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a b s t r a c t

Signaling game problems investigate communication scenarios where encoder(s) and decoder(s) have
misaligned objectives due to the fact that they either employ different cost functions or have
inconsistent priors. This problem has been studied in the literature for scalar sources under various
setups. In this paper, we consider multi-dimensional sources under quadratic criteria in the presence
of a bias leading to a mismatch in the criteria, where we show that the generalization from the
scalar setup is more than technical. We show that the Nash equilibrium solutions lead to structural
richness due to the subtle geometric analysis the problem entails, with consequences in both system
design, the presence of linear Nash equilibria, and an information theoretic problem formulation.
We first provide a set of geometric conditions that must be satisfied in equilibrium considering any
multi-dimensional source. Then, we consider independent and identically distributed sources and
characterize necessary and sufficient conditions under which an informative linear Nash equilibrium
exists. These conditions involve the bias vector that leads to misaligned costs. Depending on certain
conditions related to the bias vector, the existence of linear Nash equilibria requires sources with a
Gaussian or a symmetric density. Moreover, in the case of Gaussian sources, our results have a rate–
distortion theoretic implication that achievable rates and distortions in the considered game theoretic
setup can be obtained from its team theoretic counterpart.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

In a team theoretic setup where the decision makers share
common goal, the decision makers do not wish to hide infor-
ation to improve the performance since revealing more infor-
ation does not lead to a degradation of system performance.
herefore, in such setups, if there is no constraint on messages to
ransmit between the decision makers, such as a power constraint
r a limited bandwidth requirement, a decision maker can always
eveal more information without causing any performance loss.
n the other hand, in a game theoretic (strategic) setup involving
ecision makers with misaligned goals, revealing more informa-
ion may hurt some or even all of the decision makers (Bassan,
ossner, Scarsini, & Zamir, 2003). Hence, a decision maker in

✩ The material in this paper was partially presented at the 2021 International
Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless
Networks (WiOpt), October 18–21, 2021, Virtual Conference. This paper was rec-
ommended for publication in revised form by Associate Editor Kostas Margellos
under the direction of Editor Christos G. Cassandras.
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a strategic setting needs to take misaligned goals into account
while designing what information to reveal to another decision
maker. We may consider two main themes which lead to mis-
aligned objectives for the decision makers. In the first theme, the
decision makers employ different cost functions, e.g., a decision
maker wishes to mislead another decision maker, see, e.g., Akyol,
Langbort, and Başar (2017), Sarıtaş, Yüksel, and Gezici (2017) and
Le Treust and Tomala (2019). The second theme is concerned
with the case when the decision makers have subjective beliefs
regarding prior probability distributions of unknown parameters.
This subjectivity leads to misaligned objectives for the decision
makers even though they employ the same cost function, see,
e.g., Başar (1985), Kazıklı, Sarıtaş, Gezici, and Yüksel (2023) and
Sarıtaş, Gezici, and Yüksel (2019). These both lead to a game
theoretic setup where a suitable equilibrium concept, such as the
Nash equilibrium and the Stackelberg equilibrium, is to be used
to analyze the system. These problems fall into the general class
of signaling game problems that investigates communication sce-
narios between decision makers with misaligned objectives. In
this context, Crawford and Sobel, in their seminal paper (Craw-
ford & Sobel, 1982), introduce a signaling game problem where a
biased encoder wishes to convey a scalar source to a decoder, and
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message transmission does not induce a cost for the encoder.
his problem is also referred to as cheap talk, which empha-
izes that communication is costless. Crawford and Sobel show
hat under certain technical conditions regarding cost functions,
he encoder must hide information at a Nash equilibrium by
mploying quantization policies, which holds even though there
s no restriction on communication. In an equilibrium with a
uantization policy, referred to as quantized or partition equilib-
ium, the encoder partitions the observation space into intervals
nd reveals the interval that contains the encoder’s observation.
rawford and Sobel’s result implies that at a Nash equilibrium,
he encoder cannot convey its private information completely by
mploying a linear encoding policy (i.e., transmitting a scaled ver-
ion of its observation to the decoder). This is a striking example
here providing more information to the decoder by employing
linear encoder instead of a quantized encoder breaks the equi-

ibrium in a game theoretic setup. In this manuscript, we study
ulti-dimensional sources under quadratic criteria for the cheap

alk setup of Crawford and Sobel and investigate the properties
f Nash equilibrium solutions.
Our work investigates communication scenarios between a

iased encoder and a decoder, which leads to a signaling game
roblem. We may encounter biased decision makers in various
pplications. For instance, in control applications, an adversary
ay wish to inject a bias into a control system in order to de-

eriorate the system performance (Teixeira, Shames, Sandberg, &
ohansson, 2015). In smart grid applications, a strategic consumer
r electricity producer in a microgrid system may wish to give
alse or biased measurement reports to another decision maker
or its own benefit (Larrousse, Beaude, & Lasaulce, 2014). As
nother application, strategic users in a cellular network may
ish to misreport their channel conditions to the base station

or their own benefit (Kavitha, Altman, El-Azouzi, & Sundaresan,
012). Moreover, interactions between attackers and defenders
n control applications may be modeled as a cheap talk prob-
em (Li, Dán, & Liu, 2020; Sarıtaş, Dán and Sandberg, 2020). For
pplications of signaling games and cheap talk in fields such as
conomics, finance, biology, and political science, the reader is
eferred to Sobel (2020).

.1. Preliminaries

We consider the following multi-dimensional signaling game
roblem where an encoder and a decoder communicate. This, in
articular, corresponds to a multi-dimensional cheap talk prob-
em where cheap talk refers to the fact that a message transmis-
ion does not induce a cost for the encoder. The encoder observes
he value of an n-dimensional random vector M = [M1, . . . ,Mn]

T

where M1, . . . ,Mn are M-valued random variables. The encoder
conveys a message Z = [Z1, . . . , Zn]T via an encoding policy
γ e(·), i.e., Z = γ e(M), where Z1, . . . , Zn are Z-valued random
ariables. The decoder directly observes Z and takes an action

= [U1, . . . ,Un]
T via a decoding policy γ d(·), i.e., U = γ d(Z),

here U1, . . . ,Un are M-valued random variables. In this paper,
e consider real valued random variables, i.e., M = Z = R where
denotes the set of real numbers. The aim of the encoder is to
inimize Je(γ e, γ d) = E[ce(M,U )] where1

e(m, u) =

n∑
i=1

(mi − ui − bi)2 = ∥m − u − b∥2. (1)

n (1), b denotes a deterministic bias vector which is common
nowledge among the players and quantifies the degree of mis-
lignment between the objective functions of the encoder and

1 We adopt the convention that random variables are denoted by uppercase
etters with their realizations denoted by the corresponding lowercase letters.
2

decoder. In other words, the encoder wishes to make biased
reports regarding its observations possibly with different biases
for different components. On the other hand, the decoder wishes
to estimate the random source vector as accurately as possible;
thus, its objective function does not include a bias vector. In
particular, the aim of the decoder is to minimize Jd(γ e, γ d) =

E[cd(M,U )] where

cd(m, u) =

n∑
i=1

(mi − ui)2 = ∥m − u∥
2. (2)

The communication scenario is depicted in Fig. 1. Our aim is
to characterize the Nash equilibrium where the decision makers
announce their policies at the same time. At a Nash equilibrium,
none of the players wishes to unilaterally deviate from their
current strategies as their cost cannot get better by doing so. In
particular, a set of policies γ ∗,e and γ ∗,d forms a Nash equilibrium
(e.g., Başar & Olsder, 1999) if

Je(γ ∗,e, γ ∗,d) ≤ Je(γ e, γ ∗,d) for all γ e
∈ Γ e,

Jd(γ ∗,e, γ ∗,d) ≤ Jd(γ ∗,e, γ d) for all γ d
∈ Γ d,

(3)

where Γ e and Γ d are the sets of all deterministic (and Borel mea-
surable) functions from Mn to Zn and from Zn to Mn, respectively.

Remark 1. Under the Nash equilibrium concept, both players
announce their policies at the same time. By considering the Nash
equilibrium concept, we essentially investigate a non-cooperative
communication setup in terms of policy announcements in the
sense that no player discloses its policy before the other player.
This means that no player commits to a certain announced policy
a priori. This equilibrium concept is appropriate, for instance,
when the players do not have access to policy announcements of
each other or when they do not trust an announced policy by the
other player. In contrast, one can also consider the Stackelberg
setup (see, e.g., Başar and Olsder (1999) for a definition) where
the encoder announces its policy and commits to this policy, and
the decoder chooses its policy given the encoder’s announcement.
We may view the Stackelberg setup as a cooperative communi-
cation setup as there is a policy announcement by the encoder.
In fact, for the scalar or multi-dimensional cheap talk setup, the
Stackelberg equilibrium solution leads to full revelation where
the encoder discloses the source completely (Sarıtaş et al., 2017,
Theorem 3.3). In contrast, there does not exist a Nash equilibrium
with full information revelation in general. In other words, the
encoder must hide information partially (or even completely in
certain cases, see, e.g., Kazıklı, Sarıtaş, Gezici, Linder, and Yüksel
(2022, Theorem 3) for the scalar case) in the non-cooperative
communication setup whereas it does not hide any information
in the cooperative communication setup.

Assumption 2. Considering each component Mi of the source
random vector M , every non-empty open set on its support has
a positive measure.

The following is an implication of this assumption. Consider
a convex set C with a non-empty interior. Then, its centroid
E[M |M ∈ C] must be in the interior of set C .2 We will use this
implication later in the paper.

We formally define a quantization policy in the following. Note
that due to results in Crawford and Sobel (1982), Sarıtaş et al.
(2017), a Nash equilibrium in the scalar source case must involve
quantization policies at the encoder with convex bins.

2 This follows from a separating hyperplane argument.
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Fig. 1. Communication setting.

efinition 3. A quantization policy with K bins, q, is a (Borel)
easurable mapping from Mn

= Rn to the set {1, . . . , K } char-
cterized by a measurable partition {B1, . . . ,BK

} such that Bi
=

m | q(m) = i} for i = 1, . . . , K and that bin probabilities are
trictly positive. The Bi are called the bins of q.
The bins defined in Definition 3 lead to a Nash equilibrium

nder certain conditions described later in the manuscript. If
hese bins form a Nash equilibrium, they are referred to as (Nash)
quilibrium partitions. In contrast to the scalar source case, there
ay exist a Nash equilibrium with a linear encoder in the multi-
imensional source case, which is investigated later in the paper.
ccordingly, we make the following definition.

efinition 4. For the n-dimensional cheap talk problem, if an
ncoding policy z = γ e(m) = Am where A ∈ Rm×n with m ≤ n
nd a decoding policy u = γ d(z) satisfy (3), we say that these
olicies lead to a linear Nash equilibrium.

efinition 5. We say that a Nash equilibrium is informative if the
ncoder reveals information related to the source, i.e., the source

and the message Z are not independent random variables.
Nash equilibrium is referred to as non-informative when the

ncoded message is independent of the source.
We note that there always exists a non-informative Nash

quilibrium for the multi-dimensional cheap talk problem, which
ollows from Crawford and Sobel (1982). In this equilibrium,
he encoder transmits a message which is independent of the
ource. The decoder takes an action based on the prior probability
istribution of the source, i.e., its best response u = E[M]. This

is a Nash equilibrium since both the encoder and the decoder
cannot improve their expected costs by deviating from these
strategies. In contrast, an informative Nash equilibrium may or
may not exist depending on the setup.

At a given Nash equilibrium, all possible realized values of u
are referred to as decoder actions. While investigating the geomet-
ric properties of Nash equilibria, we frequently use the following
definition regarding the set of decoder actions in equilibrium.

Definition 6. We say that a non-empty set of decoder actions
containing more than one element forms a continuum if it is a
closed and connected set (i.e., it cannot be expressed as a union
of two or more disjoint and closed sets).

An important implication of our results is related to the in-
formation theoretic limits of the cheap talk problem. In classical
communication settings involving decision makers with aligned
goals, information theoretic limits specify bounds on the rate of
communication and system performance measured by a common
cost criterion (see, e.g., Cover and Thomas (2006)). In such set-
tings, a bound on the achievable communication rate arises due
to system requirements such as a power constraint at the encoder
and having a noisy channel. On the other hand, an interesting
question arises in a game theoretic setup: Does an upper bound
exist on the achievable rate of communication due to misaligned
cost criteria? In certain cases, our analysis gives a conclusive
answer to this question for the multi-dimensional cheap talk
setup. In particular, we show that there exists a Nash equilibrium
with a linear encoder depending on certain explicit conditions, in
which case there does not exist an upper bound on the achievable
rate of communication. We consider the Nash setup for such an
information theoretic problem. We refer the reader to Le Treust
and Tomala (2019) for a Stackelberg (Bayesian persuasion) setup.
3

1.2. Literature review

The cheap talk and signaling game problems have gained
significant attention in recent control and communication theory
literature. For instance, Sarıtaş et al. (2017) investigate signaling
game setups with quadratic cost criteria under Nash and Stack-
elberg equilibria concepts where a biased encoder communicates
with a decoder. The work in Akyol et al. (2017) considers a Gaus-
sian signaling game problem under the Stackelberg equilibrium
concept where the bias term at the encoder is modeled as a
random variable. In Sayın, Akyol, and Başar (2019), a multi-stage
Gaussian signaling setup is investigated under the Stackelberg
equilibrium concept where the private state of the encoder is
a controlled Gauss–Markov process. The work in Le Treust and
Tomala (2019) investigates information theoretic limits for the
Bayesian persuasion (Stackelberg) setup where there is a com-
mitment assumption for the encoder. The works in Vora and
Kulkarni (2020a, 2020b) consider problems under the Stackel-
berg equilibrium concept where the decoder has a commitment
assumption and introduce the notion of information extraction
capacity. In Kazıklı et al. (2022), various properties of Nash equi-
libria are analyzed for the one-dimensional quadratic cheap talk
problem. In Sarıtaş, Yüksel and Gezici (2020), multi-stage cheap
talk and signaling game problems are investigated under Nash
and Stackelberg equilibria. In Kazıklı, Gezici, and Yüksel (2021),
some of the preliminary results in this paper were announced,
and the results presented did not include proofs.

Multi-dimensional cheap talk problems have also been con-
sidered in the economics literature (Ambrus & Takahashi, 2008;
Battaglini, 2002; Chakraborty & Harbaugh, 2007; Levy & Razin,
2007; Miura, 2014). For instance, Levy and Razin (2007) in-
vestigate a two-dimensional source setting where an encoder
communicates with a decoder. Different from our work, the
encoder’s preferences over different decoder actions are primarily
determined by preferences in a certain dimension. In particular,
if the encoder prefers one decoder action over the other in
this dimension, then the second dimension does not matter.
In this case, Levy and Razin (2007) show the existence of an
upper bound on the number of decoder actions. In addition, the
work in Battaglini (2002) considers a multi-dimensional cheap
talk problem with two encoders and a decoder. While Battaglini
(2002) studies conditions on the existence of equilibria with
the encoders completely revealing their observations, our focus
instead is on the characterization of Nash equilibrium partitions
in general; as in the case with a single encoder, we do not have
full revelation in general. More specifically, we focus on a scenario
with a single encoder that jointly encodes its multi-dimensional
observation and employs a single quadratic cost function. More
recently, Sémirat (2019) investigates a two-dimensional cheap
talk setup between an encoder and a decoder considering a
uniform source where the encoder is restricted to transmit a
binary message. This work proves the existence of an informative
Nash equilibrium for any bias vector under the considered setup.

1.3. Contributions

The main aim of this paper is to analyze a quadratic multi-
dimensional cheap talk problem, which is a multi-dimensional
extension of Crawford and Sobel’s formulation (Crawford & Sobel,
1982). The main contributions of this paper can be summarized
as follows:

(i) We show that for general source distributions, decoder
actions in any Nash equilibrium must satisfy a necessary
geometric condition (Lemma 7).
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(ii) We derive the necessary conditions that a Nash equilib-
rium with a continuum of decoder actions needs to satisfy
in the case of two-dimensional observations with general
distributions (Lemmas 11 and 12).

(iii) We completely characterize necessary and sufficient con-
ditions under which linear Nash equilibria exist consid-
ering independent and identically distributed (i.i.d.) two-
dimensional observations (Theorem 13). We also general-
ize these results to the case when the encoder makes more
than two i.i.d. observations (Theorems 17 and 19).

(iv) We take the dimension of the source process to infinity and
provide an information theoretic perspective to the cheap
talk problem by introducing a rate–distortion theoretic
formulation. We obtain achievable rates and distortions for
the particular case of i.i.d. Gaussian sources (Theorem 21).

2. Geometric properties of Nash equilibria

2.1. A necessary geometric condition for Nash equilibria

In this subsection, we show that the cost structure employed
in the problem imposes certain restrictions on the actions taken
by the decoder at a Nash equilibrium. In particular, we derive
a geometric condition that any two decoder actions at a Nash
equilibrium must satisfy. This derivation also allows us to specify
the general structure of a Nash equilibrium with a quantization
policy at the encoder. In addition, while this geometric condition
is important on its own as it provides a necessary condition for
a Nash equilibrium in terms of induced decoder actions, it is also
useful while deriving conditions for the existence of linear Nash
equilibria. It is noted that the following result holds regardless
of the source distribution and applies to both i.i.d. and non-i.i.d.
sources.

Lemma 7. Consider the n-dimensional cheap talk problem with
the source random vector M = [M1, . . . ,Mn]

T where each element
of M can have different distributions and can be dependent or
independent. Let Bα and Bβ be two bins, and let uα

= E[M |M ∈

Bα
] and uβ

= E[M |M ∈ Bβ
] denote their centroids which are

the decoder actions taken when the encoder reveals M ∈ Bα and
M ∈ Bβ , respectively.

(i) These decoder actions must satisfy the following necessary
condition at a Nash equilibrium:

2 |(uβ
− uα)Tb| ≤ ∥uβ

− uα
∥
2. (4)

(ii) At a Nash equilibrium, the encoder decomposes the com-
plete observation space into two regions via a hyperplane
orthogonal to (uα

− uβ ) and intersecting the line connecting
uα and uβ , and Bα and Bβ are subsets of these respective
regions. In particular, Bα must be a subset of the set {m |

h(m, uα, uβ ) ≥ 0} whereas Bβ must be a subset of the set
{m | h(m, uα, uβ ) ≤ 0} where

h(m, uα, uβ ) ≜(
m −

(
uβ

+ uα

2
+ b

))T

(uβ
− uα), (5)

and h(m, uα, uβ ) = 0 defines the hyperplane on which
the encoder is indifferent between either decoder actions,
i.e., these m values may belong to both Bα and Bβ .

(iii) At a Nash equilibrium where the encoder uses quantization
policies, the quantization bins are always convex.

See Appendix A for a proof. Fig. 2 illustrates the result in
Lemma 7 for an example setup. In the case of more than two
decoder actions, each pair of decoder actions must satisfy the
4

condition in (4) at a Nash equilibrium. In addition, the bins for
each decoder action must be obtained by computing half spaces
via (5) for each pair of decoder actions and then by intersecting
these half spaces. In particular, if the decoder actions {u1, . . . , uK

}

and the corresponding bins {B1, . . . ,BK
} form a Nash equilibrium

with K bins, then it must be that

Bi
= {m | h(m, ui, uj) ≥ 0 for all j ̸= i}, (6)

for i = 1, . . . , K . Note that the conditions in (6) are necessary
but not sufficient for a Nash equilibrium. Due to the equilibrium
conditions at the decoder, for a Nash equilibrium with K bins,
the decoder actions {u1, . . . , uK

} and the corresponding bins
{B1, . . . ,BK

} must also satisfy the following centroid conditions:

ui
= E[M |M ∈ Bi

], (7)

for i = 1, . . . , K . If the conditions in (6) and (7) are satisfied, then
the corresponding decoder actions and bins form a Nash equilib-
rium with K bins. Fig. 3 depicts a Nash equilibrium involving a
quantization policy with three bins at the encoder.

Remark 8. In the case of scalar cheap talk, it is required that
|uα

− uβ
| > 2|b| holds for any decoder actions uα and uβ at a

Nash equilibrium. This directly implies that a Nash equilibrium
must involve quantization policies as concluded in Sarıtaş et al.
(2017, Theorem 3.2). In contrast, such a direct conclusion does
not hold for the multi-dimensional cheap talk problem. In fact,
if (uβ

− uα) is orthogonal to b, then the necessary condition in
(4) is always satisfied regardless of the distance between these
two decoder actions. This permits the existence of linear Nash
equilibria when the source is multi-dimensional, depending on
certain conditions investigated later in the paper. Since such an
orthogonality property does not hold when the source is one-
dimensional, decoder actions cannot get arbitrarily close. Hence,
there does not exist a linear Nash equilibrium in this case.

Lemma 7 presents a geometric condition that any two de-
coder actions at a Nash equilibrium must satisfy. It is important
to emphasize that this condition applies to any joint distribu-
tion for multi-dimensional observations. In particular, Lemma 7
holds even for joint distributions that are not independent and
identically distributed.

2.2. Necessary conditions for continuum of decoder actions in equi-
librium

In this subsection, we further investigate the geometric condi-
tion in Lemma 7 to derive conditions that a Nash equilibrium with
a connected set of decoder actions must satisfy for the particular
case of two-dimensional cheap talk. Since a linear encoding policy
induces a connected set of decoder actions, our results in this
subsection are useful while deriving conditions for the existence
of a linear Nash equilibrium.

Lemma 7 implies that for decoder actions uα and uβ satisfying
(uβ

− uα)Tb = 0, it is possible to make their distance ∥uα
− uβ

∥

arbitrarily small. On the other hand, for decoder actions uα and
uβ with (uβ

− uα)Tb ̸= 0, since the distance ∥uα
− uβ

∥ is lower
bounded by a positive value, these decoder actions uα and uβ

cannot get arbitrarily close. This motivates an equivalent formu-
lation by introducing the following transformation of variables. In
particular, we define

X = T M, (8)

U = T −1Y , (9)

where

T =

[
−b2 b1

]
, T −1

=
1

2 2

[
−b2 b1

]
, (10)
b1 b2 b1 + b2 b1 b2
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Fig. 2. Illustration of half spaces induced by decoder actions uα and uβ in
emma 7. The crosses represent the decoder actions, and the arrow represents
he bias vector. These decoder actions and the bias vector lead to a line of m̄
alues for which the encoder is indifferent between reporting these observations
s uα and uβ . The shaded areas illustrate example bins which satisfy the

necessary condition that the half spaces H1 and H2 cannot intersect with Bα

and Bβ , respectively.

Fig. 3. Illustration of a Nash equilibrium involving a quantization policy with
three bins for the case when b1 = b2 = 0.1 and the source is two-dimensional
i.i.d. with a uniform distribution. The shaded areas show the quantization bins,
the lines between the areas are the bin edges, and the crosses represent the
decoder actions induced in equilibrium. These quantization bins and bin edges
satisfy (6) and (7), which leads to a Nash equilibrium.

Fig. 4. Equivalent formulation where T denotes the linear transformation
specified by X1 = b1M2 − b2M1 and X2 = b1M1 + b2M2 , and T −1 denotes its
nverse.

nd X ≜ [X1, X2]
T and Y ≜ [Y1, Y2]

T respectively denote the
observation at the encoder and the decoder action in the trans-
formed coordinate system. The proposed equivalent formulation
is depicted in Fig. 4 where the linear transformation T and its
nverse T −1 are fixed, and the encoder and decoder design γ̃ e(·)
and γ̃ d(·), respectively. In the following lemma, we show that
the proposed transformation of variables leads to an equivalent
formulation. See Appendix B for a proof.

Lemma 9. Suppose that the encoder uses a fixed transformation
from the source M to an auxiliary variable X specified by (8) and
esigns the map γ̃ e(·) from X to the encoded message Z . Suppose
hat the decoder designs the map γ̃ d(·) from its observation Z to
an auxiliary variable Y and employs a fixed transformation from Y
5

to the decoder action U specified by (9). Then, designing γ̃ e(·) at
the encoder and γ̃ d(·) at the decoder is equivalent to the original
problem where the encoder designs the map γ e(·) fromM to Z under
the cost criterion (1), and the decoder designs the map γ d(·) from Z
to U under the cost criterion (2). In particular, an equilibrium under
the proposed formulation is also an equilibrium under the problem
given in (3) and vice versa. In this equivalent formulation, the aim
of the encoder and decoder is to minimize J̃e(γ̃ e, γ̃ d) ≜ E[cet (X,Y )]
and J̃d(γ̃ e, γ̃ d) ≜ E[cdt (X,Y )], respectively, where

cet (x, y) ≜ (x1 − y1)2 + (x2 − y2 − b̃)2 = ce(m, u)b̃, (11)
d
t (x, y) ≜ (x1 − y1)2 + (x2 − y2)2 = cd(m, u)b̃, (12)
˜ ≜ b21 + b22. (13)

emma 10. For a fixed encoding policy γ̃ e(x), the optimal γ̃ d(·)
hat minimizes J̃d(γ̃ e, γ̃ d) is given by E[X |Z = z].

See Appendix C for a proof. Equipped with this equivalent for-
ulation, we are now ready to present our results on necessary
onditions for any Nash equilibrium with a continuum of decoder
ctions.

emma 11. Consider the two-dimensional cheap talk problem.
uppose that at a given Nash equilibrium, a set of decoder actions
forms a continuum. Then, for any yα

∈ C and yβ
∈ C, it must be

hat yα
2 = yβ

2 .

See Appendix D for a proof. Lemma 11 implies that a contin-
um of actions is allowed only in a specific direction that depends
n the bias terms in the original coordinate system.

emma 12. Consider the two-dimensional cheap talk problem.
uppose that at a given Nash equilibrium, a set of decoder actions
ith the same second coordinate forms a continuum, i.e., y2 = κ

here κ is in the support of X2. Then, it must be that there exist
ecoder actions for all values of y1 ∈ [xL1(κ), x

U
1 (κ)] and y2 = κ

here xL1(κ) and xU1 (κ) denote lower and upper boundaries of the
upport of X1 when X2 = κ , i.e., these decoder actions must be
onnected.

See Appendix E for a proof. Lemma 11 states that a contin-
um of decoder actions must have a constant y2 coordinate, and
emma 12 states that this continuum of decoder actions must be
upported for all values of y1 in the support of X1 given that X2 =

2. This means that a continuum of decoder actions cannot have
discontinuity. This type of continuum of actions can be attained
y revealing the value of X1 completely. In certain scenarios
epending on the distribution and the bias vector, revealing X1
an be a Nash equilibrium, as investigated in the next section.

. Linear Nash equilibria

In this section, we present our main results on the existence
f linear Nash equilibria. Towards that goal, we employ Lem-
as 11 and 12 together with an interesting result from the

iterature known as Kagan–Linnik–Rao Theorem (Kagan, Linnik, &
ao, 1973, Theorem 5.3.1). We first consider the two-dimensional
ase in the following theorem. See Appendix F for a proof.

heorem 13. Consider the multi-dimensional cheap talk problem
ith sources M1 and M2, which are i.i.d. with the corresponding bias
erms b1 and b2.

(i) For b1 = 0 or b2 = 0, there always exists an informative
Nash equilibrium with a linear encoder where the encoder

completely reveals the source corresponding to a zero bias.
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(ii) For b1 ̸= 0, b2 ̸= 0 and |b1| ̸= |b2|, there exists an
informative Nash equilibrium with a linear encoder if and only
if the source distribution is Gaussian.

(iii) For b1 = b2 ̸= 0, there exists an informative Nash equilibrium
with a linear encoder if and only if the source distribution is
symmetric around its mean, i.e., denoting the density of M1 by
f (·), we have that f (µ + x) = f (µ − x) for almost all x where
E[M1] = µ.

(iv) For b1 = −b2 ̸= 0, there always exists an informative Nash
equilibrium with a linear encoder regardless of the source
distribution.

In Fig. 5, we depict a linear Nash equilibrium for the case with
a two-dimensional uniform source. This scenario corresponds to
the third case in Theorem 13, where the source distribution is
symmetric, and the biases are the same in each dimension.

Remark 14. Lemmas 11 and 12 require that at a Nash equi-
librium, a continuum of decoder actions can only exist in the
direction orthogonal to the bias vector b without any disconti-
nuity considering the original coordinate system. If the source
distribution is such that E[X2|X1 = x1] = E[b1M1 + b2M2|b1M2 −

b2M1 = x1] = 0 holds for all x1, then an encoding policy z =

γ e(m) = b1m2 − b2m1 leads to a continuum of decoder actions
that satisfies the necessary conditions in Lemmas 11 and 12. In
addition, such an encoding policy leads to a Nash equilibrium, as
the proof of Theorem 13 reveals.

Remark 15. Theorem 13 shows that depending on certain condi-
tions, there exists an informative Nash equilibrium with a linear
encoder even for large values of |b1| and |b2|. On the other
hand, in the case of one-dimensional cheap talk, there may exist
an upper bound on the number of bins in equilibrium, e.g., for
sources with a bounded support (Crawford & Sobel, 1982) or for
log-concave sources with a semi-unbounded support depending
on certain conditions (Kazıklı et al., 2022). In addition, if the bias
term is large, this upper bound may even be equal to one, which
means that there does not exist an informative Nash equilibrium.
Hence, even though the only Nash equilibrium in the case of a
one-dimensional scenario may be non-informative, in the case of
a two-dimensional scenario with the same bias as in the one-
dimensional scenario in both dimensions, it is possible to obtain
an informative Nash equilibrium when the source distribution is
i.i.d. symmetric.

Remark 16. In the case of a Gaussian source, the problem decou-
ples into two one-dimensional cheap talk problems. In particular,
X1 = b1M2 − b2M1 and X2 = b1M1 + b2M2 become inde-
pendent random variables when M1 and M2 are i.i.d. Gaussian.
In fact, due to Darmois–Skitovich Theorem (Kagan et al., 1973,
Theorem 3.1.1), X1 and X2 are independent only when M1 and
M2 are Gaussian. As a result, the problem reduces to obtaining
Nash equilibria for decoupled two one-dimensional cheap talk
problems where an encoder wishes to convey X1 with a zero
bias and another encoder wishes to convey X2 with a bias of b̃.
From Kazıklı et al. (2022, Theorem 4), we know that in the case
of one-dimensional cheap talk with a Gaussian source, for any
N ≥ 1, there exists a (unique) Nash equilibrium with N bins.
Thus, for a two-dimensional cheap talk problem with a Gaussian
source, there exists a Nash equilibrium where the encoder reveals
X1 completely and applies a quantization policy to X2 with an
arbitrary number of bins.

We can also consider n-dimensional i.i.d. Gaussian sources. In
this case, one can apply an orthogonal transformation of vari-
ables in a similar manner to the two-dimensional case where
random variables in each dimension are independent. Under this
6

transformation of variables, there remains a bias term only for
a single random variable. Due to Kazıklı et al. (2022, Theorem 4)
and the independence of the random variables in the transformed
coordinate system, it follows that there exists a Nash equilibrium
where the encoder applies a quantization policy to this remaining
random variable with any number of bins.

Theorem 17. Consider the n-dimensional cheap talk problem with
an i.i.d. Gaussian source. Then, there exists a Nash equilibrium with
a linear encoding policy where the encoder reveals all or a subset of
(n − 1) dimensions completely (and applies a signaling game policy
for the remaining dimension with any number of bins).

See Appendix G for a proof. Theorem 13 reveals that for the
case with an i.i.d. Gaussian source, there always exists a linear
Nash equilibrium regardless of the value of the bias vector. One
can also consider non-i.i.d. Gaussian sources. In this case, we
show that there may exist a linear Nash equilibrium depending
on the bias vector and the covariance matrix in the following
theorem, whose proof is presented in Appendix H.

Theorem 18. Consider the multi-dimensional cheap talk problem
with Gaussian sources M1 and M2, and the corresponding bias terms
b1 and b2. Let σ 2

1 and σ 2
2 denote the variances of M1 and M2,

respectively, and let ρ denote their covariance. Then, there exists a
Nash equilibrium with a linear encoding policy if b1b2(σ 2

2 − σ 2
1 ) +

(b21 − b22)ρ = 0 holds.

Theorem 13 reveals that for the case with an i.i.d. two-
dimensional symmetric source, there always exists an informa-
tive linear Nash equilibrium. When n > 2, it is possible to apply
the linear policy in Theorem 13 for pairs of random variables to
obtain a linear Nash equilibrium as we can obtain decoupled two-
dimensional cheap talk problems. For instance, if n = 2k for some
k > 2, then revealing all or a subset of the random variables
M2 − M1, M4 − M3, . . . , M2k − M2k−1 yields a Nash equilibrium.
In this case, the encoder reveals at most n/2 dimensions. In the
following theorem, we show that a joint encoding policy can be
applied to obtain a Nash equilibrium where the encoder reveals
(n − 1) dimensions. The proof appears in Appendix I.

Theorem 19. Consider the n-dimensional cheap talk problem
involving an i.i.d. source with a symmetric distribution. Then, there
exists a Nash equilibrium with a linear encoding policy where the
encoder reveals all or a subset of (n − 1) dimensions completely in
a transformed coordinate system.

4. Large dimensions and a rate-distortion theoretic formula-
tion of cheap talk

We have analyzed the multi-dimensional cheap talk problem
where the bias vector at the encoder can be arbitrary. The special
case when the components of the bias vector are the same leads
to an important problem from an information theoretic perspec-
tive. In this case, the problem is to convey an i.i.d. source with a
certain bias, and the bias is the same for each source component.
In other words, the encoder observes independent copies from a
random source and wishes to introduce the same bias for each
independent copy. In such a problem, one may wish to obtain
information theoretic limits of the communication. In a sense,
this problem is a game theoretic counterpart of rate–distortion
theory that is studied in a classical communication theoretic
setup. Our findings reveal that if the distribution is Gaussian, then
there always exists a linear Nash equilibrium where the encoder
completely reveals (n − 1) dimensions in a transformed coordi-
nate system. For the remaining dimension, the encoder has to
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Fig. 5. Illustration of a Nash equilibrium with a linear encoder γ e(m) = m2−m1
or the case when b1 = b2 = 0.1 and the source is two-dimensional i.i.d. with a
niform distribution where the solid line illustrates the continuum of decoder
ctions induced in equilibrium. The following interpretation can be made in
elation to quantization policies (see also Fig. 3). When the encoder makes an
bservation exactly on the dashed line m2 −m1 = 0.4, the encoder only reveals
hat its observation is on this dashed line. The decoder takes the action m1 = 0.3
nd m2 = 0.7 as its optimal response.

mploy a signaling game policy with an arbitrary number of bins,
ncluding the case with one bin. This result holds because the
roblem can be transformed into decoupled problems consisting
f a team theoretic problem for conveying an (n−1)-dimensional
.i.d. source without any bias and a one-dimensional cheap talk
roblem with a certain bias in the remaining dimension. If we
ncrease the number of observed sources at the encoder, the
ffect of employed policy for this remaining dimension becomes
egligible. This implies that the problem of finding achievable
ate and distortion pairs is asymptotically equivalent to obtaining
chievable rate and distortion pairs for a team theoretic setup in
transformed coordinate system.
The problem of interest is in fact can be more generally ex-

ressed in a rate–distortion theoretic formulation. The aim is to
ind the achievable rate and distortion region. In particular, we
ave the following problem:

roblem 20. Consider the n-dimensional cheap talk problem with
.i.d. sources and b = b1 = · · · = bn. We say that a tuple of rate
nd distortion pairs (R,De,Dd) is achievable at a Nash equilibrium
f there exists a sequence of encoders and decoders that leads to a
ash equilibrium with the following properties:

(i) The encoder is given by γ e
n : Mn

→ {1, . . . , 2nR
}.

(ii) The decoder is given by γ d
n : {1, . . . , 2nR

} → Mn such that

lim
n→∞

E
[∑n

i=1(Mi − Ui − b)2
]

n
≤ De, (14)

lim
n→∞

E
[∑n

i=1(Mi − Ui)2
]

n
≤ Dd. (15)

hen, the problem is to determine if a given tuple (R,De,Dd) is
achievable at a Nash equilibrium.

If the bias term is zero in this problem, then we obtain a team
theoretic problem since the corresponding distortion values are
identical at the encoder and decoder. We denote the correspond-
ing rate and distortion values by RT and DT , respectively, where
the subscript refers to the fact that the setup is team theoretic.

While we leave the study of Problem 20 for general sources
for future work, the Gaussian case is completely solvable. Our
result in the previous section shows that if the source distribution
is Gaussian, one can apply a suitable transformation of variables
to obtain an equivalent problem for which the encoder has a
7

bias only for a single random variable. We use this idea to relate
achievable rate and distortion values of the original problem to
that of a team theoretic problem. Before presenting this result,
we note that at a Nash equilibrium we have E[

∑n
i=1(Mi − Ui −

b)2] = E[
∑n

i=1(Mi − Ui)2] + b2n. Thus, we have the same rate
region for any De value satisfying De ≥ Dd + b2. The following
theorem characterizes achievable rates and distortion values for
Problem 20 with Gaussian sources. See Appendix J for a proof.

Theorem 21. Consider the multi-dimensional cheap talk problem
with i.i.d. Gaussian sources where the bias term b is the same at
each dimension. Suppose that a rate and a distortion pair (RT ,DT )
is achievable for the team theoretic problem with a zero bias. Then,
for the game theoretic problem with a non-zero bias, the following
rate and distortion values are achievable:

R = RT , De ≥ DT + b2, Dd ≥ DT . (16)

Remark 22. The proof of Theorem 17 reveals that by applying a
joint encoding policy that uses multi-dimensional observations, it
is possible to achieve team theoretic rates and distortions (except
that there is still an additional b2 term for the encoder’s distor-
tion). If we do not allow for joint encoding, which is equivalent
to considering the scalar cheap talk setup, then the same rate in
the team setup and in the game setup leads to different distortion
values at the decoder, with the latter being larger.

In rate–distortion theory, an important concept is the rate–
distortion function. In a classical communication theoretic setup,
this is defined as the infimum of rates R such that (R,D) is
achievable. A similar definition of rate–distortion function in a
game theoretic setup yields

R(De,Dd) ≜ inf{R | (R,De,Dd) is achievable}. (17)

By using the result of Theorem 21, we can upper bound the rate–
distortion function for the Gaussian case. Towards that goal, we
use the following result for the team theoretic setup where the
distortion D is identical at the encoder and decoder as there is no
bias at the encoder.

Lemma 23 (Cover & Thomas, 2006, Theorem 10.3.2). Suppose
that b = 0 in Problem 20. Consider i.i.d. Gaussian sources with a
variance of σ 2. The rate distortion function for such a setup is given
by R(D) =

1
2 log2

σ2

D if 0 ≤ D ≤ σ 2 and R(D) = 0 if D > σ 2.

Next, the following theorem, whose proof appears in Ap-
endix K, presents our result for the game theoretic setup with a
iased encoder.

heorem 24. Consider the multi-dimensional cheap talk problem
ith i.i.d. Gaussian sources where the bias term b is the same at each
imension. The rate–distortion function for such a setup satisfies
(De,Dd) ≤

1
2 log2

σ2

min{Dd,De−b2}
if 0 ≤ min{Dd,De − b2} ≤ σ 2,

nd R(De,Dd) = 0 if min{Dd,De − b2} > σ 2.

emark 25. A related result can be found in Kazıklı et al. (2022,
heorem 8). It is shown that having more bins in the quantized
ncoding policy leads to reduced distortion values if the scalar
ource has a log-concave distribution. In other words, a large
ate leads to smaller expected costs for both players under a
og-concave source assumption, which holds for the Gaussian
ase.

emark 26. For multi-dimensional i.i.d. Gaussian sources, there
xists a Nash equilibrium where the encoder reveals (n − 1)
imensions and applies a signaling game policy for the remain-
ng dimension X with an arbitrary number of bins. Since the
n
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aussian distribution is log-concave, from Kazıklı et al. (2022,
heorem 8), it follows that the expected costs of both players re-
uce when the number of bins for the quantization policy applied
o Xn is increased. In addition, it is also possible to have a Nash
quilibrium with infinitely many bins applied to Xn due to Kazıklı

et al. (2022, Theorem 13). Hence, a Nash equilibrium where
X1, . . . , Xn−1 are revealed and a quantization policy with infinitely
many bins applied to Xn corresponds to a payoff dominant Nash
equilibrium (Harsanyi & Selten, 1988).

5. Conclusion

We have analyzed a quadratic multi-dimensional cheap talk
problem. First, we have derived the necessary general conditions
for a Nash equilibrium considering any joint source distribution.
In particular, we have shown that decoder actions at a Nash
equilibrium need to satisfy a geometric condition that essentially
prevents any two decoder actions from being arbitrarily close to
each other depending on their difference as vectors and the bias
vector. Then, we have investigated continuum of decoder actions
considering two-dimensional sources and provided a condition
that a continuum of decoder actions must satisfy in any Nash
equilibrium. Then, we have derived necessary and sufficient con-
ditions under which a linear Nash equilibrium exists considering
i.i.d. sources. These conditions require a Gaussian or a symmetric
source density. Moreover, we have formulated a rate–distortion
theoretic problem for the cheap talk setup and have solved the
Gaussian case.
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Appendix A. Proof of Lemma 7

(i) Let there be two bins, Bα and Bβ . Denote their centroids by
uα

= E[M |M ∈ Bα
] and uβ

= E[M |M ∈ Bβ
]. The encoder

is indifferent between the decoder actions uα and uβ for
source observation values m̄ which satisfy the following:

ce(m̄, uα) = ce(m̄, uβ )

⇔ ∥m̄ − uα
− b∥2

= ∥m̄ − uβ
− b∥2

⇔ (2m̄ − (uβ
+ uα

+ 2b))T (uβ
− uα) = 0. (18)

In other words, if an observation satisfies (18), the en-
coder’s costs are the same under the decoder actions uα

and uβ . From (18), it is seen that these m̄ values define
a hyperplane orthogonal to (uβ

− uα). Given any source
observation m = m̄ + ∆(uβ

− uα) with ∆ > 0 where
m̄ satisfies (18), the encoder prefers the decoder action uβ

over the decoder action uα since the following holds:

ce(m̄ + ∆(uβ
− uα), uβ ) − ce(m̄ + ∆(uβ

− uα), uα)

= −2∆∥uβ
− uα

∥
2 < 0. (19)

This implies that Bα and H1 are disjoint sets where

H1 ≜ {m | m = m̄ + ∆(uβ
− uα)

where m̄ satisfies (18) and ∆ > 0}. (20)

Similarly, given any source observationm = m̄+∆(uβ
−uα)

with ∆ < 0, the encoder prefers the decoder action uα over
the decoder action uβ . It follows that Bβ and H2 are disjoint
sets where
8

H2 ≜ {m | m = m̄ + ∆(uβ
− uα)

where m̄ satisfies (18) and ∆ < 0}. (21)

Furthermore, the plane specified by (18) intersects the
affine set λuβ

+(1−λ)uα with λ ∈ R at a single point due to
the fact that (uβ

−uα) and the hyperplane specified by (18)
are orthogonal. In order to find the value of λ that gives this
intersection point, we solve (18) and m̄ = λ̄uβ

+ (1− λ̄)uα

together and obtain an expression for λ̄ in the following:(
2m̄ − uβ

− uα
− 2b

)T (uβ
− uα

)
= 0

⇔ (2λ̄ − 1) =
2(uβ

− uα)Tb
∥uβ − uα∥2 . (22)

We know that the centroid conditions require uα
= E[M |M

∈ Bα
] and uβ

= E[M |M ∈ Bβ
]. Since Bα andH1 are disjoint

sets, and Bβ and H2 are disjoint sets, we need 0 ≤ λ̄ ≤ 1,
which is equivalent to |2λ̄ − 1| ≤ 1. By combining this
inequality with (22), it follows that (4) holds.

(ii) As noted above, Bα and Bβ do not intersect with H1 and
H2, respectively, where H1 and H2 are defined in (20) and
(21). These regions lead to the decomposition specified by
the hyperplane in (5), which is orthogonal to (uβ

− uα).
(iii) The decision regions for two decoder actions must be con-

structed by computing and intersecting half spaces. Since
a half space is a convex set and intersection operation
preserves convexity, the quantization bins must be con-
vex (Boyd & Vandenberghe, 2004, p. 36).

Appendix B. Proof of Lemma 9

For the cost function of the encoder, we can write

ce(m, u) = (m − u − b)T (m − u − b)

=
(
T −1T (m − u − b)

)T (
T −1T (m − u − b)

)
=

(
T (m − u − b)

)T (T −1)T (T −1)
(
T (m − u − b)

)
= b̃−1(x − y − [0, b̃]T

)T (x − y − [0, b̃]T
)

= cet (x, y)b̃
−1, (23)

here b̃ is specified in (13), and the fourth equation uses (T −1)T
T −1) = b̃−1I with I denoting identity matrix, T b = [0, b̃]T ,
m = x and T u = y. In a similar manner, the cost function of
he decoder can be expressed as
d(m, u) = (m − u)T (m − u)

=
(
T (m − u)

)T (T −1)T (T −1)
(
T (m − u)

)
= b̃−1(x − y

)T (x − y
)

= cdt (x, y)b̃
−1, (24)

here the third equation uses (T −1)T (T −1) = b̃−1I , T m = x and
u = y. Note that the factor of (1/b̃) is canceled in the definitions
f cet (x, y) and cdt (x, y) for notational convenience. Since b̃ is a
onstant and b̃ > 0, this cancellation does not change the goals
f the players.
Note that a fixed and invertible transformation of observa-

ion and action variables independent of the policies γ̃ e(·) and
˜
d(·) is considered. Moreover, since the transformation is in-
ertible, there is no loss of information at the encoder and the
ecoder due to the transformation. If γ ∗,e(·) and γ ∗,d(·) satisfy
3), then γ̃ ∗,e(·) = γ ∗,e(T −1(·)) and γ̃ ∗,d(·) = T (γ ∗,d(·)) sat-
sfy J̃e(γ̃ ∗,e, γ̃ ∗,d) ≤ J̃e(γ̃ e, γ̃ ∗,d) for all γ̃ e and J̃d(γ̃ ∗,e, γ̃ ∗,d) ≤

˜d(γ̃ ∗,e, γ̃ d) for all γ̃ d since the cost functions in the transformed
nd original formulations are essentially the same as shown in
23) and (24). Similarly, if γ̃ ∗,e(·) and γ̃ ∗,d(·) satisfy J̃e(γ̃ ∗,e, γ̃ ∗,d) ≤

˜e(γ̃ e, γ̃ ∗,d) for all γ̃ e and J̃d(γ̃ ∗,e, γ̃ ∗,d) ≤ J̃d(γ̃ ∗,e, γ̃ d) for all γ̃ d,
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hen γ ∗,e(·) = γ̃ ∗,e(T (·)) and γ ∗,d(·) = T −1(γ̃ ∗,d(·)) satisfy (3).
hese reveal that an equilibrium under the proposed (original)
ormulation is also an equilibrium under the original (proposed)
ormulation. This equivalence can be viewed as a special case
f the result in Sanjari, Başar, and Yüksel (2021, Theorem 3.1)
here it is shown that for a dynamic stochastic game setup one
an equivalently consider its policy-independent static reduction
nder the Nash equilibrium concept.

ppendix C. Proof of Lemma 10

For a given encoding policy, the aim of the decoder is to
inimize J̃d(γ̃ e, γ̃ d) = E[cdt (X,Y )] where cdt (·, ·) is as in (24).
ince the expression in (24) involves a sum of squared error
erms, the result immediately follows.

ppendix D. Proof of Lemma 11

This result is a consequence of Lemma 7. By using the cost
unction of the encoder and the decoder considering the equiv-
lent formulation, it can be shown that the condition in (4)
ranslates to the condition that for any decoder actions yα

=

yα
1 , y

α
2 ]

T and yβ
= [yβ

1 , yβ

2 ]
T , we have that

≤ (yα
1 − yβ

1 )
2
+ (yα

2 − yβ

2 )
2
− 2b̃|yα

2 − yβ

2 | ≜ g(yα, yβ ). (25)

et there be a continuum of decoder actions that does not have
constant y2 coordinate. Since a continuum of decoder actions
ith a constant y1 coordinate is not allowed due to (25), it is
ossible to partition a continuum of actions so that it consists of
epresentations of the form y = [y1, hi(y1)]T for some continuous
unctions hi(·) with i ∈ {1, . . . , k}. Here, we represent the second
oordinate of the continuum as a function of the first coordinate.
n the following, we take such a continuum denoted by y =

y1, h(y1)]T for some continuous function h(·) and prove that it
eads to a contradiction when h(·) is not a constant function.

Suppose, by contradiction, that h(·) is not a constant function.
t follows that we can find two decoder actions yα

= [yα
1 , y

α
2 ]

T and
β

= [yβ

1 , yβ

2 ]
T on the continuum with the property that yα

2 ̸= yβ

2
nd that yα

1 < yβ

1 . Without loss of generality, take yα
2 < yβ

2 . In
he following, we first prove the result by making the additional
ssumption that h(·) is differentiable. By this assumption, we are
ble to invoke the standard mean value theorem of calculus to
onclude the result. However, the result holds also for a non-
ifferentiable h(·). We first prove the result for a differentiable
(·) since this proof is more intuitive. Then, we prove the result
n the general case when h(·) is non-differentiable.

Let h(·) be differentiable. By the mean value theorem of calcu-
us, there exists yγ

1 ∈ [yα
1 , y

β

1 ] such that h′(yγ

1 ) = (yβ

2 − yα
2 )/(y

β

1 −
α
1 ) > 0. In particular, we can find a decoder action yγ on the
ontinuum with yγ

1 ∈ [yα
1 , y

β

1 ] and yγ

2 = h(yγ

1 ) such that the
erivative of h(·) at yγ

1 is strictly positive. Next, we take another
ecoder action yη

= [yη

1, h(y
η

1)]
T on the continuum and vary its

irst coordinate to reach a contradiction to (25). In particular, if
e express the condition imposed by (25) for the decoder action
γ and a decoder action on the continuum denoted by yη , we get

(yη, yγ ) = (yη

1 − yγ

1 )
2

+ (h(yη

1) − h(yγ

1 ))
2
− 2b̃|h(yη

1) − h(yγ

1 )| ≥ 0.

hen yη

1 > yγ

1 , and (yη

1 − yγ

1 ) is sufficiently small, we have
(yη

1) > h(yγ

1 ) due to a positive derivative at yγ

1 . For fixed yγ

1 , if
e take the derivative of g(yη, yγ ) with respect to yη

1 , we get

dg(yη, yγ )
dyη

1
= 2(yη

1 − yγ

1 )

+ 2(h(yη) − h(yγ ))h′(yη) − 2b̃h′(yη). (26)
1 1 1 1 a

9

If we take yη

1 = yγ

1 in (26), then the first two terms are zero
while the third term is negative since h′(yγ

1 ) > 0 and b̃ > 0.
herefore, we have that dg(yη,yγ )

dyη1

⏐⏐⏐
yη1=yγ1

< 0. This is a contradiction

o g(yη, yγ ) ≥ 0 since g(yγ , yγ ) = 0 and dg(yη,yγ )
dyη1

⏐⏐⏐
yη1=yγ1

< 0.

herefore, it must be that h(·) is a constant function, which means
hat a continuum of actions must have a constant y2 coordinate.

Now, consider the general case when h(·) is not differentiable.
y the mean value theorem in Hiriart-Urruty (1980, Corollary 1),
here exists y∗

1 ∈ [yα
1 , y

β

1 ] such that either s∗ ∈ ∂h(y∗

1) or s∗ ∈

∂(−h(y∗

1)) holds where s∗ ≜ (yβ

2 − yα
2 )/(y

β

1 − yα
1 ) > 0, and

h(y∗

1) denotes the set of subgradients of h(·) at y∗

1. We take
wo decoder actions and employ the condition in (25) to reach
contradiction. Let yγ and yη denote these two decoder actions,
hich are expressed as yγ

1 = y1, y
γ

2 = h(yγ

1 ), y
η

1 = y1 + td′ and
η

2 = h(yη

1). If we express the condition imposed by (25) for the
ecoder actions yγ and yη , we get

(yη, yγ )

= (yη

1 − yγ

1 )
2
+ (h(yη

1) − h(yγ

1 ))
2
− 2b̃|h(yη

1) − h(yγ

1 )|

= (td′)2 + (h(y1 + td′) − h(y1))2

− 2b̃|h(y1 + td′) − h(y1)| ≥ 0. (27)

f t and d′ are positive and sufficiently small, the inequality in (27)
an be expressed as

h(y1 + td′) − h(y1)| +

√
b̃2 − (td′)2 − b̃ ≤ 0. (28)

ince t is positive, it follows from (28) that

|h(y1 + td′) − h(y1)|
t

+

√
b̃2 − (td′)2 −

√
b̃2

t
≤ 0. (29)

hus, (29) implies that

im sup
y1→y∗1
t↓0

inf
d′→d

|h(y1 + td′) − h(y1)|
t

+

√
b̃2 − (td′)2 −

√
b̃2

t
≤ 0, (30)

where we take d > 0 small so that the assumption of having a
small d′ holds. Since the limit of the second term in (30) is zero,
we get

lim sup
y1→y∗1
t↓0

inf
d′→d

|h(y1 + td′) − h(y1)|
t

= 0. (31)

However, this is a contradiction to the fact that either s∗ ∈ ∂h(y∗

1)
or s∗ ∈ −∂(−h(y∗

1)) holds.

Appendix E. Proof of Lemma 12

In order to prove this result, we assume that there exists a
continuum of decoder actions whose support does not extend to
the boundaries of the support and then reach a contradiction. Let
yα

= [yα
1 , y

α
2 ]

T and yβ
= [yβ

1 , yβ

2 ]
T be decoder actions on the

ontinuum with yα
1 < yβ

1 and yα
2 = yβ

2 such that there exist
ecoder actions for all values of y1 satisfying yα

1 ≤ y1 ≤ yβ

1 and
y2 = yα

2 where xL1(y
α
2 ) < yα

1 and yβ

1 < xU1 (y
β

2 ). As mentioned
arlier, xL1(x2) and xU1 (x2) respectively denote the lower and upper
oundaries of the support for X1 given that X2 = x2. In addition,
uppose that there exists δ > 0 such that there is no decoder
ction with yβ

< y < yβ
+ δ and y = yβ . Similarly, suppose
1 1 1 2 2
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hat there exists δ̃ > 0 such that there is no decoder action with
α
1 − δ̃ < y1 < yα

1 and y2 = yα
2 . In the following, we focus on the

ecoder action yβ and show that the assumption of yβ

1 < xU1 (y
β

2 )
eads to a contradiction. A similar approach can be taken for the
ecoder action yα to prove that the assumption of xL1(y

α
2 ) < yα

1
eads to a contradiction.

Let Bβ denote the bin corresponding to the decoder action
β , i.e., yβ

= E[X |X ∈ Bβ
]. We will obtain a contradiction

hat Bβ contains observations with x1 > yβ

1 , whereas it does not
ontain any observation with x1 < yβ

1 . This is a contradiction to
β

= E[X |X ∈ Bβ
] since we assume that every non-empty open

et has a positive probability measure in Assumption 2.
We first show that Bβ does not contain any observations with

1 < yβ

1 . Take an observation x with x1 < yβ

1 . Since the continuum
f decoder actions is supported on y1 ∈ [yα

1 , y
β

1 ] and y2 = yβ

2 , we
an find a decoder action yν on the continuum with coordinates
ν
1 = max{x1, yα

1 } and yν
2 = yβ

2 . For this decoder action, when
1 < yβ

1 , we have that cet (x, yν) < cet (x, yβ ). This implies that any
bservation with x1 < yβ

1 cannot be an element of Bβ .
Next, we prove that Bβ must contain observations with x1 >

β

1 under the assumed configuration, which, however, contradicts
β

= E[X |X ∈ Bβ
]. While proving that Bβ must contain

bservations with x1 > yβ

1 , we use the result from Lemma 7
hich imposes the condition in (25) in the transformed coor-
inate system considering any two decoder actions at a Nash
quilibrium. In particular, for any decoder action yη , we need
(yβ , yη) ≥ 0 where g(·, ·) is defined in (25). Note that other de-
oder actions impose additional constraints on the region where
ecoder actions can exist at a Nash equilibrium. Nonetheless, for
ur purpose, it suffices to use the condition g(yβ , yη) ≥ 0. Our
im is to show that for all yη satisfying g(yβ , yη) ≥ 0, it is
ossible to find a region of observations with x1 > yβ

1 where
e
t (x, yβ ) < cet (x, yη). This implies that the intersection of these
bservation regions must be the bin for yβ , i.e., Bβ . To conclude
he result, we will show that this intersection is not empty. Note
hat cet (x, yβ ) < cet (x, yη) is equivalent to

yη

1 − yβ

1 )(y
η

1 + yβ

1 − 2x1)

+ (yη

2 − yβ

2 )(y
η

2 + yβ

2 + 2b̃ − 2x2) > 0. (32)

e will use this equivalent expression in the remainder of the
roof.
When yη

2 = yβ

2 , due to the discontinuity assumption at yβ ,
or any observation with yβ

1 < x1 < yβ

1 + δ/2, the inequality
cet (x, yβ ) < cet (x, yη) holds. Therefore, it is sufficient to consider
decoder actions with yη

2 ̸= yβ

2 . We can express a decoder action
yη satisfying yη

2 ̸= yβ

2 and g(yβ , yη) ≥ 0 as yη
= yβ

+ λ(yγ
− yβ )

for some λ ≥ 1 where yγ satisfies g(yβ , yγ ) = 0. In particular,
we have

(yη

1 − yβ

1 )
2
+ (yη

2 − yβ

2 )
2
− 2b̃|yη

2 − yβ

2 |

= λ2(yγ

1 − yβ

1 )
2
+ λ2(yγ

2 − yβ

2 )
2
− 2|λ| |yγ

2 − yβ

2 |b̃
(a)
= λ2(2b̃|yγ

2 − yβ

2 |) − 2|λ| |yγ

2 − yβ

2 |b̃

= (2b̃|yγ

2 − yβ

2 |)(λ2
− |λ|)

where (a) follows from g(yβ , yγ ) = 0, and the final expression
implies that we can write yη

= yβ
+ λ(yγ

− yβ ) with λ ≥ 1 so
that g(yβ , yη) ≥ 0 holds. It is seen that when λ > 1, for a given
observation x satisfying cet (x, yβ ) < cet (x, yγ ), the following holds:

(yη

1 − yγ

1 )(y
η

1 + yγ

1 − 2x1)

+ (yη

2 − yγ

2 )(y
η

2 + yγ

2 + 2b̃ − 2x2)

= (λ − 1)(yγ

1 − yβ

1 )
(
(λ + 1)yγ

1 + (1 − λ)yβ

1 − 2x1
)

γ β ( γ β ˜
)

+ (λ − 1)(y2 − y2 ) (λ + 1)y2 + (1 − λ)y2 + 2b − 2x2
10
> (λ − 1)(yγ

1 − yβ

1 )
(
(λ + 1)yγ

1 + (1 − λ)yβ

1 − yγ

1 − yβ

1

)
+ (λ − 1)(yγ

2 − yβ

2 )
(
(λ + 1)yγ

2 + (1 − λ)yβ

2 − yγ

2 − yβ

2

)
= λ(λ − 1)

(
(yγ

1 − yβ

1 )
2
+ (yγ

2 − yβ

2 )
2) > 0,

where the first inequality is due to cet (x, yβ ) < cet (x, yγ ) and
λ > 1, and the last inequality follows from yβ

̸= yγ and
λ > 1. This shows that cet (x, yβ ) < cet (x, yγ ) implies cet (x, yγ ) <
cet (x, yη). Hence, it is sufficient to consider decoder actions yγ

with g(yβ , yγ ) = 0.
Next, we show that for any decoder action yγ satisfying

g(yβ , yγ ) = 0, there exists a nonempty region of observations
with cet (x, yβ ) < cet (x, yγ ) and x1 > yβ

1 . Towards that goal, we
consider different cases and treat each of these cases separately.
In the following, we take yβ

2 < x2 < yβ

2 + 2b̃ and specify a
nontrivial interval for x1 so that the resulting observation satisfies
the desired property.

(i) Let yγ satisfy yβ

2 < yγ

2 < yβ

2 + 2b̃ and yγ

1 = yβ

1 + ((yγ

2 −

yβ

2 )(y
β

2 − yγ

2 + 2b̃))1/2. Let

yβ

1 < x1 < yβ

1 +
(yγ

2 − yβ

2 )(y
β

2 − x2 + 2b̃)

(yγ

1 − yβ

1 )
. (33)

After some manipulations, it can be shown that (32) and
equivalently cet (x, yβ ) < cet (x, yγ ) hold for any observation
that satisfies (33) and yβ

2 < x2 < yβ

2 + 2b̃. Notice also
that if (33) holds for some yγ

2 , then it automatically holds
for any ỹγ

2 satisfying yγ

2 < ỹγ

2 < yβ

2 + 2b̃. Therefore,
multiple decoder actions satisfy the assumptions of this
case, it is sufficient to consider the one with the minimum
y2 coordinate.

(ii) Let yγ be such that yβ

2 < yγ

2 ≤ yβ

2 +2b̃ and yγ

1 = yβ

1 −((yγ

2 −

yβ

2 )(y
β

2 − yγ

2 + 2b̃))1/2 hold. In this case, one can show that
for any observation with yβ

1 < x1 and yβ

2 < x2 < yβ

2 + 2b̃,
the inequality cet (x, yβ ) < cet (x, yγ ) holds.

(iii) Let yγ satisfy yβ

2 − 2b̃ < yγ

2 < yβ

2 and yγ

1 = yβ

1 + ((yγ

2 −

yβ

2 )(y
β

2 − yγ

2 − 2b̃))1/2. Let

yβ

1 < x1 < yβ

1 +
(yβ

2 − yγ

2 )(x2 − yβ

2 )

(yγ

1 − yβ

1 )
. (34)

After some manipulations, it can be shown that (32) and
equivalently cet (x, yβ ) < cet (x, yγ ) hold for any observation
that satisfies (34) and yβ

2 < x2 < yβ

2 + 2b̃. In addition,
notice that if (34) holds for some yγ

2 , then it automatically
holds for any ỹγ

2 satisfying yγ

2 − 2b̃ < ỹγ

2 < yγ

2 . Therefore,
multiple decoder actions satisfy the assumptions of this
case, it is sufficient to consider the one with the maximum
y2 coordinate.

(iv) Let yγ be such that yβ

2 − 2b̃ ≤ yγ

2 < yβ

2 and yγ

1 = yβ

1 −

((yγ

2 −yβ

2 )(y
β

2 −yγ

2 −2b̃))1/2. In this case, one can show that
for any observation with yβ

1 < x1 and yβ

2 < x2 < yβ

2 + 2b̃,
the inequality cet (x, yβ ) < cet (x, yγ ) holds.

As a result, for any decoder action yη satisfying g(yβ , yη) ≥ 0
and for a given x2 with yβ

2 < x2 < yβ

2 + 2b̃, a nontrivial interval
exists for x1 with x1 > yβ

1 such that cet (x, yβ ) < cet (x, yη) holds.
This implies that there exists a nonempty region of observations
with x1 > yβ

1 that must belong to Bβ . Fig. 6 illustrates this region
of observations for an example scenario. Note that as long as
yβ

1 < xU1 (y
β

2 ), a nonempty subset of this observation region is
in the support of the joint distribution. As a result, we obtain a
contradiction to yβ

= E[X |X ∈ Bβ
] since Bβ does not contain any

observation with x1 < yβ

1 , and Bβ contains a nonempty region of
observations with x > yβ .
1 1
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Fig. 6. Illustration of the proof technique employed in Lemma 12. Here, the
horizontal solid line represents a continuum of decoder actions, and the decoder
action on this continuum with the largest y1 coordinate is denoted by yβ .
nside the dashed circles, there cannot be a decoder action due to the condition
mposed by Lemma 7 that for any y, we have g(yβ , y) ≥ 0 where g(·, ·) is
defined in (25). If we place decoder actions ȳγ and ỹγ on the dashed circles,
then the shaded area must be the bin for yβ , i.e., Bβ . However, the centroid of
this shaded area cannot be yβ , which is a contradiction.

Appendix F. Proof of Theorem 13

Suppose without loss of generality that E[M1] = 0. In the
proof, we consider the equivalent formulation in Lemma 9.

(i) Since M1 and M2 are independent random variables, the
problem decouples into two one-dimensional cheap talk
problems where one of them involves an encoder with a
zero bias. Hence, revealing the source corresponding to a
zero bias leads to a linear Nash equilibrium.

(ii) If the source distribution is Gaussian, X1 and X2 are in-
dependent random variables. Thus, we obtain decoupled
one-dimensional cheap talk problems where one of them
involves an encoder with a zero bias. Then, revealing the
random variable corresponding to a zero bias (i.e., X1)
yields an informative Nash equilibrium where the encoder
is linear.
Now, suppose that the source distribution is not Gaussian.
In this case, we show that there does not exist a Nash
equilibrium with an encoding policy z = γ e(m) = α1m2 −

α2m1 for any scalars α1 and α2. From Lemmas 11 and 12,
we know that a continuum of actions must have a constant
y2 coordinate, say κ , and must be supported for all values
of y1 in the support of X1 given that X2 = κ . This implies
that a necessary condition for a Nash equilibrium with an
encoding policy z = γ e(m) = α1m2 − α2m1 is given by
E[X2|X̄ = x̄] = E[b1M1 + b2M2|α1M2 − α2M1 = x̄] = 0
for all x̄ where X̄ ≜ α1M2 − α2M1. If α1 = 0, α2 = 0, or
α1
α2

̸=
b1
b2
, one can decompose X2 to show that the condition

of E[X2|X̄ = x̄] = 0 for all x̄ is always violated. It follows
that there does not exist a Nash equilibrium with a linear
encoding policy z = γ e(m) = α1m2 − α2m1 when α1 = 0,
α2 = 0, or α1

α2
̸=

b1
b2
. It remains to investigate conditions

under which an encoding policy z = γ e(m) = b1m2 −b2m1
leads to a Nash equilibrium.
If b1 ̸= 0, b2 ̸= 0 and |b1| ̸= |b2|, the condition of E[b1M1+

b2M2|b1M2 − b2M1 = x1] = E[X2|X1 = x1] = 0 for all
x1 requires that the source distribution is Gaussian (Kagan
et al., 1973, Theorem 5.3.1). Hence, if the encoder reveals
X1 = b1M2 − b2M1 completely without giving additional
information, we obtain a single continuum that contains
decoder actions with different second coordinates. Since
this contradicts with Lemma 11, there cannot be a Nash
equilibrium where the encoder conveys X1 = b1M2 −

b M only. In addition, having more than one continuum
2 1

11
of decoder actions, each with a constant second coordinate,
implies that E[X2|X1 = x1] = 0 for all x1. Hence, it is not
possible to have a Nash equilibrium with more than one
continuum of decoder actions.

(iii) In the case of b1 = b2, the condition of E[X2|X1 = x1] = 0
for all x1 requires that the source distribution is symmetric
(almost everywhere) (Kagan et al., 1973, Theorem 5.3.1).
It follows that if the source distribution is not symmetric,
there does not exist an informative linear Nash equilibrium.
Now, suppose that the source distribution is symmetric. Let
the encoding policy be given by z = γ̃ e(x) = x1. In other
words, the encoder reveals X1 completely without giving
any additional information. Then, the best response of the
decoder yields a single continuum of decoder actions. In
particular, there only exist decoder actions for all values
of y1 ∈ [xL1(0), x

U
1 (0)] and y2 = 0 where xL1(0) and xU1 (0)

respectively denote lower and upper boundaries of the
support for X1 given that X2 = 0. Now, we suppose that
there only exist decoder actions for all values of y1 ∈

[xL1(0), x
U
1 (0)] and y2 = 0, and we wish to obtain the best

response of the encoder to these decoder actions. For any
given decoder actions ỹ and ȳ satisfying ỹ ̸= ȳ, it must
be that ỹ1 ̸= ȳ1 as every decoder action is assumed to
have y2 = 0. Note also that for any given observation x in
the support of the joint distribution, there exists a decoder
action y = [y1, y2]T with y1 = x1 and y2 = 0. These imply
that if a given observation x satisfies x1 = ỹ1, it follows that

cet (x, ỹ) = (x1 − ỹ1)2 + (x2 − ỹ2 − b̃)2

< (x1 − ȳ1)2 + (x2 − ȳ2 − b̃)2 = cet (x, ȳ)

for any decoder actions ȳ and ỹ satisfying ȳ ̸= ỹ. Therefore,
if we denote the bin corresponding to a decoder action
y by By , we get By = {x | x1 = y1 and x2 ∈ R}. This
means that the best response of the encoder is to reveal
the value of X1 completely without giving any additional
information. Hence, the encoding policy z = γ̃ e(x) = x1
and the decoding policy y = γ̃ d(z) = [z, 0]T form a Nash
equilibrium as they are best response maps of each other.

(iv) From Kagan et al. (1973, Theorem 5.3.1), we know that
E[X2|X1 = x1] = 0 for all x1 regardless of the source distri-
bution when b1 = −b2. In this case, a similar analysis can
be carried out to show that there always exists an infor-
mative linear Nash equilibrium for any source distribution
when b1 = −b2.

ppendix G. Proof of Theorem 17

By applying a suitable linear transformation of variables, one
an obtain an equivalent problem. In this equivalent problem, the
im is to convey a sequence of independent Gaussian sources, and
he bias is zero for all sources except one. Due to the indepen-
ence of these sources, the problem decouples. By using the result
f Kazıklı et al. (2022, Theorem 4), it follows that there exists a
ash equilibrium where the encoder uses a quantization policy
ith any number of bins for the source corresponding to a non-
ero bias. On the other hand, since the bias is zero for all other
ources, revealing these sources leads to a Nash equilibrium.
While it is possible to apply a transformation of variables for

ny n ≥ 2, we specify a transformation of variables for n = 3
imensional scenario as an example. In particular, consider X =

M and U = T −1Y where

≜
1√

b2 + b2 + b2
1 2 3
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S
t

c

×

⎡⎢⎢⎢⎢⎣
b2

√
b21+b22+b23√
b21+b22

−b1
√
b21+b22+b23√
b21+b22

0

b1b3√
b21+b22

b2b3√
b21+b22

−

√
b21 + b22

b1 b2 b3

⎤⎥⎥⎥⎥⎦ = (T −1)T .

Under this transformation of variables, the objective function of
the encoder becomes

ce(m, u) =(x1 − y1)2 + (x2 − y2)2

+ (x3 − y3 − (b21 + b22 + b23)
1/2)2 ≜ cet (x, y).

For the objective function of the decoder, we get cd(m, u) =

∥m− u∥
2

= ∥x− y∥
2 ≜ cdt (x, y). Since X1, X2, X3 are independent

random variables, we obtain decoupled one-dimensional cheap
talk problems where the biases for X1 and X2 are zero, and the
bias for X3 is non-zero. Thus, revealing X1 and/or X2 and applying
a signaling game policy for X3 yield a Nash equilibrium.

Appendix H. Proof of Theorem 18

If the condition in the statement of the theorem holds, the
sources X1 = b1M2 − b2M1 and X2 = b1M1 + b2M2 in the equiv-
alent problem become independent. Therefore, in the equivalent
problem, we get decoupled one-dimensional cheap talk problems
where there is a zero bias for X1 and a non-zero bias for X2. Thus,
revealing X1 yields an informative linear Nash equilibrium.

Appendix I. Proof of Theorem 19

If the encoder uses M1, . . . ,Mñ with ñ < n in constructing
its linear policy as described below and gives no information
related to Mñ+1, . . . ,Mn, we obtain a linear Nash equilibrium
where the encoder reveals (ñ − 1) dimensions completely. Sup-
pose without loss of generality that E[M1] = 0. We first apply
a linear transformation of variables. In a similar manner to the
two-dimensional case, we obtain an equivalent problem in a
transformed coordinate system. In particular, let

T ≜

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
√
2

−1
√
2

0 . . .

1
√
2×3

1
√
2×3

−2
√
2×3

0 . . .

...
1

√
(n−1)×n . . . 1

√
(n−1)×n

−(n−1)
√
(n−1)×n

1
√
n . . . 1

√
n

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (35)

ince T −1
= T T and T b = [0, . . . , 0,

√
nb]T , the cost function of

he encoder for the equivalent problem becomes

e(m, u) =

n∑
k=1

(mk − uk − b)2

=

n−1∑
k=1

(xk − yk)2 + (xn − yn −
√
nb)2 ≜ cet (x, y).

The cost function of the decoder in this transformed coordinate
system is given by cd(m, u) = ∥m − u∥

2
= ∥x − y∥

2 ≜ cdt (x, y). It
is seen that there is no bias for X1, . . . , Xn−1, and there is a non-
zero bias for Xn considering the cost function of the encoder in
this transformed coordinate system.

We note that revealing X1, . . . , Xn−1 is equivalent to revealing
M1 − M2, M2 − M3, . . . , Mn−1 − Mn. In the following, we show
that if the encoder reveals these random variables, the optimal
estimate for Xn at the decoder becomes zero. Towards that goal,
let M̃ ≜ −M , M̃ ≜ −M , . . . , M̃ ≜ −M and observe that
1 n 2 n−1 n 1

12
M̃1, . . . , M̃n have the same distribution as M1, . . . ,Mn due to the
symmetry of the source distribution. Hence, we get

E[M1 + · · · + Mn|M1 − M2, . . . ,Mn−1 − Mn]

= −E[M̃n + · · · + M̃1|M̃n−1 − M̃n, . . . , M̃1 − M̃2].

This proves that the conditional mean of Xn given that X1, . . . ,
Xn−1 are revealed is zero. We know that in the transformed
coordinate system, there is a non-zero bias only for Xn. If the
encoder reveals X1, . . . , Xn−1 completely, the best response of the
decoder is to use these revealed parameters as the corresponding
estimates, and the action taken for Xn is zero. In other words, if we
have z = γ̃ e(x) = [x1, . . . , xn−1]

T as the encoding policy, the best
response of the decoder becomes y = γ̃ d(z) = [z1, . . . , zn−1, 0]T .
Since we consider the Nash equilibrium concept, it is required
to take the best response of the encoder into account, as well.
Towards that goal, one can construct quantization bins as in
the proof of Theorem 13 to prove the result. In fact, it is also
possible to see the result by only looking at the policies. In
particular, suppose that the decoder uses the policy y = γ̃ d(z) =

[z1, . . . , zn−1, 0]T . This means that the decoder uses y1, . . . , yn−1
as its estimates for X1, . . . , Xn−1, and the estimate for Xn is zero
regardless of the transmitted message. Since the encoder wishes
accurate estimations of X1, . . . , Xn−1 at the decoder without any
bias, the best response of the encoder to the decoding policy y =

γ̃ d(z) = [z1, . . . , zn−1, 0]T becomes z = γ̃ e(x) = [x1, . . . , xn−1]
T .

Although the encoder has a bias regarding Xn, the encoder can-
not affect the corresponding estimate at the decoder since the
decoder action yn is zero regardless of the encoded message. This
implies that the encoding policy z = γ̃ e(x) = [x1, . . . , xn−1]

T

and the decoding policy y = γ̃ d(z) = [z1, . . . , zn−1, 0]T are
best response maps of each other. Hence, an encoding policy that
completely reveals X1, . . . , Xn−1 leads to a Nash equilibrium.

Appendix J. Proof of Theorem 21

Suppose without loss of generality that E[M1] = 0. Consider
the transformation of variables in (35). We obtain an equivalent
problem as in Lemma 9 where the linear transformation T is
fixed as in (35), and the encoder and decoder design γ̃ e(·) and
γ̃ d(·), respectively. The random variables X1, . . . , Xn defined by
(35) are i.i.d. and follow the same distribution as M1, . . . ,Mn.
Thus, the problem decouples to n one-dimensional cheap talk
problems where there is a non-zero bias only for one of the
problems. Suppose that the encoder does not reveal information
related to Xn, which is the source corresponding to a non-zero
bias. In this case, the rate of the original problem is identical
to that of a team theoretic problem with (n − 1) i.i.d. sources.
Since the term that contributes to the objective of the encoder
is E[(Xn − Yn −

√
nb)2] = nb2 in the case that no information is

conveyed related to Xn, we obtain an additional b2 term for the
encoder’s distortion bound. As a result, we get

E[
∑n

i=1(Mi − Ui − b)2]
n

=
E[

∑n−1
i=1 (Xi − Yi)2]

n
+ b2.

By taking the limit of both sides, we have

lim
n→∞

E[
∑n

i=1(Mi − Ui − b)2]
n

= lim
n→∞

E[
∑n−1

i=1 (Xi − Yi)2]
n

+ b2

= lim
n→∞

E[
∑n−1

i=1 (Xi − Yi)2]
n − 1

+ b2,

where the last equality follows since n → ∞. Hence, we obtain
a reduced team theoretic problem where the encoder wishes to
convey an i.i.d. source X , . . . , X with a zero bias. Therefore, if
1 n−1
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he pair (RT ,DT ) is achievable in a team theoretic setup, R = RT
nd De ≥ DT + b2 are achievable for the original game theoretic
etup. For the distortion bound of the decoder, we use the relation
[
∑n

i=1(Mi − Ui − b)2] = E[
∑n

i=1(Mi − Ui)2] + b2n.

ppendix K. Proof of Theorem 24

If we take DT = min{De − b2,Dd} for the team theoretic setup
n Theorem 21, the corresponding rate RT is achievable for the
ame theoretic setup. Thus, we get

inf{R | (R,De,Dd) is achievable}

≤ inf{R | (R,min{De − b2,Dd}) is achievable},

hich leads to the bound in the statement of the theorem via
emma 23.
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