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Abstract

In this study, optimal channel switching (time sharingastgies are investigated under average power and cost
constraints for maximizing the average number of corre@beived symbols between a transmitter and a receiver
that are connected via multiple flat-fading channels witditace Gaussian noise. The optimal strategy is shown
to correspond to channel switching either among at mosettierent channels with full channel utilization (i.e.,
no idle periods), or between at most two different channétk partial channel utilization. Also, it is stated that
the optimal solution must operate at the maximum averageepawd the maximum average cost, which facilitates
low-complexity approaches for obtaining the optimal sggt For two-channel strategies, an upper bound is derived,
in terms of the parameters of the employed channels, on tieebatween the optimal power levels. In addition,
theoretical results are derived for characterizing thénagdtsolution for channel switching between two channels,
and for comparing performance of single channel strate@ieficient conditions that depend solely on the systems
parameters are obtained for specifying when partial chanitigation cannot be optimal. Furthermore, the proposed
optimal channel switching problem is investigated for ldtinic cost functions, and various theoretical results ar
obtained related to the optimal strategy. Numerical exampte presented to illustrate the validity of the theoagtic
results.

Index Terms- Channel switching, Gaussian channel, fading, probatifigorrect decision, partial transmission,

logarithmic cost.

I. INTRODUCTION

Time sharing (randomization) has attracted a significaat dkinterest in the literature due to its capa-

bility to provide performance improvements for communimatsystems [1]-[11]. In [2], it is demonstrated
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that the average probability of error over additive noisarctels with arbitrary noise probability density
functions (PDFs) can be reduced via optimal stochasticasilggn which performs time sharing among at
most three different signal levels for each information bpi The study in [5] investigates performance
gains that can be achieved by detector randomization astiattic signaling, and proves that the optimal
receiver design is realized by time sharing (randomizatlmetween at most two maximum a-posteriori
probability (MAP) detectors corresponding to two deteristio signal vectors. For the downlink of a
multiuser communications system, [8] performs joint optation of signal amplitudes, detectors, and
detector randomization factors in order to reduce the wmase average probability of error. Similarly,
jamming performance of average power constrained jamnagrde enhanced by performing time sharing
among different power levels [3], [6], [7]. In [3], the optahtime sharing strategy for a jammer that
operates over a channel with a symmetric unimodal noiseitgeiss shown to correspond to on-off
jamming when the average power constraint is below a cetit@@shold. The optimum jamming strategy
that minimizes the probability of detection in the Neymasafson framework is considered in [7], where
it is stated that power randomization between at most twierdiiit power levels can result in the highest
jamming performance over an additive noise channel withreege PDF.

Performance enhancements via time sharing can also bee@ati communication systems where the
transmitter and the receiver are connected through mellthbannels [3], [10]-[13]. In such a scenario,
channel switchingcan be performed by transmitting over a channel during aicegeriod of time and
switching to another channel during the next period. In {Bg optimal channel switching strategy is
studied for minimizing the average probability of error b\ set of channels with additive unimodal
noise under an average power constraint, and it is provedhbaoptimum performance can be achieved
via time sharing between at most two channels and powerde@@l average power constraindd-ary
communication system in the presence of multiple additiwesen channels with generic noise PDFs is
studied in [11] in the context of minimizing the average bitity of error by joint optimization of channel
switching, stochastic signaling, and detection strageditels demonstrated that the optimal strategy is to
employ deterministic signaling or time sharing between asiniwo signal constellations over a single
channel, or to perform channel switching between two chisnmigh deterministic signaling. The benefits
of channel switching are investigated in [13] for additivauSsian noise channels under average and
peak power constraints, where the objective is to maximieeage channel capacity. It is proved that the
optimal solution performs channel switching between attntwe different channels. The study in [10]
formulates the channel switching problem by incorporatihgnnel costs associated with the usage of each

channel for transmission and imposing an average costreamstThe optimal channel switching strategy



over a set of Gaussian channels and under average power sindoostraints is shown to correspond to
time sharing among at most three different channels [10].

The previous studies on the channel switching problem madmhploy the average probability of
error [3], [10], [11] or the average channel capacity [13]ths objective functions, and assume that
the channels are fully utilized; i.e., there always exisésigmission over one of the channels and there
are no idle periods. In this manuscript, the channel swiigtproblem is investigated for maximizing
the average number of correctly received symbols in the rmesef the full transmission/utilization
constraint. More specifically, the optimal channel swibtchistrategies are designed over a set of flat-
fading channels under average power and cost constraintedanaximization of the average number of
correctly received symbols. Rather than forcing full aéion of channels (i.e., no idle periods) as in [10],
a novel and more general formulation is developed for chlaswigching, where communication may not
occur during a certain period of time, which, in some scasaiis shown to attain a higher average number
of correctly received symbols than full channel utilizatidn addition, unlike the no fading assumption in
[10], Rayleigh fading channels are also considered in d@sggthe optimal channel switching strategies.
Furthermore, the proposed optimal channel switching @rbis studied for logarithmic cost functions,
where a logarithmic relation is employed between the sigmaloise ratio (SNR) of each channel and its
utilization cost, which is in compliance with the cost fuoais in the literature [10], [14], [15], [16]. The
main contributions and novelty of the study in this manysccan be summarized as follows:

« The optimal channel switching problem is formulated in tihesence of partial data transmission for

the first time.

o It is shown that the optimum solution is achieved via chamwitching either among at most
three channels with full transmission or between at most tivannels with partial transmission
(Proposition 1).

« Theoretical results are obtained for characterizing therad solution for channel switching between
two channels, and for comparing the performance of singéecél strategies (Propositions 2 and 3).

« Sufficient conditions for the optimality of full data tranmsion are derived in terms of channel
costs, standard deviations of channel noise, and chaniebfatatistics (Proposition 4). Under these
conditions, partial transmission strategies are guaeante be not optimal, which facilitates a low
complexity solution for the optimal channel switching plex.

« For logarithmic cost functions, it is shown that the partraihsmission strategies are not optimal if
the average power limit is higher than a certain threshohiclvdepends on the parameters of the

worst and best channels, as well as the parameters of théuoasion and the probability of correct
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Fig. 1. Channel switching amonf channels, wher€’; denotes the cost of using chanriel

decision (Proposition 5).
In addition, numerical examples are presented for the detration of the theoretical results.

An important practical application of the channel switchproblem considered in this manuscript is a
cognitive radio (CR) system, in which primary users are regd as owners of the frequency spectrum,
and secondary users can utilize the frequency bands of priosers under certain conditions [10], [17].
In the spectrum trading framework proposed in [18], primasgrs can sell certain part of their spectrum
to secondary users for the aim of revenue maximization. & tlase, there can exist multiple available
frequency bands (channels) with different costs for theafsgecondary users, and a secondary user can
perform channel switching among different available cledsto improve its communication performance
[10]. Similar to the effort of secondary users in CR netwdiksobtaining the best performance over the
available bands, the aim of this study is to design optimainclel switching strategies for an arbitrary
signal constellation to maximize the average number ofectly received symbols between the transmitter
and the receiver under average cost and power constraietsnaultiple fading channels corrupted by
additive white Gaussian noise.

The remainder of the manuscript is organized as follows:Sis¢em model and the problem formulation
are presented in Section Il. The solution of the optimal dehaswitching problem is characterized and
theoretical results are obtained in Section Ill. The optict@annel switching problem is studied for
logarithmic cost functions in Section IV. In Section V, numcal examples are provided, which is followed

by the concluding remarks in Section VI.

[I. SYSTEM MODEL AND PROBLEM FORMULATION

The channel switching problem is formulated for &frary communication system withk’ channels

between the transmitter and the receiver, as shown in Figchinnel switching is performed over a



communication interval that consists of a sufficiently &ngumber of symbols. Depending on fading

conditions, the following two cases are considered:

« Case 1:In this case, it is assumed that slow fading occurs and thengha@oefficient of each channel
is fixed over the whole communication interval during whidtacnel switching is performed. Also,
the transmitter is assumed to have the channel state infamgCSI) for all the channels, which
can be provided in practice via feedback from the receiver.

. Case 2:In this case, block fading is considered, where each blocaisists of a number of sym-
bols and the block duration is significantly shorter than ¢henmunication interval during which
channel switching is performed. It is assumed that the oBlacoefficients change from block to
block (independently) but the statistics of the channeffments are fixed for each channel in the
communication interval. Also, the transmitter has the clehmlistribution information (CDI) for all

the channels but it does not have CSI.

In both cases, channels are assumed to be frequency natyeelg.e., flat fading) to eliminate inter-
symbol interference.

To enhance system performance, the transmitter performsneh switching amond< channels over
time in perfect synchronization with the receiver, thattime sharing is performed among different
channels by using only one channel in a certain fraction wfeti[3], [11]! Fraction of time when
transmission is performed over chann& denoted by\;, which is called thehannel switching factofor
channeli. The channel switching factors satisiy”*, \; < 1 and), > 0, Vi € {1... K}. Thus, unlike the
previous studies such as [3], [10], [11], it is possible taehalle periods of communications where symbol
transmission/reception is not performed (in the cas§3ﬁ:1 A; < 1), which can provide performance
improvements in certain conditions as compared to fulliz#ilon of channels (see Proposition 1 and
Section V).

Remark 1: For the implementation of channel switching, the transnifind the receiver are assumed
to be synchronized so that the receiver knows which chasm&irrently in use or if it is the idle period.
Then, the receiver employs a decision rule for the corredpanchannel or does not perform any decision
for the idle period. In practice, this assumption can be imad by employing a communications protocol
that allocates the firsfV;; symbols in the payload for channel 1, the nadkt symbols in the payload for
channel 2,..., and the las¥; k., symbols for the idle period. The information on the numbesyohbols
for different channels and for the idle period can be incldidie the header of a communications packet.

It is assumed that the transmitter and the receiver haveesRE units so that they can use only one channel at a given[8inéL1].



GenericM-ary modulation with an arbitrary one-dimensional or twoidnsional signal constellatién
is considered for communication over each channel. The anpceived signal corresponding to channel

1 can be expressed as

y=VPas? +n, (1)
for j € {0,1,...,M — 1} andi € {1,..., K}, wheres” s\ ... s~V denote the set of (complex)

transmitted signals (with unit average energy) employedMoeary communications over channgl P;
determines the average power of the transmitted signalifanmeli, «; is the complex fading coefficient
of the ith channel, and; is circularly-symmetric complex Gaussian noise for charingith mean zero
and varianceo?. It is assumed that the noise components are independersisattie channels and they
are also independent of the fading coefficients and the rrdtesi signals. In addition, equally likely
symbols are considered; hence, the prior probability oheaanbol sf.j) for j € {0,1,...,M — 1} is
equal tol/M. It is assumed that,’s are perfectly estimated at the receiver. The signaldisenratio
(SNR) per symbol is defined as

_ Pi|ai|2 )

(2)

For optimum coherent demodulation, a generic expressionhi® probability of symbol error corre-
sponding to the SNR in (2) over Gaussian channels can bedstaeectly or approximately (depending

on the modulation type and order) as [19]

Ps(7i) =n@ (ki) 3)

where(-) denotes the&)-function, +; is as in (2), and; and x are constant parameters that depend on
the modulation type and order. It should be noted that theession in (3) is exact for several types of
modulations such as BPSK, BFSK and M-PAM, and it holds apprately for other types of modulation
at high SNRs [19].

In Case 2, the fading coefficient; for channeli; is modeled (over the fading blocks) as a zero-mean,
circularly-symmetric complex Gaussian random variabléhwariances?, which corresponds to Rayleigh
fading. Then,y; in (2) becomes an exponential random variable, and the g@gueobability of symbol

error can be obtained by calculating the expected value Joby8r that exponential distribution, which

20One-dimensional and two-dimensional signal consteltatige.g., PAM, PSK, QAM) are employed in almost all practicigital
communications systems.



yields [19]
gi<P>=ﬁ<1— %) @)

where g;(P) represents the average probability of symbol error ovenckki for a power level ofP,
i = n/2 and& = k?/2. It is noted thatg;(P) is a convex and monotone decreasing functionPofor
P >0.
In Case 1, the fading coefficients of the channels are fixethguhe channel switching operation and
they are known by the transmitter and the receiver. Sincgtbbability of symbol error depends an

and o; only through theja;|?/o? term (see (2))Ja;| = v/2 can be employed foi = 1,..., K without

loss of generality, and the differences between the charwedficients can be reflected to thé terms

accordingly. Then, based on (2), (3) can be expressed fag Cas

9:(P) =nQ (ff \/§> (5)

which holds exactly for BPSK, BFSK and M-PAM modulations aapproximately for other types
of modulation at high SNRs [19]. For rectangular M-QAM and SpPconstellations, the exact error

probability of symbol error for Case 1 can be stated as

-1 (1-v0(2)

wheren and s are determined by the modulation type.

The analysis in this study is generic to a certain extentesinemploys (6) for QPSK and M-QAM
modulations in Case 1, (5) for other types of modulation irs€Ca, and (4) in Case 2. Although [10]
considers (5) in Case 1 for scenarios with full channel zgtion, there exist no studies in the literature
that investigate the channel switching problem based onn@Yase 1 (i.e., for QPSK and M-QAM
modulations with slow fading) and based on (4) in Case 2, (ice. Rayleigh fading). In addition, the
scenario with partial channel utilization is proposed fbaignel switching for the first time in this study.

In the considered system model in Fig. 1, there existshannels for transmission, and each channel
has a cost value, denoted by for i € {1,..., K}, which represents the cost of utilizing a channel per
unit time [10], [18], [20]. Cost values are nonnegative, #&melrelation between costs of different channels
is given byC; > C; if 07/} < 02/} in Case 2 and it} < o7 in Case 1j # 4. This is motivated by

the fact that a channel with a highet/o? value, or a lowers? value (equivalently, higher SNR) yields
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Fig. 2. A communication interval of’ seconds during which channel switching is performed betwibe transmitter and the receiver.
Communication occurs during the transmission period aong@ssduring the idle period); shows the percentage of time channeis
employed for transmission withe {1,..., K}, and\x+1 denotes the percentage of the idle period in the intervas. Symbol rate of the
communication link is assumed to & in symbols per second.

a lower average probability of symbol error as suggested4by(6), which requires such a channel to
have a higher cost [20], [21]. In the remainder of the manpgcs; is employed to denote thehannel

parameterof the ith channel for both Case 1 and Case 2, which is defined as

o2, Case 1
i & (7)
o?/s?, Case 2
The channel parameters satigfy< 3; for C; > C;.

In this study, several assumptions/properties are stetgtding the probability of error functiap(-) in
order to derive generic theoretical results which are Vlaidvarious types of modulations. The following
assumptions state the convexity and monotonicity progedf the error function.

Assumption 1: g;(P) is a convex function of for P > 0.

Assumption 2: ¢g;(P) is a monotone decreasing function Bf 3;, that is, g;(P) = g(P/;) whereg is
a monotone decreasing function.

The convexity assumption is satisfied for all three typesrobrefunctions in (4)-(6). Similarly, As-
sumption 2 is valid for all types of error probability funatis, which are actually functions of SNR rather
than power.

The aim is to perform joint optimization of channel switapifiactors and signal powers in order
to maximize the average (expected) number of correctlyivedesymbols per unit of time between a
transmitter and a receiver under average power and costrams. It is assumed that the transmitter
knows the fading coefficients of the channelss, in Case 1. On the other hand, the transmitter has the
knowledge of the? /o2 term for each channel but does not know the fading coeffid@mgach symbol in
Case 2. A communication interval for the channel switchipgration is shown in Fig. 2, whefe denotes
the duration of the interval in seconds aRddenotes the symbol rate over a given communication link in
symbols per second, which is the same for all hehannels. According to Fig. 2, for the communication

interval of T' seconds, the average (expected) number of correctly etasymbols over théth channel



can be expressed as
Nc,i = )\ZTR Pc,i (8)

where),; is the channel switching factor for chanre&ndP. ; is the average probability of correct decision

over channel for a power level ofP;, which can be calculated as
Pei=1-gi(F) 9)

with g¢;(P;) denoting the average probability of symbol error as contbirte(4)-(6) for different types
of modulations and cases. The expression in (8) corresptindise average number of symbols that
are correctly received during the communication interddeagth \; 7. Extending (8) to all the channels

yields the average number of correctly received symbolsduan interval ofl” seconds over all channels:

K
Ne=TRY AP (10)

=1
For a communication interval af seconds, the objective function to maximize is given by tkgression
in (10). SinceT and R can be assumed to be constant design/system parametersatimaization of

(10) is equivalent to maximizing
K
Po=Y MNP (11)
i=1

Defining h;(P) = 1 — g;(P) as the correct decision probability over channébr a power level ofP,

(11) can be expressed based on (9) as

K
P.= Z Ai hi(F;) . (12)

Remark 2: The weighted sum of the correct decision probabilities(i®) represents the average
probability of correct decision if the sum of the channeltshing factors equals td; otherwise, it
corresponds to the “normalized” average number of corrgatbceived symbols, normalized hlyR,
which is the number of symbols transmitted during a comnatiioic interval, assuming a fixed symbol
duration. In the rest of the manuscript, the objective fiorcin (12) will be referred to as the “average
probability of correct decision”, regardless of whetheretlshannel switching factors sum toor not.

The reasoning behind the choice of the average probabiligooect decision instead of the average

probability of error as the optimization criterion can bepksned as follows: When the probability of
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error metric, i.e.,Zfil i gi(F;), is employed in partial utilization of channels, the traitsen may choose
not to send any symbols, that is; = 0, Vi (which is not possible in full utilization of channels), tu
leading to zero average probability of error, which is thenimum that can be achieved. On the other
hand, for the probability of correct decision metric in parttilization, if no symbol transmission occurs
during a certain period of time, the average probability ofrect decision,Zfi1 Ai hi(P;), turns out to
be zero during that period, which is undesirable. Hence atlerage probability of correct decision, as
opposed to the average probability of error, as the optitimzariterion, forces the transmitter to exploit
the communication channels as efficiently as possible.hig d¢ontext, the terngoodputcan be used to
replace the average probability of correct decision (wpprapriate scaling) when it refers to the ratio
of the total number of correctly received symbols to theltbensmission time at a system level without
taking into account encoding/decoding, the packet-bykgiaitansmission scheme and the layered concept
of networking.)

It is noted that for any two channels, the one with a highet abgays results in a higher probability of
correct decision for the same power level; that ig/it> C; (which impliesg; < j;), thenh;(P) > h;(P)
for all P > 0 (cf. (4)-(7)). Several constraints must be imposed whil&imé&ing the average probability
of correct decision in order for the channel switching siyés to be applicable in practical settings.
Namely, there exists an average power constraint, whichbeastated agfi N P <AL, where A
represents the average power limit. Also, an average tigsgmn cost constraint can be expressed as

Zfil A\ C; < A, whereA, denotes the average cost limit [10]. Then, the followingrapation problem

is proposed:
K
max )\z hz(B)
{)\i,PL-}fil i=1
K K
subject toZ)\i P <A, , Z NG < A, (13)
=1

i=1
K
dN<1, N>0, Vie{l...K}.
i=1

The optimization problem in (13) searches over bl transmissionstrategies (i.e.Zfi1 A; = 1) and

partial transmissiorstrategies (i.e.Zfi1 A; < 1) in order to achieve the maximum probability of correct
symbol decision over available channels under average ipam@ cost constraints. As investigated in
the remainder of the study, the partial transmission gjyateay yield higher average probabilities of

correct decision in certain scenarios than the full trassion strategy and can be the solution of the
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optimization problem in (13). In such scenarios, no trarssion during a certain period of time facilitates
a more efficient usage of the cost budget. Hence, by genagalihe concept of channel switching to
scenarios with possible idle periods, the average numbeowéctly received symbols can be improved
in a communication system that is subject to average cospawer constraints. In fact, this improvement
can be achieved without any significant complexity incream@mpared to the channel switching systems
in the literature [10]. In addition, the average number afrectly received symbols can be considered as
an important parameter in practical systems.

For the theoretical analyses, it is assumed without losseokrlity that the channel parametgris
distinct for each channel. This is based on the fact that efdhare multiple channels with the same
channel parameter, channel switching between such clsoaelnever increase the average probability
of correct decision compared to employing only one of thenthat same average power for the total
duration of time, which is due to the concavity of the corrdetision probability expressions;(-). For
this reason, the problem formulation that considers ondydhannels with distinct channel parameters is

sufficient to obtain the overall optimal solution.

[1l. OPTIMAL CHANNEL SWITCHING — GENERAL ANALYSIS

In this section, the optimal channel switching problem i8)(is examined in detail. In particular,
the problem in (13) is reduced to a simpler equivalent forrd #me optimal strategies are obtained
based on low-complexity calculations. The assumption nadmbeit the ordering of channel costs without
loss of generality is that the cost values sati§ty > Cs > --- > Ck, thus the channel parameters
are ordered ag; < 5, < --- < Bg. In this case, the probability of correct decision functiasatisfy
hi(P) > ho(P) > --- > hg(P) for all P > 0.

Based on the ordering of the channel costs, it is clear thdt i C, the optimal solution of (13) is
to transmit over channdl exclusively with powerA,,. In other words, since transmission over charnel
results in the highest probability of correct decision amat the channels, the optimal approach becomes
the use of the best channel (chanmglall the time at the maximum power limit when the cost budget
allows it.

Since (13) can easily be solved fdr. > (1, the case ofd, < (' is considered in the remainder of the
study. It is straightforward to show that the solution of ffreblem in (13) always satisfies the average
power constraint with equality sinde(P) is a monotone increasing function &ffor all i € {1,..., K}.
Mathematically speaking, if\:, P}X, denotes the solution of the optimization problem in (13gnth

Zfil A Pr = A,. Furthermore, based on a similar approach to the proof gbpditon 1 in [10] with
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slight modifications to consider the partial transmissitratsgies, it can be inferred that the optimal
channel switching solution operates at the average cod timat is,Zfil AiCF = A.. Hence, an optimal
channel switching strategy must utilize all the availablerage power and average cost fr < ;.
Therefore, the optimization problem in (13) can be solvedtwysidering equality constraints (instead of
inequality constraints) for the average power and averagé which provides an important reduction in
computational complexity.

The following remark is presented to reveal the reasonirignigethe use of partial transmission.

Remark 3: Partial data transmission could not be an optimal stratefjyhe average cost constraint
did not exist in the optimization problem {@3); that is, the optimal solution 0f13) satisfiesti1 A=1
in the absence of the cost constraint.

Proof: The proof can be obtained by contradiction. {et’, P}, denote the solution of the opti-

mization problem in (13). Suppose that the average costii@anisdoes not exist and the optimal solution

satisfiesS ", \r < 1. Define the idle period gy =1— X \r. Then, following relations can be

7 i=1"""

established:
K K
D ONh(P) <D N (P (14)
=1 =1
K
<D A (P + Nyt ha(0) (15)
=1
K
<h (Z NP+ Ny 0) (16)
=1

K
= Iy (Z Aij) (17)

where the first inequality follows from the fact that(P) > h;(P), V P (sinceC; > Cy > --- > (Ck),

the second inequality uses the facts that | > 0 (due to partial transmission) arid (0) = 1/M with

M denoting the modulation order, and the third inequalitybsamed from the strict concavity @f;. The
inequality in (14)-(17), namely} = \: h;(PF) < hy <Efi1 )\;*Pi*), indicates that the optimal solution
yields a lower average probability of correct decision ttt@solution which utilizes channglexclusively
(i.e. with channel switching factar) with the same average powgfi L Af P, but operates at an average
cost C; that satisfies”; > <Zfi1 )\j) Cy > S MC; sinceCy > C; for i € {2...K}. Hence, in
the absence of the cost constraint, there always existd &rdnsmission strategy that achieves a higher
average probability of correct decision than a partialgnaission strategy, which implies th@fi A=

must hold, leading to a contradiction. Therefore, partiah$mission cannot be optimal in the absence of
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the average cost constraint. [ |

Remark 3 points to an important fact about the conditionseumchich partial transmission strategy can
be applied instead of full utilization of channels. Remadt&es that partial transmission can be reasonable
only if the budget is limited. The optimal strategy for aniomted budget is to utilize exclusively the
channel with the highest cost (i.e., the highest corredist®tprobability) at the maximum average power.
Thus, partial data transmission may be optimal when the éusigould be used efficiently to maximize
the probability of correct decision (e.g., instead of usanipw-cost channel exclusively, it may be better
to use a high-cost channel partially).

In the following proposition, it is stated that the optim&laninel switching strategy, which is obtained
as the solution of (13), corresponds to channel switchitfteeiamong at moshin{ K, 3} channels with
full transmission or between at mastin{ X', 2} channels with partial transmission.

Proposition 1: Assume that the power levels satigfye [0, Py for some finiteP,,... Then, the optimal
channel switching strategy is to switch either among at mast{ X", 3} channels with full transmission,
or between at moshin{ K, 2} channels with partial transmission.

Proof: The proof is based on Carathéodory’s theorem [22], anda&irarguments to those in [10], [23]
can be employed. Assume that > 3 since the statement in the proposition already holds otiserw

First, setd/ and W are defined as

U={(Ph(P),C;), Vic{l,...,K}, VP € [0, Ppay]} U{(0,0,0)} (18)

K K K K
W = { (ZAZ-B,ZAZ-MB),ZAZ-@) YA >0, Y N<1, VP € [o,Pmax]}. (19)
i=1 i=1 i=1

i=1
From (19), it is observed that the solution of (13) must be l@ment of V. Also, it can be concluded
that WV is a subset of the convex hull of according to the definitions in (18) and (19). In additionedu
to the aim of maximization in (13), the solution can be showrcorrespond to an element dV that
lies on the boundary of the convex hull &f based on similar arguments to those in [10], [23]. Then,
Carathéodory’s theorem states that any element of on thedawy of the convex hull dff (including the
solution of (13)) can be expressed as the convex combinafiah mostdim(l/) = 3 elements iri/ [22].
Therefore, the solution of (13) corresponds to channelchivig either(i) among at moss channels with
full transmission if(0, 0, 0) is not one of the elements &f employed in the convex combination for the
solution, or(ii) between at mos2 channels with partial transmission otherwise. [ ]

Based on Proposition 1, an optimal channel switching smhutiorresponds to one of the following
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strategies: Partial/full transmission over a single clednpartial/full transmission over two channels, and

full transmission over three channels. The following smdiexplore the details of those strategies.

A. Single Channel Strategies

The optimal solutions for full and partial transmission 0@esingle channel are investigated in this
section.

Strategy 1P — Partial Transmission over a Single Channelin this case, one of the channels is
employed patrtially; that is, a single channel is used dutirggbusy period, and an idle period exists, as
well. A partial transmission strategy that employs a sirgflannel with a cost smaller thah,, cannot be
optimal (i.e., the solution of (13)) since the optimal s@uatmust operate at the average cost limjt
as discussed above (the third paragraph of Section IlI).

In some cases, the optimal channel switching strategy sjporels to Strategy 1P. In those scenarios,
the optimal solution must be searched among the channets amits higher tham.. Let S, £ {I €
{1,...,K}: C; > A.}. Assume that channele S, is employed with channel switching factas and
power P,. Then, \,P, = A, and \;,C; = A.. Therefore, the optimal solution for channeis obtained as
A= A./C; and Pf = A,C;/A.. Hence, the average probability of correct decision is mjibg

(e = 2o (4, 20)
and the channel that yields the optimal solution under &gjsatlP is obtained as

AC %
it = arzgeglgax . h; (Ap%c) . (21)

Strategy 1F — Full Transmission over a Single Channeltn this case, one of the channels is employed
all the time. This strategy may be the optimal channel switgtstrategy if there exists a channel with

cost A. since otherwise the average cost cannot be equadl.to

B. Two-Channel Strategies

There exist two strategies for channel switching betweem ¢hannels: Partial transmission over two
channels and full transmission over two channels.

Strategy 2P — Channel Switching between Two Channels with P&al Transmission: In this strategy,
channel switching is performed between two different cledsiand the sum of channel switching factors

is smaller thanl, i.e., there exists an idle period with no data transmissi@t channeli and channel
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j denote the channels employed in this strategy. Then, thelgroin (13) can be formulated under

Strategy 2P as

max Xi hi(P;) + Aj hi(P;)

Ais Aj, Piy Pj

subject to\, P, + \; P, = A, ,
J J = p (22)

)\Z'CZ‘—F)\J'CJ':AC,

)\i+)\j<1a )\Z‘,)\jE[O,l).

It is noted that Strategy 1P is covered as a special case ate§yr 2P. It is observed from the average
cost constraint in (22) that, for the optimal channel swiighbetween two channels, at least one of
the channels should have a cost greater tHanTherefore, in order to obtain the optimal solution for
Strategy 2P, the problem in (22) should be solvedAQ(/ — 1) channel pairs, wheré&, is the number
of channels the costs of which are greater thanand K is the total number of channels.

Based on the argument in the previous paragraph, assunmeulitoss of generality, thaf; > C;
for the problem in (22). From the average power and cost caings in (22), the optimal value of
A; and P; can be expressed in terms of the optimal values\ofind P, as \; = (A. — X\, C;)/C}
and P; = (A, — \;P)/);. Therefore, the optimization problem in (22) can be simgifisignificantly
by optimizing over two variables instead of four variablesséd on the two equality constraints. The

optimization problem in (22) can then be expressed as fatlow

A, =\ P
(P A s B 2
ey NP J( by ) (23)
P;el0, Ap /]

where); = (A.—\; C;)/C; and the constraints foy; and P, are obtained from the relations C;+\; C; =
A. and )\, P, + \;P; = A,. From (23), it is observed that the optimal solution for &gy 2P requires a
search over a two-dimensional space only (for each possfidanel pair). This two-dimensional search
must be executed by first determining a valueXpand then finding the optima®; for the current\; value
since the search interval faf; depends on the value of;. Finally, the maximum for all thosé\;, P,)
pairs is calculated and the pair that yields the maximumevaluthe objective function is determined to
be optimal.

Strategy 2F — Channel Switching between Two Channels with RuTransmission: In this strategy,

channel switching is performed between two different cledsiand the sum of channel switching factors
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is equal tol. The formulation of the problem in (13) under Strategy 2Fsddalows:

max A hi(B) + A hyi(P))

Ais Aj, Py, Pj

subject to\; P, + \; P, = A,
J ) =] p (24)
ANCi+ ) Cy = A,
)\i+)\j:17 )\i,)\jE [0,1] .

In this case, the optimization can be performed over a simgl@ble since the sum of channel switching
factors forms a new equality. Strategy 2F reduces to Styatégif one of the channel switching factors
is equal tol.

The following assumptions are made about the error funstigf) to provide a basis for the next
proposition.

Definition 1: AssumeC; > C; and let P; be defined as the solution to equatigjix) — g’(x) = 0,
that is, g;(F;) = g;(F)-

Assumption 3:

(i) gi(P) > g;(P) if P> P, .

(i) gi(P;) = g;(Pyj) -

(iii) gi(P) < g;(P)if 0 < P < Py .

(iv) g/(0) = —o0 Vie{l,...,K}.

Assumption 4:If g;(P;) = g;(F;) is satisfied, then

(i) @ < 4 for P; > P, > Py

(m%<%ma<a<&

Assumption 3 is valid for all types of modulations whose enpoobability expressions are given by
(4)-(6). On the other hand, Assumption 4 is satisfied for tinergunctions in (4) and (5), but not satisfied
for (6).

The following proposition derives upper and lower boundstfee optimal power levels obtained for
Strategy 2P and Strategy 2F and their ratios.

Proposition 2: Suppose that Assumptions 1, 3, and 4 hold. Let the solutitreadptimization problem
in (13) under the two-channel strategies be denoted{By, P, \;, P/} and suppose thah; > 0,
A7 > 0, and C; > Cj. Then, the optimal power levels and the channel switchimgofa satisfy the
following relations depending on the average power limit:

(i) If A, = P;(A\f + \)), then P! = P = P;;.

(i) If A, > Py(A; + A%), then Py > Pr > Pj; .
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(iii) If A, < Pj(\f + X;), thenP} < P < P;.
where P;; is as in Definition 1. In addition, the ratio between the ogtimower levels cannot exceed
B;/B:; that is,
PP _ B
maX{F},F;}<EZ. (25)
Proof: The optimization problems in (22) and (24) can be solvedttogyeby re-writing the constraint
on the sum of the channel switching factors)as- A; < 1. In this case, the optimization problem again

becomes the one in (23). Consider the first-order derivatiihe objective function in (23) with respect

to P :
A, — N P
A (hé(B—) — (%)) (26)
j

or, equivalently,
Ai(hi(P;) — 15 (Fy))- (27)

Due to Assumption 1g;(P) is an increasing function aP andh}(P) = —g.(P) is a decreasing function
of P for P > (0. Hence, the expression in (26) is a decreasing functiaf &dr P, > 0, starting fromoo at

P, = 0 and decreasing monotonically towardso at P, = A, /\; (due to Assumption 3). Therefore, given
the value of);, there is a unique maximizét” for the optimization problem in (23), which corresponds to
the point at which the first-order derivative is zero. Equgtihe first-order derivative in (27) to zero and
settinghl(P) = —g.(P) yields the following necessary and sufficient condition tlee optimal solution

of (23):
9:(F) = g;(P). (28)

If A, = P,;(N\; + );), it is obvious, by using the definition df;; in Definition 1 and Assumption 3, that
P, = P, = P,; satisfies the condition in (28). Since the solution of (28)nsque, the optimal solution of
(23) is obtained ag’" = P} = Pj;, as stated in the first part of Proposition 2.

In order to prove the second part of the proposition, it i filsserved that the first-order derivative
in (26) is a monotone decreasing function 4f and a monotone increasing function Bf. Therefore,
the value of P, at which the first-order derivative becomes zero gets lasged, increases. Since the
first-order derivative becomes zero Bt= P,; when A, = P;;(\; + ;) (as proved in the first part), the

first-order derivative becomes zero at a value larger thawhen A, > P,;(\; + A;). Hence, the optimal



18

solution of (23) satisfies®, > P,; for A, > P;;(\; + A;). In addition, it is concluded from (28) that as
P; increases, the optimal value &% should also increase singg P) is an increasing function af for

P >0, as stated above. In other words; > P;; also impliesP; > P,; based on the relation in (28).
Next, the ordering betweer” and P; should be determined. Due to Assumption 3 and the condition
(28), g;(P}) = gi(P;) > g;(P;) since P} > P;;, which requires”” > P; due to the monotone increasing
property ofg;(P). Therefore, forA, > P;;(A\; + A;), the inequalityP; > P; > P;; is obtained. Similarly,

for A, < Pi;(A\i + ), the inequalityP; < P < P; can be obtained.

Since the optimal power levels satisfy the condition in (2B final statement in the proposition can
be reached by using Assumption 4 and the results obtaindiprevious parts of the proposition related
to the ordering of the optimal power levels. Fég = P;;(\i + \;), P/ P; =1 as stated in the first part
of the proposition. Overall, the ratio between the optimaler levels is upper bounded Ily/j; for any
value of A, as stated in the proposition. |

The search space of the optimization for Strategy 2P candieeel based on Proposition 2 as follows.
For each); € (0, A./C;), A; is calculated as\; = (A. — \; C;)/C; and the optimal power levels are
obtained as follows:

o If A, = A;;(N\; + ))), the optimal solution is given by
P =P =Py. (29)
o If A, > A;;(N\; + X)), the optimization problem in (23) is solved for
P, € (max{Fy, BiAp/B;} smin {Ap/ i, B4/ (Biy)}) (30)

which is obtained from (25) and the relation in the second phthe proposition.

o If A, < Ajj(N\; + 2)), the problem in (23) is solved for
Pi € (Ap,mln{P”,Ap/)\z,ﬁ]Ap/(ﬁz)\])}) (31)

which is obtained from (25) and the relation in the third pafrthe proposition.

Applying the procedure above, the optimal valuefand the corresponding value of the objective
function in (23) can be determined for a giveéne (0, AC/Ci). The optimal value of\;, denoted by\?,
is the value that yields the maximum of the objective funtiio (23) and the corresponding value Bf
gives the optimal value of,. Once the optimal paif \}, P} is obtained, the optimal values &f and
P; are calculated a&; = (A. — A\; C;)/C; and Py = (A, — A\fPY) /%, respectively.
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C. Three-Channel Strategies

Based on Proposition 1, there exists only one strategy fanmél switching among three channels.
Strategy 3 — Channel Switching among Three Channeldn this strategy, transmission is performed
by switching among three different channels and the chaswékhing factors add up ta (i.e., full

transmission). The formulation of the optimization probléen (13) under Strategy 3 is given as follows:

Xi hi(Py) + g 1y (Py) + M hie(Py)

max
Aiy Nj, A, B, Py, Py
subject to\; P, + \; P + \. P, = A,
J 74 k1k P (32)
)\iCi+)\jCj+>\ka:AC,
)\Z+)\j+)\k’:17 )\i,)\j,)\kE[O,l]

wherei, j and k£ are the employed channels. Due to the average cost comstrgi2), at least one of
the channels should have a cost greater thamand at least one of them should have a cost smaller than
A.. Thus, the optimization problem in (32) must be solved for K (K — 2) channel triples and the
triple that yields the highest average probability of cormecision is determined to be optimal. Hefg,
and K, denote, respectively, the number of channels with coststgrehanA. and smaller tham.. It is
observed from (32) that the optimization can be performeer three variables instead of six variables
by imposing the three equality constraints.

It should be noted that Strategy 1F and Strategy 2F are cdasrepecial cases of Strategy 3. Therefore,
in order to obtain the optimal solution in case of full dat@angmission, the optimization problem in (32)

can be solved first, which reveals the type of the transmmssimtegy to be applied.

D. Comparison of Channel Switching Strategies

In this section, theoretical results are obtained for caimgahe performance of the different strategies.
First, the single channel strategies are examined in terfnteeoprobability of correct decision to put
forward a suboptimal solution when only a single channehipleyed. Conditions are investigated under
which full or partial transmission over a single channetdftgy 1P or Strategy 1F) is optimal. Strategy 1F
can be optimal only if there exists a channel with cdst otherwise, the cost budget would be used
partially and the solution would not be optimal. Hence, tbeparison of Strategy 1F versus Strategy 1P
as candidates for the overall optimal solution can be made by

A C
. > . =
h; (Ap) = gré%:j Cj hJ <Ap C) (33)
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whereS, = {l € {1,...,K}:C, > A}, i* is the index of the channel satisfying,- = A., and the
left-hand-side and the right-hand-side of (33) represémet dverage probabilities of correct decision
corresponding to Strategy 1F and Strategy 1P, respectiMelypartial transmission over chanrneivith

jé¢S, (e, C; < A.), the average probability of correct decision can be exya@sis

Aj hi(B) < Aj hyi(Py) + (1= A;) hy(0) (34)
< h; (X P+ (1= X;)0) (35)
< hi(Ap) (36)
< hie(Ay) (37)

where the second inequality results from the concavity: gfthe third inequality is due to the average
power constraint, and the last inequality is obtained from< A. = C;-. The inequalities in (34)-(37),
namely,\; h;(P;) < hs(Ap), demonstrate why channels notd need not be included in (33).

The following proposition presents a sufficient conditiam fleciding between two channels in terms
of optimality under the single channel strategies, StsatHg or Strategy 1F.

Proposition 3: Suppose that Assumptions 1 and 2 hold. Consider a channel (pgi) such that

C; > C; > A.. If the condition

C'.
g, l-—a
71 < i 4 2J
Bi — gi(0) * C; (38)

is satisfied, then partial/full transmission over channpelchieves a higher probability of correct decision
than partial transmission over channgl

Proof: Assume that the inequality in (38) is satisfied. First, thequnality in (38) is stated as

A, C; /A, - A, Cj /A,
- -
Bi (92'(0)1 + FZ)

Sinceg is a monotone decreasing function (see Assumption 2), €&8Jd to the following inequality:

(39)

>

Qe

A C; /A,
_%
Ci

1 -
Bi <9i(0) + _i)
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Then, based on the relatign P) = g(P/3;) stated in Assumption 2, the following inequality is obtalne

A, C5 /A A, C;

o | 2 g () (@1)
1—71_ C; c
9i(0) Ci

Sinceg;(P) represents a value of probability,(0) < 1 is always satisfied. Hence,

Qe

-9 ¢
- >1 42
9:(0) - Ci — 42)

is obtained, which, together with (41), leads to the follogvrelation:

1-g ¢, A,C; /A A0,
Ci ~J ) p~j/<tc > . PYJ
( 9i(0) " Ci) g o | ” ( Ae ) ' (*3)

C:

1

9:(0) C;

Exploiting the convexity of the, function for non-negative arguments, the following indgyas obtained:

G;
<1gi—(0?> :(0) + %gi (Af) > g; (Ajfy) . (44)
Then, rearranging the terms in (44) results in
- (45) -0 ()
Finally, inserting the definition of the functiof;,
% h; (Ap%) < hy <AP%> (46)

are obtained, which demonstrate that the probability ofemirdecision attained by partial/full (partial
if C; > A, and full if C; = A,) transmission over channglis higher than that over channglif the
condition in (38) is satisfied. |
Note thatg;(0) in (38) is equal to%, where M is the modulation order. A simple condition which
does not involve the calculations gf (or, /;) is provided in Proposition 3 as compared to (21) and (33) for
determining whether Strategy 1F achieves a higher prababflcorrect decision than Strategy 1P if there
exists a channel with cost., and for deciding between two channels in terms of prokghdi correct
decision under Strategy 1P otherwise. The inverse of Propos3 may not be valid as it puts forward

only a sufficient condition for deciding between the two cages a reasonable approach, the condition in
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(38) can be checked first, and if it is not satisfied, then theessary and sufficient conditions in (20) and
(33) can be examined. Proposition 3 can especially be usafpplications where transmitters do not
have sufficient time or capability (due to hardware, comipyertc. limitations) to switch among different
channels, thereby constraining themselves to use onlyghesatnannel.

One of the main results in this study is the following profiosi, which presents a sufficient condition
under which partial transmission (Strategy 2P or Stratdg)ychnnot be optimal. That is, it is guaranteed
under the stated conditions that partial transmission awngle channel or two channels is outperformed
by a full transmission strategy.

Proposition 4: Suppose that Assumptions 1 and 2 hold, and that there exitaramelk € {1,..., K}

satisfying the conditions

B, 1—& C .
d — ={l: Al 4
5 = 50) + c. VieS,={l:C,> A} (48)

Then, partial data transmission is not optimal.

Proof: There exist two possible strategies for partial data trassion, as discussed previously. First,
consider Strategy 2P, where partial transmission is paedrvia channel switching between two channels.
Leti and;j denote the channels employed for partial transmissionta@channels, andl\;, \;, Py, P;}
represent the solution of the optimization problem in (22)the channel paifi, j). Since); C;+ X} C; =
A, from Proposition 1 and\! + AT <1, at least one of the channels should have a cost higher4han
Assume without loss of generality that > C';; then,C; > A. is obtained. Lett be the channel that
satisfies the conditions in (48). Defing , £ 1—(\;+X3). If A7 C; > (A\f+Xj,,) C, then the alternative
solution that employs the channel triplé j, k) with channel switching factor$(\; — ), A}, v} and
powers{P;, P;, P}, respectively, results in a higher average probability ofréct decision than the

two-channel partial transmission solution, denoted{hy, \;, 7, P;}, over channelg and;:
AL hi(B)) + A) h(PF) < (A] =) hi(B) + A} by (P]) + vih(Pr) (49)

where;, is defined asy, = v + \j,, so that the channel switching factors in the alternative:tgmt
sum to 1. The alternative solution corresponds to Strategyhih is the three-channel full transmission

strategy. The inequality in (49) can be expressed as

Based on the power and cost constraint equations for thenapsolutions according to Proposition 1,
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the following relations are obtained for the two cases:

NP+ XN Pr= (N =) P+ X Pf+ uP. =4, (51)
From (52),vC; = v, Cy is obtained. Hencey is computed asy = Aéfci’“, which is greater than zero

sinceC; > A. > Cy. From (51),y P = v}, P, is obtained andP, is computed as’, = PC}/C;. Then,

the inequality in (50) can be re-written as

(L= 9:(F)) < (v + Ageyr) (1= 9k (Fr)) (53)

which, after some manipulation and inserting the values ahd P, reduces to

Ck Ck . PrCy,
<1—a)+agi(ﬂ)>gk( c ) (54)

Exploiting the convexity of they; function, the left-hand side of (54) can be bounded from Welo

1-% C -% ¢ CPr/C;
C; k * C; k kL5 7
< 9:(0) )g’(o) Ci 9: () > < 9:(0) e ) o (53)

If the lower bound in (55) is greater than or equal to the Fghid side of the inequality in (54), then
the proof of the inequality in (49) is completed:

C
- C CvP*/C; PC
(2 ) ) (52,
3 KA CZ k 3
9:(0) C;

Sinceyg;(0) < 1, the multiplying factor beforgy; on the left-hand side of (56) is greater than or equal to
1. Then, based on Assumption 2, it is sufficient for the prootha&f inequality in (49) that the following

inequality is satisfied:

Ckfi /C; 2§<Pi Ck:) . (57)
-2 o B Ci
ﬁi 9:(0) + C;

From the condition in (48), the argument of thdunction on the left-hand side of (57) is readily found
to be smaller than that on the right-hand side. Sincejthanction is monotone decreasing, the expression
on the left-hand side is greater than that on the right-hahel $lence, the inequality in (57) is satisfied,

which completes the proof of (49). As for the legitimacy oé talternative solution whose probability of
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correct decision expression is the right-hand side of (#9); v must be satisfied. Inserting the expression
for 4, this inequality becomes equivalent ¥p C; > (A + \j ;) Ci, which was the initial assumption.

In order to prove the second part of the argument related rate8ty 2P, assume that C; < (\F +
Mi¢+1) Cr- In this case, the alternative solution proposed in thefiast is not valid. Consider an alternative
two-channel solution with channel switching factqrs;, A, } and power level§ P, P }. It will be shown

that this alternative solution outperforms the originabtehannel partial solution:
AT hi(PF) + X5 hi(PF) < A3 hi(PF) + Ak ha(Py) - (58)

From the power and cost constraint equations as in (51) a2d (&e channel switching factor and the
power level for channek are obtained as, = A\ C;/Cy and P, = P C}/C;, respectively. Inserting

these into (58) yields the inequality

o _ G « Gk
hi(P}) < o he (P Ci) (59)

which is the same as the inequality in (54). Hence, the in@gua (58) is proved. Since\, = A} g—k <
AF+ A Af+ A < AT+ A+ A, = 1, which shows that the alternative two-channel solutioniss a
partial. DefineS\KH 21— (A7 + k), and note that’; < A, leads to the contradictio; C; + A, Cj, <
A (X5 + M) < A Inaddition, if ¥ C; < (X5 + A1) Ch, the inequality\s C; + A Cr < (N5 + Agepr +
Ar) Cr = G, < A, is obtained, which is a contradiction. Hene®; > A. and \; C; > (A + Ag41) Gy
are satisfied. Then, based on the proof of the inequality ), (fllowing inequality can be written by

considering a channel pajy, k) instead of(s, j):
XS hi(Pr) + A hi(Pr) < (X5 = ) hy(PF) + N hue(Pe) + ohio(Pr) - (60)

Based on the concavity of thg, function,

* * * ~ * Y, )\k I;k P
A5 5 (PF) + M he(Pr) < (A = 7) By (P) 4 (A =+ D) e (Ak + Pt Ak + U, Pk) 1

is obtained. Note that the average power and the averageftis three-channel solution (two channels
being the same) in the right-hand side of (60) are the santeoas bf the two-channel solution in the right-
hand side of (61), which indicates that the latter solutiatis§ies the average power and cost constraints.
Combining the inequalities (58) and (61), it is demonstiateat the two-channel partial solution with
channel switching factor§\;, A7} and power leveld P, P/} achieves a lower average probability of

correct decision than the two-channel full solution witrachel switching factorg(\; — 7), (Ax + 71)}
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Ak

and power leveld P} P+ ﬁ ﬁk}. Therefore, a two-channel partial solution cannot be ogitim
if the conditions presented in Proposition 4 are satisfied.

Secondly, consider Strategy 1P, where a single channel idoged partially. Leti denote the channel
employed for partial transmission over a single chandgl.> A. must be satisfied since a patrtial
transmission strategy that employs a single channel wittost smaller thanA, cannot be optimal
(cf. Section IlI-A). Let {\;, P’} represent the solution of the partial transmission styatb@t uses

channeli. Then, similar to the proof of the inequality in (49), theléoVing inequality can be obtained:
AL hi(PF) < (N — ) hi(P]) + vichy(Py) (62)

where v, is defined asyy = v + Ny, and Ny, = 1 — A5 Here, \; G = Ao = (A\F + Njyy) Ac >
(Af + Xk 11) Ck leads to the inequality; C; > (A; + A% ;) Ck, which, together witiC; > A., completes
the proof of (62). Thus, under the conditions stated in (48)en a one-channel partial solution, there
always exists a two-channel full solution that attains ehbrgaverage probability of correct decision.
Overall, since both Strategy 1P and Strategy 2P (which aetssible optimal solutions for partial
transmission according to Proposition 1) are outperforrogdhe full transmission strategies, partial
transmission is not optimal under the conditions statechédroposition. |
Proposition 4 is highly crucial since it provides a conditithat definitely removes the computational
burden of solving the optimization problem in (22), whiclvatves both Strategy 2P and Strategy 1P.
Hence, it suffices to solve the optimization problem in @ggt3 only in order to obtain the optimal
solution of (13), thereby greatly reducing the computala@omplexity. In addition, the condition derived
in Proposition 4 does not depend on the optimal power levelshannel switching factors; it depends
only on the system parameters such as the channel costspite variances, and the statistics of the
fading coefficients. Therefore, given a set of communicatbannels with assigned costs and known
noise and fading statistics, if the condition in (48) is Sfa&id, it can be stated beforehand that partial data

transmission is not optimal.

IV. OPTIMAL CHANNEL SWITCHING FORLOGARITHMIC COST FUNCTION

In this section, a suitable cost function is employed ford¢hannels, and specific theoretical results are
obtained regarding the optimality of various channel swiitg strategies and the characterization of the
optimal channel switching solution. For the analysis irs théction, Case 1 in Section Il is considered. In

addition, the probability of symbol error correspondinghe optimum coherent detection over channel
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9:(P) =nQ (q/%) (63)

where 3; = 202/|a;|? is the channel parameter corresponding toithechannel (cf. (7)), and) and

is expressed as

are constant parameters that depend on the modulation typerder [19]. As noted in Section Il, the
expression in (63) holds exactly for several types of matluta such as BPSK, BFSK and M-PAM, and
it is approximate for other types of modulations at high SNEF%.

In practical systems, each communication channel can @@ded as a measurement device that has a
cost related to the quality of the measurement [14], [10),[120]. Hence, a cost function based on that

in [14] can be adopted for defining the cost of channat follows:

C’i:log<1+%), ie{l...K} (64)
where; is the channel parameter for ti channel and > 0 is a constant system parameter. The main
motivations behind the use of (64) are that it satisties> C; for 3; < j3; (i.e., a channel with a larger
SNR has a higher cost singe = 2 0?/|;|*), and the cost of a channel converges to zero (infinityp;as
goes to infinity (zero).

As in Section I, it is assumed that the channel parametgisfg 5, < 5 < --- < fk (i.e.,C; > Cy >
-+ > (k) without loss of generality. It should be noted that the cies with the same costs (channel
parameters) can be considered as a single channel sincghisigitamong them does not improve the
system performance due to the concavity of the probabilitgarect decision with respect to power
(cf. (13) and (63)). In additiond. < C; is assumed in the remainder of this section since (13) leads t
the trivial solution of using the best channel (channel 1Qlesively for A. > C;.

In order to facilitate theoretical analyses, the properté the probability of correct decision should
be specified first. For the cost function in (64),is given by 3 = b/(e“ — 1). Hence, from (63), the
probability of correct decision can be expressed as a fomaif power and cost as follows:

WP,C)=1-7nQ <m @) . (65)

Then, the concavity property d@f( P, C') in (65) is stated in the following lemma.
Lemma 1 [10]: Consider infinitely many channels and suppose that the adianiake a continuum of
cost values in the intervdlCy,in, Cimax] based on the cost function {{®4), where0 < Chyin < Cpax <

oo . Then,h(P,C) is a strictly concave function over sél., which is a convex set defined & =
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{(P,C): P>0b/(k*e“ +1)), C € (Cuins Crnax) }->

The following lemma presents an important result that psdeebe highly useful in deriving optimality
conditions for the full transmission strategies.

Lemma 2: Let h(P, C') denote the probability of correct decision as a function ofver and cost as

defined in(65). The inequality
Ah(P,C) < h(AP,\C) (66)

is satisfiedv € (0,1) if

(P,C) ESZ é {(P,C) P> maX{m’bf}, C c (Cminucmax)} (67)

wherewv is a positive constant that depends gnas defined in85) based on(83). In addition, S; is a
convex set.

Proof: Please see Appendix A.

Lemma 2 identifies the region in the power-cost plane wheeeitlequality A h(P,C') < h(AP, \C)
is satisfiedvA € (0,1). One of the main results in this manuscript is derived basetdlemma 2 in the
following proposition, which presents a condition for thptimality of the full transmission strategies
when the logarithmic cost function in (64) is employed.

Proposition 5: Consider K channels and suppose that each channel has a cost value lbasdte
cost function in(64). If the average power limit satisfies

ba b B log (1+B—b1)

Ap > max 2 (2B + ) ’ v By ) (68)

then partial data transmission cannot be optimal.

Proof: Please see Appendix B.

Proposition 5 sets an upper bound on the average power kmitye which the partial transmission
strategies cannot yield the optimal solution of the optatian problem in (13) in the case of the
logarithmic cost functions. This simplifies the solutionden the condition in (68) in Proposition 5 by
making it possible to eliminate the partial transmissiaatsgies, namely, Strategy 1P and Strategy 2P.
Therefore, it is sufficient to solve the optimization prohlender Strategy 3 in order to obtain the optimal
channel switching strategy in such a scenario (as Stratemy@&rs Strategy 1F and Strategy 2F as special

3The concavity property can be shown to hold also for Rayléigling channels, where the symbol error is as given by (4); if log 2
is satisfied.
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cases).

The following proposition states that the solution for &gy 2F can be obtained in a simple manner
for sufficiently large values of the average power limit.

Proposition 6: Consider K’ channels and assume that each channel has a cost value bagké oost

function in(64). If the average power limit satisfies

2
A, > b Ok ) (69)

~ K2B1(28k + b)

then the optimal solution for Strategy 2F uses channahd channelj, where

i = argmin C} subject toC}y, > A, (70)
ke{l,.. K}

j = argmax Cj subject toC, < A.. (72)
ke{l,...K}

Proof: The proof can be obtained based on similar arguments to teog®#oyed in the proof of

Proposition 4 in [10]. In particular, the concavity of theopability of correct decision functioh can be

bﬁg{
K2B1(28K+b)

of correct decision can be shown to be maximum when the clstingt are closest tel. from above

demonstrated fori, > as in the proof of Proposition 5 in Appendix B, and the probigbi

and below are employed for Strategy 2F. |
The final proposition presents a condition under which thenogd channel switching solution involves

no more than two channels. Hence, there is no need to corSiceegy 3 under the specified condition.
Proposition 7: For the optimal channel switching problem {&3) with the cost function ir{64), the

optimal channel switching strategy involves at most twoncteds if the average power limit satisfies

2
A 20k (72)

- H2ﬁ1(2ﬁK -+ b)

Proof: The argument in the proposition can be proved in a similar teaghe proof of Proposition 5

in [10]. Namely, by exploiting the concavity of the probatyilof correct decision functiorh, it can be

shown that there always exists a Strategy 2F solution tretiyia higher average probability of correct
decision than the optimal solution of Strategy 3 under theddmn stated in Proposition 7. Hence, the
optimal solution can be shown to employ at most two chanrigisel average power limit exceeds the

specified threshold. [ |
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Remark 4: If the average power limit satisfies

b
A, > 3 73
P =T 2526k D) v ’ 79

the optimal solution corresponds to either Strategy 1F aat8gy 2F. This is due to the fact that since
the inequality in(73) implies(72) and (68), Strategy 3 and the partial data transmission strategiasnce
be optimal, which means that the optimal strategy can besei8trategy 1F or Strategy 2F. Under the
condition in(73), Strategy 2F becomes the optimal strategy if there existhammels with costl., since
Strategy 1F cannot be optimal in this case (due to the fadt @imaoptimal solution must operate at the
average cost limit). Aé73) also implieg(69), the optimal strategy is to switch between the channelsstos
to A. as described i(70) and (71). On the other hand, if there is a channel with cakt Strategy 1F

is the optimal one due to the following inequality:
hAp, Ao) = h(AP, +(1 = X) P, A\C; + (1 = X)C;) > AR(P;, C;) + (1 — N\) h(P;, C)) (74)

where the strict concavity ok for the optimal power levels of Strategy 2F is guaranteedeuntie
condition in(69). Therefore, if the average power limit is above the threghiol(73), the optimal strategy

is either Strategy 1F or Strategy 2F, depending on whethehanoel with costd. exists or not.

V. NUMERICAL EXAMPLES

In this section, the theoretical results are demonstratedymerical examples. Various scenarios are
studied to investigate when the full or the partial transiois strategy outperforms the other one and when
channel switching leads to a higher average probabilityoofect decision than employing a single channel
for transmission. Comparisons of the following strategies performed in the numerical examples:

Partial Transmission: In this approach, it is possible to have idle periods wher@ata transmission
occurs. One or two channels should be employed for par@adstnission due to Proposition 1. The
optimal solutions for this approach are obtained based wategty 1P and Strategy 2P, which converges
to Strategy 1P when one of the optimal channel switchingofacequals to zero.

Full Transmission: In this approach, there are no idle periods during transoris&nd one, two, or
three channels are employed due to Proposition 1. Strateég@tiategy 2F, and Strategy 3 are employed
to find the optimal solution in this case. Strategy 3 convernge Strategy 2F when one of the optimal
channel switching factors equals to zero, and to Strategwlén two of the optimal channel switching

factors are zero.
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A. Examples for General Analysis

In this part, numerical examples are presented for the géaealysis in Section Ill. Three simulation
scenarios with different types of modulations are presktaesxplore the performance improvements that
can be achieved via partial/full transmission and channithking. In the scenarios, there existGaussian
channels, the channel parameters and the costs of whiclkearesented, for notational simplicity, in the
vector form as@ = [f;---fk] and C = [C - - - Ck|, respectively. The results for the optimal channel
switching solution for various values of the average poweitl A, are presented by using both the plots
of the average probability of correct decision and the &blentaining the channel switching factors and
the power levels corresponding to the optimal strategy,xamele of which is shown in Table II. In this
table,\;, A;, and )\, represent, respectively, the channel switching factotHerfirst, the second, and the
third channel employed by the optimal channel switchingtettly wherei < j < k, and the non-zero
power levels, the indices of which denote the employed chisnmre the corresponding optimal power
levels. For instance, fod, = 0.05 in Table II, Strategy 2P is the optimal strategy since the sdirthe
channel switching factors is less thinand channel$ and2 are employed with channel switching factors
0.5248 and 0.1935, and power level$).0357 and 0.1615, respectively. On the other hand, fdr, = 500,
Strategy 2F that uses channelsand4 is the optimal strategy, where the channel switching factoe
0.7 and0.3, and the power levels are2539 and 1497.5, corresponding to channetsand4, respectively.
As for the plots of the average probability of correct demsiit should be noted that the performance
of Strategy 1F and Strategy 2F is never higher than that eft&jy 1P and Strategy 2P, respectively, for
any value ofA,. This is due to the fact that the optimal solution of the @rtransmission strategies
(Strategy 1P and Strategy 2P) can converge to that of thdarulsmission strategies (Strategy 1F and
Strategy 2F) in cases where full transmission is optimad, @n lead to higher average probabilities of
correct decision in cases where partial transmission isnabt

In the first scenario, BPSK modulation is employed with tHefeing parametersd = [0.51 0.52 0.53 1],

C = [3 1.1 1.01 0.01], and the average cost limit is equallothat is, A. = 1. The parameters for BPSK
in the error function (5) are computed as= 1 andx = /2. In Fig. 3, the average probabilities of correct
symbol decision are plotted versus the average power Hmfor the optimal solutions of the five possible
strategies, namely, Strategy 1P, Strategy 1F, Strateg$t?iegy 2F, and Strategy*3The parameters of
the optimal channel switching strategy are presented iteTladt is observed from Fig. 3 that the optimal
4As explained in Section II, the “average probability of emtr decision” is a scaled version of the average number o&ctly received

symbols (see (10) and Remark 2). Hence, if a strategy achiavieigher average probability of correct decision, it alggdg a higher
average number of correctly received symbols.
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Fig. 3. Average probability of correct decision versdis for BPSK modulation for the optimal solution of the five pddsistrategies, where
B =1[0.510.52 0.53 1], C = [3 1.1 1.01 0.01], and A. = 1.

TABLE |

PARAMETERS OF OPTIMAL CHANNEL SWITCHING STRATEGY INFIG. 3.

Ap )\i )‘j )\k: Pl P2 P3 P4
0.001/099 001 -| - - 0.0010 0.000%
0.005/0.99 001 -| - - 0.0050 0.0027
001099 001 - - - 0.0100 0.005%
005|099 001 - - - 0.0502 0.0303
01 09 001 -} - - 0.1003 0.0678
05 099 001 —-| - - 0.4994 0.5639
1 1099 001 - - - 0.9960 1.3938
10 {099 001 -—-| - - 99183 18.092

channel switching strategies achieve higher average pildies of correct decision than the optimal single
channel strategies for all values 4f. In addition, Strategy 2P, Strategy 2F, and Strategy 3 ytledsame
probabilities for all values of4,, meaning that the optimal strategy is to switch between thanoels
with full transmission. The maximum gains in the averagebpholity of correct decision provided by
employing the optimal channel switching strategy (Strat2§ in this example) and the optimal single

channel strategy (Strategy 1P in this example), are givef.0% and 8.1%, respectively, as compared
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Fig. 4. Average probability of correct decision versds for 16-QAM modulation for the optimal solution of the five possildeategies,
where 8 = [0.001 0.01 20 30], C = [15 11 10 8], and A. = 10.

to employing a single channel without idle periods (i.erattgy 1F). Hence, partial data transmission
is not optimal in this scenario, which can be validated bypBsition 4, as well: Channel 4 satisfies the
conditions stated in Proposition 4; thatds, < A. andg,/g; < (1-C4/C;)/g:(0)+Cy/C; fori € {1,2,3},
whereg;(0) = 0.5 can be obtained from (5). Therefore, it is concluded thatiglaransmission strategies
cannot be optimal. In addition, since there exist no chawith costA., Strategy 1F cannot be optimal
either. Hence, it is theoretically concluded that eitheat®gy 2F or Strategy 3 is the optimal strategy in
this scenario. On the other hand, Proposition 2 can also diedavith the results of this scenario. For
A, = 0.05, Py/Py = 1.6568 < f3,/0; = 1.8868 and for A, = 10, P,/P; = 1.8241 < (3,/f; = 1.8868,
which confirms the validity of Proposition 2 for this scermari

The second scenario utilizd$-QAM modulation, where the channel parameters, the chacosts,
and the average cost limit are given @y = [0.001 0.01 20 30}, C = [15 11 10 8}, and A. = 10,
respectively, and the modulation parameters in (6) are cbaspasy = 1.5 andx = 0.4472. The plot

of the average probability of correct decision versyjsis shown in Fig. 4. An important observation
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is that the optimal partial transmission strategy outpenfo the optimal full transmission strategy for
A, € (0.0002,195.6), in which there exist sub-intervals where both the part@h$mission over a single
channel and the channel switching between two channelspaitial utilization can be the overall optimal
strategy. For very small and very large valuesAf all the strategies converge to each other, indicating
that Strategy 1F is the optimal one, which is theoreticathggible since there exists a channel with cost
A. in this scenario. The maximum gains in terms of the averagbgtility of correct decision achieved
by employing the optimal channel switching with partialliaation (i.e., Strategy 2P) are calculated to
be 76.1%, 97.2%, and 877.6% compared to Strategy 3, Stré&Eggnd Strategy 1F, respectively. In
addition, several turning points can be observed in Fig. Hiclv generally reflect the changes in the
set of employed channels a§, increases. For instance, fa, around0.022, Strategy 3 outperforms
Strategy 2F since Strategy 3 always employs channels 1,&24anhereas Strategy 2F uses channels
1 and 4 forA, < 0.022 and channels 2 and 4 fot, > 0.022. Hence, Strategy 2F changes the set of
employed channels for performance improvementdgsincreases while Strategy 3 can always use the
optimal set of three channels, which provides an improvéroeer Strategy 2F around the turning point.
The parameters of the overall optimal strategy are predent@able Il for some values ofi,,. Table Il
demonstrates that the optimal strategy may employ a sifdglarel or two channels, and perform full or
partial utilization of channels for transmission, as state Proposition 1. It is observed from Fig. 4 and
Table Il that forA, € (0.023,0.157), the channel switching between channel 1 and channel 2 \aittiap
utilization outperforms the single channel strategieat8gy 1P and Strategy 1F, which employs channel
1 and channel 3, respectively, and Strategy 2F, which sesttietween channel 2 and channel 4. The ratio
of the optimal power levels for the solutions involving twaatinels is calculated to confirm the validity of
Proposition 2 for some values of the average power limit. £ 0.05, P/ P, = 4.5238 < 35/ = 10

and for A, = 500, P,/ P, = 1194.3 < 4/P2 = 3000, which are in compliance with Proposition 2.

TABLE I
PARAMETERS OF OPTIMAL CHANNEL SWITCHING STRATEGY INFIG. 4.
Ap y A Ak Py Py P; Py
0.0001| 0.2857 0.7143 — 0.00035 - - 6.X10° 10
0.001 | 0.6667 - —1| 0.0015 - — -
0.01 | 0.6667 - - 0.015 — - -
0.05 | 0.5248 0.1935 - 0.0357 0.1615 - —

1 0.9091 - - - 1.1 - —
100 | 0.7724 0.1879 - - 0.8999 — 528.3665
500 0.7 0.3 - - 1.2539 — 1497.5

10000 1 - — - - 10000 —
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To demonstrate the effectiveness of channel switching pattiial utilization in the presence of fading
(i.e., Case 2)3-PAM modulation with five Rayleigh fading channels is stutli@ the third scenario,
and the parameters are given By= [0.02 0.05 0.1 10 100], C = [10 8 6 4 2], and A. = 5. The
modulation parameters in (4) are determined torbe 0.8750 and # = 0.0476. Fig. 5 illustrates the
average probability of correct symbol decision with resgecA,, and Table Ill presents the parameters
of the optimal channel switching strategy. It is observeat tihe optimal partial transmission strategies
can outperform the optimal full transmission strategieemthe transmission is performed over Rayleigh
fading channels. Strategy 1F achieves the lowest probalofi correct decision for most,’s whereas
Strategy 2P and Strategy 1P turn out to be the optimal syratedistinct intervals of the considered,
region. Employing the optimal partial channel utilizatistrategies provides a maximum gain of 4.9%
and 170.4% as compared to using Strategy 2F and Strateggdgeatively. In addition, in Fig. 5, there
are crossing and overlapping points where different gir@aseconverge to and diverge from each other.
For A, around 100, for instance, Strategy 2P, which employs cHarthand 4, yields a higher average
probability of correct decision than Strategy 1P, which &yp channel 2, whereas these two strategies
have the same performance fdy, < 80. The reason is that Strategy 2P can use the optimal set of two
channels to maximize its performance while Strategy 1P sa&nausingle channel, which can be changed
(which occurs at4,, = 382 in this case) only if the utilization of another channel pd®s a higher
performance. As an example to the validity of Propositiorth2, following cases can be examined: For
A, =175, P;/P; = 6.75 < 54/PB3 = 10 and for A, = 1000, P53/ P, = 9.2824 < (3,/p3 = 10. That is, the
ratio between the optimal power levels is limited by theadtetween the channel parameters as specified

in (25) in Proposition 2.

TABLE Il
PARAMETERS OF OPTIMAL CHANNEL SWITCHING STRATEGY INFIG. 5.

AT N N, M| P P D 2 P
0.001] 0.375 0.625 —|0.0027 - - —  5.48107
0.01 | 0.375 0.625 —|0.0267 - = —  6.4%107°
0.1 | 0.375 0.625 —|0.2663 - = - 0.00023

1 /08333 - - - - 12 = -

5 10833 - | - - 6 - =

10 (08333 - —| - - 12 - -

75 |0.7192 0.1711 -| -  — 40.0137 270.091 -
1000 05 05 —| -  — 194508 1805.5 =
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Fig. 5. Average probability of correct decision versdg for 8-PAM modulation for the optimal solution of the five possilg@ategies,
where 8 = [0.02 0.05 0.1 10 100], C = [10 8 6 4 2], and A. = 1.

B. Examples for Logarithmic Cost Function

In this part, numerical examples are presented for the ithgaic cost function studied in Section IV. In
the numerical examples, the magnitudes of the fading caasftic are set tdo;| =2 fori=1,..., K;
hence, the channel parameters are givenspy= 20?/|a;|> = o?. This does not cause any loss of
generality since the differences among the fading coeffisiean be reflected to the variance term,
appropriately.

In the first example, four channels are available for charsvdtching, and BPSK modulation is
employed. The BPSK parameters are calculated tg bel andx = /2 (cf. (63)). Also, the average
cost limit is set toA. = 7, and the costs of the channels are equalCte= [C; Cy; C3 Cy] =1[9 8 6 5.
Based on the logarithmic cost function in (64) with= 1, the corresponding channel parameters are given
by B =[5 B2 (3 B4 = [0.0001234 0.0003356 0.002485 0.006784]. In Fig. 6, the average probabilities of
correct decision are plotted versug for the five possible strategies. It is observed that thelsiolgannel

strategies are outperformed by the channel switchingegfied for all values of, in this example. Also,
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Fig. 6. Average probability of correct decision versds for BPSK modulation for the optimal solutions of the five pbes strategies,
whereC =[986 5], b=1,andA. = 7.

the full data transmission is always optimal, and Strate@cl3ieves the highest average probabilities of
correct decision for a small intervé.0001517,0.0002196) of A,, values (as shown in the zoomed window
in Fig. 6), where the maximum gain provided by using Stratégystead of the two-channel strategies is
given by 0.2%. The parameters of the optimal strategy argepted in Table IV. In the table,, A;, and
A, represent, respectively, the channel switching factorthierfirst, second, and third channel employed
by the optimal channel switching strategy, and the non-pexger levels, the indices of which denote the
employed channels, are the corresponding optimal powetdeffor example, ford, = 0.0005, channel
2 is employed with channel switching factdr6667 and power0.00051, and channel is employed with
channel switching factob.3333 and powel0.00047. Table 1V indicates that the optimal approach for this
example is to switch either between two channels or amoregtbhannels with no idle periods.

For comparison of the channel switching strategies, it $® alf interest to evaluate the performance
with respect to the average cost limit,. Fig. 7 considers the same scenario as in Fig. 6, and shows the
average probability of correct decision fel, = 10~° as A. changes from! to 10. As observed from

the figure, forA. < 5, the full transmission strategies cannot be employed €tbex, are not optimal)
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since Strategy 2F and Strategy 3 require at least one chtmhale a cost less that. and Strategy 1F
must use a channel exclusively. (Remember that the costgieea by C = [9 8 6 5].) However, for
the partial transmission strategies, it is possible to stdjme channel switching factors to optimize the
average probability of correct decision while conformimgthe constraints. An important observation
from Fig. 7 is that the channel cost values are marked by sameg in the correct decision probability
in Strategy 1F, which selects the best channel for transomisss dictated by the cost constraiAt.
Strategy 1P, on the other hand, is observed to move to thechasiel at a lower value ofl, as A,
increases since it can use that channel partially, which leagt to a higher performance than using a
lower cost channel exclusively. Finally, the channel skiiig strategies outperform the single channel
strategies fob < A. < 9 and all the strategies converge to Strategy 1FApr> 9, as expected.

In the second example, a scenario with the following paramsds considered3 = [0.000306 0.0126
0.2035 0.2249] x 1073, C = [15 11.28 8.5 8.4], b = 1, and A, = 8.6967. In this scenario, BFSK modulation
is employed, which corresponds to parametgrs 1 andx = 1 (cf. (63)). The average probability of
correct decision curves for all the strategies are shownign & and the parameters of the optimal
channel switching strategy are presented in Table V. It seoked that the partial transmission strategies
outperform the full transmission strategies for a certainge of the average power limit values, where
Strategy 1P and Strategy 2P achieve the highest averagahiites of correct decision. The maximum
gains achieved by employing the optimal channel switchinth ywartial utilization (i.e., Strategy 2P)
in terms of the average probability of correct decision axerg by 10.1% and 14.4%, respectively, as
compared to the optimal channel switching strategy withdtilization (Strategy 3) and the optimal single
channel strategy with full utilization. Since no channes lzacost value equal td., Strategy 1F cannot
be optimal, which is verified by the numerical example.

In the final example, the channel costs and the channel pseesrage set a€’ = [7.0791 6.5 5.98 5.942]

TABLE IV
PARAMETERS OF OPTIMAL CHANNEL SWITCHING STRATEGY INFIG. 6.

Ap i Aj A P Py Py Py
0.0001| 0.5 0.5 — | 0.00016 — - 0.000039
0.00018| 0.3051 0.2598 0.4351 0.0002 0.0003 - 0.00009
0.0005 | 0.6667 0.3333 - - 0.00051 - 0.00047

0.001 0.5 0.5 - - 0.00064 0.00135 -
0.005 0.5 0.5 - - 0.00171 0.00828 -
0.01 0.5 0.5 - - 0.00293 0.01706 -
0.05 0.5 0.5 - - 0.0139 0.0860 -

0.1 0.3333 0.6667 — | 0.00609 - 0.1469 -
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Fig. 7. Average probability of correct decision versds for BPSK modulation for the optimal solutions of the five pbfes strategies,
whereC =[98 6 5], b= 1, and A, = 107°.

TABLE V
PARAMETERS OF OPTIMAL CHANNEL SWITCHING STRATEGY INFIG. 8.

Ap )\z )\j )\k Pl P2 P3 P4
0.000001| 0.5798 - —1 0.0000017 - — —
0.00001 | 0.0578 0.6942 0.000002 0.000014 - -+

0.0001 | 0.5017 0.3574 - — 0.000062 0.000193 -
0.001 | 0.0708 0.9292 - — 0.000128 0.001066 -
0.005 | 0.0708 0.9292 - - 0.000399 0.005350 -
0.01 |0.0708 0.9292 - - 0.000731 0.010705 -~
0.1 0.0303 0.9697 - 0.01 - 0.102808
1 0.0303 0.9697 - 0.1 — 1.028085 -

andg = [0.0008432 0.001506 0.002535 0.002634], the average cost limit id. = 6.002, andb = 1. In this
example, BFSK modulation is employed with the correspog@ierameterg = 1 andx = 1 (cf. (63)). The
average probabilities of correct decision for the optimall fransmission strategy (which corresponds to
the best of Strategy 1F, Strategy 2F, and Strategy 3) antiéoopitimal partial transmission strategy (which
corresponds to the best of Strategy 1P and Strategy 2P)atedlersus the average power limit in Fig. 9.

It is observed from the figure that the optimal full and patti@nsmission solutions converge to one another
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Fig. 8. Average probability of correct decision versds for BFSK modulation for the optimal solutions of the five pib#s strategies,
whereC = [15 11.28 8.5 8.4], b =1, and A. = 8.6967.

for sufficiently low and sufficiently high values ot,, thereby implying the optimality of the full data
transmission, whereas the partial transmission achiggbghaverage probabilities of correct decision than
the full transmission within a certain range 4f values (please also see Fig. 10), for which the optimal
partial transmission can provide a maximum gain of 1.3% rm#eof the average probability of correct
decision. Table VI shows the optimal channel switchingdextand the power levels for the scenario in
Fig. 9. According to Proposition 5, whety, > max {b 57/(k?581(284 + 1)), bBs log (1 +0b/B1) /(v 1)} =
0.0098, the partial data transmission cannot be optimal, which plms with the results in Fig. 9 and
Table VI. On the other hand, the optimal channels leadindghéohighest average probability of correct
decision for Strategy 2F are found to be chan2eind channeB for A, > b53/(k?8:(26s + b)) =
0.0082, as claimed in (70) and (71) in Proposition 6. In additionjraficated in Remark 4, whed,, >
max {20 3%/ (k*B1(264 + b)), b B4 log (1 +b/61) /(v B1)} = 0.0164, Strategy 2F is the optimal strategy

since there exists no channel with a cost equali{o
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Fig. 9. Average probability of correct decision versdis for BFSK modulation for the optimal solutions of the full apdrtial transmission
strategies, wher€ = [7.0791 6.5 5.98 5.9420], b = 1, and A. = 6.002.

VI. CONCLUSION

Optimal channel switching strategies over Gaussian ndis@rels have been studied under average
power and cost constraints in the presence of partial addufiiization of channels for the purpose
of maximizing the average probability of correct symbolidem. A generic optimization scheme has

been developed to cover arbitrary signal constellatiomsRawleigh fading channels, which improves the

TABLE VI
PARAMETERS OF OPTIMAL CHANNEL SWITCHING STRATEGY INFIG. 9.

Ap )\i )\j )\k P1 P2 Pg P4
0.00001| 0.0528 0.9472 —| 0.000027 - — 0.00000p
0.00005| 0.0528 0.9472 —| 0.000125 - — 0.00004p
0.0001 | 0.0528 0.9472 —| 0.000228 - - 0.00009p
0.0005 | 0.7498 0.1169 - 0.000611 - - 0.0003583

0.001 | 0.8478 - —10.001179 - — -
0.005 | 0.0423 0.9577 - - 0.004091 0.00504 -
0.01 | 0.0423 0.9577 - - 0.007288 0.010119 -
0.05 | 0.0423 0.9577 - - 0.0316724 0.050809 -
0.1 0.0423 0.9577 - - 0.061925 0.101681 -
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Fig. 10. The zoomed version of Fig. 9 fet, € [3.75 x 107*,2.25 x 107°].

applicability of the results to various types of modulasan the presence of slow or block fading. It
has been demonstrated that the optimal channel switchiatggy employs at most three channels in the
full transmission case and at most two channels in the pardasmission case. In addition, it has been
stated that the optimal solution must operate at the avepager and the average cost limits. For the
two-channel strategies, the ratio between the optimal péswels has been shown to be upper bounded
by the ratio of the parameters of the employed channels. iGonsl that depend only on the system
parameters, namely, the channel costs, the standardidesgiaand the fading statistics, have been derived
under which partial data transmission cannot be optimag. gjptimal channel switching problem has also
been investigated for logarithmic cost functions. It hasrbshown that full data transmission is optimal
when the average power limit exceeds a certain thresholathwk related to the parameters of the best
and the worst channels. Also, the optimal channel switckith the full utilization of two channels has
been specified for sufficiently high values of the averagegudimit. In addition, it has been stated that
the use of more than two channels is not necessary in obgath@ optimal channel switching strategy

when the average power limit is larger than a specified tluldshmprovements via channel switching
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and partial channel utilization have been illustrated vienerical results, which demonstrate that full
utilization of channels does not always yield a higher ayerprobability of correct decision than partial
utilization and that the optimal single channel strategg b& outperformed by the proposed optimal
channel switching approach.

Remark 5: In order to emphasize the differences of this study fromréicent works in the literature,
Table VIl is presented. As can be noted from the table, onéh@fntain contributions is related to
generalizing the concept of channel switching to scenawdh idle periods. In this way, the average
number of correctly received symbols, which is an imporfaatameter in practical systems, can be
improved in certain communication systems. In additior tesults are provided for block Rayleigh
fading channels, as well. Regarding the theoretical cdmiions, Propositions 1, 2, 6, and 7 generalize

and improve the results in the literature while Proposisdd, 4, and 5 present completely new results.

APPENDIX
A. Proof of Lemma 2

Consider the surfack(P, C') and let(P*,C*) denote a given power and cost pair. For the inequality in
(66) to hold for the paif P*,C*) VA € (0, 1), the line passing through the poiftt, 0, 0), i.e., through the
origin, and the pointP*, C*, h(P*, C*)) should not intersect with the surfagéP, C') for any P € (0, P*)
andC ¢ (0,C*). Letm = C*/P* represent the slope of the two-dimensional projection tima:y-plane
of the line passing through the origin and the paift', C*, h(P*,C*)). Since h(P,C) is concave for
P >b/(k*(e“ + 1)) due to Lemma 1, if the line tangent to the surfade®, C) at P = b/(k?(e“ + 1)),
passing through the-axis, and whose projection onto the-plane has a slope af, intersects with
the z-axis above thery-plane, then the inequality h(P*,C*) < h(AP*,A\C*) holds VA € (0,1) if
P* > b/(k*(e“ +1)). The proof of the argument in the previous sentence can blaiaggd more clearly
by referring to Fig. 11 and Fig. 12, which illustrate slicdgte surfaceh(P, C) cut along thez-axis and

in the direction connecting the origin and the pdift, C*) on thexy-plane, where the slope is = 500

TABLE VII
COMPARISON OF THIS STUDY WITH SOME RECENT WORKS
| | [11] | [13] | [10] | This Study |
Objective Average prob. of Average| Average prob, Average # correctly
function correct decision| capacity of error received symbols
Idle periods No No No Yes
Channel costs No No Yes Yes
Rayleigh fading No No No Yes
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Fig. 11. Slice of the surfack(P, C) cut along thez-axis, whereb = 1, k = 1, and the slope of the slice on thg-plane ism = C/P = 500.

The intersection of the line tangent to the resulting cuvé®a= b/(x2(e“ + 1)) with the z-axis is

positive.

01k Vs h(P,C) slice ||
’ ’ O P=bieS+1)
4 .
¢ = = =Tangent line
0 Vi | | | | | | | I I
0 1 2 3 4 5 6 7 8 9 10

Fig. 12. Slice of the surfack(P, C') cut along thez-axis, wheré = 1, x = 1, and the slope of the slice on thg-plane ism = C/P = 5000.

The intersection of the line tangent to the resulting cuvé®a= b/ (k2 (e + 1)) with the z-axis is

negative.
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in the first figure andn = 5000 in the latter one. The proof can be obtained via contradiciio two
steps. In the proof, consider only those cost valGéshat satisfyP* > b/(k*(e“" + 1)), meaning that
C* > C, where(P,C) is the power-cost pair satisfying = b/(x2(eC + 1)) for the slopeC/P = m.
Consider a case as depicted in Fig. 11, where the intergeofidhe tangent line with the-axis is
positive, and assume that the line connecting the origi®) and the point(C*, h(P*, C*)) intersects
with the curve at a cost valug’ € (0,C*). First, the case wittC” € (0,C) is analyzed. The slope of
the line passing through the origin and the pdiat i(P, C)) is higher than that of the tangent line and
lower than that of the line passing through the origin andgbmt (C’, h(P’,C")), whereC’/P" = m.
Due to the concavity of the curve faf > C, the tangent line never crosses the curve or> C.
Thus, the line passing through the origin and the pédtt 4(P’,C")) does not intersect the curve for
C > C, which contradicts with the initial assumption. Therefafé € [C', C*) must hold. The concavity
of the curve forC' > C indicates that any line connecting two points on the curvéhinregionC' > C
has a slope lower than that of the tangent line. Hence, thgesbd the line passing through the points
(C*, h(P*,C*)) and (C’, h(P',C")) is lower than that of the tangent line and the intersectiothaf line
with the z-axis is positive since the tangent line crosses #faxis above ther-axis (“Cost”-axis). This
means that the line connecting the poi(€s', h(P*,C*)) and (C’, h(P’,C")) never passes through the
origin, thereby leading to a contradiction with the initedsumption. Therefore, the line connecting the
origin (0,0) and the point(C*, h(P*,C*)) does not intersect the curve except at the end point, which
completes the proof of the inequalityh(P*, C*) < h(AP*,\C*) YA € (0,1) for P* > b/(k*(e + 1))
when the intersection of the tangent line with thexis is positive, an example of which is presented
in Fig. 11. ForP* < b/(k%*(e“" + 1)), the validity of the inequality in (66) cannot be guarantesdthe
convexity-concavity test is inconclusive fé* < b/(x*(e + 1)), as noted in Lemma 1. Similarly, when
the intersection of the tangent line with theaxis is negative as in Fig. 12, the inequality in (66) may
not hold for somg P, C) satisfyingP > b/(k?(e” + 1)).

In order to complete the proof of Lemma 2, the range of values:as determined for which the
intersection of the line tangent to the surfage”, C) at P = b/(k?(e“ + 1)) with the z-axis is positive,
wherem is the slope of the projection of that line onto thg-plane (i.e., thePC-plane). LetD(P, C, z)
and( Py, Cy, z9) denote, respectively, the equation of the surfacg, C') and the point of tangency to the
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surfaceh(P,C) at P = b/(k*(e“ + 1)), leading to the following relations:

D(P,C,z)=z+nc2<f<, w> =1 (75)
b
Z0 — h(PQ, CQ) (77)

The equation of the tangent plane to the surfatB, C) at P = b/(k%(e + 1)) can be expressed as
aP + bC + cz = aPy + bCy + czg (78)

where

oD

op (P,C,2)=(Py,Co,20)

) )

a , b , C (79)

oC (P,C,2)=(Ps,C0,20) 0z (P,C,2)=(Po,C0,20)

The intersection point of the-axis with the tangent plane, denoted 4y;, can be calculated by inserting
(P,C) = (0,0) into (78) as

b
Zint = %Po + ECO + 20 (80)

which, after inserting (75)-(77) and (79) and performingeddraic manipulations, yields the following

equality:

k2 Py(eC0-1) 2p 2P (eCo — 1
n _T0 ) A () C C K 0(9 )
=1 — 0 04 et 1) — —_— . 81
Zint Wor e % = (Coe e ) —nQ ( 2 (81)

Definer £ k+/Py/b. Then,C, is computed ag’y = log(1/2%—1) due to (76). Alsoz;,; can be rewritten

as a function ofr as

Zig = w(x) 21—

n
e
221 V1 — 222

Parameter), as defined in (65), takes values in the interald] for different modulations and(z) is a

a?—3 <\/1 — 222 + 11_ i log (1 ;fz)) —nQ (\/1 — 29:2) . (82

monotone increasing function for amye (0, 4]. Thereforew(z) = 0 is satisfied forz = r—!(1/n) where
the functionr(x) is defined as

2

1 11—z
r(z) Nor e’ 2 <\/1 — 222 + —

Hence,w(x) < 0 for z € [0,7~(1/n)] andw(z) > 0 for = € (r~'(1/n), x/+/2]. Note that the maximum

log (1 ;f)) —Q (m) . (83)
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value of z is given by k\/Py/b = k+/1/(e% +1) < r/v/2. Therefore, it can be concluded that if
k\/Po/b > r~'(1/n), zin: > 0. The problem is to determine the range of valuesnofor which the point
of tangency(Py, Co, z) satisfiesr\/Py/b > r~'(1/n), or equivalently,Cy, < log([r=(1/n)]~2 — 1) by
(76). Here, the upper bound for the slopeso thatz;,; > 0 holds is provided by the following expression:

C G G 1) 0T am) log (67 1/m) - 1)

Defining
v (r (/) Plog (1 (1/m) 1) (85)
as a parameter that dependsgnf
P (86)
v

the tangent line to the surfadg P, C) at P = b/(x*(e” + 1)), which passes through theaxis and
whose projection onto they-plane has a slope that satisfies (84), and thus (86), itsrséth the z-
axis above thery-plane. Therefore, the inequalityh(P,C) < h(AP,\C) is satisfiedvA € (0,1) for
P > b/(x*(e” + 1)) if (86) is satisfied. In other words,

b bC'
P>max{m7?} (87)

guarantees the validity of the inequalityh(P, C') < h(AP, A\C) VA € (0,1).
Finally, the convexity of setS; is demonstrated in a manner similar to the proof of conveaftget
S. in Lemma 1 of [10]. Let(P;, C;) and (P;, C;) denote any two elements from s8t whose convex
combination is expressed &8 P, + (1 — \)P;, AC; + (1 — X)), whereX € [0,1]. AC; + (1 — \)C;
lies in the interval(C,;,, Cax). The convexity ofS; related to the power component is shown via the

following inequality:

b (g ntG _MAGH NG (88)

v v v

AP+ (1= MNP > A

Combining the inequalities in egn. (38) of [10] and in (88gIds

(89)

b bACi + (1= X))
AP+ (1= A)P; > max {G(A0i+(1—)‘) 1 v ]

which completes the proof th&; is a convex set. |
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B. Proof of Proposition 5

The partial transmission strategies either use one chamefo channels, corresponding to Strategy 1P
and Strategy 2P, respectively, as defined in Section II. mssthat there exist no channels with cakt
(the case in which there exists such a channel is studiecearitl). The proof of the proposition consists
of two main parts:

Proof for non-optimality of Strategy 2FEirstly, consider Strategy 2P, and leénd j denote the chan-

nels employed for channel switching between two channét&n] the channel switching problem in
(13) can be expressed as in (22). Assume without loss of gityethat C; > C;. Let the solution of the
optimization problem in (22) for the channel pair j) under Strategy 2P be denoted pY;, \;, P}, P;}.
Assume that\; > 0, A} > 0, and A} + A7 < 1 so that the optimal solution does not involve the two-
channel full (Strategy 2F), one-channel partial (StratéBy and one-channel full (Strategy 1F) cases. The
relationsA; C; + \; C; = Ac and A} + A7 < 1 imply that at least one of the channels should have a cost
higher thanA.; thus, C; > A.. Then, the possible solutions for Strategy 2P are handldgvincases:
C; > A, andC; < A..

For C; > A., the channel costs are ordered(@as> C; > A,. It will be demonstrated that Strategy 1P,
which employs channej, achieves a higher average probability of correct decisian the optimal

solution obtained for Strategy 2P, which employs chanhelsd j, if (68) is satisfied; that is,
ATR(P!,Co) + A h(PY,C) < A h(F;, Cy) (90)

where); = A./C; and P; = A, C;/A. are, respectively, the channel switching factor and thegodavel
obtained by employing channglfor Strategy 1P. Since an optimal solution must operate efatlerage

power limit and at the average cost limit, the following t&las are obtained:
NP Ci) + X5 (P, Cy) = Ay (P, C5) = (A, A) - (91)

Assume that the inequality; + \; > ), holds. Then)\: > A./C; — A is obtained, which, after inserting
into (91), yieldsA. = \; C; + X\ C; > C; A./C; — X (C; — Cj). Rearranging the terms, the inequality
A > A./C; is reached, which leads to a contradiction singe’; < A7 C; + A C; = A. noting that
Af > 0andC; > 0. Hence, the optimal channel switching factors satisfyt \; < );. Meanwhile, the
optimal power levels satisfy the inequalityin{ P, Py} > A, ;/3;, which can be obtained based on

the upper bound in Proposition 2 (see (25)) and the fact thkdast one of the power levels should be

larger thanA4,. The lower bound for the optimal power levels can be compirnad (68) and the relation
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i <P <---< Bk as

, blog (1+ L
min{P.* Pfk}>14pﬁl>/lpﬁl>max{ b , ( Bl)}max{ 2( b 7b01}‘
R

trI B; B k2(2+b/PKk) v

(92)
Since the ordering of the channel costs is givendy> Cy, > --- > Cg, (92) guarantees that both
(P, C;) and (P7,C;) are elements of sef;, as defined in Lemma 2. Exploiting the strict concavity

of h(P,C) for P > b/(rk%(e“ + 1)), the average probability of correct decision for Strateycan be

expressed as

(93)

MNEPY 4+ N Ps X Cy+ MO
)‘:h(Pi*,Ci)%—)\;h(P;,Cj)<()\j+)\;)h< it ity J J).

NS NS

Sinces; is a convex set by Lemma 2, the convex combinatio(/gf, C;) and (P}, C;) is also an element

of S;. Hence,

(AijAj.) h()\;fpi*—i-)\;%?k’)\zci—l—)\;cj) _h ,\;p;jLA;P;j/\jCithjCj (94)
Y A+ A+ A\ A

= WP}, C;) (95)

where the inequality results from Lemma 2 and the inequaljty- A} < S\j, and the equality is due to
(91). Combining the relations in (93)-(95) yields the inalify in (90). Thus, wherC; > A., Strategy 2P
cannot be optimal as it always attains a lower average piiityatf correct decision than Strategy 1P
that employs channel.

The other case to consider for Strategy 2R js< A.. In this case(; > A. > C;. It will be proved
that the optimal channel switching solution for Strategyl@®s to a lower average probability of correct
decision than a specific solution for Strategy 2F with chaewétching factors{(\; —v), (\j+v+Xi1)}
and power leveld P, P;}; that is,

ALRCET, Ci) + A5 h(PF, C5) < (A7 =) h(ET, Co) + (A + 7 + Aseya) (B, C5) (96)
whereXj ., £ 1 — (X} + \}) is the idle period, and = % and P; = % are obtained from
L J +1

the fact that an optimal solution must operate at the avepager and average cost limits; i.e.,
A (B, C) + X (PF,C5) = (AT =) (B, C) + (A + 7+ Akeyn) (B, C5) = (Ap, Ae). (97)

The switching factorA\; — ) is legitimate due to the inequality < v < Af. Assumingy > \! yields
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(Ak1 + A7) €5 = A7 G, which is equivalent td1 — A7) C; > A7 C;. This leads to a contradiction since
it leads toC; > A7 C; + \; C; = A.. Hence,y < )} is obtained. Sinc&”; > Cj, v > 0; hence, the
proof of the inequality) < v < A! is complete. After rearranging the terms, the inequality9é) can be

expressed as
Yh(P], Ci) + X; h(P;,Cj) < (Aj +7 + Nigyn) (P, C5) - (98)

Since (P, C;) € S; and (P7, Cj) € S;, the following inequality is obtained from the strict conitq of
h(P,C) for P > b/(k*(e“ +1)):

v Pl + X P WC'Z-—F)\;C]-) (99)

h(P?, C;) + X h(P?, C; AV h . J_J
TP €+ X5 1P} C) < 350 b (TP TS

The convex combination ofF;, C;) and (P}, Cj) lies also inS; due to the convexity of;. Therefore,

SR (yﬂ*Jr)\;P* 7CZ-H;C]-)< <7P*+)\*P* 7 Ci+ N G

J 100
7+)\*+)\K+1 7+)\*+)\K+1 7+)\*+)\K+1) ( )

R TPy
= h(P;, ;) (101)

where the inequality is based on Lemma 2 and the equalityitseBom (97). Combining the relations
in (99)-(101) leads to the inequality (98), and hence, toittleguality in (96). Therefore, fo€; < A,
there always exists a full transmission strategy employimg channels that achieves a higher average
probability of correct decision than the optimal solutiam Strategy 2P. This completes the proof of the
proposition for partial transmission strategies that wge ¢hannels.

Proof for non-optimality of Strategy 1F8econdly, Strategy 1P is considered and shown to be outper-

formed by Strategy 2F if the condition in (68) is satisfiedt Lelenote the channel employed for partial
transmission over a single channel. Since an optimal swlutiust operate at the average cost limit and
since no channels with cost. are assumed to exist;; > A. must be satisfied. Lef\!, P’} denote the
optimal channel switching factor and the optimal power léoe Strategy 1P when channgls employed.
Then,\; = A./C; and P = A, C;/A. are obtained due to the fact that an optimal solution mustatee
at the average cost and power limits. In the following, th&mal solution under Strategy 1P is proved
to achieve a lower probability of correct decision than acfmesolution under Strategy 2F which uses
channels and; with channel switching factors and power levels{¢i; —~), (7+)\§(+1)} and{P* P;},

respectively, where\y 21— )\ is defined as the idle period, and= % K“ L and P; =

= » are
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derived based on the property of an optimal solution to dpeastaithe average power and cost limits; i.e.,
A =N (B C) 4 (7 + Nie) (B, C5) = AL (B, i) = (Ap, A (102)
Here, the cost of channglsatisfiesC; < A, asC; > A., and the inequality to prove is expressed as
A h(BT, Ci) < (A7 =) M(ET, C) + (7 + X ) (P, C5) (103)

where the left and right hand sides are the average protiedibf correct decision corresponding to
Strategy 1P and Strategy 2F, respectively. Note that— +) is a legitimate switching factor sinde <
v < AL C; > A > C; implies thaty > 0. Assumey > X, which, after manipulations, leads to the
following inequality: A. = A C; < C;. This contradicts with the inequalit¢; < A.. Therefore, the
inequality 0 < v < Af is verified. The inequality in (103) reduces to the followifgm after some
algebraic operations:

V%A%H h(P;.Cy) < h(P;,C)). (104)
Exploiting the equation in (102) to derive a relation betwelee power-cost pair6P;, C;) and (P, C;),
one obtains

v

L (prc)=(P;,C)). (105)
7+XkKH( ) = (1}, C))

In the following, it will be demonstrated that’, C;) € S;, whereS; is as defined in Lemma 2. Since

Pr > A, it is sufficient to prove that

b bC;
> )
A, > max { e } (106)

for (P, C;) to be an element of se,. From (68), it is known thatd, > ﬁ;f;m. The inequality

bB% - b
R261(20k +b) — K2(e% + 1)

(107)
is reduced to the following form by using the cost functior(64) and performing several algebraic steps:

28; B (B — B1) = b (b1 8 — Br) - (108)

Since the channel parameters are ordered in the ascendieg @i the channel indicesi, > 3; and
5% > 3?2 > B; 51, which make the left-hand side of (108) greater than zerothadright-hand side of
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(108) smaller than or equal to zero. Hence, the inequalitylBB) and thus the inequality in (107) is

proved to be correct. Therefore, the average power limisfeed

b
> .
A, > (0 1 1) (109)

On the other hand, the inequality

b Bk log (1—1—5%) N e

0B, =~ (110)
can be reduced to
Br _ C;
RS 111
B — Ch ( )

after some manipulation and based on the cost function if. ®ice 5, > (5, and C; < (1, the
inequalities (111) and (110) are satisfied, which, togethdr the inequality in (68), yields the following
result:

bC;

v

Ay > (112)

Combining the inequalities in (109) and (112) produces tregjuality in (106). Therefore, the proof of

the argument P*, C;) € S; is finalized. Now, one can use Lemma 2 and the equation in (tO&)ite

v B 7 C;
Y+ Ak VT Ak

7
—— h(P, C; <h(
Y+ Akt ( )

) = h(P;, C})) (113)
which completes the proof of the inequality in (104) and tlyeivealent one in (103). Hence, given
the optimal solution for Strategy 1P, there always existalatfansmission solution performing channel
switching between two channels, which leads to a higherageesprobability of correct decision. Therefore,
under the assumption that there exist no channels with 4gsthe claim that partial transmission is not
optimal when the average power limit satisfies the conditio(68) is verified.

For the final part of the proof, assume that there exists argdamith costA.. Let {\:, P*}X | denote
the solution of the optimization problem in (13) under thetiphtransmission strategies, Strategy 1P or
Strategy 2P. Here, at most two of the channel switching facee non-zero, since only single channel or

two-channel strategies are employed. The average prdiyatfilcorrect decision achieved by the optimal
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solution {\#, P}X, can be bounded from above based on the strict concavity BfC'):

z \: Py z Ar Gl
Z X (P, C, (Z >\*> - : . (114)
Z Af 2 Af

From that part of the proof above which is related to the casshich there exist no channels with cost
A, it is known that the power-cost pairs obtained from thermoptisolution under both Strategy 1P and
Strategy 2P are elements of sktdefined in Lemma 2. Hence, the power-cost paits, C;) corresponding
to the employed channels satisfy the concavity conditiohemma 1, which verifies the inequality in
(114). SincesS; is a convex set, the convex combination of the power-cos$ p&j", C;) is also an element

K
of ;. Noting thatd~ \f < 1 and using Lemma 2, the following inequality is obtained:
=1

Z AP Z A C
(Z A*) =1 =L <h (Z \F P Z A C > = h(A,, Ac) (115)
Z AN
=1
where the equality follows from the fact that an optimal $iola must operate at the average power and

the average cost limits. Combining the inequalities in {1ddd (115) yields the desired inequality
Z)\* WP, C;) < h(Ay, Ac) (116)

where the left and right hand sides represent, respectitletyaverage probabilities of correct decision
achieved by the optimal partial transmission strategy (it be Strategy 1P or Strategy 2P) and
Strategy 1F that employs the channel with cdstat the maximum average powdy,. Therefore, if there

is a channel with costl., partial channel utilization cannot be optimal. In summavigh the verification

of the inequalities in (90), (96), (103), and (116), it is cluded that when the average power limit is
above a certain threshold as stated in the proposition,dh&ptransmission strategies cannot be optimal.
|
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