec. III-C].
Accordingly, the following constrained optimization problem
is proposed for the D-optimality criterion:

max
P

det (I(Yr ; θ)) (10a)

s.t. tr{PPT } ≤ PΣ (10b)

det (I(Ye; θ)) ≤ η̃ (10c)

where 0 < η̃ < ∞ specifies the secrecy constraint for the
eavesdropper.

The main motivations behind the use of the A-optimality
and D-optimality criteria can be summarized as follows:(i)
As FIM based metrics are employed in these criteria, generic
approaches can be obtained with no dependence on specific
estimator structures.(ii) The use of these metrics facilitates
theoretical analyses, leading to intuitive explanations.(iii) The
CRLB used in the A-optimality framework corresponds to the
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MSE of the ML estimator for linear systems models with
additive Gaussian noise as in (1) and (2) [29], [48].2 Also, the
determinant of the FIM used in the D-optimality framework
is related to the volume of the ellipsoid representing the
maximum confidence region for the ML estimator [42]. (Please
see [47, Sec. III-C] for motivations behind the use of the D-
optimality criterion.)

We investigate the proposed problems in (9) and (10) in two
different scenarios as follows:

• Scenario 1:P is assumed to be a diagonal matrix as in
[34], which is given byP = diag{√p1, . . . ,√pk}, where
pi ≥ 0 for i ∈ {1, . . . , k}. We can consider the problem
in this scenario as theoptimal power allocationproblem
for parameter estimation [34].

• Scenario 2: P is assumed to be a symmetric matrix
which is positive definite.3 We regard the problem in
this scenario as theoptimal linear encodingproblem for
parameter estimation [33].

Since Scenario 1 can be considered as a special case of
Scenario 2, the performance achieved in Scenario 2 is always
superior or equal to that in Scenario 1. Investigation of
these two scenarios is useful to determine whether the more
general linear encoding approach has advantages over the
power allocation approach according to the A-optimality and
D-optimality criteria.

Remark 1: In this work, it is assumed that the intended
receiver knowsFr, Σr andP, the eavesdropper knowsFe,
Σe andP, and the transmitter knowsFr, Fe, Σr andΣe. It
is practical to assume that the intended receiver knowsΣr,
and can learnFr and P as it is in collaboration with the
transmitter. However, it is challenging for the eavesdropper
to learnFe andP, which may require obtaining some prior
knowledge about the transmitter location and the channel
model, and/or eavesdropping of messages (signal exchanges)
between the transmitter and the intended receiver. By assuming
the knowledge ofFe, Σe, and P at the eavesdropper, we
effectively consider a worst-case scenario; i.e., a smart eaves-
dropper, since the estimation performance of any eavesdropper
is bounded by that of the smart eavesdropper. Related to the
knowledge ofFr, Fe, Σr, andΣe at the transmitter,Σr and
Fr can be learned via feedback from the intended receiver.
However, it can be challenging for the transmitter to learn
Σe and Fe, which may require prior knowledge related to
the estimator employed at the eavesdropper and the location
of the eavesdropper (and a suitable channel model). If the
transmitter does not have accurate knowledge ofΣe andFe,
this inaccuracy can be modeled by statistical knowledge as
in Section V and the optimal power allocation and optimal
linear encoding can be performed in the presence of statistical
knowledge.

The assumptions in Remark 1 are similar to those in [34]
except that the eavesdropper is modeled to be unaware ofP

in [34]. In this paper, we consider a smart eavesdropper that

2Namely, the CRLB in (9a) is the MSE of the ML estimator forθ based
on Yr , and the CRLB in (9c) is the MSE of the ML estimator forθ based
on Ye.

3We consider symmetric matrices in order to have a lower number of design
parameters. Similarly, positive definite matrices are assumed for obtaining a
closed-form (hence, low-complexity) solution in the A-optimality framework.

also knowsP and investigate the optimal design ofP when
it is known by the eavesdropper, as well.

III. POWER ALLOCATION AND L INEAR ENCODING BASED

ON A-OPTIMALITY

In this section, we consider the CRLB metric, i.e., the A-
optimality criterion, and focus on the problem in (9). For
convenience of notation, system dependent matrices can be
defined asAr ,

(
FrΣ

−1
r FT

r

)−1
andAe ,

(
FeΣ

−1
e FT

e

)−1
,

which are assumed to be positive definite matrices. Then, the
inverses of the FIMs in (3) and (4) can be stated as

I−1(Yr ; θ) = P−1ArP
−1 (11)

I−1(Ye; θ) = P−1AeP
−1 (12)

In order to eliminate scenarios in which the design of matrixP

becomes trivial, it is assumed thatAr 6= ζAe for any ζ ∈ R;
that is,Ar is not a scaled version ofAe. SinceAr andAe

depend on the channels related to the intended receiver and
the eavesdropper, respectively, this assumption holds in most
practical cases.

Based on (11) and (12), we can express the problem in (9)
as follows:

min
P

tr{P−1ArP
−1} (13a)

s.t. tr{PPT } ≤ PΣ (13b)

tr{P−1AeP
−1} ≥ η (13c)

whereP is a diagonal matrix in Scenario 1 and a positive
definite matrix in Scenario 2. We investigate the problem in
(13) under Scenario 1 and Scenario 2 in the following sections.

A. Scenario 1: A-Optimal Power Allocation

In this section,P is assumed to be diagonal asP =
diag{√p1,√p2, . . . ,√pk} with pi ≥ 0 for i ∈ {1, . . . , k}.
Then, the problem in (13) reduces to

min
{pi}k

i=1

k∑

i=1

αi

pi
(14a)

s.t.
k∑

i=1

pi ≤ PΣ (14b)

k∑

i=1

βi
pi

≥ η (14c)

pi ≥ 0 , i = 1, . . . , k (14d)

whereαi andβi are defined as theith diagonal elements of
Ar andAe, respectively; that is,αi , [Ar]ii andβi , [Ae]ii.
SinceAr andAe are assumed to be positive definite,αi > 0
andβi > 0 for all i ∈ {1, . . . , k} in (14a) and (14c).

As it is assumed thatAr is not a scaled version ofAe,
it is known that α1

β1
, . . . , αk

βk
are not all the same. Then, the

solution of (14) is specified by the following proposition.

Proposition 1: If
∑k

i=1

βi

∑k
j=1

√
αj

PΣ
√
αi

≥ η, then the solution
of (14) is

p∗i =
PΣ

√
αi∑k

j=1

√
αj

, i = 1, . . . , k (15)
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Otherwise, the solution of(14) is given by

p∗i =
PΣ

√
αi − µ∗βi∑k

j=1

√
αj − µ∗βj

, i = 1, . . . , k (16)

whereµ∗ is the unique solution of

k∑

i=1

√
αi − µβi

k∑

i=1

βi√
αi − µβi

= ηPΣ (17)

for µ ∈ [0,mini∈{1,...,k} αi/βi).
Proof: Please see Appendix A.
Proposition 1 characterizes the solution of (14) explicitly,

and also illustrates that the optimal power allocation approach
utilizes all the available power; i.e.,

∑k
i=1 p

∗
i = PΣ under

the assumption thatα1

β1
, . . . , αk

βk
are not all the same. It

can be noted from [43, Eq. (20)] that the solution in (15)
in Proposition 1 corresponds to the situation in which the
secrecy constraint in (14c) is not effective.4 When the secrecy
constraint becomes effective, the solution of (14) is givenby
(16), which requires a one-dimensional search to obtainµ∗

from (17). Since the expression on the left-hand-side of (17) is
monotone increasing (as shown in the proof of Proposition 1),
the bisection algorithm [50] can be implemented to solve (17)
rapidly.

B. Scenario 2: A-Optimal Linear Encoding

In this scenario,P is assumed to be a positive definite
matrix, and (13) is stated as

min
P∈M+

tr{P−1ArP
−1} (18a)

s.t. tr{PPT } ≤ PΣ (18b)

tr{P−1AeP
−1} ≥ η (18c)

whereM+ denotes the set of positive definite matrices.
Let P be expressed asP = VΛVT , where the columns

of V are orthonormal eigenvectors ofP, andΛ is a diagonal
matrix containing the corresponding eigenvalues ofP; i.e.,
Λ = diag{λ1, . . . , λk}. Then, (18) can be transformed into
the following problem after some manipulation:

min
V, {λ2

i
}k
i=1

tr{VTArVΛ−2} (19a)

s.t.

k∑

i=1

λ2i ≤ PΣ (19b)

tr{VTAeVΛ−2} ≥ η (19c)

VTV = I (19d)

Furthermore, to express the problem in (19) in an alternative
form, we defineD asD , Λ−2. Then, (19) becomes

min
V,D

tr{VTArVD} (20a)

s.t. tr
{
D−1

}
≤ PΣ (20b)

tr{VTAeVD} ≥ η (20c)

VTV = I (20d)

4The solution in (15) has a similar intuition to the water-filling solution
[49] that more power is allocated for a parameter when the quality of the
channel related to that parameter is higher.

First, we present the following lemma, which will be useful
for finding the solution of (20).

Lemma 1: Let µmin be the minimum value ofµ ≥ 0 such
that the minimum eigenvalue ofAr − µAe is equal to zero.
Then,h(µ) , tr

{
(Ar − µAe)

1/2
}
tr
{
Ae(Ar − µAe)

−1/2
}

is a continuous and monotone increasing function ofµ for
µ ∈ [0, µmin). In addition, the derivative ofh(µ) with respect
to µ is equal to zero if and only ifAr is a scaled version of
Ae.

Proof: Please see Appendix B.
Then, we provide the following proposition, which specifies

the solution of (20) by utilizing Lemma 1.
Proposition 2: Let V∗ and Φ∗ represent the solution of

ArV = VΦ such that the columns ofV∗ are orthonormal
eigenvectors ofAr, and Φ∗ is a diagonal matrix with the
corresponding eigenvalues ofAr in its diagonals. Also, let
D∗ be given by

D∗ =

(
PΣ(Φ

∗)1/2

tr
{
(Φ∗)1/2

}
)−1

. (21)

If tr{(V∗)TAeV
∗D∗} ≥ η, thenV∗ andD∗ are the solution

of (20). Otherwise, the solution is given byV⋆ andD⋆, where

D⋆ =

(
PΣ(Ψµ⋆)1/2

tr
{
(Ψµ⋆)1/2

}
)−1

, (22)

and the columns ofV⋆ are orthonormal eigenvectors of
(Ar − µ⋆Ae). Here, Ψµ⋆ is the diagonal matrix consisting
of the eigenvalues of(Ar−µ⋆Ae) andµ⋆ denotes the unique
solution of

tr
{
(Ar − µAe)

1/2
}
tr
{
Ae(Ar − µAe)

−1/2
}
= ηPΣ

(23)

for µ ∈ [0, µmin), whereµmin is as defined in Lemma 1.
Proof: Please see Appendix C.
Once the optimalV and D are determined as described

in Proposition 2, the optimalΛ is obtained as the square-
root of D−1; that is, Λ = D−1/2, and the optimal linear
encoding matrix (i.e., the solution of (18)) can be calculated
asP = VΛVT . It is noted that the solutions in Proposition 2
satisfy the constraint in (20b) with equality; hence, the full
power utilization property is observed (as in Section III-A)
under the assumption thatAr is not a scaled version ofAe.

By comparing the results in Proposition 1 and Proposi-
tion 2, it is noted that A-optimal linear encoding provides
a more generic approach than A-optimal power allocation
since the former considers all the information in matrices
Ar andAe whereas the latter depends only on the diagonal
elements ofAr and Ae. As Ar and Ae depend on the
channel matrices and the noise covariance matrices (namely,
Ar =

(
FrΣ

−1
r FT

r

)−1
andAe =

(
FeΣ

−1
e FT

e

)−1
), A-optimal

linear encoding is expected to outperform A-optimal power
allocation unless the noise components are uncorrelated and
channel matrices are diagonal (i.e., no interference among
different channels).



6

IV. POWER ALLOCATION AND L INEAR ENCODING BASED

ON D-OPTIMALITY

According to the D-optimality criterion, the determinant of
the FIM is considered as the performance metric, which is
related to the volume of the ellipsoid that represents the max-
imum confidence region for the ML estimate of the unknown
parameters [42]. As argued in [47], the D-optimality criterion
also characterizes the estimation performance similarly to the
CRLB. In the D-optimality framework, the optimal linear
encoding problem can be formulated from (3), (4), and (10)
as follows:

max
P∈M+

det
(
PA−1

r P
)

(24a)

s.t. tr{PPT } ≤ PΣ (24b)

det
(
PA−1

e P
)
≤ η̃ (24c)

where M+ denotes the set of positive definite matrices,
A−1

r = FrΣ
−1
r FT

r , and A−1
e = FeΣ

−1
e FT

e (as defined in
Section II).

As in Section III-B, letP be expressed asP = VΛVT ,
where the columns ofV are the orthonormal eigenvectors of
P, andΛ is a diagonal matrix containing the corresponding
eigenvalues ofP; i.e., Λ = diag{λ1, . . . , λk}. SinceV is an
orthonormal matrix, the determinant ofP can be calculated as
follows: det(P) = det(VVT ) det(Λ) = det(Λ) =

∏k
i=1 λi.

Then, (24) can be stated as

max
{λi}k

i=1

1

det(Ar)

(
k∏

i=1

λi

)2

(25a)

s.t.

k∑

i=1

λ2i ≤ PΣ (25b)

1

det(Ae)

(
k∏

i=1

λi

)2

≤ η̃ (25c)

λi ≥ 0 , i = 1, . . . , k (25d)

Since the selection of the orthonormal eigenvectors, i.e.,
matrix V, does not affect the optimization problem in (25),
we can selectV = I without loss of generality. Hence, for the
D-optimality criterion, the optimal linear encoding problem in
(24) reduces to the optimal power allocation problem in (25);
i.e., P becomes a diagonal matrix asP = Λ, and Scenario 1
and Scenario 2 become identical.

In the following proposition, the solution of (25) is pre-
sented.

Proposition 3: The solution of(25) is given by

λ∗i = min

{√
PΣ

k
, (η̃ det(Ae))

1
2k

}
(26)

for i = 1, . . . , k.
Proof: The Lagrangian function for the problem in (25) can

be expressed as follows:

L
(
{λi}ki=1, {ςi}ki=1, ν, µ

)
=

−1

det(Ar)

(
k∏

i=1

λi

)2

−
k∑

i=1

ςiλi

+ ν

(
k∑

i=1

λ2i − PΣ

)
+ µ


 1

det(Ae)

(
k∏

i=1

λi

)2

− η̃


 (27)

where ν ≥ 0, µ ≥ 0 and ςi ≥ 0 for i ∈ {1, . . . , k} are
the Lagrange multipliers. Based on (27), the stationarity and
complementary slackness conditions can be derived as follows:

Stationarity conditions:

∂L
∂λi

=
−2

det(Ar)




k∏

j=1

λj




2

1

λi
− ςi + 2νλi

+
2µ

det(Ae)




k∏

j=1

λj




2

1

λi
= 0 , i = 1, . . . , k (28)

Complementary slackness conditions:

ςiλi = 0 , i ∈ {1, . . . , k} (29)

ν

(
k∑

i=1

λ2i − PΣ

)
= 0 (30)

µ




1

det(Ae)




k∏

j=1

λj




2

− η̃


 = 0 (31)

For the maximization of the objective function in (25a),
none of theλi terms should be zero, i.e.,λi > 0 for all i ∈
{1, . . . , k}. Therefore, (29) implies thatςi = 0 for all i ∈
{1, . . . , k}. Hence, the stationary conditions in (28) become

(
1

det(Ar)
− µ

det(Ae)

)


k∏

j=1

λj




2

= νλ2i , i = 1, . . . , k

(32)

which implies thatλ1 = · · · = λk. Consequently, the
solution of (25) can be obtained as in (26) by considering
the constraints in (25b) and (25c). It can be verified that the
solution in (26) is feasible and satisfies all the KKT conditions.
�

SinceP = Λ as discussed above, Proposition 3 implies that
the solution of the D-optimal linear encoding problem in (24)
(equivalently, the solution of the D-optimal power allocation
problem) is given by

P∗ = min

{√
PΣ

k
, (η̃ det(Ae))

1
2k

}
I (33)

It is noted that the same power level is assigned to all the
parameters in the D-optimality framework, which considers
the volume of the ellipsoid that represents the maximum con-
fidence region for the ML estimate of the unknown parameters.
On the other hand, for the A-optimality criterion, which con-
siders the MSE of unbiased estimators, different power levels
are assigned to parameters in general and linear encoding
provides a more general approach than power allocation.

V. EXTENSIONS TOCASES WITH STATISTICAL

KNOWLEDGE OFSYSTEM PARAMETERS

In the previous sections, it is assumed thatAr andAe are
known exactly at the transmitter. In the presence of statistical
information aboutAr andAe, we can extend the theoretical
results as follows. Suppose thatAr takesMr possible values
andAe takesMe possible values with known probabilities. In
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particular,Ar = A
(j)
r with probabilityρ(j) for j = 1, . . . ,Mr,

and Ae = A
(j)
e with probability κ(j) for j = 1, . . . ,Me.

In this setup, for the A-optimality criterion, we can consider
the average CRLBs as the performance metrics for both
the intended receiver and the eavesdropper, and update the
expressions in (13a) and (13c) as follows:

Mr∑

j=1

ρ(j)tr
{
P−1A(j)

r P−1
}
= tr

{
P−1ArP

−1
}

(34)

Me∑

j=1

κ(j)tr
{
P−1A(j)

e P−1
}
= tr

{
P−1AeP

−1
}

(35)

whereAr ,
∑Mr

j=1 ρ
(j)A

(j)
r andAe ,

∑Me

j=1 κ
(j)A

(j)
e . Since

(34) and (35) are in the form of (13a) and (13c), respectively,
the results in Section III-A and Section III-B can also be
employed for this setup by replacingAr with Ar and Ae

with Ae, and assuming thatAr is not a scaled version ofAe.
If Ar andAe have continuous distributions with probability

density functionsfr(·) and fe(·), respectively, then (34) and
(35) can be updated as
∫
fr(Ar)tr

{
P−1ArP

−1
}
dAr = tr

{
P−1ArP

−1
}

(36)
∫
fe(Ae)tr

{
P−1AeP

−1
}
dAe = tr

{
P−1AeP

−1
}

(37)

whereAr ,
∫
Arf(Ar)dAr and Ae ,

∫
Aef(Ae)dAe.

Hence, the structure of the problem remains the same. To cover
the cases of both discrete and continuous distributions,Ar and
Ae in (34)–(37) can be stated asAr = E{Ar} and Ae =
E{Ae}.

Regarding the D-optimality criterion, we can consider the
average values for the determinants of the FIMs as the
performance metrics, and modify the expressions in (24a) and
(24c) as follows:

Mr∑

j=1

ρ(j) det
(
P
(
A(j)

r

)−1
P
)
=

(
k∏

i=1

λi

)2 Mr∑

j=1

ρ(j)

det
(
A

(j)
r

)

(38)

Me∑

j=1

κ(j) det
(
P
(
A(j)

e

)−1
P
)
=

(
k∏

i=1

λi

)2 Me∑

j=1

κ(j)

det
(
A

(j)
e

)

(39)

Then, by following similar steps to those in the proof of
Proposition 3, the D-optimal linear encoding (equivalently,
power allocation) can be obtained as follows:

P∗ = min





√
PΣ

k
,




η̃
∑Me

j=1
κ(j)

det
(
A

(j)
e

)




1
2k





I (40)

For the case ofAr andAe with continuous distributions,
similar derivations can be performed to obtain the D-optimal
linear encoding (equivalently, power allocation) as

P∗ = min

{√
PΣ

k
,

(
η̃

E{1/ det(Ae)}

) 1
2k

}
I (41)

whereE{1/ det(Ae)} =
∫
fe(Ae)/det

(
Ae

)
dAe.
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Fig. 1. CRLBs achieved by the OPA and OLE approaches versusk for various
values ofη, wherePΣ = 10. Also, the performance of the G-optimality based
power allocation is presented for comparison purposes. In addition, the MSEs
of the ML estimators for the OPA and OLE approaches are illustrated.

VI. N UMERICAL RESULTS

In this section, we scrutinize the theoretical results based on
various numerical examples. As in [34], the system matrices
for the intended receiver and the eavesdropper, i.e.,Fr in
(1) andFe in (2), consist of i.i.d. uniform random variables
over [−0.1, 0.1], which are generated as a single realization
in MATLAB with seed 1. Also, the additive noise vectors at
the intended receiver and the eavesdropper, i.e.,Nr andNe

in (1) and (2), are modeled as zero-mean and independent
Gaussian random vectors with i.i.d. components, where each
component has a variance of10−6. In addition, the numbers
of measurements in (1) and (2) are set tone = nr = 2k with
k denoting the number of parameters [34].5

First, the A-optimality criterion is considered, and the
optimal power allocation (OPA) approach in Proposition 1 and
the optimal linear encoding (OLE) approach in Proposition 2

5The following MATLAB code is used for generatingFr andFe: “rng(1);
F=(rand(20,80)-0.5)/5; Fr=F(1:k,1:nr); Fe=F(1:k,(nr+1):(nr+ne));”.
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are evaluated. Fig. 1 presents the CRLBs at the intended
receiver and at the eavesdropper that are achieved by the
OPA and OLE approaches versus the number of parameters,
k, for three different values of the secrecy constraintη and
for PΣ = 10 (see (9)). It is noted that OLE can provide lower
CRLBs at the intended receiver than OPA while satisfying
the same secrecy constraints. This is expected as OLE is a
more general approach than OPA, and the system matrices
are not diagonal in the considered scenario (even though the
noise components are i.i.d.). In addition, whenη = 10−4, the
secrecy constraint becomes ineffective for the OPA approach
when k ≥ 4 and for the OLE approach whenk ≥ 3. In
these situations, the first cases in Propositions 1 and 2 (i.e.,
(15) and (21)) become valid. In all other cases, the secrecy
constraint is effective as noted from Fig. 1, and the solutions
are obtained as described in the second cases in Propositions
1 and 2. For comparison purposes, we also present a power
allocation approach according to the G-optimality criterion
[42], where the aim is to minimize the largest diagonal entry
of the CRLB at the intended receiver under the average power
constraint. (Namely,min{pi}k

i=1
maxi∈{1,...,k} αi/pi such that∑k

i=1 pi ≤ PΣ and pi ≥ 0, i = 1, . . . , k (cf. (14)).) From
Fig. 1, it is noted that whenever the secrecy constraint is
active (that is, whenη = 10−4 and k ∈ {4, 5, . . . , 20}),
the proposed OLE approach outperforms the power allocation
approach based on G-optimality. Furthermore, we implement
the ML estimators for the OPA and OLE approaches (based
on 5000 Monte-Carlo trials) and present their MSEs in Fig. 1.
As expected, the MSEs coincide with the CRLBs due to the
consideration of linear systems models with additive Gaussian
noise [29].

For the same setting, Fig. 2 illustrates the CRLBs at the
intended receiver and at the eavesdropper achieved by the
OPA and OLE approaches versus the secrecy constraintη,
wherek = 5, 10, 20 andPΣ = 10. For small values ofη, the
secrecy constraint is not effective, and the minimum CRLB
is achieved at the intended receiver under the average power
limit. In this region, the CRLBs are highest fork = 20 and
lowest fork = 5 in accordance with Fig. 1 (seeη = 10−4).
However, after a certain value ofη, the secrecy constraint
becomes effective, and the CRLBs increase in order to satisfy
the secrecy constraint. In that regime, the CRLB at the eaves-
dropper is always equal toη, and the CRLB at the receiver
depends on the system dependent matricesAe andAr, which
are determined byFr, Fe, and the covariance matrices of the
noise components. For example, it is noted that for large values
of η, the CRLBs achieved by OLE are lowest fork = 10
and highest fork = 5. This behavior is in compliance with
Fig. 1 (see ‘OLE,η = 10−2’ and OLE, η = 1), and it is
due to the random generation of the system matricesFr and
Fe. Fig. 2 also shows that the OLE approach achieves lower
CRLBs at the intended receiver than the OPA approach for
all values ofη. For comparison purposes, the performance of
the G-optimality based power allocation is also presented in
Fig. 2, which corresponds to a constant value for eachk due
to the omission of the secrecy constraint. Moreover, the MSEs
of the ML estimators for the OPA and OLE approaches are
illustrated in the figure, which coincide with the CRLBs as
expected.
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Fig. 2. CRLBs achieved by the OPA and OLE approaches versusη for various
values ofk, wherePΣ = 10. Also, the performance of the G-optimality based
power allocation is presented for comparison purposes. In addition, the MSEs
of the ML estimators for the OPA and OLE approaches are illustrated.

Next, the CRLBs at the intended receiver and the eaves-
dropper achieved by the OPA and OLE approaches are plotted
versus the average power constraint,PΣ, in Fig. 3 for various
values ofη and for k = 10. As PΣ increases, the secrecy
constraint becomes effective and the CRLB at the receiver
cannot be reduced below certain levels after some values of
PΣ. It is also noted that the performance difference between
OLE and OPA is more significant for high average power
constraints. Moreover, the performance of the G-optimality
based power allocation is presented for comparison purposes.
Furthermore, as in the previous scenarios, the MSEs of the ML
estimators for the OPA and OLE approaches coincide with the
CRLBs.

Finally, the D-optimality criterion is considered, and the
optimal approach in (33) (see Proposition 3) is evaluated.
(Optimal linear encoding and optimal power allocation are
equivalent for this criterion.) Fig. 4 presents the determinants
of FIM at the intended receiver and at the eavesdropper that
are achieved by the optimal approach versus the number
of parameters,k, for four different values of the secrecy
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Fig. 3. CRLBs achieved by the OPA and OLE approaches versusPΣ for
variousη values, wherek = 10. Also, the performance of the G-optimality
based power allocation is presented for comparison purposes. In addition, the
MSEs of the ML estimators for the OPA and OLE approaches are illustrated.

constraintη̃ and for PΣ = 0.01 (see (10)). It is noted that
higher determinants of FIM are obtained asη̃ increases; i.e.,
as the secrecy constraint is relaxed. Also, the secrecy constraint
is effective at all points in the figure except forη̃ = 106 with
k = 2 andk = 3 and forη̃ = 104 with k = 2. In addition, the
fluctuations in the determinants of FIM at the intended receiver
are due to the random generation of the system matricesFr

andFe, as mentioned previously. For comparison purposes, the
optimal solution in the absence of the secrecy constraint (e.g.,
similar to [35, Eq. (4)]) is also presented in Fig. 4 (labeled
as ‘Insecure’), which leads topi = PΣ/k for i = 1, . . . , k. It
is noted that the determinant of the FIM increases withk for
both the intended receiver and the eavesdropper in this case,
resulting in a violation of the secrecy constraint. In Fig. 5,
the determinants of FIM at the intended receiver and at the
eavesdropper are plotted versusPΣ by considering various
values of η̃ and k. It is observed that the secrecy constraint
becomes effective asPΣ increases, and the determinants of
FIM at the intended receiver are larger fork = 5 than those
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Fig. 4. Determinant of FIM achieved by the optimal approach versusk for
various values of̃η, wherePΣ = 0.01. Also, the solution in the absence
of the secrecy constraint (labeled as ‘Insecure’) is presented for comparison
purposes.

for k = 10 in compliance with the results in Fig. 4. Again,
the optimal solution in the absence of the secrecy constraint
is also presented for comparison purposes.

By comparing the results for the A-optimality and D-
optimality criteria, it is deduced that the performance differ-
ence between the intended receiver and the eavesdropper can
be made more significant in the A-optimality framework in
most cases. This is due to the optimization of all the elements
of matrix P in (1) and (2) by the OLE approach employed
for the A-optimality criterion. On the other hand, the D-
optimality criterion always results in a diagonalP with equal
diagonal elements, leading to limited flexibility to achieve
improved performance over the eavesdropper. Hence, it is
more challenging to perform secure estimation according to
the D-optimality criterion.

VII. C ONCLUDING REMARKS

The secure transmission of deterministic vector parameters
has been investigated in the presence of a smart eavesdropper
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Fig. 5. Determinant of FIM achieved by the optimal approach versusPΣ

for various η̃ andk values. Also, the solution in the absence of the secrecy
constraint (labeled as ‘Insecure’) is presented for comparison purposes.

according to the A-optimality and D-optimality criteria. First,
the optimal power allocation and optimal linear encoding
strategies have been characterized theoretically for the A-
optimality criterion. It has been stated that the optimal linear
encoding can provide improved estimation performance com-
pared to the optimal power allocation in general. Then, it has
been shown that the optimal linear encoding and the optimal
power allocation lead to the same equal power allocation
solution for the D-optimality criterion. In addition, extensions
have been provided to cases with statistical knowledge of
systems parameters. Via numerical examples, the optimal
power allocation and optimal linear encoding strategies have
been investigated in different scenarios.

Although the presence of a single eavesdropper is consid-
ered in this work, the case of multiple eavesdroppers can also
be treated based on similar theoretical approaches. In partic-
ular, by considering an individual secrecy constraint for each
eavesdropper, a straightforward extension can be performed
in the D-optimality framework. On the other hand, in the
A-optimality framework, the complexity of the solutions of

the A-optimal linear encoding and power allocation problems
depends on which of theM secrecy constraints are active, and
the computational complexity can get high in the presence of
many eavesdroppers.

As another extension, worst-case design approaches can be
considered in the presence of statistical information about Ar

and Ae instead of the average performance based approach
in Section V. In particular, for the A-optimality criterion, the
worst-case design problem becomes

min
P

max
Ar∈Sr

tr{P−1ArP
−1} (42a)

s.t. tr{PPT } ≤ PΣ (42b)

min
Ae∈Se

tr{P−1AeP
−1} ≥ η (42c)

where Sr = {A(1)
r , . . . ,A

(Mr)
r } and Se =

{A(1)
e , . . . ,A

(Me)
e }. Similarly, for the D-optimality criterion,

the worst case design problem can be formulated as follows:

max
P

min
Ar∈Sr

det
(
PA−1

r P
)

(43a)

s.t. tr{PPT } ≤ PΣ (43b)

max
Ae∈Se

det
(
PA−1

e P
)
≤ η̃ (43c)

Obtaining a closed-form solution for (42) is difficult in general,
which is considered as a possible direction for future work.6

On the other hand, the problem in (43) can easily be solved
since it is equivalent to the following problem, which is in the
same form as (24):

max
P

det
(
P(A∗

r)
−1P

)
(44a)

s.t. tr{PPT } ≤ PΣ (44b)

det
(
P(A∗

e)
−1P

)
≤ η̃ (44c)

whereA∗
r , argmax

Ar

det(Ar) andA∗
e , argmin

Ae

det(Ae).

APPENDIX

A. Proof of Proposition 1

To obtain the relations that a solution of (14) must satisfy,
the KKT conditions can be considered. To that aim, the
Lagrangian function for (14) is expressed as follows:

L
(
{pi}ki=1, {ςi}ki=1, ν, µ

)
=

k∑

i=1

αi

pi
−

k∑

i=1

ςipi

+ ν

(
k∑

i=1

pi − PΣ

)
+ µ

(
η −

k∑

i=1

βi
pi

)
(45)

where ν ≥ 0, µ ≥ 0 and ςi ≥ 0 for i ∈ {1, . . . , k}
are the Lagrange multipliers. From (45), the stationarity and
complementary slackness conditions can be derived as follows:

Stationarity conditions:

∂L
∂pi

= −αi

p2i
− ςi + ν + µ

βi
p2i

= 0 , i = 1, . . . , k (46)

6If the average CRLB performance is considered for the intended receiver
and the worst-case CRLB is employed for the eavesdropper, the formulation
corresponds to the A-optimal linear encoding problem in thepresence of
multiple eavesdroppers.
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Complementary slackness conditions:

ςipi = 0 , i ∈ {1, . . . , k} (47)

ν

(
k∑

i=1

pi − PΣ

)
= 0 (48)

µ

(
η −

k∑

i=1

βi
pi

)
= 0 (49)

Sinceαi > 0 for all i ∈ {1, . . . , k}, pi cannot be zero for
minimizing the objective function in (14a); hence,pi > 0. As
a result, according to (47), it is concluded thatςi = 0 for all
i ∈ {1, . . . , k}. Therefore, the stationary conditions in (46)
become

αi − µβi
p2i

= ν , i = 1, . . . , k (50)

Then, the following two cases are investigated:
Case 1(µ = 0):
In this case, (50) simplifies toν = αi/p

2
i , implying that

ν > 0. Hence, (48) leads to
∑k

i=1 pi = PΣ. Accordingly, the
following relation is obtained:

√
ν =

1

PΣ

k∑

i=1

√
αi (51)

which results in (15) sincepi =
√
αi/

√
ν. The solution in (15)

valid whenever
∑k

i=1 βi/p
∗
i ≥ η, leading to the statement at

the beginning of Proposition 1 by consideringp∗i in (15).
Case 2(µ > 0):
In this case, (49) leads to the condition of

∑k
i=1 βi/pi = η.

At this point, two sub-cases can be investigated as follows:
Case 2-a:Suppose that

∑k
i=1 pi < PΣ. Then, based on

(48), ν = 0 holds. Therefore, the stationarity conditions in
(50) become

αi = µβi , i = 1, . . . , k (52)

implying that α1

β1
, . . . , αk

βk
are all the same. However, this is

not possible under the assumption thatAr is not a scaled
version ofAe, as stated before Proposition 1. (In other words,∑k

i=1 pi < PΣ is possible only whenαi

βi
’s are all the same. In

that case, the expressions in (14a) and (14c) are always scaled
version of each other, and the optimization problem becomes
trivial and achieves the minimum objective value ofµ η.)

Case 2-b: Suppose that
∑k

i=1 pi = PΣ. Then, (48)
implies thatν ≥ 0. Therefore, the stationarity conditions in
(50) can be utilized to conclude thatαi − µβi ≥ 0 for all
i ∈ {1, . . . , k}. Hence,µ can be bounded from above as
µ ≤ αi/βi for all i ∈ {1, . . . , k}, which can also be written
as

µ ≤ min
i∈{1,...,k}

αi

βi
(53)

Besides,p∗i can be calculated from (50) as

p∗i =

√
αi − µβi√

ν
, i = 1, . . . , k (54)

From (54) and the condition of
∑k

i=1 pi = PΣ, ν can be
calculated as

√
ν =

1

PΣ

k∑

i=1

√
αi − µβi (55)

In addition, from (54) and the condition of
∑k

i=1 βi/pi = η,
ν can also be stated as

√
ν =

η
∑k

i=1
βi√

αi−µβi

(56)

Then, equating the expressions in (55) and (56), the following
condition is obtained:

ηPΣ =

k∑

i=1

√
αi − µβi

k∑

i=1

βi√
αi − µβi

, g(µ) (57)

The expression in (57) leads to unique solution forµ, as proved
in the following. First,g(0) =

∑k
i=1

√
αi

∑k
i=1 βi/

√
αi ≤

ηPΣ due to the condition of
∑k

i=1

βi

∑
k
j=1

√
αj

PΣ
√
αi

≤ η. (Other-
wise, the solution in Case 1 would be valid.) Also, for the max-
imum value ofµ specified in (53), it can be shown from (57)
thatg(mini∈{1,...,k} αi/βi) = ∞. In addition,g(µ) is a contin-
uously differentiable function forµ ∈ [0,mini∈{1,...,k} αi/βi)
and its derivative can be obtained from (57) as

dg(µ)

dµ
= −1

2

(
k∑

i=1

βi√
αi − µβi

)2

+
1

2

(
k∑

i=1

√
αi − µβi

)(
k∑

i=1

β2
i

(αi − µβi)3/2

)
(58)

From Cauchy-Schwarz inequality, it can be shown that
dg(µ)
dµ > 0 for all µ ∈ [0,mini∈{1,...,k} αi/βi). (The equality

condition in Cauchy-Schwarz inequality, i.e.,dg(µ)dµ = 0,

holds if βi = K̃(αi − µβi) for each i, which leads to
αi = (µ + 1/K̃)βi. However, this is in contrary to the
assumption thatαi

βi
’s are not all the same.) Therefore,g(µ) is a

continuous and monotone increasing function ofµ from µ = 0
to µ = mini∈{1,...,k} αi/βi. Since it starts from a value less
than or equal toηPΣ and goes to infinity, it is guaranteed that
(57) has a unique solution denoted byµ∗, as specified in (17)
in Proposition 1. Onceµ∗ is obtained from (57) (i.e., (17)), the
correspondingν∗ can be calculated from (55). Then, inserting
this ν∗ into (54) yields the solution in (16) of Proposition 1.

It should be emphasized that even though the problem
in (14) is not convex (due to the constraint in (14c)), the
KKT conditions become both necessary and sufficient for
the minimizer since they lead to a unique structure and the
problem admits a minimizer over the feasible region.

B. Proof of Lemma 1

As Ar − µAe is positive definite forµ ∈ [0, µmin), it can
be diagonalized as follows:

Ar − µAe =

k∑

i=1

ψi(µ)qi(µ)qi(µ)
T (59)

whereψi(µ) andqi(µ) denote theith eigenvalue and theith
eigenvector ofAr − µAe, respectively, and the eigenvectors
are chosen as orthonormal vectors. From (59),h(µ) defined
in the lemma can be expressed as

h(µ) =

k∑

j=1

√
ψj(µ)

k∑

i=1

tr{Aeqi(µ)qi(µ)
T }√

ψi(µ)
(60)
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To compute the derivative ofh(µ), we need to calculate the
derivatives ofψi(µ) andqi(µ) with respect toµ. To this aim,
the orhonormality condition ofqi(µ)

Tqi(µ) = 1 is employed
first in order to obtain the following relation:

∂qi(µ)
Tqi(µ)

∂µ
= 2qi(µ)

T ∂qi(µ)

∂µ
= 0. (61)

Hence,qi(µ)
T ∂qi(µ)

∂µ = 0 for any i ∈ {1, . . . , k}. Also, by
taking the derivative of both sides of the equation(Ar −
µAe)qi(µ) = ψi(µ)qi(µ), we obtain

(Ar−µAe)
∂qi(µ)

∂µ
−Aeqi(µ) =

∂ψi(µ)

∂µ
qi(µ)+

∂qi(µ)

∂µ
ψi(µ)

(62)
After multiplying both sides of (62) withqi(µ)

T and using
(61), the following relation is derived:

∂ψi(µ)

∂µ
= −qi(µ)

TAeqi(µ) (63)

Moreover, if we multiply both sides of (62) withqj(µ)
T for

any j 6= i and employ the fact thatqj(µ)
Tqi(µ) = 0 for

j 6= i, the following equation is reached:

(ψj(µ)− ψi(µ))qj(µ)
T ∂qi(µ)

∂µ
= qj(µ)

TAeqi(µ) (64)

When i 6= j, (64) can be interpreted as follows:

ψi(µ) = ψj(µ) =⇒ qj(µ)
TAeqi(µ) = 0 (65)

ψi(µ) 6= ψj(µ) =⇒ qj(µ)
T ∂qi(µ)

∂µ
=

qj(µ)
TAeqi(µ)

ψj(µ)− ψi(µ)
(66)

It is noted that since{qi(µ)}ki=1 form an orthonormal basis,
there exists{aij}i,j ∈ R such that

∂qi(µ)

∂µ
=

k∑

j=1

aijqj(µ) (67)

It is known thataii = 0 by (61), and ifψi(µ) andψj(µ) are
different, aij is given by (66). From (67), the derivative of
qi(µ)qi(µ)

T with respect toµ can be expressed as

∂qi(µ)qi(µ)
T

∂µ
=

k∑

j=1

aij
(
qj(µ)qi(µ)

T + qi(µ)qj(µ)
T
)

(68)
Based on (60), the derivative ofh(µ) with respect toµ is
expressed as

∂h(µ)

∂µ
=

k∑

j=1

√
ψj(µ)

k∑

i=1

1√
ψi(µ)

∂tr{Aeqi(µ)qi(µ)
T }

∂µ

+

k∑

j=1

k∑

i=1

∂γi,j(µ)

∂µ
tr{Aeqi(µ)qi(µ)

T } (69)

whereγi,j(µ) ,
√
ψj(µ)/ψi(µ). From (68), the derivative of

tr{Aeqi(µ)qi(µ)
T } can be calculated as

∂

∂µ
tr{Aeqi(µ)qi(µ)

T }

=
k∑

j=1

aijtr
{
Ae

(
qj(µ)qi(µ)

T + qi(µ)qj(µ)
T
)}

=

k∑

j=1

2aijqi(µ)
TAeqj(µ) (70)

From the results given in (65) and (66), (70) can be rewritten
as follows:

k∑

j=1

2aijqi(µ)
TAeqj(µ) = 2

∑

j∈Si

aijqi(µ)
TAeqj(µ)

= 2
∑

j∈Si

(
qj(µ)

TAeqi(µ)
)2

ψj(µ)− ψi(µ)
(71)

whereSi , {j : ψj(µ) 6= ψi(µ)} for i ∈ {1, . . . , k}.
Based on (70) and (71), the summation in the first term of

(69) can be calculated as follows:

k∑

i=1

1√
ψi(µ)

∂

∂µ
tr{Aeqi(µ)qi(µ)

T } (72)

= 2

k∑

i=1

∑

j∈Si

(
qj(µ)

TAeqi(µ)
)2

√
ψi(µ) (ψj(µ)− ψi(µ))

(73)

In addition, it is observed that whenψj(µ) 6= ψi(µ), the
following inequality must hold:

(
qj(µ)

TAeqi(µ)
)2

√
ψi(µ) (ψj(µ)− ψi(µ))

+

(
qi(µ)

TAeqj(µ)
)2

√
ψj(µ) (ψi(µ)− ψj(µ))

=

(
qj(µ)

TAeqi(µ)
)2

ψj(µ)− ψi(µ)

(
1√
ψi(µ)

− 1√
ψj(µ)

)

=

(
qj(µ)

TAeqi(µ)
)2

√
ψj(µ) +

√
ψi(µ)

1√
ψi(µ)ψj(µ)

≥ 0 (74)

The relations in (73) and (74) imply that

k∑

i=1

1√
ψi(µ)

∂

∂µ
tr{Aeqi(µ)qi(µ)

T } ≥ 0 (75)

Hence, it is concluded that the first term in (69) is non-
negative; i.e.,

k∑

j=1

√
ψj(µ)

k∑

i=1

1√
ψi(µ)

∂

∂µ
tr{Aeqi(µ)qi(µ)

T } ≥ 0 (76)

Regarding the the second term in (69), the derivative ofγi,j(µ)
with respect toµ can easily be computed as follows:

∂γi,j(µ)

∂µ
=

√
ψi(µ) (τiψj(µ)− τjψi(µ))

2
√
ψj(µ)ψi(µ)2

(77)
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whereτi , qi(µ)
TAeqi(µ) for i ∈ {1, . . . , k}. Thus, we can

write the following chain of equations:

k∑

j=1

k∑

i=1

∂γi,j(µ)

∂µ
tr{Aeqi(µ)qi(µ)

T } (78)

=

k∑

j=1

k∑

i=1

∂γi,j(µ)

∂µ
τi (79)

=
1

2

k∑

j=1

k∑

i=1

√
ψi(µ) (τiψj(µ)− τjψi(µ))√

ψj(µ)ψi(µ)2
τi (80)

=
1

2

k∑

j=1

√
ψj(µ)

k∑

i=1

τ2i
ψi(µ)3/2

− 1

2

(
k∑

i=1

τi√
ψi(µ)

)2

≥ 0

(81)

where (80) follows from (77) and (81) is due to the Cauchy
Schwarz inequality. By combining (69), (76), and (81), it is
proved that

∂h(µ)

∂µ
≥ 0 . (82)

Equality Case: To determine when the derivative in (82)
becomes zero, we investigate the conditions under which the
inequalities in (74) and (81) are satisfied with equality. By
considering (74), it is noted that wheneverψi(µ) 6= ψj(µ), we
must haveqi(µ)

TAeqj(µ) = 0. Also, by (65), it is known that
when i 6= j andψi(µ) 6= ψj(µ), we haveqi(µ)

TAeqj(µ) =
0. That is, (74) is satisfied with equality if and only if

qi(µ)
TAeqj(µ) = 0 (83)

for any i 6= j. On the other hand, to satisfy the inequality
in (81) with equality,τi/ψi(µ) must be a constant for each
i ∈ {1, . . . , k}. Let that constant be denoted byC ∈ R. In
other words, (81) is satisfied with equality if and only if

qi(µ)
TAeqi(µ) = Cψi(µ) (84)

for anyi ∈ {1, . . . , k}. Therefore, by combining (83) and (84),
it is obtained that

∂h(µ)

∂µ
= 0 ⇐⇒ qi(µ)

TAeqj(µ) =

{
0, if i 6= j

Cψi(µ), if i = j

(85)

If the condition in (85) is satisfied, by multiplying both sides
of the equation(Ar−µAe)qi(µ) = ψi(µ)qi(µ) with qj(µ)

T ,
we can reach the following equation:

qi(µ)
TArqj(µ) =

{
0, if i 6= j

(1 + µC)ψi(µ), if i = j
(86)

As {qi(µ)}ki=1 form an orthonormal basis, for anyx,y ∈ R
k,

there exist{xi}ki=1, {yi}ki=1 ∈ R such that

x =

k∑

i=1

xiqi(µ) and y =

k∑

i=1

yiqi(µ) (87)

Then, the following chain of equations must be true:

xTAey = C

k∑

i=1

xiyiψi(µ) (88)

xTAry = (1 + µC)
k∑

i=1

xiyiψi(µ) (89)

This means that for anyx,y ∈ R
k,

xTAey =
C

1 + µC
xTAry (90)

By taking x = eℓ andy = em, it is evident that[Ae]ℓ,m =
C/(1+µC)[Ar]ℓ,m, for anyℓ,m, whereeℓ andem are unit-
norm vectors with only theℓth and themth elements being
equal to one, respectively. Therefore, it is shown thatAr is a
scaled version ofAe in this cases. Hence, it is proved that

∂h(µ)

∂µ
= 0 ⇐⇒ Ar is a scaled version ofAe. (91)

C. Proof of Proposition 2

For the problem in (20), the Lagrangian can be expressed
as [51]

L(V,D, µ, ν,C) = tr{VTArVD} + µ(η − tr{VTAeVD})
+ ν(tr{D−1} − PΣ)− tr{CT (VTV − I)}

(92)

with C being a diagonal matrix, whereµ ≥ 0, ν ≥ 0, and the
diagonal elements ofC are the Lagrange multipliers. Consid-
ering the KKT conditions, we can express the complementary
slackness conditions for (20) as [45]

µ(η − tr{VTAeVD}) = 0 (93)

ν(tr{D−1} − PΣ) = 0 (94)

In addition, the stationarity conditions can be stated as [45]

∂L
∂V

= 0 ,
∂L
∂D

= 0 (95)

which, after some manipulation of (92), lead to

∂L
∂V

= 2ArVD− 2µAeVD− 2VC = 0 (96)

∂L
∂D

= VTArV − µVTAeV − νD−2 = 0 (97)

The expressions in (96) and (97) can be stated, respectively,
as

(Ar − µAe)V = VCD−1 (98)

VT (Ar − µAe)V = νD−2 (99)

SinceVTV = I, (98) and (99) also imply thatCD−1 =
νD−2; that is,

CD = νI (100)

It is observed that a solution of (20) cannot satisfyµ = 0
andν = 0 simultaneously (which would implyVTArV = 0

due to (99); i.e.,Ar = 0). Therefore, we can investigate the
following two cases:

Case 1(µ = 0):
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In this case,ν > 0; hence, (94) implies thattr{D−1} = PΣ.
In addition, the stationarity conditions in (98)–(100) become
ArV = VCD−1 and CD = νI. Sinceν > 0 and C is a
diagonal matrix, it can be inferred from (100) thatD must be
a diagonal matrix.7 Let Φ be defined asΦ , CD−1, which
is also a diagonal matrix. Then, it is noted thatArV = VΦ

holds, meaning that the columns ofV are the eigenvectors
of Ar and the diagonal elements ofΦ are the corresponding
eigenvalues ofAr. SinceAr is symmetric, the eigenvectors
can be chosen to be orthonormal to satisfy (20d). LetV∗

denote the solution ofArV = VΦ such that the columns of
V∗ are orthonormal eigenvectors ofAr. Also, let φ1, . . . , φk
denote the diagonal elements ofΦ; i.e., the eigenvalues ofAr;
that is,Φ = diag{φ1, . . . , φk}. Similarly,C andD can be ex-
pressed asC = diag{c1, . . . , ck} andD = diag{d1, . . . , dk}.
Then, we can summarize the relations in this case as follows:

tr{D−1} = PΣ =⇒
k∑

j=1

1

dj
= PΣ (101)

CD = νI =⇒ cjdj = ν , j ∈ {1, . . . , k} (102)

Φ = CD−1 =⇒ φj =
cj
dj
, j ∈ {1, . . . , k} (103)

By combining (102) and (103), we first obtain1/dj =
√
φj/ν

for j ∈ {1, . . . , k}. (Sinceν > 0 andAr is assumed to be
positive definite, the square roots ofφj/ν exist.) Then, we
utilize (101) and obtain

∑k
j=1

√
φj/ν = PΣ, which leads

to
√
ν = (1/PΣ)

∑k
j=1

√
φj . Therefore, optimaldj ’s are

calculated as

d∗j =

∑k
i=1

√
φi

PΣ

√
φj

(104)

for j ∈ {1, . . . , k}. Hence,D∗ in (21) of Proposition 2 is
obtained.

Overall, the optimal solution of (20) in Case 1 is given by
V∗ andD∗, where the columns ofV∗ are orthonormal eigen-
vectors ofAr, andD∗ is a diagonal matrix, thejth diagonal
element of which is given by (104) withφj denoting thejth
eigenvalue ofAr. As long astr{(V∗)TAeV

∗D∗} ≥ η, V∗

andD∗ form a valid solution.
Case 2(µ > 0):
As µ > 0 in this case, the complementary slackness

condition in (93) results intr{VTAeVD} = η. Also, the
stationarity condition in (99) can be expressed as

(Ar − µAe)V = V
(
νD−2

)
(105)

Since it is assumed thatAr is not a scaled version ofAe

andVTV = I, ν cannot be zero in (105); hence,ν > 0 is
obtained. Therefore, (100) implies thatD is a diagonal matrix.
In addition, asν > 0, tr{D−1} = PΣ due to (94). Moreover,
(105) indicates that the columns ofV must be orthonormal
eigenvectors of(Ar − µAe) and the diagonal matrixνD−2

must contain the corresponding eigenvalues in its diagonals.
For a givenµ > 0, let Vµ denote a matrix with its columns
being orthonormal eigenvectors of(Ar−µAe), and letΨµ ,

νD−2 represent a diagonal matrix, the diagonal elements of

7A generic D is considered at the beginning of the proof but then the
optimal D is shown to be a diagonal matrix, in compliance with the model.

which are the corresponding eigenvalues of(Ar − µAe).
Then, by combining the conditions oftr{VTAeVD} = η
and tr{D−1} = PΣ, the following relation is obtained:

PΣ η = tr

{
1√
ν
(Ψµ)

1/2

}
tr
{√

νVT
µAeVµ(Ψµ)

−1/2
}

(106)

The expression in (106) can be shown to be equivalent to

PΣ η = tr
{
(Ar − µAe)

1/2
}
tr
{
Ae(Ar − µAe)

−1/2
}
, h(µ)

(107)

To show that there exists a unique value ofµ that satisfies
(107), we first note thath(0) ≤ PΣ η since Case 1 (with
µ = 0) would give the optimal solution otherwise. Also,
it can be deduced from (106) thath(µmin) = ∞, where
µmin is as defined in Lemma 1. In addition, sinceh(µ)
is a continuous and monotone increasing function ofµ for
µ ∈ [0, µmin) according to Lemma 1, it is concluded that
there exists a unique solution of (107). Letµ⋆ represent the
unique value ofµ that satisfies (107) forµ ∈ [0, µmin). (It is
noted thatµ cannot be larger thanµmin due to (99).) Then,
from Ψµ = νD−2 and tr{D−1} = PΣ, the solution of (20)
can be specified as

D⋆ =

(
PΣ(Ψµ⋆)1/2

tr
{
(Ψµ⋆)1/2

}
)−1

. (108)

Overall, the optimal solution of (20) in Case 2 is given
by V⋆ and D⋆, where the columns ofV⋆ are orthonormal
eigenvectors of(Ar − µ⋆Ae), and D⋆ is given by (108)
with Ψµ⋆ denoting the diagonal matrix consisting of the
eigenvalues of(Ar −µ⋆Ae), whereµ⋆ is obtained by solving
(107).8
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