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Abstract

In this study, optimal channel switching (time sharing) strategies are investigated under average power and cost

constraints for maximizing the average number of correctlyreceived symbols between a transmitter and a receiver

that are connected via multiple flat-fading channels with additive Gaussian noise. The optimal strategy is shown

to correspond to channel switching either among at most three different channels with full channel utilization (i.e.,

no idle periods), or between at most two different channels with partial channel utilization. Also, it is stated that

the optimal solution must operate at the maximum average power and the maximum average cost, which facilitates

low-complexity approaches for obtaining the optimal strategy. For two-channel strategies, an upper bound is derived,

in terms of the parameters of the employed channels, on the ratio between the optimal power levels. In addition,

theoretical results are derived for characterizing the optimal solution for channel switching between two channels,

and for comparing performance of single channel strategies. Sufficient conditions that depend solely on the systems

parameters are obtained for specifying when partial channel utilization cannot be optimal. Furthermore, the proposed

optimal channel switching problem is investigated for logarithmic cost functions, and various theoretical results are

obtained related to the optimal strategy. Numerical examples are presented to illustrate the validity of the theoretical

results.

Index Terms– Channel switching, Gaussian channel, fading, probabilityof correct decision, partial transmission,

logarithmic cost.

I. INTRODUCTION

Time sharing (randomization) has attracted a significant deal of interest in the literature due to its capa-

bility to provide performance improvements for communication systems [1]–[11]. In [2], it is demonstrated
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that the average probability of error over additive noise channels with arbitrary noise probability density

functions (PDFs) can be reduced via optimal stochastic signaling, which performs time sharing among at

most three different signal levels for each information symbol. The study in [5] investigates performance

gains that can be achieved by detector randomization and stochastic signaling, and proves that the optimal

receiver design is realized by time sharing (randomization) between at most two maximum a-posteriori

probability (MAP) detectors corresponding to two deterministic signal vectors. For the downlink of a

multiuser communications system, [8] performs joint optimization of signal amplitudes, detectors, and

detector randomization factors in order to reduce the worst-case average probability of error. Similarly,

jamming performance of average power constrained jammers can be enhanced by performing time sharing

among different power levels [3], [6], [7]. In [3], the optimal time sharing strategy for a jammer that

operates over a channel with a symmetric unimodal noise density is shown to correspond to on-off

jamming when the average power constraint is below a certainthreshold. The optimum jamming strategy

that minimizes the probability of detection in the Neyman-Pearson framework is considered in [7], where

it is stated that power randomization between at most two different power levels can result in the highest

jamming performance over an additive noise channel with a generic PDF.

Performance enhancements via time sharing can also be realized in communication systems where the

transmitter and the receiver are connected through multiple channels [3], [10]–[13]. In such a scenario,

channel switchingcan be performed by transmitting over a channel during a certain period of time and

switching to another channel during the next period. In [3],the optimal channel switching strategy is

studied for minimizing the average probability of error over a set of channels with additive unimodal

noise under an average power constraint, and it is proved that the optimum performance can be achieved

via time sharing between at most two channels and power levels. An average power constrainedM-ary

communication system in the presence of multiple additive noise channels with generic noise PDFs is

studied in [11] in the context of minimizing the average probability of error by joint optimization of channel

switching, stochastic signaling, and detection strategies. It is demonstrated that the optimal strategy is to

employ deterministic signaling or time sharing between at most two signal constellations over a single

channel, or to perform channel switching between two channels with deterministic signaling. The benefits

of channel switching are investigated in [13] for additive Gaussian noise channels under average and

peak power constraints, where the objective is to maximize average channel capacity. It is proved that the

optimal solution performs channel switching between at most two different channels. The study in [10]

formulates the channel switching problem by incorporatingchannel costs associated with the usage of each

channel for transmission and imposing an average cost constraint. The optimal channel switching strategy
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over a set of Gaussian channels and under average power and cost constraints is shown to correspond to

time sharing among at most three different channels [10].

The previous studies on the channel switching problem mainly employ the average probability of

error [3], [10], [11] or the average channel capacity [13] asthe objective functions, and assume that

the channels are fully utilized; i.e., there always exists transmission over one of the channels and there

are no idle periods. In this manuscript, the channel switching problem is investigated for maximizing

the average number of correctly received symbols in the absence of the full transmission/utilization

constraint. More specifically, the optimal channel switching strategies are designed over a set of flat-

fading channels under average power and cost constraints for the maximization of the average number of

correctly received symbols. Rather than forcing full utilization of channels (i.e., no idle periods) as in [10],

a novel and more general formulation is developed for channel switching, where communication may not

occur during a certain period of time, which, in some scenarios, is shown to attain a higher average number

of correctly received symbols than full channel utilization. In addition, unlike the no fading assumption in

[10], Rayleigh fading channels are also considered in designing the optimal channel switching strategies.

Furthermore, the proposed optimal channel switching problem is studied for logarithmic cost functions,

where a logarithmic relation is employed between the signal-to-noise ratio (SNR) of each channel and its

utilization cost, which is in compliance with the cost functions in the literature [10], [14], [15], [16]. The

main contributions and novelty of the study in this manuscript can be summarized as follows:

• The optimal channel switching problem is formulated in the presence of partial data transmission for

the first time.

• It is shown that the optimum solution is achieved via channelswitching either among at most

three channels with full transmission or between at most twochannels with partial transmission

(Proposition 1).

• Theoretical results are obtained for characterizing the optimal solution for channel switching between

two channels, and for comparing the performance of single channel strategies (Propositions 2 and 3).

• Sufficient conditions for the optimality of full data transmission are derived in terms of channel

costs, standard deviations of channel noise, and channel fading statistics (Proposition 4). Under these

conditions, partial transmission strategies are guaranteed to be not optimal, which facilitates a low

complexity solution for the optimal channel switching problem.

• For logarithmic cost functions, it is shown that the partialtransmission strategies are not optimal if

the average power limit is higher than a certain threshold, which depends on the parameters of the

worst and best channels, as well as the parameters of the costfunction and the probability of correct
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Fig. 1. Channel switching amongK channels, whereCi denotes the cost of using channeli.

decision (Proposition 5).

In addition, numerical examples are presented for the demonstration of the theoretical results.

An important practical application of the channel switching problem considered in this manuscript is a

cognitive radio (CR) system, in which primary users are regarded as owners of the frequency spectrum,

and secondary users can utilize the frequency bands of primary users under certain conditions [10], [17].

In the spectrum trading framework proposed in [18], primaryusers can sell certain part of their spectrum

to secondary users for the aim of revenue maximization. In that case, there can exist multiple available

frequency bands (channels) with different costs for the useof secondary users, and a secondary user can

perform channel switching among different available channels to improve its communication performance

[10]. Similar to the effort of secondary users in CR networksfor obtaining the best performance over the

available bands, the aim of this study is to design optimal channel switching strategies for an arbitrary

signal constellation to maximize the average number of correctly received symbols between the transmitter

and the receiver under average cost and power constraints over multiple fading channels corrupted by

additive white Gaussian noise.

The remainder of the manuscript is organized as follows: Thesystem model and the problem formulation

are presented in Section II. The solution of the optimal channel switching problem is characterized and

theoretical results are obtained in Section III. The optimal channel switching problem is studied for

logarithmic cost functions in Section IV. In Section V, numerical examples are provided, which is followed

by the concluding remarks in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The channel switching problem is formulated for anM-ary communication system withK channels

between the transmitter and the receiver, as shown in Fig. 1.Channel switching is performed over a
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communication interval that consists of a sufficiently large number of symbols. Depending on fading

conditions, the following two cases are considered:

• Case 1:In this case, it is assumed that slow fading occurs and the channel coefficient of each channel

is fixed over the whole communication interval during which channel switching is performed. Also,

the transmitter is assumed to have the channel state information (CSI) for all the channels, which

can be provided in practice via feedback from the receiver.

• Case 2: In this case, block fading is considered, where each block consists of a number of sym-

bols and the block duration is significantly shorter than thecommunication interval during which

channel switching is performed. It is assumed that the channel coefficients change from block to

block (independently) but the statistics of the channel coefficients are fixed for each channel in the

communication interval. Also, the transmitter has the channel distribution information (CDI) for all

the channels but it does not have CSI.

In both cases, channels are assumed to be frequency non-selective (i.e., flat fading) to eliminate inter-

symbol interference.

To enhance system performance, the transmitter performs channel switching amongK channels over

time in perfect synchronization with the receiver, that is,time sharing is performed among different

channels by using only one channel in a certain fraction of time [3], [11].1 Fraction of time when

transmission is performed over channeli is denoted byλi, which is called thechannel switching factorfor

channeli. The channel switching factors satisfy
∑K

i=1 λi ≤ 1 andλi ≥ 0, ∀ i ∈ {1 . . .K}. Thus, unlike the

previous studies such as [3], [10], [11], it is possible to have idle periods of communications where symbol

transmission/reception is not performed (in the case of
∑K

i=1 λi < 1), which can provide performance

improvements in certain conditions as compared to full utilization of channels (see Proposition 1 and

Section V).

Remark 1: For the implementation of channel switching, the transmitter and the receiver are assumed

to be synchronized so that the receiver knows which channel is currently in use or if it is the idle period.

Then, the receiver employs a decision rule for the corresponding channel or does not perform any decision

for the idle period. In practice, this assumption can be realized by employing a communications protocol

that allocates the firstNs,1 symbols in the payload for channel 1, the nextNs,2 symbols in the payload for

channel 2,... , and the lastNs,K+1 symbols for the idle period. The information on the number ofsymbols

for different channels and for the idle period can be included in the header of a communications packet.

1It is assumed that the transmitter and the receiver have single RF units so that they can use only one channel at a given time[3], [11].
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GenericM-ary modulation with an arbitrary one-dimensional or two-dimensional signal constellation2

is considered for communication over each channel. The complex received signal corresponding to channel

i can be expressed as

y =
√

Pi αi s
(j)
i + ni (1)

for j ∈ {0, 1, . . . ,M − 1} and i ∈ {1, . . . , K}, wheres(0)i , s
(1)
i , . . . , s

(M−1)
i denote the set of (complex)

transmitted signals (with unit average energy) employed for M-ary communications over channeli, Pi

determines the average power of the transmitted signal for channeli, αi is the complex fading coefficient

of the ith channel, andni is circularly-symmetric complex Gaussian noise for channel i with mean zero

and variance2σ2
i . It is assumed that the noise components are independent across the channels and they

are also independent of the fading coefficients and the transmitted signals. In addition, equally likely

symbols are considered; hence, the prior probability of each symbols(j)i for j ∈ {0, 1, . . . ,M − 1} is

equal to1/M . It is assumed thatαi’s are perfectly estimated at the receiver. The signal-to-noise ratio

(SNR) per symbol is defined as

γi =
Pi|αi|2
2σ2

i

· (2)

For optimum coherent demodulation, a generic expression for the probability of symbol error corre-

sponding to the SNR in (2) over Gaussian channels can be stated exactly or approximately (depending

on the modulation type and order) as [19]

Ps(γi) = η Q (κ
√
γi ) (3)

whereQ(·) denotes theQ-function, γi is as in (2), andη andκ are constant parameters that depend on

the modulation type and order. It should be noted that the expression in (3) is exact for several types of

modulations such as BPSK, BFSK and M-PAM, and it holds approximately for other types of modulation

at high SNRs [19].

In Case 2, the fading coefficientαi for channeli is modeled (over the fading blocks) as a zero-mean,

circularly-symmetric complex Gaussian random variable with varianceς2i , which corresponds to Rayleigh

fading. Then,γi in (2) becomes an exponential random variable, and the average probability of symbol

error can be obtained by calculating the expected value of (3) over that exponential distribution, which

2One-dimensional and two-dimensional signal constellations (e.g., PAM, PSK, QAM) are employed in almost all practicaldigital
communications systems.
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yields [19]

gi(P ) = η̃

(

1−
√

κ̃ P

κ̃ P + σ2
i /ς

2
i

)

(4)

wheregi(P ) represents the average probability of symbol error over channel i for a power level ofP ,

η̃ , η/2 and κ̃ , κ2/2. It is noted thatgi(P ) is a convex and monotone decreasing function ofP for

P ≥ 0.

In Case 1, the fading coefficients of the channels are fixed during the channel switching operation and

they are known by the transmitter and the receiver. Since theprobability of symbol error depends onαi

and σi only through the|αi|2/σ2
i term (see (2)),|αi| =

√
2 can be employed fori = 1, . . . , K without

loss of generality, and the differences between the channelcoefficients can be reflected to theσ2
i terms

accordingly. Then, based on (2), (3) can be expressed for Case 1 as

gi(P ) = η Q

(

κ

√

P

σ2
i

)

(5)

which holds exactly for BPSK, BFSK and M-PAM modulations andapproximately for other types

of modulation at high SNRs [19]. For rectangular M-QAM and QPSK constellations, the exact error

probability of symbol error for Case 1 can be stated as

gi(P ) = 1−
(

1− η Q

(

κ

√

P

σ2
i

))2

(6)

whereη andκ are determined by the modulation type.

The analysis in this study is generic to a certain extent since it employs (6) for QPSK and M-QAM

modulations in Case 1, (5) for other types of modulation in Case 1, and (4) in Case 2. Although [10]

considers (5) in Case 1 for scenarios with full channel utilization, there exist no studies in the literature

that investigate the channel switching problem based on (6)in Case 1 (i.e., for QPSK and M-QAM

modulations with slow fading) and based on (4) in Case 2 (i.e., for Rayleigh fading). In addition, the

scenario with partial channel utilization is proposed for channel switching for the first time in this study.

In the considered system model in Fig. 1, there existsK channels for transmission, and each channel

has a cost value, denoted byCi for i ∈ {1, . . . , K}, which represents the cost of utilizing a channel per

unit time [10], [18], [20]. Cost values are nonnegative, andthe relation between costs of different channels

is given byCi > Cj if σ2
i /ς

2
i < σ2

j/ς
2
j in Case 2 and ifσ2

i < σ2
j in Case 1,∀j 6= i. This is motivated by

the fact that a channel with a higherς2i /σ
2
i value, or a lowerσ2

i value (equivalently, higher SNR) yields
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Fig. 2. A communication interval ofT seconds during which channel switching is performed between the transmitter and the receiver.
Communication occurs during the transmission period and stops during the idle period.λi shows the percentage of time channeli is
employed for transmission withi ∈ {1, . . . ,K}, andλK+1 denotes the percentage of the idle period in the interval. The symbol rate of the
communication link is assumed to beR in symbols per second.

a lower average probability of symbol error as suggested by (4)-(6), which requires such a channel to

have a higher cost [20], [21]. In the remainder of the manuscript, βi is employed to denote thechannel

parameterof the ith channel for both Case 1 and Case 2, which is defined as

βi ,











σ2
i , Case 1

σ2
i /ς

2
i , Case 2

(7)

The channel parameters satisfyβi < βj for Ci > Cj.

In this study, several assumptions/properties are stated regarding the probability of error functiongi(·) in

order to derive generic theoretical results which are validfor various types of modulations. The following

assumptions state the convexity and monotonicity properties of the error function.

Assumption 1: gi(P ) is a convex function ofP for P > 0.

Assumption 2: gi(P ) is a monotone decreasing function ofP/βi, that is,gi(P ) = g̃(P/βi) whereg̃ is

a monotone decreasing function.

The convexity assumption is satisfied for all three types of error functions in (4)-(6). Similarly, As-

sumption 2 is valid for all types of error probability functions, which are actually functions of SNR rather

than power.

The aim is to perform joint optimization of channel switching factors and signal powers in order

to maximize the average (expected) number of correctly received symbols per unit of time between a

transmitter and a receiver under average power and cost constraints. It is assumed that the transmitter

knows the fading coefficients of the channels,αi’s, in Case 1. On the other hand, the transmitter has the

knowledge of theς2i /σ
2
i term for each channel but does not know the fading coefficientfor each symbol in

Case 2. A communication interval for the channel switching operation is shown in Fig. 2, whereT denotes

the duration of the interval in seconds andR denotes the symbol rate over a given communication link in

symbols per second, which is the same for all theK channels. According to Fig. 2, for the communication

interval of T seconds, the average (expected) number of correctly received symbols over theith channel
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can be expressed as

Nc,i = λiTRPc,i (8)

whereλi is the channel switching factor for channeli andPc,i is the average probability of correct decision

over channeli for a power level ofPi, which can be calculated as

Pc,i = 1− gi(Pi) (9)

with gi(Pi) denoting the average probability of symbol error as computed in (4)-(6) for different types

of modulations and cases. The expression in (8) correspondsto the average number of symbols that

are correctly received during the communication interval of lengthλiT . Extending (8) to all the channels

yields the average number of correctly received symbols during an interval ofT seconds over all channels:

Nc =TR

K
∑

i=1

λi Pc,i . (10)

For a communication interval ofT seconds, the objective function to maximize is given by the expression

in (10). SinceT andR can be assumed to be constant design/system parameters, themaximization of

(10) is equivalent to maximizing

P̄c =
K
∑

i=1

λi Pc,i . (11)

Defining hi(P ) , 1 − gi(P ) as the correct decision probability over channeli for a power level ofP ,

(11) can be expressed based on (9) as

P̄c =
K
∑

i=1

λi hi(Pi) . (12)

Remark 2: The weighted sum of the correct decision probabilities in(12) represents the average

probability of correct decision if the sum of the channel switching factors equals to1; otherwise, it

corresponds to the “normalized” average number of correctly received symbols, normalized byTR,

which is the number of symbols transmitted during a communication interval, assuming a fixed symbol

duration. In the rest of the manuscript, the objective function in (12) will be referred to as the “average

probability of correct decision”, regardless of whether the channel switching factors sum to1 or not.

The reasoning behind the choice of the average probability of correct decision instead of the average

probability of error as the optimization criterion can be explained as follows: When the probability of
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error metric, i.e.,
∑K

i=1 λi gi(Pi), is employed in partial utilization of channels, the transmitter may choose

not to send any symbols, that is,λi = 0, ∀i (which is not possible in full utilization of channels), thus

leading to zero average probability of error, which is the minimum that can be achieved. On the other

hand, for the probability of correct decision metric in partial utilization, if no symbol transmission occurs

during a certain period of time, the average probability of correct decision,
∑K

i=1 λi hi(Pi), turns out to

be zero during that period, which is undesirable. Hence, theaverage probability of correct decision, as

opposed to the average probability of error, as the optimization criterion, forces the transmitter to exploit

the communication channels as efficiently as possible. (In this context, the termgoodputcan be used to

replace the average probability of correct decision (with appropriate scaling) when it refers to the ratio

of the total number of correctly received symbols to the total transmission time at a system level without

taking into account encoding/decoding, the packet-by-packet transmission scheme and the layered concept

of networking.)

It is noted that for any two channels, the one with a higher cost always results in a higher probability of

correct decision for the same power level; that is, ifCi > Cj (which impliesβi < βj), thenhi(P ) > hj(P )

for all P > 0 (cf. (4)-(7)). Several constraints must be imposed while maximizing the average probability

of correct decision in order for the channel switching strategies to be applicable in practical settings.

Namely, there exists an average power constraint, which canbe stated as
∑K

i=1 λi Pi ≤ Ap, whereAp

represents the average power limit. Also, an average transmission cost constraint can be expressed as
∑K

i=1 λi Ci ≤ Ac, whereAc denotes the average cost limit [10]. Then, the following optimization problem

is proposed:

max
{λi,Pi}

K
i=1

K
∑

i=1

λi hi(Pi)

subject to
K
∑

i=1

λi Pi ≤ Ap ,
K
∑

i=1

λiCi ≤ Ac , (13)

K
∑

i=1

λi ≤ 1 , λi ≥ 0 , ∀ i ∈ {1 . . .K} .

The optimization problem in (13) searches over bothfull transmissionstrategies (i.e.,
∑K

i=1 λi = 1) and

partial transmissionstrategies (i.e.,
∑K

i=1 λi < 1) in order to achieve the maximum probability of correct

symbol decision over available channels under average power and cost constraints. As investigated in

the remainder of the study, the partial transmission strategy may yield higher average probabilities of

correct decision in certain scenarios than the full transmission strategy and can be the solution of the
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optimization problem in (13). In such scenarios, no transmission during a certain period of time facilitates

a more efficient usage of the cost budget. Hence, by generalizing the concept of channel switching to

scenarios with possible idle periods, the average number ofcorrectly received symbols can be improved

in a communication system that is subject to average cost andpower constraints. In fact, this improvement

can be achieved without any significant complexity increasecompared to the channel switching systems

in the literature [10]. In addition, the average number of correctly received symbols can be considered as

an important parameter in practical systems.

For the theoretical analyses, it is assumed without loss of generality that the channel parameterβi is

distinct for each channel. This is based on the fact that if there are multiple channels with the same

channel parameter, channel switching between such channels can never increase the average probability

of correct decision compared to employing only one of them atthe same average power for the total

duration of time, which is due to the concavity of the correctdecision probability expressions,hi(·). For

this reason, the problem formulation that considers only the channels with distinct channel parameters is

sufficient to obtain the overall optimal solution.

III. OPTIMAL CHANNEL SWITCHING – GENERAL ANALYSIS

In this section, the optimal channel switching problem in (13) is examined in detail. In particular,

the problem in (13) is reduced to a simpler equivalent form and the optimal strategies are obtained

based on low-complexity calculations. The assumption madeabout the ordering of channel costs without

loss of generality is that the cost values satisfyC1 > C2 > · · · > CK , thus the channel parameters

are ordered asβ1 < β2 < · · · < βK . In this case, the probability of correct decision functions satisfy

h1(P ) > h2(P ) > · · · > hK(P ) for all P ≥ 0.

Based on the ordering of the channel costs, it is clear that ifAc ≥ C1, the optimal solution of (13) is

to transmit over channel1 exclusively with powerAp. In other words, since transmission over channel1

results in the highest probability of correct decision among all the channels, the optimal approach becomes

the use of the best channel (channel1) all the time at the maximum power limit when the cost budget

allows it.

Since (13) can easily be solved forAc ≥ C1, the case ofAc < C1 is considered in the remainder of the

study. It is straightforward to show that the solution of theproblem in (13) always satisfies the average

power constraint with equality sincehi(P ) is a monotone increasing function ofP for all i ∈ {1, . . . , K}.

Mathematically speaking, if{λ∗
i , P

∗
i }Ki=1 denotes the solution of the optimization problem in (13), then

∑K
i=1 λ

∗
iP

∗
i = Ap. Furthermore, based on a similar approach to the proof of Proposition 1 in [10] with
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slight modifications to consider the partial transmission strategies, it can be inferred that the optimal

channel switching solution operates at the average cost limit, that is,
∑K

i=1 λ
∗
iC

∗
i = Ac. Hence, an optimal

channel switching strategy must utilize all the available average power and average cost forAc < C1.

Therefore, the optimization problem in (13) can be solved byconsidering equality constraints (instead of

inequality constraints) for the average power and average cost, which provides an important reduction in

computational complexity.

The following remark is presented to reveal the reasoning behind the use of partial transmission.

Remark 3: Partial data transmission could not be an optimal strategy if the average cost constraint

did not exist in the optimization problem in(13); that is, the optimal solution of(13) satisfies
∑K

i=1 λi = 1

in the absence of the cost constraint.

Proof: The proof can be obtained by contradiction. Let{λ∗
i , P

∗
i }Ki=1 denote the solution of the opti-

mization problem in (13). Suppose that the average cost constraint does not exist and the optimal solution

satisfies
∑K

i=1 λ
∗
i < 1. Define the idle period asλ∗

K+1 , 1 −∑K
i=1 λ

∗
i . Then, following relations can be

established:

K
∑

i=1

λ∗
i hi(P

∗
i ) <

K
∑

i=1

λ∗
i h1(P

∗
i ) (14)

<

K
∑

i=1

λ∗
i h1(P

∗
i ) + λ∗

K+1 h1(0) (15)

< h1

(

K
∑

i=1

λ∗
iP

∗
i + λ∗

K+1 0

)

(16)

= h1

(

K
∑

i=1

λ∗
iP

∗
i

)

(17)

where the first inequality follows from the fact thath1(P ) > hi(P ), ∀P (sinceC1 > C2 > · · · > CK),

the second inequality uses the facts thatλ∗
K+1 > 0 (due to partial transmission) andh1(0) = 1/M with

M denoting the modulation order, and the third inequality is obtained from the strict concavity ofh1. The

inequality in (14)-(17), namely,
∑K

i=1 λ
∗
i hi(P

∗
i ) < h1

(

∑K
i=1 λ

∗
iP

∗
i

)

, indicates that the optimal solution

yields a lower average probability of correct decision thanthe solution which utilizes channel1 exclusively

(i.e. with channel switching factor1) with the same average power
∑K

i=1 λ
∗
iP

∗
i , but operates at an average

cost C1 that satisfiesC1 >
(

∑K
i=1 λ

∗
i

)

C1 >
∑K

i=1 λ
∗
iCi sinceC1 > Ci for i ∈ {2 . . .K}. Hence, in

the absence of the cost constraint, there always exists a full transmission strategy that achieves a higher

average probability of correct decision than a partial transmission strategy, which implies that
∑K

i=1 λ
∗
i = 1

must hold, leading to a contradiction. Therefore, partial transmission cannot be optimal in the absence of
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the average cost constraint. �

Remark 3 points to an important fact about the conditions under which partial transmission strategy can

be applied instead of full utilization of channels. Remark 3states that partial transmission can be reasonable

only if the budget is limited. The optimal strategy for an unlimited budget is to utilize exclusively the

channel with the highest cost (i.e., the highest correct decision probability) at the maximum average power.

Thus, partial data transmission may be optimal when the budget should be used efficiently to maximize

the probability of correct decision (e.g., instead of usinga low-cost channel exclusively, it may be better

to use a high-cost channel partially).

In the following proposition, it is stated that the optimal channel switching strategy, which is obtained

as the solution of (13), corresponds to channel switching either among at mostmin{K, 3} channels with

full transmission or between at mostmin{K, 2} channels with partial transmission.

Proposition 1: Assume that the power levels satisfyPi ∈ [0, Pmax] for some finitePmax. Then, the optimal

channel switching strategy is to switch either among at mostmin{K, 3} channels with full transmission,

or between at mostmin{K, 2} channels with partial transmission.

Proof: The proof is based on Carathéodory’s theorem [22], and similar arguments to those in [10], [23]

can be employed. Assume thatK ≥ 3 since the statement in the proposition already holds otherwise.

First, setsU andW are defined as

U = {(P, hi(P ), Ci) , ∀i ∈ {1, . . . , K} , ∀P ∈ [0, Pmax]} ∪ {(0, 0, 0)} (18)

W =

{(

K
∑

i=1

λi Pi ,

K
∑

i=1

λi hi(Pi) ,

K
∑

i=1

λiCi

)

, ∀λi ≥ 0 ,

K
∑

i=1

λi ≤ 1 , ∀Pi ∈ [0, Pmax]

}

. (19)

From (19), it is observed that the solution of (13) must be an element ofW. Also, it can be concluded

thatW is a subset of the convex hull ofU according to the definitions in (18) and (19). In addition, due

to the aim of maximization in (13), the solution can be shown to correspond to an element ofW that

lies on the boundary of the convex hull ofU based on similar arguments to those in [10], [23]. Then,

Carathéodory’s theorem states that any element of on the boundary of the convex hull ofU (including the

solution of (13)) can be expressed as the convex combinationof at mostdim(U) = 3 elements inU [22].

Therefore, the solution of (13) corresponds to channel switching either(i) among at most3 channels with

full transmission if(0, 0, 0) is not one of the elements ofU employed in the convex combination for the

solution, or(ii) between at most2 channels with partial transmission otherwise. �

Based on Proposition 1, an optimal channel switching solution corresponds to one of the following
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strategies: Partial/full transmission over a single channel, partial/full transmission over two channels, and

full transmission over three channels. The following sections explore the details of those strategies.

A. Single Channel Strategies

The optimal solutions for full and partial transmission over a single channel are investigated in this

section.

Strategy 1P – Partial Transmission over a Single Channel:In this case, one of the channels is

employed partially; that is, a single channel is used duringthe busy period, and an idle period exists, as

well. A partial transmission strategy that employs a singlechannel with a cost smaller thanAc cannot be

optimal (i.e., the solution of (13)) since the optimal solution must operate at the average cost limitAc,

as discussed above (the third paragraph of Section III).

In some cases, the optimal channel switching strategy corresponds to Strategy 1P. In those scenarios,

the optimal solution must be searched among the channels with costs higher thanAc. Let Sg , {l ∈
{1, . . . , K} : Cl > Ac}. Assume that channeli ∈ Sg is employed with channel switching factorλi and

powerPi. Then,λiPi = Ap andλiCi = Ac. Therefore, the optimal solution for channeli is obtained as

λ∗
i = Ac/Ci andP ∗

i = ApCi/Ac. Hence, the average probability of correct decision is given by

λ∗
ihi(P

∗
i ) =

Ac

Ci

hi

(

Ap
Ci

Ac

)

(20)

and the channel that yields the optimal solution under Strategy 1P is obtained as

i∗ = argmax
i∈Sg

Ac

Ci
hi

(

Ap
Ci

Ac

)

. (21)

Strategy 1F – Full Transmission over a Single Channel:In this case, one of the channels is employed

all the time. This strategy may be the optimal channel switching strategy if there exists a channel with

costAc since otherwise the average cost cannot be equal toAc.

B. Two-Channel Strategies

There exist two strategies for channel switching between two channels: Partial transmission over two

channels and full transmission over two channels.

Strategy 2P – Channel Switching between Two Channels with Partial Transmission: In this strategy,

channel switching is performed between two different channels and the sum of channel switching factors

is smaller than1, i.e., there exists an idle period with no data transmission. Let channeli and channel
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j denote the channels employed in this strategy. Then, the problem in (13) can be formulated under

Strategy 2P as

max
λi, λj , Pi, Pj

λi hi(Pi) + λj hj(Pj)

subject toλi Pi + λj Pj = Ap ,

λi Ci + λj Cj = Ac ,

λi + λj < 1 , λi, λj ∈ [0, 1) .

(22)

It is noted that Strategy 1P is covered as a special case of Strategy 2P. It is observed from the average

cost constraint in (22) that, for the optimal channel switching between two channels, at least one of

the channels should have a cost greater thanAc. Therefore, in order to obtain the optimal solution for

Strategy 2P, the problem in (22) should be solved forKg(K − 1) channel pairs, whereKg is the number

of channels the costs of which are greater thanAc andK is the total number of channels.

Based on the argument in the previous paragraph, assume, without loss of generality, thatCi > Cj

for the problem in (22). From the average power and cost constraints in (22), the optimal value of

λj and Pj can be expressed in terms of the optimal values ofλi and Pi as λj = (Ac − λi Ci)/Cj

and Pj = (Ap − λiPi)/λj. Therefore, the optimization problem in (22) can be simplified significantly

by optimizing over two variables instead of four variables based on the two equality constraints. The

optimization problem in (22) can then be expressed as follows:

max
λi∈[0, Ac/Ci )
Pi∈[0, Ap/λi ]

λi hi(Pi) + λj hj

(

Ap − λi Pi

λj

)

(23)

whereλj = (Ac−λi Ci)/Cj and the constraints forλi andPi are obtained from the relationsλi Ci+λj Cj =

Ac andλiPi + λjPj = Ap. From (23), it is observed that the optimal solution for Strategy 2P requires a

search over a two-dimensional space only (for each possiblechannel pair). This two-dimensional search

must be executed by first determining a value forλi and then finding the optimalPi for the currentλi value

since the search interval forPi depends on the value ofλi. Finally, the maximum for all those(λi, Pi)

pairs is calculated and the pair that yields the maximum value of the objective function is determined to

be optimal.

Strategy 2F – Channel Switching between Two Channels with Full Transmission: In this strategy,

channel switching is performed between two different channels and the sum of channel switching factors
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is equal to1. The formulation of the problem in (13) under Strategy 2F is as follows:

max
λi, λj , Pi, Pj

λi hi(Pi) + λj hj(Pj)

subject toλi Pi + λj Pj = Ap ,

λiCi + λj Cj = Ac ,

λi + λj = 1 , λi, λj ∈ [0, 1] .

(24)

In this case, the optimization can be performed over a singlevariable since the sum of channel switching

factors forms a new equality. Strategy 2F reduces to Strategy 1F if one of the channel switching factors

is equal to1.

The following assumptions are made about the error functions gi(·) to provide a basis for the next

proposition.

Definition 1: AssumeCi > Cj and letPij be defined as the solution to equationg′i(x) − g′j(x) = 0,

that is, g′i(Pij) = g′j(Pij).

Assumption 3:

(i) g′i(P ) > g′j(P ) if P > Pij .

(ii) g′i(Pij) = g′j(Pij) .

(iii) g′i(P ) < g′j(P ) if 0 < P < Pij .

(iv) g′i(0) = −∞ ∀i ∈ {1, . . . , K} .

Assumption 4: If g′i(Pi) = g′j(Pj) is satisfied, then

(i) Pj

Pi
<

βj

βi
for Pj > Pi > Pij

(ii) Pi

Pj
<

βj

βi
for Pj < Pi < Pij

Assumption 3 is valid for all types of modulations whose error probability expressions are given by

(4)-(6). On the other hand, Assumption 4 is satisfied for the error functions in (4) and (5), but not satisfied

for (6).

The following proposition derives upper and lower bounds for the optimal power levels obtained for

Strategy 2P and Strategy 2F and their ratios.

Proposition 2: Suppose that Assumptions 1, 3, and 4 hold. Let the solution ofthe optimization problem

in (13) under the two-channel strategies be denoted by{λ∗
i , P

∗
i , λ

∗
j , P

∗
j } and suppose thatλ∗

i > 0,

λ∗
j > 0, and Ci > Cj. Then, the optimal power levels and the channel switching factors satisfy the

following relations depending on the average power limit:

(i) If Ap = Pij(λ
∗
i + λ∗

j), thenP ∗
i = P ∗

j = Pij .

(ii) If Ap > Pij(λ
∗
i + λ∗

j), thenP ∗
j > P ∗

i > Pij .
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(iii) If Ap < Pij(λ
∗
i + λ∗

j ), thenP ∗
j < P ∗

i < Pij .

wherePij is as in Definition 1. In addition, the ratio between the optimal power levels cannot exceed

βj/βi; that is,

max

{

P ∗
j

P ∗
i

,
P ∗
i

P ∗
j

}

<
βj

βi
. (25)

Proof: The optimization problems in (22) and (24) can be solved together by re-writing the constraint

on the sum of the channel switching factors asλi + λj ≤ 1. In this case, the optimization problem again

becomes the one in (23). Consider the first-order derivativeof the objective function in (23) with respect

to Pi :

λi

(

h′
i(Pi)− h′

j

(

Ap − λi Pi

λj

))

(26)

or, equivalently,

λi(h
′
i(Pi)− h′

j(Pj)) . (27)

Due to Assumption 1,g′i(P ) is an increasing function ofP andh′
i(P ) = −g′i(P ) is a decreasing function

of P for P > 0. Hence, the expression in (26) is a decreasing function ofPi for Pi > 0, starting from∞ at

Pi = 0 and decreasing monotonically towards−∞ atPi = Ap/λi (due to Assumption 3). Therefore, given

the value ofλi, there is a unique maximizerP ∗
i for the optimization problem in (23), which corresponds to

the point at which the first-order derivative is zero. Equating the first-order derivative in (27) to zero and

settingh′
i(P ) = −g′i(P ) yields the following necessary and sufficient condition forthe optimal solution

of (23):

g′i(Pi) = g′j(Pj) . (28)

If Ap = Pij(λi + λj), it is obvious, by using the definition ofPij in Definition 1 and Assumption 3, that

Pi = Pj = Pij satisfies the condition in (28). Since the solution of (28) isunique, the optimal solution of

(23) is obtained asP ∗
i = P ∗

j = Pij , as stated in the first part of Proposition 2.

In order to prove the second part of the proposition, it is first observed that the first-order derivative

in (26) is a monotone decreasing function ofAp and a monotone increasing function ofPi. Therefore,

the value ofPi at which the first-order derivative becomes zero gets largeras Ap increases. Since the

first-order derivative becomes zero atPi = Pij whenAp = Pij(λi + λj) (as proved in the first part), the

first-order derivative becomes zero at a value larger thanPij whenAp > Pij(λi+λj). Hence, the optimal



18

solution of (23) satisfiesPi > Pij for Ap > Pij(λi + λj). In addition, it is concluded from (28) that as

Pi increases, the optimal value ofPj should also increase sinceg′i(P ) is an increasing function ofP for

P > 0, as stated above. In other words,P ∗
i > Pij also impliesP ∗

j > Pij based on the relation in (28).

Next, the ordering betweenP ∗
i andP ∗

j should be determined. Due to Assumption 3 and the condition

(28), g′j(P
∗
j ) = g′i(P

∗
i ) > g′j(P

∗
i ) sinceP ∗

i > Pij , which requiresP ∗
j > P ∗

i due to the monotone increasing

property ofg′j(P ). Therefore, forAp > Pij(λi +λj), the inequalityP ∗
j > P ∗

i > Pij is obtained. Similarly,

for Ap < Pij(λi + λj), the inequalityP ∗
j < P ∗

i < Pij can be obtained.

Since the optimal power levels satisfy the condition in (28), the final statement in the proposition can

be reached by using Assumption 4 and the results obtained in the previous parts of the proposition related

to the ordering of the optimal power levels. ForAp = Pij(λi + λj), P ∗
i /P

∗
j = 1 as stated in the first part

of the proposition. Overall, the ratio between the optimal power levels is upper bounded byβj/βi for any

value ofAp, as stated in the proposition. �

The search space of the optimization for Strategy 2P can be reduced based on Proposition 2 as follows.

For eachλi ∈
(

0, Ac/Ci

)

, λj is calculated asλj = (Ac − λi Ci)/Cj and the optimal power levels are

obtained as follows:

• If Ap = Aij(λi + λj), the optimal solution is given by

P ∗
i = P ∗

j = Pij . (29)

• If Ap > Aij(λi + λj), the optimization problem in (23) is solved for

Pi ∈
(

max
{

Pij , βiAp/βj

}

,min
{

Ap/λi , βjAp/(βiλj)}
)

(30)

which is obtained from (25) and the relation in the second part of the proposition.

• If Ap < Aij(λi + λj), the problem in (23) is solved for

Pi ∈
(

Ap ,min
{

Pij , Ap/λi , βjAp/(βiλj)
} )

(31)

which is obtained from (25) and the relation in the third partof the proposition.

Applying the procedure above, the optimal value ofPi and the corresponding value of the objective

function in (23) can be determined for a givenλi ∈
(

0, Ac/Ci

)

. The optimal value ofλi, denoted byλ∗
i ,

is the value that yields the maximum of the objective function in (23) and the corresponding value ofP ∗
i

gives the optimal value ofPi. Once the optimal pair{λ∗
i , P

∗
i } is obtained, the optimal values ofλj and

Pj are calculated asλ∗
j = (Ac − λ∗

i Ci)/Cj andP ∗
j = (Ap − λ∗

iP
∗
i ) /λ

∗
j , respectively.
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C. Three-Channel Strategies

Based on Proposition 1, there exists only one strategy for channel switching among three channels.

Strategy 3 – Channel Switching among Three Channels:In this strategy, transmission is performed

by switching among three different channels and the channelswitching factors add up to1 (i.e., full

transmission). The formulation of the optimization problem in (13) under Strategy 3 is given as follows:

max
λi, λj , λk, Pi, Pj , Pk

λi hi(Pi) + λj hj(Pj) + λk hk(Pk)

subject toλi Pi + λj Pj + λk Pk = Ap ,

λi Ci + λj Cj + λk Ck = Ac ,

λi + λj + λk = 1 , λi, λj, λk ∈ [0, 1]

(32)

wherei, j andk are the employed channels. Due to the average cost constraint in (32), at least one of

the channels should have a cost greater thanAc and at least one of them should have a cost smaller than

Ac. Thus, the optimization problem in (32) must be solved forKg Ks (K − 2) channel triples and the

triple that yields the highest average probability of correct decision is determined to be optimal. Here,Kg

andKs denote, respectively, the number of channels with costs greater thanAc and smaller thanAc. It is

observed from (32) that the optimization can be performed over three variables instead of six variables

by imposing the three equality constraints.

It should be noted that Strategy 1F and Strategy 2F are covered as special cases of Strategy 3. Therefore,

in order to obtain the optimal solution in case of full data transmission, the optimization problem in (32)

can be solved first, which reveals the type of the transmission strategy to be applied.

D. Comparison of Channel Switching Strategies

In this section, theoretical results are obtained for comparing the performance of the different strategies.

First, the single channel strategies are examined in terms of the probability of correct decision to put

forward a suboptimal solution when only a single channel is employed. Conditions are investigated under

which full or partial transmission over a single channel (Strategy 1P or Strategy 1F) is optimal. Strategy 1F

can be optimal only if there exists a channel with costAc; otherwise, the cost budget would be used

partially and the solution would not be optimal. Hence, the comparison of Strategy 1F versus Strategy 1P

as candidates for the overall optimal solution can be made by

hi∗(Ap) R max
j∈Sg

Ac

Cj
hj

(

Ap
Cj

Ac

)

(33)
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whereSg , {l ∈ {1, . . . , K} : Cl > Ac}, i∗ is the index of the channel satisfyingCi∗ = Ac, and the

left-hand-side and the right-hand-side of (33) represent the average probabilities of correct decision

corresponding to Strategy 1F and Strategy 1P, respectively. For partial transmission over channelj with

j /∈ Sg (i.e., Cj < Ac), the average probability of correct decision can be expressed as

λj hj(Pj) < λj hj(Pj) + (1− λj) hj(0) (34)

< hj (λj Pj + (1− λj) 0) (35)

≤ hj(Ap) (36)

< hi∗(Ap) (37)

where the second inequality results from the concavity ofhj, the third inequality is due to the average

power constraint, and the last inequality is obtained fromCj < Ac = Ci∗. The inequalities in (34)-(37),

namely,λj hj(Pj) < hi∗(Ap), demonstrate why channels not inSg need not be included in (33).

The following proposition presents a sufficient condition for deciding between two channels in terms

of optimality under the single channel strategies, Strategy 1P or Strategy 1F.

Proposition 3: Suppose that Assumptions 1 and 2 hold. Consider a channel pair (i, j) such that

Ci > Cj ≥ Ac. If the condition

βj

βi
≤

1− Cj

Ci

gi(0)
+

Cj

Ci
(38)

is satisfied, then partial/full transmission over channelj achieves a higher probability of correct decision

than partial transmission over channeli.

Proof: Assume that the inequality in (38) is satisfied. First, the inequality in (38) is stated as

ApCj/Ac

βi

(

1−
Cj

Ci

gi(0)
+

Cj

Ci

) ≤ ApCj/Ac

βj
. (39)

Sinceg̃ is a monotone decreasing function (see Assumption 2), (39) leads to the following inequality:

g̃











ApCj/Ac

βi

(

1−
Cj

Ci

gi(0)
+

Cj

Ci

)











≥ g̃

(

ApCj/Ac

βj

)

. (40)
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Then, based on the relationgi(P ) = g̃(P/βi) stated in Assumption 2, the following inequality is obtained:

gi







ApCj/Ac

1−
Cj

Ci

gi(0)
+

Cj

Ci






≥ gj

(

ApCj

Ac

)

. (41)

Sincegi(P ) represents a value of probability,gi(0) ≤ 1 is always satisfied. Hence,

1− Cj

Ci

gi(0)
+

Cj

Ci

≥ 1 (42)

is obtained, which, together with (41), leads to the following relation:

(

1− Cj

Ci

gi(0)
+

Cj

Ci

)

gi







ApCj/Ac

1−
Cj

Ci

gi(0)
+

Cj

Ci






≥ gj

(

ApCj

Ac

)

. (43)

Exploiting the convexity of thegi function for non-negative arguments, the following inequality is obtained:
(

1− Cj

Ci

gi(0)

)

gi(0) +
Cj

Ci
gi

(

ApCi

Ac

)

> gj

(

ApCj

Ac

)

. (44)

Then, rearranging the terms in (44) results in

Cj

Ci

(

1− gi

(

ApCi

Ac

))

< 1− gj

(

ApCj

Ac

)

. (45)

Finally, inserting the definition of the functionhi,

Cj

Ci

hi

(

Ap
Ci

Ac

)

< hj

(

Ap
Cj

Ac

)

(46)

Ac

Ci

hi

(

Ap
Ci

Ac

)

<
Ac

Cj

hj

(

Ap
Cj

Ac

)

(47)

are obtained, which demonstrate that the probability of correct decision attained by partial/full (partial

if Cj > Ac and full if Cj = Ac) transmission over channelj is higher than that over channeli if the

condition in (38) is satisfied. �

Note thatgi(0) in (38) is equal toM−1
M

, whereM is the modulation order. A simple condition which

does not involve the calculations ofgi (or, hi) is provided in Proposition 3 as compared to (21) and (33) for

determining whether Strategy 1F achieves a higher probability of correct decision than Strategy 1P if there

exists a channel with costAc, and for deciding between two channels in terms of probability of correct

decision under Strategy 1P otherwise. The inverse of Proposition 3 may not be valid as it puts forward

only a sufficient condition for deciding between the two cases. As a reasonable approach, the condition in
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(38) can be checked first, and if it is not satisfied, then the necessary and sufficient conditions in (20) and

(33) can be examined. Proposition 3 can especially be usefulfor applications where transmitters do not

have sufficient time or capability (due to hardware, complexity, etc. limitations) to switch among different

channels, thereby constraining themselves to use only a single channel.

One of the main results in this study is the following proposition, which presents a sufficient condition

under which partial transmission (Strategy 2P or Strategy 1P) cannot be optimal. That is, it is guaranteed

under the stated conditions that partial transmission overa single channel or two channels is outperformed

by a full transmission strategy.

Proposition 4: Suppose that Assumptions 1 and 2 hold, and that there exists achannelk ∈ {1, . . . , K}
satisfying the conditions

Ck ≤ Ac and
βk

βi
≤

1− Ck

Ci

gi(0)
+

Ck

Ci
, ∀i ∈ Sg = {l : Cl > Ac} . (48)

Then, partial data transmission is not optimal.

Proof: There exist two possible strategies for partial data transmission, as discussed previously. First,

consider Strategy 2P, where partial transmission is performed via channel switching between two channels.

Let i andj denote the channels employed for partial transmission overtwo channels, and{λ∗
i , λ

∗
j , P

∗
i , P

∗
j }

represent the solution of the optimization problem in (22) for the channel pair(i, j). Sinceλ∗
i Ci+λ∗

j Cj =

Ac from Proposition 1 andλ∗
i + λ∗

j < 1, at least one of the channels should have a cost higher thanAc.

Assume without loss of generality thatCi > Cj; then,Ci > Ac is obtained. Letk be the channel that

satisfies the conditions in (48). Defineλ∗
K+1 , 1−(λ∗

i +λ∗
j ). If λ∗

i Ci ≥ (λ∗
i +λ∗

K+1)Ck, then the alternative

solution that employs the channel triple(i, j, k) with channel switching factors{(λ∗
i − γ), λ∗

j , νk} and

powers{P ∗
i , P

∗
j , Pk}, respectively, results in a higher average probability of correct decision than the

two-channel partial transmission solution, denoted by{λ∗
i , λ

∗
j , P

∗
i , P

∗
j }, over channelsi and j :

λ∗
i hi(P

∗
i ) + λ∗

j hj(P
∗
j ) < (λ∗

i − γ) hi(P
∗
i ) + λ∗

j hj(P
∗
j ) + νkhk(Pk) (49)

whereνk is defined asνk , γ + λ∗
K+1 so that the channel switching factors in the alternative solution

sum to 1. The alternative solution corresponds to Strategy 3, which is the three-channel full transmission

strategy. The inequality in (49) can be expressed as

γ hi(P
∗
i ) < νk hk(Pk) . (50)

Based on the power and cost constraint equations for the optimal solutions according to Proposition 1,
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the following relations are obtained for the two cases:

λ∗
i P

∗
i + λ∗

j P
∗
j = (λ∗

i − γ)P ∗
i + λ∗

j P
∗
j + νkPk = Ap (51)

λ∗
i Ci + λ∗

j Cj = (λ∗
i − γ)Ci + λ∗

j Cj + νkCk = Ac (52)

From (52),γ Ci = νk Ck is obtained. Hence,γ is computed asγ =
λ∗

K+1
Ck

Ci−Ck
, which is greater than zero

sinceCi > Ac ≥ Ck. From (51),γ P ∗
i = νk Pk is obtained andPk is computed asPk = P ∗

i Ck/Ci. Then,

the inequality in (50) can be re-written as

γ (1− gi(P
∗
i )) < (γ + λ∗

K+1) (1− gk(Pk)) (53)

which, after some manipulation and inserting the values ofγ andPk, reduces to

(

1− Ck

Ci

)

+
Ck

Ci
gi(P

∗
i ) > gk

(

P ∗
i Ck

Ci

)

. (54)

Exploiting the convexity of thegi function, the left-hand side of (54) can be bounded from below:

(

1− Ck

Ci

gi(0)

)

gi(0) +
Ck

Ci
gi (P

∗
i ) >

(

1− Ck

Ci

gi(0)
+

Ck

Ci

)

gi







CkP
∗
i /Ci

1−
Ck
Ci

gi(0)
+ Ck

Ci






. (55)

If the lower bound in (55) is greater than or equal to the right-hand side of the inequality in (54), then

the proof of the inequality in (49) is completed:

(

1− Ck

Ci

gi(0)
+

Ck

Ci

)

gi







CkP
∗
i /Ci

1−
Ck
Ci

gi(0)
+ Ck

Ci






≥ gk

(

P ∗
i Ck

Ci

)

. (56)

Sincegi(0) ≤ 1, the multiplying factor beforegi on the left-hand side of (56) is greater than or equal to

1. Then, based on Assumption 2, it is sufficient for the proof ofthe inequality in (49) that the following

inequality is satisfied:

g̃









CkP
∗
i /Ci

βi

(

1−
Ck
Ci

gi(0)
+ Ck

Ci

)









≥ g̃

(

P ∗
i Ck

βkCi

)

. (57)

From the condition in (48), the argument of theg̃ function on the left-hand side of (57) is readily found

to be smaller than that on the right-hand side. Since theg̃ function is monotone decreasing, the expression

on the left-hand side is greater than that on the right-hand side. Hence, the inequality in (57) is satisfied,

which completes the proof of (49). As for the legitimacy of the alternative solution whose probability of
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correct decision expression is the right-hand side of (49),λ∗
i ≥ γ must be satisfied. Inserting the expression

for γ, this inequality becomes equivalent toλ∗
i Ci ≥ (λ∗

i + λ∗
K+1)Ck, which was the initial assumption.

In order to prove the second part of the argument related to Strategy 2P, assume thatλ∗
i Ci < (λ∗

i +

λ∗
K+1)Ck. In this case, the alternative solution proposed in the firstpart is not valid. Consider an alternative

two-channel solution with channel switching factors{λ∗
j , λk} and power levels{P ∗

j , Pk}. It will be shown

that this alternative solution outperforms the original two-channel partial solution:

λ∗
i hi(P

∗
i ) + λ∗

j hj(P
∗
j ) < λ∗

j hj(P
∗
j ) + λk hk(Pk) . (58)

From the power and cost constraint equations as in (51) and (52), the channel switching factor and the

power level for channelk are obtained asλk = λ∗
i Ci/Ck and Pk = P ∗

i Ck/Ci, respectively. Inserting

these into (58) yields the inequality

hi(P
∗
i ) <

Ci

Ck
hk(P

∗
i

Ck

Ci
) (59)

which is the same as the inequality in (54). Hence, the inequality in (58) is proved. Sinceλk = λ∗
i

Ci

Ck
<

λ∗
i + λ∗

K+1, λ
∗
j + λk < λ∗

j + λ∗
i + λ∗

K+1 = 1, which shows that the alternative two-channel solution is also

partial. Defineλ̃K+1 , 1− (λ∗
j + λk), and note thatCj ≤ Ac leads to the contradictionλ∗

j Cj + λk Ck ≤
Ac (λ

∗
j + λk) < Ac. In addition, ifλ∗

j Cj < (λ∗
j + λ̃K+1)Ck, the inequalityλ∗

j Cj + λk Ck < (λ∗
j + λ̃K+1 +

λk)Ck = Ck ≤ Ac is obtained, which is a contradiction. Hence,Cj > Ac andλ∗
j Cj ≥ (λ∗

j + λ̃K+1)Ck

are satisfied. Then, based on the proof of the inequality in (49), following inequality can be written by

considering a channel pair(j, k) instead of(i, j):

λ∗
j hj(P

∗
j ) + λk hk(Pk) < (λ∗

j − γ̃) hj(P
∗
j ) + λk hk(Pk) + ν̃khk(P̃k) . (60)

Based on the concavity of thehk function,

λ∗
j hj(P

∗
j ) + λk hk(Pk) < (λ∗

j − γ̃) hj(P
∗
j ) + (λk + ν̃k) hk

(

λk

λk + ν̃k
Pk +

ν̃k
λk + ν̃k

P̃k

)

(61)

is obtained. Note that the average power and the average costof the three-channel solution (two channels

being the same) in the right-hand side of (60) are the same as those of the two-channel solution in the right-

hand side of (61), which indicates that the latter solution satisfies the average power and cost constraints.

Combining the inequalities (58) and (61), it is demonstrated that the two-channel partial solution with

channel switching factors{λ∗
i , λ

∗
j} and power levels{P ∗

i , P
∗
j } achieves a lower average probability of

correct decision than the two-channel full solution with channel switching factors{(λ∗
j − γ̃), (λk + ν̃k)}
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and power levels{P ∗
j ,

λk

λk+ν̃k
Pk +

ν̃k
λk+ν̃k

P̃k}. Therefore, a two-channel partial solution cannot be optimal

if the conditions presented in Proposition 4 are satisfied.

Secondly, consider Strategy 1P, where a single channel is employed partially. Leti denote the channel

employed for partial transmission over a single channel.Ci > Ac must be satisfied since a partial

transmission strategy that employs a single channel with a cost smaller thanAc cannot be optimal

(cf. Section III-A). Let {λ∗
i , P

∗
i } represent the solution of the partial transmission strategy that uses

channeli. Then, similar to the proof of the inequality in (49), the following inequality can be obtained:

λ∗
i hi(P

∗
i ) < (λ∗

i − γ) hi(P
∗
i ) + νkhk(Pk) (62)

where νk is defined asνk , γ + λ∗
K+1 and λ∗

K+1 , 1 − λ∗
i . Here,λ∗

i Ci = Ac = (λ∗
i + λ∗

K+1)Ac ≥
(λ∗

i + λ∗
K+1)Ck leads to the inequalityλ∗

i Ci ≥ (λ∗
i +λ∗

K+1)Ck, which, together withCi > Ac, completes

the proof of (62). Thus, under the conditions stated in (48),given a one-channel partial solution, there

always exists a two-channel full solution that attains a higher average probability of correct decision.

Overall, since both Strategy 1P and Strategy 2P (which are the possible optimal solutions for partial

transmission according to Proposition 1) are outperformedby the full transmission strategies, partial

transmission is not optimal under the conditions stated in the proposition. �

Proposition 4 is highly crucial since it provides a condition that definitely removes the computational

burden of solving the optimization problem in (22), which involves both Strategy 2P and Strategy 1P.

Hence, it suffices to solve the optimization problem in Strategy 3 only in order to obtain the optimal

solution of (13), thereby greatly reducing the computational complexity. In addition, the condition derived

in Proposition 4 does not depend on the optimal power levels or channel switching factors; it depends

only on the system parameters such as the channel costs, the noise variances, and the statistics of the

fading coefficients. Therefore, given a set of communication channels with assigned costs and known

noise and fading statistics, if the condition in (48) is satisfied, it can be stated beforehand that partial data

transmission is not optimal.

IV. OPTIMAL CHANNEL SWITCHING FOR LOGARITHMIC COST FUNCTION

In this section, a suitable cost function is employed for thechannels, and specific theoretical results are

obtained regarding the optimality of various channel switching strategies and the characterization of the

optimal channel switching solution. For the analysis in this section, Case 1 in Section II is considered. In

addition, the probability of symbol error corresponding tothe optimum coherent detection over channeli
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is expressed as

gi(P ) = η Q

(

κ

√

P

βi

)

(63)

whereβi , 2 σ2
i /|αi|2 is the channel parameter corresponding to theith channel (cf. (7)), andη andκ

are constant parameters that depend on the modulation type and order [19]. As noted in Section II, the

expression in (63) holds exactly for several types of modulations such as BPSK, BFSK and M-PAM, and

it is approximate for other types of modulations at high SNRs[19].

In practical systems, each communication channel can be regarded as a measurement device that has a

cost related to the quality of the measurement [14], [10], [18], [20]. Hence, a cost function based on that

in [14] can be adopted for defining the cost of channeli as follows:

Ci = log

(

1 +
b

βi

)

, i ∈ {1 . . .K} (64)

whereβi is the channel parameter for theith channel andb > 0 is a constant system parameter. The main

motivations behind the use of (64) are that it satisfiesCi > Cj for βi < βj (i.e., a channel with a larger

SNR has a higher cost sinceβi = 2 σ2
i /|αi|2), and the cost of a channel converges to zero (infinity) asβi

goes to infinity (zero).

As in Section III, it is assumed that the channel parameters satisfyβ1 < β2 < · · · < βK (i.e.,C1 > C2 >

· · · > CK) without loss of generality. It should be noted that the channels with the same costs (channel

parameters) can be considered as a single channel since switching among them does not improve the

system performance due to the concavity of the probability of correct decision with respect to power

(cf. (13) and (63)). In addition,Ac < C1 is assumed in the remainder of this section since (13) leads to

the trivial solution of using the best channel (channel 1) exclusively forAc ≥ C1.

In order to facilitate theoretical analyses, the properties of the probability of correct decision should

be specified first. For the cost function in (64),β is given byβ = b/(eC − 1). Hence, from (63), the

probability of correct decision can be expressed as a function of power and cost as follows:

h(P,C) = 1− η Q

(

κ

√

P (eC − 1)

b

)

. (65)

Then, the concavity property ofh(P,C) in (65) is stated in the following lemma.

Lemma 1 [10]: Consider infinitely many channels and suppose that the channels take a continuum of

cost values in the interval[Cmin, Cmax] based on the cost function in(64), where0 < Cmin < Cmax <

∞ . Then,h(P,C) is a strictly concave function over setSc , which is a convex set defined asSc
△
=
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{

(P,C) : P > b/(κ2(eC + 1)), C ∈ (Cmin, Cmax)
}

.3

The following lemma presents an important result that proves to be highly useful in deriving optimality

conditions for the full transmission strategies.

Lemma 2: Let h(P,C) denote the probability of correct decision as a function of power and cost as

defined in(65). The inequality

λ h(P,C) < h(λP, λC) (66)

is satisfied∀λ ∈ (0, 1) if

(P,C) ∈ Si
△
=

{

(P,C) : P > max

{

b

κ2(eC + 1)
, b C

υ

}

, C ∈ (Cmin, Cmax)

}

(67)

whereυ is a positive constant that depends onη, as defined in(85) based on(83). In addition,Si is a

convex set.

Proof: Please see Appendix A.

Lemma 2 identifies the region in the power-cost plane where the inequalityλ h(P,C) < h(λP, λC)

is satisfied∀λ ∈ (0, 1). One of the main results in this manuscript is derived based on Lemma 2 in the

following proposition, which presents a condition for the optimality of the full transmission strategies

when the logarithmic cost function in (64) is employed.

Proposition 5: ConsiderK channels and suppose that each channel has a cost value basedon the

cost function in(64). If the average power limit satisfies

Ap ≥ max







b β2
K

κ2β1(2βK + b)
,
b βK log

(

1 + b
β1

)

υ β1







, (68)

then partial data transmission cannot be optimal.

Proof: Please see Appendix B.

Proposition 5 sets an upper bound on the average power limit,above which the partial transmission

strategies cannot yield the optimal solution of the optimization problem in (13) in the case of the

logarithmic cost functions. This simplifies the solution under the condition in (68) in Proposition 5 by

making it possible to eliminate the partial transmission strategies, namely, Strategy 1P and Strategy 2P.

Therefore, it is sufficient to solve the optimization problem under Strategy 3 in order to obtain the optimal

channel switching strategy in such a scenario (as Strategy 3covers Strategy 1F and Strategy 2F as special

3The concavity property can be shown to hold also for Rayleighfading channels, where the symbol error is as given by (4), ifC > log 2
is satisfied.
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cases).

The following proposition states that the solution for Strategy 2F can be obtained in a simple manner

for sufficiently large values of the average power limit.

Proposition 6: ConsiderK channels and assume that each channel has a cost value based on the cost

function in (64). If the average power limit satisfies

Ap ≥ b β2
K

κ2β1(2βK + b)
, (69)

then the optimal solution for Strategy 2F uses channeli and channelj, where

i = argmin
k∈{1,...,K}

Ck subject toCk > Ac (70)

j = argmax
k∈{1,...,K}

Ck subject toCk < Ac . (71)

Proof: The proof can be obtained based on similar arguments to thoseemployed in the proof of

Proposition 4 in [10]. In particular, the concavity of the probability of correct decision functionh can be

demonstrated forAp ≥ b β2
K

κ2β1(2βK+b)
as in the proof of Proposition 5 in Appendix B, and the probability

of correct decision can be shown to be maximum when the channels that are closest toAc from above

and below are employed for Strategy 2F. �

The final proposition presents a condition under which the optimal channel switching solution involves

no more than two channels. Hence, there is no need to considerStrategy 3 under the specified condition.

Proposition 7: For the optimal channel switching problem in(13) with the cost function in(64), the

optimal channel switching strategy involves at most two channels if the average power limit satisfies

Ap ≥ 2bβ2
K

κ2β1(2βK + b)
· (72)

Proof: The argument in the proposition can be proved in a similar wayto the proof of Proposition 5

in [10]. Namely, by exploiting the concavity of the probability of correct decision functionh, it can be

shown that there always exists a Strategy 2F solution that yields a higher average probability of correct

decision than the optimal solution of Strategy 3 under the condition stated in Proposition 7. Hence, the

optimal solution can be shown to employ at most two channels if the average power limit exceeds the

specified threshold. �
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Remark 4: If the average power limit satisfies

Ap ≥ max







2bβ2
K

κ2β1(2βK + b)
,
bβK log

(

1 + b
β1

)

υβ1







, (73)

the optimal solution corresponds to either Strategy 1F or Strategy 2F. This is due to the fact that since

the inequality in(73) implies(72) and (68), Strategy 3 and the partial data transmission strategies cannot

be optimal, which means that the optimal strategy can be either Strategy 1F or Strategy 2F. Under the

condition in (73), Strategy 2F becomes the optimal strategy if there exist no channels with costAc, since

Strategy 1F cannot be optimal in this case (due to the fact that an optimal solution must operate at the

average cost limit). As(73) also implies(69), the optimal strategy is to switch between the channels closest

to Ac as described in(70) and (71). On the other hand, if there is a channel with costAc, Strategy 1F

is the optimal one due to the following inequality:

h(Ap, Ac) = h(λPi + (1− λ)Pj, λ Ci + (1− λ)Cj) > λh(Pi, Ci) + (1− λ) h(Pj, Cj) (74)

where the strict concavity ofh for the optimal power levels of Strategy 2F is guaranteed under the

condition in(69). Therefore, if the average power limit is above the threshold in (73), the optimal strategy

is either Strategy 1F or Strategy 2F, depending on whether a channel with costAc exists or not.

V. NUMERICAL EXAMPLES

In this section, the theoretical results are demonstrated via numerical examples. Various scenarios are

studied to investigate when the full or the partial transmission strategy outperforms the other one and when

channel switching leads to a higher average probability of correct decision than employing a single channel

for transmission. Comparisons of the following strategiesare performed in the numerical examples:

Partial Transmission: In this approach, it is possible to have idle periods where nodata transmission

occurs. One or two channels should be employed for partial transmission due to Proposition 1. The

optimal solutions for this approach are obtained based on Strategy 1P and Strategy 2P, which converges

to Strategy 1P when one of the optimal channel switching factors equals to zero.

Full Transmission: In this approach, there are no idle periods during transmission, and one, two, or

three channels are employed due to Proposition 1. Strategy 1F, Strategy 2F, and Strategy 3 are employed

to find the optimal solution in this case. Strategy 3 converges to Strategy 2F when one of the optimal

channel switching factors equals to zero, and to Strategy 1Fwhen two of the optimal channel switching

factors are zero.
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A. Examples for General Analysis

In this part, numerical examples are presented for the general analysis in Section III. Three simulation

scenarios with different types of modulations are presented to explore the performance improvements that

can be achieved via partial/full transmission and channel switching. In the scenarios, there existK Gaussian

channels, the channel parameters and the costs of which are represented, for notational simplicity, in the

vector form asβ = [β1 · · ·βK ] andC = [C1 · · ·CK ], respectively. The results for the optimal channel

switching solution for various values of the average power limit Ap are presented by using both the plots

of the average probability of correct decision and the tables containing the channel switching factors and

the power levels corresponding to the optimal strategy, an example of which is shown in Table II. In this

table,λi, λj , andλk represent, respectively, the channel switching factor forthe first, the second, and the

third channel employed by the optimal channel switching strategy wherei < j < k, and the non-zero

power levels, the indices of which denote the employed channels, are the corresponding optimal power

levels. For instance, forAp = 0.05 in Table II, Strategy 2P is the optimal strategy since the sumof the

channel switching factors is less than1, and channels1 and2 are employed with channel switching factors

0.5248 and0.1935, and power levels0.0357 and0.1615, respectively. On the other hand, forAp = 500,

Strategy 2F that uses channels2 and 4 is the optimal strategy, where the channel switching factors are

0.7 and0.3, and the power levels are1.2539 and1497.5, corresponding to channels2 and4, respectively.

As for the plots of the average probability of correct decision, it should be noted that the performance

of Strategy 1F and Strategy 2F is never higher than that of Strategy 1P and Strategy 2P, respectively, for

any value ofAp. This is due to the fact that the optimal solution of the partial transmission strategies

(Strategy 1P and Strategy 2P) can converge to that of the fulltransmission strategies (Strategy 1F and

Strategy 2F) in cases where full transmission is optimal, and can lead to higher average probabilities of

correct decision in cases where partial transmission is optimal.

In the first scenario, BPSK modulation is employed with the following parameters:β = [0.51 0.52 0.53 1],

C = [3 1.1 1.01 0.01], and the average cost limit is equal to1 ; that is,Ac = 1. The parameters for BPSK

in the error function (5) are computed asη = 1 andκ =
√
2. In Fig. 3, the average probabilities of correct

symbol decision are plotted versus the average power limitAp for the optimal solutions of the five possible

strategies, namely, Strategy 1P, Strategy 1F, Strategy 2P,Strategy 2F, and Strategy 3.4 The parameters of

the optimal channel switching strategy are presented in Table I. It is observed from Fig. 3 that the optimal

4As explained in Section II, the “average probability of correct decision” is a scaled version of the average number of correctly received
symbols (see (10) and Remark 2). Hence, if a strategy achieves a higher average probability of correct decision, it also yields a higher
average number of correctly received symbols.
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Fig. 3. Average probability of correct decision versusAp for BPSK modulation for the optimal solution of the five possible strategies, where
β = [0.51 0.52 0.53 1], C = [3 1.1 1.01 0.01], andAc = 1.

TABLE I
PARAMETERS OF OPTIMAL CHANNEL SWITCHING STRATEGY INFIG. 3.

Ap λi λj λk P1 P2 P3 P4

0.001 0.99 0.01 – – – 0.0010 0.0005
0.005 0.99 0.01 – – – 0.0050 0.0027
0.01 0.99 0.01 – – – 0.0100 0.0055
0.05 0.99 0.01 – – – 0.0502 0.0303
0.1 0.99 0.01 – – – 0.1003 0.0678
0.5 0.99 0.01 – – – 0.4994 0.5639
1 0.99 0.01 – – – 0.9960 1.3938
10 0.99 0.01 – – – 9.9183 18.092

channel switching strategies achieve higher average probabilities of correct decision than the optimal single

channel strategies for all values ofAp. In addition, Strategy 2P, Strategy 2F, and Strategy 3 yieldthe same

probabilities for all values ofAp, meaning that the optimal strategy is to switch between two channels

with full transmission. The maximum gains in the average probability of correct decision provided by

employing the optimal channel switching strategy (Strategy 2F in this example) and the optimal single

channel strategy (Strategy 1P in this example), are given by9.0% and 8.1%, respectively, as compared
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Fig. 4. Average probability of correct decision versusAp for 16-QAM modulation for the optimal solution of the five possiblestrategies,
whereβ = [0.001 0.01 20 30], C = [15 11 10 8], andAc = 10.

to employing a single channel without idle periods (i.e., Strategy 1F). Hence, partial data transmission

is not optimal in this scenario, which can be validated by Proposition 4, as well: Channel 4 satisfies the

conditions stated in Proposition 4; that is,C4 ≤ Ac andβ4/βi ≤ (1−C4/Ci)/gi(0)+C4/Ci for i ∈ {1, 2, 3},

wheregi(0) = 0.5 can be obtained from (5). Therefore, it is concluded that partial transmission strategies

cannot be optimal. In addition, since there exist no channels with costAc, Strategy 1F cannot be optimal

either. Hence, it is theoretically concluded that either Strategy 2F or Strategy 3 is the optimal strategy in

this scenario. On the other hand, Proposition 2 can also be tested with the results of this scenario. For

Ap = 0.05, P3/P4 = 1.6568 < β4/β3 = 1.8868 and forAp = 10, P4/P3 = 1.8241 < β4/β3 = 1.8868,

which confirms the validity of Proposition 2 for this scenario.

The second scenario utilizes16-QAM modulation, where the channel parameters, the channelcosts,

and the average cost limit are given byβ = [0.001 0.01 20 30], C = [15 11 10 8], and Ac = 10,

respectively, and the modulation parameters in (6) are computed asη = 1.5 andκ = 0.4472. The plot

of the average probability of correct decision versusAp is shown in Fig. 4. An important observation
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is that the optimal partial transmission strategy outperforms the optimal full transmission strategy for

Ap ∈ (0.0002, 195.6), in which there exist sub-intervals where both the partial transmission over a single

channel and the channel switching between two channels withpartial utilization can be the overall optimal

strategy. For very small and very large values ofAp, all the strategies converge to each other, indicating

that Strategy 1F is the optimal one, which is theoretically possible since there exists a channel with cost

Ac in this scenario. The maximum gains in terms of the average probability of correct decision achieved

by employing the optimal channel switching with partial utilization (i.e., Strategy 2P) are calculated to

be 76.1%, 97.2%, and 877.6% compared to Strategy 3, Strategy2F and Strategy 1F, respectively. In

addition, several turning points can be observed in Fig. 4, which generally reflect the changes in the

set of employed channels asAp increases. For instance, forAp around0.022, Strategy 3 outperforms

Strategy 2F since Strategy 3 always employs channels 1, 2, and 4 whereas Strategy 2F uses channels

1 and 4 forAp < 0.022 and channels 2 and 4 forAp > 0.022. Hence, Strategy 2F changes the set of

employed channels for performance improvement asAp increases while Strategy 3 can always use the

optimal set of three channels, which provides an improvement over Strategy 2F around the turning point.

The parameters of the overall optimal strategy are presented in Table II for some values ofAp. Table II

demonstrates that the optimal strategy may employ a single channel or two channels, and perform full or

partial utilization of channels for transmission, as stated in Proposition 1. It is observed from Fig. 4 and

Table II that forAp ∈ (0.023, 0.157), the channel switching between channel 1 and channel 2 with partial

utilization outperforms the single channel strategies Strategy 1P and Strategy 1F, which employs channel

1 and channel 3, respectively, and Strategy 2F, which switches between channel 2 and channel 4. The ratio

of the optimal power levels for the solutions involving two channels is calculated to confirm the validity of

Proposition 2 for some values of the average power limit. ForAp = 0.05, P2/P1 = 4.5238 < β2/β1 = 10

and forAp = 500, P4/P2 = 1194.3 < β4/β2 = 3000, which are in compliance with Proposition 2.

TABLE II
PARAMETERS OF OPTIMAL CHANNEL SWITCHING STRATEGY INFIG. 4.

Ap λi λj λk P1 P2 P3 P4

0.0001 0.2857 0.7143 – 0.00035 – – 6.1×10−10

0.001 0.6667 – – 0.0015 – – –
0.01 0.6667 – – 0.015 – – –
0.05 0.5248 0.1935 – 0.0357 0.1615 – –

1 0.9091 – – – 1.1 – –
100 0.7724 0.1879 – – 0.8999 – 528.3665
500 0.7 0.3 – – 1.2539 – 1497.5

10000 1 – – – – 10000 –
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To demonstrate the effectiveness of channel switching withpartial utilization in the presence of fading

(i.e., Case 2),8-PAM modulation with five Rayleigh fading channels is studied in the third scenario,

and the parameters are given byβ = [0.02 0.05 0.1 10 100], C = [10 8 6 4 2], and Ac = 5. The

modulation parameters in (4) are determined to beη̃ = 0.8750 and κ̃ = 0.0476. Fig. 5 illustrates the

average probability of correct symbol decision with respect to Ap, and Table III presents the parameters

of the optimal channel switching strategy. It is observed that the optimal partial transmission strategies

can outperform the optimal full transmission strategies when the transmission is performed over Rayleigh

fading channels. Strategy 1F achieves the lowest probability of correct decision for mostAp’s whereas

Strategy 2P and Strategy 1P turn out to be the optimal strategy in distinct intervals of the consideredAp

region. Employing the optimal partial channel utilizationstrategies provides a maximum gain of 4.9%

and 170.4% as compared to using Strategy 2F and Strategy 1F, respectively. In addition, in Fig. 5, there

are crossing and overlapping points where different strategies converge to and diverge from each other.

For Ap around 100, for instance, Strategy 2P, which employs channels 2 and 4, yields a higher average

probability of correct decision than Strategy 1P, which employs channel 2, whereas these two strategies

have the same performance forAp < 80. The reason is that Strategy 2P can use the optimal set of two

channels to maximize its performance while Strategy 1P can use a single channel, which can be changed

(which occurs atAp = 382 in this case) only if the utilization of another channel provides a higher

performance. As an example to the validity of Proposition 2,the following cases can be examined: For

Ap = 75, P4/P3 = 6.75 < β4/β3 = 10 and forAp = 1000, P3/P4 = 9.2824 < β4/β3 = 10. That is, the

ratio between the optimal power levels is limited by the ratio between the channel parameters as specified

in (25) in Proposition 2.

TABLE III
PARAMETERS OF OPTIMAL CHANNEL SWITCHING STRATEGY INFIG. 5.

Ap λi λj λk P1 P2 P3 P4 P5

0.001 0.375 0.625 – 0.0027 – – – 5.48×10−7

0.01 0.375 0.625 – 0.0267 – – – 6.41×10−6

0.1 0.375 0.625 – 0.2663 – – – 0.00023
1 0.8333 – – – – 1.2 – –
5 0.8333 – – – – 6 – –
10 0.8333 – – – – 12 – –
75 0.7192 0.1711 – – – 40.0137 270.091 –

1000 0.5 0.5 – – – 194.508 1805.5 –
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Fig. 5. Average probability of correct decision versusAp for 8-PAM modulation for the optimal solution of the five possiblestrategies,
whereβ = [0.02 0.05 0.1 10 100], C = [10 8 6 4 2], andAc = 1.

B. Examples for Logarithmic Cost Function

In this part, numerical examples are presented for the logarithmic cost function studied in Section IV. In

the numerical examples, the magnitudes of the fading coefficients are set to|αi| =
√
2 for i = 1, . . . , K;

hence, the channel parameters are given byβi = 2 σ2
i /|αi|2 = σ2

i . This does not cause any loss of

generality since the differences among the fading coefficients can be reflected to the variance terms,σ2
i ,

appropriately.

In the first example, four channels are available for channelswitching, and BPSK modulation is

employed. The BPSK parameters are calculated to beη = 1 andκ =
√
2 (cf. (63)). Also, the average

cost limit is set toAc = 7, and the costs of the channels are equal toC = [C1 C2 C3 C4] = [9 8 6 5].

Based on the logarithmic cost function in (64) withb = 1, the corresponding channel parameters are given

by β = [β1 β2 β3 β4] = [0.0001234 0.0003356 0.002485 0.006784]. In Fig. 6, the average probabilities of

correct decision are plotted versusAp for the five possible strategies. It is observed that the single channel

strategies are outperformed by the channel switching strategies for all values ofAp in this example. Also,
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Fig. 6. Average probability of correct decision versusAp for BPSK modulation for the optimal solutions of the five possible strategies,
whereC = [9 8 6 5], b = 1, andAc = 7.

the full data transmission is always optimal, and Strategy 3achieves the highest average probabilities of

correct decision for a small interval(0.0001517, 0.0002196) of Ap values (as shown in the zoomed window

in Fig. 6), where the maximum gain provided by using Strategy3 instead of the two-channel strategies is

given by 0.2%. The parameters of the optimal strategy are presented in Table IV. In the table,λi, λj, and

λk represent, respectively, the channel switching factor forthe first, second, and third channel employed

by the optimal channel switching strategy, and the non-zeropower levels, the indices of which denote the

employed channels, are the corresponding optimal power levels. For example, forAp = 0.0005, channel

2 is employed with channel switching factor0.6667 and power0.00051, and channel4 is employed with

channel switching factor0.3333 and power0.00047. Table IV indicates that the optimal approach for this

example is to switch either between two channels or among three channels with no idle periods.

For comparison of the channel switching strategies, it is also of interest to evaluate the performance

with respect to the average cost limit,Ac. Fig. 7 considers the same scenario as in Fig. 6, and shows the

average probability of correct decision forAp = 10−5 asAc changes from4 to 10. As observed from

the figure, forAc < 5, the full transmission strategies cannot be employed (therefore, are not optimal)
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since Strategy 2F and Strategy 3 require at least one channelto have a cost less thanAc and Strategy 1F

must use a channel exclusively. (Remember that the costs aregiven byC = [9 8 6 5].) However, for

the partial transmission strategies, it is possible to adjust the channel switching factors to optimize the

average probability of correct decision while conforming to the constraints. An important observation

from Fig. 7 is that the channel cost values are marked by some jumps in the correct decision probability

in Strategy 1F, which selects the best channel for transmission as dictated by the cost constraintAc.

Strategy 1P, on the other hand, is observed to move to the bestchannel at a lower value ofAc asAc

increases since it can use that channel partially, which maylead to a higher performance than using a

lower cost channel exclusively. Finally, the channel switching strategies outperform the single channel

strategies for5 ≤ Ac ≤ 9 and all the strategies converge to Strategy 1F forAc ≥ 9, as expected.

In the second example, a scenario with the following parameters is considered:β = [0.000306 0.0126

0.2035 0.2249]×10−3, C = [15 11.28 8.5 8.4], b = 1, andAc = 8.6967. In this scenario, BFSK modulation

is employed, which corresponds to parametersη = 1 and κ = 1 (cf. (63)). The average probability of

correct decision curves for all the strategies are shown in Fig. 8, and the parameters of the optimal

channel switching strategy are presented in Table V. It is observed that the partial transmission strategies

outperform the full transmission strategies for a certain range of the average power limit values, where

Strategy 1P and Strategy 2P achieve the highest average probabilities of correct decision. The maximum

gains achieved by employing the optimal channel switching with partial utilization (i.e., Strategy 2P)

in terms of the average probability of correct decision are given by 10.1% and 14.4%, respectively, as

compared to the optimal channel switching strategy with full utilization (Strategy 3) and the optimal single

channel strategy with full utilization. Since no channel has a cost value equal toAc, Strategy 1F cannot

be optimal, which is verified by the numerical example.

In the final example, the channel costs and the channel parameters are set asC = [7.0791 6.5 5.98 5.942]

TABLE IV
PARAMETERS OF OPTIMAL CHANNEL SWITCHING STRATEGY INFIG. 6.

Ap λi λj λk P1 P2 P3 P4

0.0001 0.5 0.5 – 0.00016 – – 0.000039
0.00018 0.3051 0.2598 0.4351 0.0002 0.0003 – 0.00009
0.0005 0.6667 0.3333 – – 0.00051 – 0.00047
0.001 0.5 0.5 – – 0.00064 0.00135 –
0.005 0.5 0.5 – – 0.00171 0.00828 –
0.01 0.5 0.5 – – 0.00293 0.01706 –
0.05 0.5 0.5 – – 0.0139 0.0860 –
0.1 0.3333 0.6667 – 0.00609 – 0.1469 –
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Fig. 7. Average probability of correct decision versusAc for BPSK modulation for the optimal solutions of the five possible strategies,
whereC = [9 8 6 5], b = 1, andAp = 10−5.

TABLE V
PARAMETERS OF OPTIMAL CHANNEL SWITCHING STRATEGY INFIG. 8.

Ap λi λj λk P1 P2 P3 P4

0.000001 0.5798 – – 0.0000017 – – –
0.00001 0.0578 0.6942 – 0.000002 0.000014 – –
0.0001 0.5017 0.3574 – – 0.000062 0.000193 –
0.001 0.0708 0.9292 – – 0.000128 0.001066 –
0.005 0.0708 0.9292 – – 0.000399 0.005350 –
0.01 0.0708 0.9292 – – 0.000731 0.010705 –
0.1 0.0303 0.9697 – 0.01 – 0.102808 –
1 0.0303 0.9697 – 0.1 – 1.028085 –

andβ = [0.0008432 0.001506 0.002535 0.002634], the average cost limit isAc = 6.002, andb = 1. In this

example, BFSK modulation is employed with the corresponding parametersη = 1 andκ = 1 (cf. (63)). The

average probabilities of correct decision for the optimal full transmission strategy (which corresponds to

the best of Strategy 1F, Strategy 2F, and Strategy 3) and for the optimal partial transmission strategy (which

corresponds to the best of Strategy 1P and Strategy 2P) are plotted versus the average power limit in Fig. 9.

It is observed from the figure that the optimal full and partial transmission solutions converge to one another
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Fig. 8. Average probability of correct decision versusAp for BFSK modulation for the optimal solutions of the five possible strategies,
whereC = [15 11.28 8.5 8.4], b = 1, andAc = 8.6967.

for sufficiently low and sufficiently high values ofAp, thereby implying the optimality of the full data

transmission, whereas the partial transmission achieves higher average probabilities of correct decision than

the full transmission within a certain range ofAp values (please also see Fig. 10), for which the optimal

partial transmission can provide a maximum gain of 1.3% in terms of the average probability of correct

decision. Table VI shows the optimal channel switching factors and the power levels for the scenario in

Fig. 9. According to Proposition 5, whenAp ≥ max {b β2
4/(κ

2β1(2β4 + b)), b β4 log (1 + b/β1) /(υ β1)} =

0.0098, the partial data transmission cannot be optimal, which complies with the results in Fig. 9 and

Table VI. On the other hand, the optimal channels leading to the highest average probability of correct

decision for Strategy 2F are found to be channel2 and channel3 for Ap ≥ b β2
4/(κ

2β1(2β4 + b)) =

0.0082, as claimed in (70) and (71) in Proposition 6. In addition, asindicated in Remark 4, whenAp ≥
max {2 b β2

4/(κ
2β1(2β4 + b)), b β4 log (1 + b/β1) /(υ β1)} = 0.0164, Strategy 2F is the optimal strategy

since there exists no channel with a cost equal toAc.
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Fig. 9. Average probability of correct decision versusAp for BFSK modulation for the optimal solutions of the full andpartial transmission
strategies, whereC = [7.0791 6.5 5.98 5.9420], b = 1, andAc = 6.002.

VI. CONCLUSION

Optimal channel switching strategies over Gaussian noise channels have been studied under average

power and cost constraints in the presence of partial and full utilization of channels for the purpose

of maximizing the average probability of correct symbol decision. A generic optimization scheme has

been developed to cover arbitrary signal constellations and Rayleigh fading channels, which improves the

TABLE VI
PARAMETERS OF OPTIMAL CHANNEL SWITCHING STRATEGY INFIG. 9.

Ap λi λj λk P1 P2 P3 P4

0.00001 0.0528 0.9472 – 0.000027 – – 0.000009
0.00005 0.0528 0.9472 – 0.000125 – – 0.000045
0.0001 0.0528 0.9472 – 0.000228 – – 0.000092
0.0005 0.7498 0.1169 – 0.000611 – – 0.000353
0.001 0.8478 – – 0.001179 – – –
0.005 0.0423 0.9577 – – 0.004091 0.00504 –
0.01 0.0423 0.9577 – – 0.007288 0.010119 –
0.05 0.0423 0.9577 – – 0.0316724 0.050809 –
0.1 0.0423 0.9577 – – 0.061925 0.101681 –
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Fig. 10. The zoomed version of Fig. 9 forAp ∈ [3.75 × 10−4, 2.25 × 10−3].

applicability of the results to various types of modulations in the presence of slow or block fading. It

has been demonstrated that the optimal channel switching strategy employs at most three channels in the

full transmission case and at most two channels in the partial transmission case. In addition, it has been

stated that the optimal solution must operate at the averagepower and the average cost limits. For the

two-channel strategies, the ratio between the optimal power levels has been shown to be upper bounded

by the ratio of the parameters of the employed channels. Conditions that depend only on the system

parameters, namely, the channel costs, the standard deviations, and the fading statistics, have been derived

under which partial data transmission cannot be optimal. The optimal channel switching problem has also

been investigated for logarithmic cost functions. It has been shown that full data transmission is optimal

when the average power limit exceeds a certain threshold, which is related to the parameters of the best

and the worst channels. Also, the optimal channel switchingwith the full utilization of two channels has

been specified for sufficiently high values of the average power limit. In addition, it has been stated that

the use of more than two channels is not necessary in obtaining the optimal channel switching strategy

when the average power limit is larger than a specified threshold. Improvements via channel switching
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and partial channel utilization have been illustrated via numerical results, which demonstrate that full

utilization of channels does not always yield a higher average probability of correct decision than partial

utilization and that the optimal single channel strategy can be outperformed by the proposed optimal

channel switching approach.

Remark 5: In order to emphasize the differences of this study from therecent works in the literature,

Table VII is presented. As can be noted from the table, one of the main contributions is related to

generalizing the concept of channel switching to scenarioswith idle periods. In this way, the average

number of correctly received symbols, which is an importantparameter in practical systems, can be

improved in certain communication systems. In addition, the results are provided for block Rayleigh

fading channels, as well. Regarding the theoretical contributions, Propositions 1, 2, 6, and 7 generalize

and improve the results in the literature while Propositions 3, 4, and 5 present completely new results.

APPENDIX

A. Proof of Lemma 2

Consider the surfaceh(P,C) and let(P ∗, C∗) denote a given power and cost pair. For the inequality in

(66) to hold for the pair(P ∗, C∗) ∀λ ∈ (0, 1), the line passing through the point(0, 0, 0), i.e., through the

origin, and the point(P ∗, C∗, h(P ∗, C∗)) should not intersect with the surfaceh(P,C) for anyP ∈ (0, P ∗)

andC ∈ (0, C∗). Let m , C∗/P ∗ represent the slope of the two-dimensional projection ontothexy-plane

of the line passing through the origin and the point(P ∗, C∗, h(P ∗, C∗)). Sinceh(P,C) is concave for

P > b/(κ2(eC + 1)) due to Lemma 1, if the line tangent to the surfaceh(P,C) at P = b/(κ2(eC + 1)),

passing through thez-axis, and whose projection onto thexy-plane has a slope ofm, intersects with

the z-axis above thexy-plane, then the inequalityλ h(P ∗, C∗) < h(λP ∗, λC∗) holds ∀λ ∈ (0, 1) if

P ∗ > b/(κ2(eC
∗

+1)). The proof of the argument in the previous sentence can be explained more clearly

by referring to Fig. 11 and Fig. 12, which illustrate slices of the surfaceh(P,C) cut along thez-axis and

in the direction connecting the origin and the point(P ∗, C∗) on thexy-plane, where the slope ism = 500

TABLE VII
COMPARISON OF THIS STUDY WITH SOME RECENT WORKS.

[11] [13] [10] This Study
Objective Average prob. of Average Average prob. Average # correctly
function correct decision capacity of error received symbols

Idle periods No No No Yes
Channel costs No No Yes Yes

Rayleigh fading No No No Yes
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Fig. 11. Slice of the surfaceh(P,C) cut along thez-axis, whereb = 1, κ = 1, and the slope of the slice on thexy-plane ism = C/P = 500.
The intersection of the line tangent to the resulting curve at P = b/(κ2(eC + 1)) with the z-axis is positive.
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Fig. 12. Slice of the surfaceh(P,C) cut along thez-axis, whereb = 1, κ = 1, and the slope of the slice on thexy-plane ism = C/P = 5000.
The intersection of the line tangent to the resulting curve at P = b/(κ2(eC + 1)) with the z-axis is negative.
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in the first figure andm = 5000 in the latter one. The proof can be obtained via contradiction in two

steps. In the proof, consider only those cost valuesC∗ that satisfyP ∗ > b/(κ2(eC
∗

+ 1)), meaning that

C∗ > C̃, where(P̃ , C̃) is the power-cost pair satisfying̃P = b/(κ2(eC̃ + 1)) for the slopeC̃/P̃ = m.

Consider a case as depicted in Fig. 11, where the intersection of the tangent line with thez-axis is

positive, and assume that the line connecting the origin(0, 0) and the point(C∗, h(P ∗, C∗)) intersects

with the curve at a cost valueC ′ ∈ (0, C∗). First, the case withC ′ ∈ (0, C̃) is analyzed. The slope of

the line passing through the origin and the point(C̃, h(P̃ , C̃)) is higher than that of the tangent line and

lower than that of the line passing through the origin and thepoint (C ′, h(P ′, C ′)), whereC ′/P ′ = m.

Due to the concavity of the curve forC > C̃, the tangent line never crosses the curve forC > C̃.

Thus, the line passing through the origin and the point(C ′, h(P ′, C ′)) does not intersect the curve for

C > C̃, which contradicts with the initial assumption. Therefore, C ′ ∈ [C̃, C∗) must hold. The concavity

of the curve forC ≥ C̃ indicates that any line connecting two points on the curve inthe regionC ≥ C̃

has a slope lower than that of the tangent line. Hence, the slope of the line passing through the points

(C∗, h(P ∗, C∗)) and(C ′, h(P ′, C ′)) is lower than that of the tangent line and the intersection ofthat line

with the z-axis is positive since the tangent line crosses thez-axis above thex-axis (“Cost”-axis). This

means that the line connecting the points(C∗, h(P ∗, C∗)) and (C ′, h(P ′, C ′)) never passes through the

origin, thereby leading to a contradiction with the initialassumption. Therefore, the line connecting the

origin (0, 0) and the point(C∗, h(P ∗, C∗)) does not intersect the curve except at the end point, which

completes the proof of the inequalityλ h(P ∗, C∗) < h(λP ∗, λC∗) ∀λ ∈ (0, 1) for P ∗ > b/(κ2(eC
∗

+ 1))

when the intersection of the tangent line with thez-axis is positive, an example of which is presented

in Fig. 11. ForP ∗ < b/(κ2(eC
∗

+ 1)), the validity of the inequality in (66) cannot be guaranteedas the

convexity-concavity test is inconclusive forP < b/(κ2(eC + 1)), as noted in Lemma 1. Similarly, when

the intersection of the tangent line with thez-axis is negative as in Fig. 12, the inequality in (66) may

not hold for some(P,C) satisfyingP > b/(κ2(eC + 1)).

In order to complete the proof of Lemma 2, the range of values of m is determined for which the

intersection of the line tangent to the surfaceh(P,C) at P = b/(κ2(eC + 1)) with the z-axis is positive,

wherem is the slope of the projection of that line onto thexy-plane (i.e., thePC-plane). LetD(P,C, z)

and(P0, C0, z0) denote, respectively, the equation of the surfaceh(P,C) and the point of tangency to the
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surfaceh(P,C) at P = b/(κ2(eC + 1)), leading to the following relations:

D(P,C, z) = z + η Q

(

κ

√

P (eC − 1)

b

)

= 1 (75)

P0 =
b

κ2(eC0 + 1)
(76)

z0 = h(P0, C0) (77)

The equation of the tangent plane to the surfaceh(P,C) at P = b/(κ2(eC + 1)) can be expressed as

aP + bC + cz = aP0 + bC0 + cz0 (78)

where

a =
∂D

∂P

∣

∣

∣

∣

(P,C,z)=(P0,C0,z0)

, b =
∂D

∂C

∣

∣

∣

∣

(P,C,z)=(P0,C0,z0)

, c =
∂D

∂z

∣

∣

∣

∣

(P,C,z)=(P0,C0,z0)

. (79)

The intersection point of thez-axis with the tangent plane, denoted byzint, can be calculated by inserting

(P,C) = (0, 0) into (78) as

zint =
a

c
P0 +

b

c
C0 + z0 (80)

which, after inserting (75)-(77) and (79) and performing algebraic manipulations, yields the following

equality:

zint = 1− η

2
√
2π

e−
κ2P0(eC0−1)

2b

√

κ2P0

(eC0 − 1)b

(

C0e
C0 + eC0 − 1

)

− ηQ

(
√

κ2P0(eC0 − 1)

b

)

. (81)

Definex , κ
√

P0/b. Then,C0 is computed asC0 = log(1/x2−1) due to (76). Also,zint can be rewritten

as a function ofx as

zint = w(x) , 1− η

2
√
2π

ex
2− 1

2

(√
1− 2x2 +

1− x2

√
1− 2x2

log

(

1− x2

x2

))

− ηQ
(√

1− 2x2
)

. (82)

Parameterη, as defined in (65), takes values in the interval(0, 4] for different modulations andw(x) is a

monotone increasing function for anyη ∈ (0, 4]. Therefore,w(x) = 0 is satisfied forx = r−1(1/η) where

the functionr(x) is defined as

r(x) ,
1

2
√
2π

ex
2− 1

2

(√
1− 2x2 +

1− x2

√
1− 2x2

log

(

1− x2

x2

))

−Q
(√

1− 2x2
)

. (83)

Hence,w(x) ≤ 0 for x ∈ [0, r−1(1/η)] andw(x) > 0 for x ∈ (r−1(1/η), κ/
√
2]. Note that the maximum
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value of x is given by κ
√

P0/b = κ
√

1/(eC0 + 1) ≤ κ/
√
2. Therefore, it can be concluded that if

κ
√

P0/b > r−1(1/η), zint > 0. The problem is to determine the range of values ofm for which the point

of tangency(P0, C0, z0) satisfiesκ
√

P0/b > r−1(1/η), or equivalently,C0 < log([r−1(1/η)]−2 − 1) by

(76). Here, the upper bound for the slopem so thatzint > 0 holds is provided by the following expression:

m =
C

P
=

C0

P0
=

C0(e
C0 + 1)

b
<

(r−1(1/η))
−2

log
(

(r−1(1/η))
−2 − 1

)

b
· (84)

Defining

υ ,
(

r−1(1/η)
)−2

log
(

(

r−1(1/η)
)−2 − 1

)

(85)

as a parameter that depends onη, if

P >
bC

υ
, (86)

the tangent line to the surfaceh(P,C) at P = b/(κ2(eC + 1)), which passes through thez-axis and

whose projection onto thexy-plane has a slope that satisfies (84), and thus (86), intersects with thez-

axis above thexy-plane. Therefore, the inequalityλ h(P,C) < h(λP, λC) is satisfied∀λ ∈ (0, 1) for

P > b/(κ2(eC + 1)) if (86) is satisfied. In other words,

P > max

{

b

κ2(eC + 1)
, bC

υ

}

(87)

guarantees the validity of the inequalityλ h(P,C) < h(λP, λC) ∀λ ∈ (0, 1).

Finally, the convexity of setSi is demonstrated in a manner similar to the proof of convexityof set

Sc in Lemma 1 of [10]. Let(Pi, Ci) and (Pj , Cj) denote any two elements from setSi, whose convex

combination is expressed as(λPi + (1 − λ)Pj, λ Ci + (1 − λ)Cj), whereλ ∈ [0, 1]. λCi + (1 − λ)Cj

lies in the interval(Cmin, Cmax). The convexity ofSi related to the power component is shown via the

following inequality:

λPi + (1− λ)Pj > λ
bCi

υ
+ (1− λ)

bCj

υ
=

b(λCi + (1− λ)Cj)

υ
. (88)

Combining the inequalities in eqn. (38) of [10] and in (88) yields

λPi + (1− λ)Pj > max

{

b

e(λCi+(1−λ)Cj) + 1
, b(λCi + (1− λ)Cj)

υ

}

(89)

which completes the proof thatSi is a convex set. �
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B. Proof of Proposition 5

The partial transmission strategies either use one channelor two channels, corresponding to Strategy 1P

and Strategy 2P, respectively, as defined in Section II. Assume that there exist no channels with costAc

(the case in which there exists such a channel is studied at the end). The proof of the proposition consists

of two main parts:

Proof for non-optimality of Strategy 2P:Firstly, consider Strategy 2P, and leti andj denote the chan-

nels employed for channel switching between two channels. Then, the channel switching problem in

(13) can be expressed as in (22). Assume without loss of generality thatCi > Cj . Let the solution of the

optimization problem in (22) for the channel pair(i, j) under Strategy 2P be denoted by{λ∗
i , λ

∗
j , P

∗
i , P

∗
j }.

Assume thatλ∗
i > 0, λ∗

j > 0, andλ∗
i + λ∗

j < 1 so that the optimal solution does not involve the two-

channel full (Strategy 2F), one-channel partial (Strategy1P) and one-channel full (Strategy 1F) cases. The

relationsλ∗
i Ci + λ∗

j Cj = Ac andλ∗
i + λ∗

j < 1 imply that at least one of the channels should have a cost

higher thanAc; thus,Ci > Ac. Then, the possible solutions for Strategy 2P are handled intwo cases:

Cj > Ac andCj < Ac.

For Cj > Ac, the channel costs are ordered asCi > Cj > Ac. It will be demonstrated that Strategy 1P,

which employs channelj, achieves a higher average probability of correct decisionthan the optimal

solution obtained for Strategy 2P, which employs channelsi and j, if (68) is satisfied; that is,

λ∗
i h(P

∗
i , Ci) + λ∗

j h(P
∗
j , Cj) < λ̃j h(P̃j, Cj) (90)

whereλ̃j = Ac/Cj andP̃j = Ap Cj/Ac are, respectively, the channel switching factor and the power level

obtained by employing channelj for Strategy 1P. Since an optimal solution must operate at the average

power limit and at the average cost limit, the following relations are obtained:

λ∗
i (P

∗
i , Ci) + λ∗

j (P
∗
j , Cj) = λ̃j (P̃j, Cj) = (Ap, Ac) . (91)

Assume that the inequalityλ∗
i +λ∗

j ≥ λ̃j holds. Then,λ∗
i ≥ Ac/Cj −λ∗

j is obtained, which, after inserting

into (91), yieldsAc = λ∗
i Ci + λ∗

j Cj ≥ Ci Ac/Cj − λ∗
j (Ci − Cj). Rearranging the terms, the inequality

λ∗
j ≥ Ac/Cj is reached, which leads to a contradiction sinceλ∗

j Cj < λ∗
i Ci + λ∗

j Cj = Ac noting that

λ∗
i > 0 andCi > 0. Hence, the optimal channel switching factors satisfyλ∗

i + λ∗
j < λ̃j. Meanwhile, the

optimal power levels satisfy the inequalitymin{P ∗
i , P

∗
j } > Ap βi/βj, which can be obtained based on

the upper bound in Proposition 2 (see (25)) and the fact that at least one of the power levels should be

larger thanAp. The lower bound for the optimal power levels can be computedfrom (68) and the relation
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β1 < β2 < · · · < βK as

min{P ∗
i , P

∗
j } >

Ap βi

βj
>

Ap β1

βK
≥ max







b

κ2(2 + b/βK)
,
b log

(

1 + b
β1

)

υ







= max

{

b

κ2(eCK + 1)
, b C1

υ

}

.

(92)

Since the ordering of the channel costs is given byC1 > C2 > · · · > CK , (92) guarantees that both

(P ∗
i , Ci) and (P ∗

j , Cj) are elements of setSi, as defined in Lemma 2. Exploiting the strict concavity

of h(P,C) for P > b/(κ2(eC + 1)), the average probability of correct decision for Strategy 2P can be

expressed as

λ∗
i h(P

∗
i , Ci) + λ∗

j h(P
∗
j , Cj) < (λ∗

i + λ∗
j ) h

(

λ∗
i P

∗
i + λ∗

j P
∗
j

λ∗
i + λ∗

j

, λ
∗
i Ci + λ∗

j Cj

λ∗
i + λ∗

j

)

. (93)

SinceSi is a convex set by Lemma 2, the convex combination of(P ∗
i , Ci) and(P ∗

j , Cj) is also an element

of Si. Hence,

(λ∗
i + λ∗

j)

λ̃j

h

(

λ∗
i P

∗
i + λ∗

j P
∗
j

λ∗
i + λ∗

j

, λ
∗
i Ci + λ∗

j Cj

λ∗
i + λ∗

j

)

< h

(

λ∗
i P

∗
i + λ∗

j P
∗
j

λ̃j

, λ
∗
i Ci + λ∗

j Cj

λ̃j

)

(94)

= h(P̃j, Cj) (95)

where the inequality results from Lemma 2 and the inequalityλ∗
i + λ∗

j < λ̃j, and the equality is due to

(91). Combining the relations in (93)-(95) yields the inequality in (90). Thus, whenCj > Ac, Strategy 2P

cannot be optimal as it always attains a lower average probability of correct decision than Strategy 1P

that employs channelj.

The other case to consider for Strategy 2P isCj < Ac. In this case,Ci > Ac > Cj. It will be proved

that the optimal channel switching solution for Strategy 2Pleads to a lower average probability of correct

decision than a specific solution for Strategy 2F with channel switching factors{(λ∗
i −γ), (λ∗

j+γ+λ∗
K+1)}

and power levels{P ∗
i , Pj}; that is,

λ∗
i h(P

∗
i , Ci) + λ∗

j h(P
∗
j , Cj) < (λ∗

i − γ) h(P ∗
i , Ci) + (λ∗

j + γ + λ∗
K+1) h(Pj, Cj) (96)

whereλ∗
K+1 , 1− (λ∗

i + λ∗
j) is the idle period, andγ =

λ∗

K+1
Cj

Ci−Cj
andPj =

γ P ∗

i +λ∗

j P ∗

j

λ∗

j+γ+λ∗

K+1

are obtained from

the fact that an optimal solution must operate at the averagepower and average cost limits; i.e.,

λ∗
i (P

∗
i , Ci) + λ∗

j (P
∗
j , Cj) = (λ∗

i − γ) (P ∗
i , Ci) + (λ∗

j + γ + λ∗
K+1) (Pj, Cj) = (Ap, Ac). (97)

The switching factor(λ∗
i − γ) is legitimate due to the inequality0 < γ < λ∗

i . Assumingγ ≥ λ∗
i yields
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(λ∗
K+1 + λ∗

i )Cj ≥ λ∗
i Ci, which is equivalent to(1 − λ∗

j)Cj ≥ λ∗
i Ci. This leads to a contradiction since

it leads toCj ≥ λ∗
i Ci + λ∗

j Cj = Ac. Hence,γ < λ∗
i is obtained. SinceCi > Cj, γ > 0; hence, the

proof of the inequality0 < γ < λ∗
i is complete. After rearranging the terms, the inequality in(96) can be

expressed as

γ h(P ∗
i , Ci) + λ∗

j h(P
∗
j , Cj) < (λ∗

j + γ + λ∗
K+1) h(Pj, Cj) . (98)

Since(P ∗
i , Ci) ∈ Si and (P ∗

j , Cj) ∈ Si, the following inequality is obtained from the strict concavity of

h(P,C) for P > b/(κ2(eC + 1)) :

γ h(P ∗
i , Ci) + λ∗

j h(P
∗
j , Cj) < (γ + λ∗

j ) h

(

γ P ∗
i + λ∗

j P
∗
j

γ + λ∗
j

, γ Ci + λ∗
j Cj

γ + λ∗
j

)

. (99)

The convex combination of(P ∗
i , Ci) and (P ∗

j , Cj) lies also inSi due to the convexity ofSi. Therefore,

γ + λ∗
j

γ + λ∗
j + λ∗

K+1

h

(

γ P ∗
i + λ∗

j P
∗
j

γ + λ∗
j

, γ Ci + λ∗
j Cj

γ + λ∗
j

)

< h

(

γ P ∗
i + λ∗

j P
∗
j

γ + λ∗
j + λ∗

K+1

, γ Ci + λ∗
j Cj

γ + λ∗
j + λ∗

K+1

)

(100)

= h(Pj, Cj) (101)

where the inequality is based on Lemma 2 and the equality results from (97). Combining the relations

in (99)-(101) leads to the inequality (98), and hence, to theinequality in (96). Therefore, forCj < Ac,

there always exists a full transmission strategy employingtwo channels that achieves a higher average

probability of correct decision than the optimal solution for Strategy 2P. This completes the proof of the

proposition for partial transmission strategies that use two channels.

Proof for non-optimality of Strategy 1P:Secondly, Strategy 1P is considered and shown to be outper-

formed by Strategy 2F if the condition in (68) is satisfied. Let i denote the channel employed for partial

transmission over a single channel. Since an optimal solution must operate at the average cost limit and

since no channels with costAc are assumed to exist,Ci > Ac must be satisfied. Let{λ∗
i , P

∗
i } denote the

optimal channel switching factor and the optimal power level for Strategy 1P when channeli is employed.

Then,λ∗
i = Ac/Ci andP ∗

i = Ap Ci/Ac are obtained due to the fact that an optimal solution must operate

at the average cost and power limits. In the following, the optimal solution under Strategy 1P is proved

to achieve a lower probability of correct decision than a specific solution under Strategy 2F which uses

channelsi andj with channel switching factors and power levels of{(λ∗
i −γ), (γ+λ∗

K+1)} and{P ∗
i , Pj},

respectively, whereλ∗
K+1 , 1 − λ∗

i is defined as the idle period, andγ =
λ∗

K+1
Cj

Ci−Cj
andPj =

γ P ∗

i

γ+λ∗

K+1

are
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derived based on the property of an optimal solution to operate at the average power and cost limits; i.e.,

(λ∗
i − γ) (P ∗

i , Ci) + (γ + λ∗
K+1) (Pj, Cj) = λ∗

i (P
∗
i , Ci) = (Ap, Ac). (102)

Here, the cost of channelj satisfiesCj < Ac asCi > Ac, and the inequality to prove is expressed as

λ∗
i h(P

∗
i , Ci) < (λ∗

i − γ) h(P ∗
i , Ci) + (γ + λ∗

K+1) h(Pj, Cj) , (103)

where the left and right hand sides are the average probabilities of correct decision corresponding to

Strategy 1P and Strategy 2F, respectively. Note that(λ∗
i − γ) is a legitimate switching factor since0 <

γ < λ∗
i . Ci > Ac > Cj implies thatγ > 0. Assumeγ ≥ λ∗

i , which, after manipulations, leads to the

following inequality: Ac = λ∗
i Ci ≤ Cj. This contradicts with the inequalityCj < Ac. Therefore, the

inequality 0 < γ < λ∗
i is verified. The inequality in (103) reduces to the followingform after some

algebraic operations:

γ

γ + λ∗
K+1

h(P ∗
i , Ci) < h(Pj , Cj). (104)

Exploiting the equation in (102) to derive a relation between the power-cost pairs(P ∗
i , Ci) and (Pj, Cj),

one obtains

γ

γ + λ∗
K+1

(P ∗
i , Ci) = (Pj , Cj). (105)

In the following, it will be demonstrated that(P ∗
i , Ci) ∈ Si, whereSi is as defined in Lemma 2. Since

P ∗
i > Ap, it is sufficient to prove that

Ap ≥ max

{

b

κ2(eCi + 1)
, b Ci

υ

}

(106)

for (P ∗
i , Ci) to be an element of setSi. From (68), it is known thatAp ≥ b β2

K

κ2β1(2βK+b)
. The inequality

b β2
K

κ2β1(2βK + b)
≥ b

κ2(eCi + 1)
(107)

is reduced to the following form by using the cost function in(64) and performing several algebraic steps:

2 βi βK (βK − β1) ≥ b
(

β1 βi − β2
K

)

. (108)

Since the channel parameters are ordered in the ascending order of the channel indices,βK > β1 and

β2
K ≥ β2

i ≥ βi β1, which make the left-hand side of (108) greater than zero andthe right-hand side of
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(108) smaller than or equal to zero. Hence, the inequality in(108) and thus the inequality in (107) is

proved to be correct. Therefore, the average power limit satisfies

Ap ≥ b

κ2(eCi + 1)
· (109)

On the other hand, the inequality

b βK log
(

1 + b
β1

)

υ β1

≥ bCi

υ
(110)

can be reduced to

βK

β1
≥ Ci

C1
(111)

after some manipulation and based on the cost function in (64). Since βK > β1 and Ci < C1, the

inequalities (111) and (110) are satisfied, which, togetherwith the inequality in (68), yields the following

result:

Ap ≥ bCi

υ
· (112)

Combining the inequalities in (109) and (112) produces the inequality in (106). Therefore, the proof of

the argument(P ∗
i , Ci) ∈ Si is finalized. Now, one can use Lemma 2 and the equation in (105)to write

γ

γ + λ∗
K+1

h(P ∗
i , Ci) < h

(

γ P ∗
i

γ + λ∗
K+1

, γ Ci

γ + λ∗
K+1

)

= h(Pj, Cj) (113)

which completes the proof of the inequality in (104) and the equivalent one in (103). Hence, given

the optimal solution for Strategy 1P, there always exists a full transmission solution performing channel

switching between two channels, which leads to a higher average probability of correct decision. Therefore,

under the assumption that there exist no channels with costAc, the claim that partial transmission is not

optimal when the average power limit satisfies the conditionin (68) is verified.

For the final part of the proof, assume that there exists a channel with costAc. Let {λ∗
i , P

∗
i }Ki=1 denote

the solution of the optimization problem in (13) under the partial transmission strategies, Strategy 1P or

Strategy 2P. Here, at most two of the channel switching factors are non-zero, since only single channel or

two-channel strategies are employed. The average probability of correct decision achieved by the optimal
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solution{λ∗
i , P

∗
i }Ki=1 can be bounded from above based on the strict concavity ofh(P,C):

K
∑

i=1

λ∗
i h(P

∗
i , Ci) <

(

K
∑

i=1

λ∗
i

)

h









K
∑

i=1

λ∗
i P

∗
i

K
∑

i=1

λ∗
i

,

K
∑

i=1

λ∗
i Ci

K
∑

i=1

λ∗
i









. (114)

From that part of the proof above which is related to the case in which there exist no channels with cost

Ac, it is known that the power-cost pairs obtained from the optimal solution under both Strategy 1P and

Strategy 2P are elements of setSi defined in Lemma 2. Hence, the power-cost pairs(P ∗
i , Ci) corresponding

to the employed channels satisfy the concavity condition inLemma 1, which verifies the inequality in

(114). SinceSi is a convex set, the convex combination of the power-cost pairs (P ∗
i , Ci) is also an element

of Si. Noting that
K
∑

i=1

λ∗
i < 1 and using Lemma 2, the following inequality is obtained:

(

K
∑

i=1

λ∗
i

)

h









K
∑

i=1

λ∗
i P

∗
i

K
∑

i=1

λ∗
i

,

K
∑

i=1

λ∗
i Ci

K
∑

i=1

λ∗
i









< h

(

K
∑

i=1

λ∗
i P

∗
i ,

K
∑

i=1

λ∗
i Ci

)

= h(Ap, Ac) (115)

where the equality follows from the fact that an optimal solution must operate at the average power and

the average cost limits. Combining the inequalities in (114) and (115) yields the desired inequality

K
∑

i=1

λ∗
i h(P

∗
i , Ci) < h(Ap, Ac) (116)

where the left and right hand sides represent, respectively, the average probabilities of correct decision

achieved by the optimal partial transmission strategy (whether it be Strategy 1P or Strategy 2P) and

Strategy 1F that employs the channel with costAc at the maximum average powerAp. Therefore, if there

is a channel with costAc, partial channel utilization cannot be optimal. In summary, with the verification

of the inequalities in (90), (96), (103), and (116), it is concluded that when the average power limit is

above a certain threshold as stated in the proposition, the partial transmission strategies cannot be optimal.

�
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