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Optimal Channel Switching in Multiuser Systems
under Average Capacity Constraints

Ahmet Dundar Sezer and Sinan Gezici

Abstract—In this study, the optimal channel switching problem
is studied for average capacity maximization in the presence of
multiple receivers in the communication system. First, theopti-
mal channel switching problem is proposed for average capacity
maximization of the communication between the transmitterand
the secondary receiver while fulfilling the minimum average
capacity requirement of the primary receiver and considering
the average and peak power constraints. Then, an alternative
equivalent optimization problem is provided and it is shownthat
the solution of this optimization problem satisfies the constraints
with equality. Based on the alternative optimization problem, it is
obtained that the optimal channel switching strategy employs at
most three communication links in the presence of multiple avail-
able channels in the system. In addition, the optimal strategies
are specified in terms of the number of channels employed by
the transmitter to communicate with the primary and secondary
receivers. Finally, numerical examples are provided in order to
verify the theoretical investigations.

Index Terms—Channel switching, capacity, multiuser, time
sharing, power allocation.

I. I NTRODUCTION

Optimal power allocation has critical importance for en-
hancing performance of communication systems. For exam-
ple, in fading environments, performance of communication
between two users can be improved by employing an efficient
power allocation strategy (e.g., water-filling algorithm [1])
compared to the conventional uniform power allocation ap-
proach. In the literature, the studies related to power allocation
have mostly focused on the performance metrics such as
channel capacity (e.g., [1]–[3]), bit error rate (BER) (e.g.,
[4]–[8]), and outage probability (e.g., [9]–[11]) in general.
In [1], the optimal power allocation strategy is derived for
capacity maximization over a fading additive white Gaussian
noise (AWGN) channel in the presence of perfect channel state
information (CSI) at both the transmitter and the receiver.It is
obtained that the optimal strategy that maximizes the channel
capacity is the water-filling solution in which more power is
allocated to better channel states if the signal-to-noise ratio
(SNR) is above a certain threshold and no power is transmitted
otherwise. Via optimal power allocation, the ergodic capacity
and the outage capacity is maximized in [2] for secondary
users in a cognitive radio network. In a similar context, the
optimal power allocation schemes are considered in [4] for
cognitive radio networks in order to minimize the average
BER of secondary users. In [9], the optimal power allocation
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is studied in order to reduce the outage probability in fading
channels.

In addition to the power allocation approach, time sharing
(i.e., randomization) is another method for improving per-
formance of communication systems. The mechanism behind
the benefits of the time sharing (randomization) method is
related to a phenomenon called stochastic resonance (SR). The
counterintuitive effects of SR provides performance benefits
in the context of statistical average for a system in which
nonlinearities and suboptimal parameters are observed [12],
[13]. In the literature, the time sharing approach has been
studied in the context of noise enhanced detection and esti-
mation (e.g., [14]–[18]), error performance improvement (e.g.,
[16], [19]–[24]), and jamming performance enhancement (e.g.,
[25]–[27]). Although an increase in the noise degrades the
system performance in general, addition of noise to a system
in conjunction with time sharing among a certain number
of signal levels can provide performance benefits [14]–[18].
In a similar context, stochastic signaling, i.e., time sharing
among multiple signal values for each information symbol,
is performed for average power constrained non-Gaussian
channels to improve the error performance of the system [19],
[20]. In [19], it is presented that randomization (time sharing)
is required among no more than three different signal valuesin
order to achieve the optimal error performance in the presence
of second and fourth moment constraints. Also, time sharing
among multiple detectors (i.e., detector randomization) is em-
ployed over additive time-invariant noise channels [16], [21].
In [16], it is obtained that time sharing between two antipodal
signal pairs and the corresponding maximum a-posteriori prob-
ability (MAP) detectors can significantly enhance the system
performance in the presence of symmetric Gaussian mixture
noise. In a similar manner, the study in [21] investigates both
detector randomization and stochastic signaling approaches for
an M -ary communication system in which an additive noise
channel is considered with a known distribution. In the context
of jamming performance enhancement, a jammer can employ
time sharing among multiple power levels in order to reduce
the detection performance of a receiver or to degrade the error
performance of a communication system [25]–[27].

In the presence of multiple channels in a communication
system, time sharing (i.e., channel switching) can be employed
to enhance certain performance metrics such as average prob-
ability of error, average number of correctly received symbols,
and channel capacity [28]–[31]. The channel switching prob-
lem is studied in [28] forM -ary communication systems in
which a transmitter communicates with a receiver by employ-
ing a stochastic signaling approach in order to minimize the
average probability of error under an average power constraint.
It is shown that the optimal strategy corresponds to either
one of the following strategies: deterministic signaling over
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a single channel, time sharing between two different signal
constellations over a single channel, or time sharing between
two channels with deterministic signaling over each channel.
The channel switching problem is also studied in [29] for
maximizing the average number of correctly received symbols
between a transmitter and a receiver in the presence of average
power and cost constraints. It is proved that the optimal
strategy corresponds to channel switching either among at
most three different channels with full channel utilization (i.e.,
no idle periods), or between at most two different channels
with partial channel utilization. Unlike the studies in [28]
and [29], the channel switching strategy is employed together
with power allocation in order to enhance thecapacityof a
communication system in [30], [31]. In [30], the optimal chan-
nel switching strategies are investigated for a communication
system in which a single transmitter communicates with a
single receiver in the presence of the average and peak power
constraints. It is obtained that the optimal channel switching
strategy corresponds to the exclusive use of a single channel
or to channel switching between two channels. In [31], the
study in [30] is extended for a communication system where
the channel switching delays (costs) are considered due to
hardware limitations. It is shown that any channel switching
strategy consisting of more than two different channels cannot
be optimal.

Although the channel switching problem has been studied
for communication between a single transmitter and a single
receiver in the presence of average and peak power constraints
and in the consideration of channel switching delays, no
studies in the literature have considered the channel switching
problem in the presence of multiple receivers in the com-
munication system. In this study, a transmitter communicates
with two receivers (classified as primary and secondary)
by employing a channel switching strategy among available
multiple channels in the system. The aim of the transmitter
is to enhance the average capacity of the secondary receiver
while satisfying the minimum average capacity requirement
for the primary receiver in the presence of average and peak
power constraints.1 Also, due to hardware limitations, the
transmitter can establish only one communication link with
one of the receivers at a given time by employing one of
the communication channels available in the system. It is
obtained that if more than one channel is available, then
the optimal channel switching strategy which maximizes the
average capacity of the secondary receiver consists of no more
than3 communication links. (It is important to note that each
channel in the system constitutes two communication links;
that is, one for the communication between the transmitter and
the primary receiver and one for the communication between
the transmitter and the secondary receiver.) In addition, with
regard to the number of channels employed in the optimal
channel switching strategy, it is concluded that the transmitter
either communicates with the primary receiver over at most
two channels and employs a single channel for the secondary
receiver, or communicates with the primary receiver over a

1In this study, the channel switching delays are omitted in order to simplify
the system model. However, the main contributions of the manuscript are valid
in the presence of switching delays, as well.

single channel and employs at most two channels for the
secondary receiver. In addition to the communication system
with a single primary receiver, the channel switching problem
in this study is also extended for communication systems in
which there exist multiple primary receivers, each having a
separate minimum average capacity requirement for the com-
munication with the transmitter. Lastly, numerical examples
are provided to exemplify the theoretical results.

Compared to this manuscript, the studies in [30] and [31]
do not consider the multi-user scenario and consequently the
optimal channel strategies obtained in those studies are not
applicable for a communication system in which multiple users
communicate with each other. Even though the studies in
[30] and [31] do not provide any approaches for multi-user
communication systems, they constitute a fundamental aspect
for the optimal channel switching strategies obtained in this
manuscript. Therefore, the methods and approaches employed
in this study bear a certain level of resemblance to those in
[30] and [31]. On the other hand, it is important to note that
the contributions of this study to the literature are significantly
different from the ones in [30] and [31]. More precisely, the
constraint related to the minimum average capacity require-
ment of the primary receiver in the communication system
modeled in this study alters the analysis of the optimal channel
switching strategy and requires new proof approaches that are
mostly different from the ones employed in [30] and [31].

The main contributions of this study can be summarized as
follows:

• For the first time in the literature, the channel switching
problem is studied for average capacity maximization in
the presence of multiple receivers in a communication
system where the transmitter communicates with the
primary and secondary receivers in order to improve
the average capacity of the secondary receiver under the
average and peak power constraints and the minimum
average capacity requirement for the primary receiver.

• It is obtained that the optimal channel switching strategy
includes no more than3 communication links in the
presence of multiple available communication channels
in the system.

• It is shown that the optimal channel switching strategy
corresponds to one of the following strategies:

– The transmitter performs communication with the
primary receiver over at most two channels and
employs a single channel for the secondary receiver.

– The transmitter communicates with the primary re-
ceiver over a single channel and at most two channels
are occupied for the communication to the secondary
receiver.

• A low-complexity solution to the channel switching prob-
lem is provided, which requires the comparison of the av-
erage capacities obtained by two optimization problems,
each having significantly lower computational complexity
than the original channel switching problem.

• As an extension, the channel switching problem is refor-
mulated in the consideration of multiple primary receivers
and their corresponding minimum average capacity re-
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Fig. 1. Block diagram of a communication system in which transmitter
communicates with primary and secondary receivers via channel switching
among K channels (frequency bands). It is noted that the the channel
coefficients can be different for the same channels

quirements.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a communication system in whichK different
channels (frequency bands) are available for a transmitterto
communicate with two receivers classified as primary and
secondary.2 It is assumed that, due to hardware constraints,
the transmitter can establish only one communication link
with one of the receivers at a given time by performing
communication over one of the channels [30], [31]. The reason
for this assumption is that the transmitter and the receivers are
assumed to have a single RF chain each due to complexity and
cost considerations. The restriction caused by this assumption
simplifies the circuit and antenna design at transmitters and
receivers while reducing the hardware costs by allowing to em-
ploy a single RF chain to transmit/receive data. The transmitter
can switch (time share) among theseK channels to improve
the average capacity of the secondary receiver while satisfying
the minimum average capacity requirement for the primary
receiver. The channels are modeled as statistically independent
flat-fading additive Gaussian noise channels with constant
power spectral density levels over the channel bandwidths.
Also, the channel state information (CSI) is assumed to be
available at both the transmitter and the associated receiver,
and the channels can have different bandwidths and constant
spectral density levels in general. Fig. 1 illustrates the system
model withK different channels (frequency bands), where the
transmitter communicates with one primary and one secondary
receiver via channel switching (i.e., time sharing). In practice,
the transmitter can initiate communication with the primary
receiver and communicate over one channel for a certain
fraction of time. Then, it switches to another channel and
communicates with the primary receiver over that channel
for another fraction of time. The similar process continues
for the remaining channels. Later, the transmitter establishes
communication with the secondary receiver and it applies
the same procedure as employed for the primary receiver;
that is, for a certain fraction of time, it communicates with

2Extensions to multiple receivers are presented in Section IV. Also, the
terms, primary and secondary, used in the study have different meanings from
the ones used in the cognitive radio literature where primary users are licensed
users and secondary users are unlicensed users that are allowed to access the
spectrum when primary users are not active.

the secondary transmitter over one channel and it switches
to the remaining channels in order and communicates over
those channels for certain fractions of time. It is important
to emphasize that the receivers are classified as primary
and secondary in the study since the transmitter primarily
satisfies the minimum average capacity requirement for the
primary receiver and then performs communication with the
secondary receiver to enhance the average capacity of the
communication with the secondary receiver. This scenario is
applicable to wireless sensor networks in which child nodes
can employ the channel switching strategy in order to improve
their average capacity while fulfilling the minimum average
capacity constraint of the parent node. Also, it can be stated
that the channel switching strategy may improve the energy
efficiency of the communication system by requiring a lower
average power to achieve the same average channel capacity
achieved by the conventional methods [32], [33].

LetBi andNi/2 denote, respectively, the bandwidth and the
constant power spectral density level of the additive Gaussian
noise for channeli, wherei ∈ {1, . . . ,K}, and lethk

i represent
the complex channel gain for channeli between the transmitter
and receiverk, wherek ∈ {p, s} denotes the label for either
the primary or the secondary receiver. Then, the capacity of
channeli between the transmitter and receiverk is expressed
as

Ck
i (P ) = Bi log2

(

1 +

∣

∣hk
i

∣

∣

2
P

NiBi

)

bits/sec (1)

whereP represents the average transmit power [34].

The main objective of this study is to determine the op-
timal channel switching strategy that maximizes the average
capacity of the communication between the transmitter and
the secondary receiver while ensuring the minimum average
capacity constraint for the primary receiver with the consid-
eration of average and peak power constraints. To provide
a mathematical formulation, time-sharing (channel switching)
factors are defined asλp

1 , . . . , λ
p
K , λs

1, . . . , λ
s
K , whereλp

i and
λs
i denote the fractions of time when channeli is utilized by

the transmitter for communication with the primary receiver
and the secondary receiver, respectively. Then, the following
optimal channel switching problem is proposed for average
capacity maximization of the link between the transmitter and
the secondary receiver under a minimum average capacity
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constraint of the primary receiver:

max
{λp

i
,λs

i
,P

p
i
,P s

i
}K
i=1

K
∑

i=1

λs
i C

s
i (P

s
i ) (2a)

subject to
K
∑

i=1

λp
i C

p
i (P

p
i ) ≥ Creq (2b)

K
∑

i=1

(λp
i P

p
i + λs

i P
s
i ) ≤ Pav ,

P p
i , P

s
i ∈ [0, Ppk] , ∀i ∈ {1, . . . ,K} (2c)

K
∑

i=1

(λp
i + λs

i) = 1 ,

λp
i , λ

s
i ∈ [0, 1] , ∀i ∈ {1, . . . ,K} (2d)

where Ck
i (Pi) for k ∈ {p, s} is as in (1), P p

i and P s
i

represent the average transmit powers allocated to channel
i in order to communicate with the primary and secondary
receivers, respectively,Creq is the minimum average capacity
requirement for the primary receiver,Ppk denotes the peak
power limit, andPav represents the average power limit for
the transmitter. The average power limit can be associated
with the power consumption and/or the batery life at the
transmitter. On the other hand, the peak power constraint refers
to the maximum power level that can be produced by the
transmitter circuitry (i.e., a hardware constraint). It isassumed
thatPav < Ppk andCreq > 0. It is also important to note that
there exists a total of2K communication links in the system
since each of theK channels (frequency bands) can be used
for communicating with the primary receiver or secondary
receiver.

III. O PTIMAL CHANNEL SWITCHING FOR

COMMUNICATION BETWEEN THE TRANSMITTER AND THE

SECONDARY RECEIVER

Since the optimization problem in (2) is not convex and
requires a search over a4K dimensional space in general, it
is hard to obtain the solution of the problem in its current form.
Therefore, the aim is to convert the optimization problem in(2)
into a tractable equivalent optimization problem, the solution
of which is the same as that of (2). The following optimization
problem represents such an alternative optimization problem.

Proposition 1: The following optimization problem results
in the same maximum average capacity for the secondary

receiver as the original optimization problem in(2):

max
{λp

i
,λs

i
,P

p
i
,P s

i
}K
i=1

K
∑

i=1

λs
i C

s
max(P

s
i ) (3a)

subject to
K
∑

i=1

λp
i C

p
max(P

p
i ) ≥ Creq (3b)

K
∑

i=1

(λp
i P

p
i + λs

i P
s
i ) ≤ Pav ,

P p
i , P

s
i ∈ [0, Ppk] , ∀i ∈ {1, . . . ,K} (3c)

K
∑

i=1

(λp
i + λs

i) = 1 ,

λp
i , λ

s
i ∈ [0, 1] , ∀i ∈ {1, . . . ,K} (3d)

whereCk
max(P ) is defined as

Ck
max(P ) , max{Ck

1 (P ), . . . , Ck
K(P )} (4)

for k ∈ {p, s}.

Proof: Let {λ̃p
i , λ̃

s
i , P̃

p
i , P̃

s
i }

K
i=1 denote the solution of

the optimization problem in (2) andC∗ denote the cor-
responding maximum average capacity. Then, the achieved
maximum average capacity for the communication between
the transmitter and the secondary receiver can be written as
C∗ =

∑K

i=1 λ̃
s
i C

s
i (P̃

s
i ). From the definition ofCk

max in (4),
the following relation is obtained:

C∗ =

K
∑

i=1

λ̃s
i C

s
i (P̃

s
i ) ≤

K
∑

i=1

λ̃s
i C

s
max(P̃

s
i ). (5)

It is noted that{λ̃p
i , λ̃

s
i, P̃

p
i , P̃

s
i }

K
i=1 satisfies the constraints in

(3). Therefore, it is deduced that the problem in (3) can achieve
the maximum average capacity obtained by the problem in (2);
that is,C∗ ≤ C⋆, whereC⋆ denotes the maximum average
capacity according to (3). Next, consider the solution of the
optimization problem in (3). The maximum average capacity
obtained by (3) can be expressed asC⋆ =

∑K

i=1 λ̄
s
i C

s
max(P̄

s
i ),

where{λ̄p
i , λ̄

s
i , P̄

p
i , P̄

s
i }

K
i=1 denotes the solution of (3). Now,

define functionsg(k)(i) for k ∈ {p, s} and setsS(k)
m for k ∈

{p, s} as follows:3

g(k)(i) , arg max
l∈{1,...,K}

Cl(P̄
k
i ) , ∀i ∈ {1, . . . ,K} (6)

and

S(k)
m , {i ∈ {1, . . . ,K} | g(k)(i) = m} , ∀m ∈ {1, . . . ,K}.

(7)

3In the case of multiple maximizers in (6), any maximizing index can be
chosen forg(k)(i).
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Then, the following relations can be obtained fork ∈ {p, s} :

K
∑

i=1

λ̄k
i C

k
max(P̄

k
i ) =

K
∑

i=1

λ̄k
i C

k
g(k)(i)(P̄

k
i ) (8)

=

K
∑

i=1

∑

n∈S
(k)
i

λ̄k
n Ck

i (P̄
k
n ) (9)

≤
K
∑

i=1

(

∑

n∈S
(k)
i

λ̄k
n

)

Ck
i

(∑

n∈S
(k)
i

λ̄k
nP̄

k
n

∑

n∈S
(k)
i

λ̄k
n

)

(10)

=

K
∑

i=1

λ̂k
i C

k
i (P̂

k
i ) (11)

whereλ̂k
i and P̂ k

i are defined as

λ̂k
i ,

∑

n∈S
(k)
i

λ̄k
n and P̂ k

i ,

∑

n∈S
(k)
i

λ̄k
nP̄

k
n

∑

n∈S
(k)
i

λ̄k
n

(12)

for i ∈ {1, . . . ,K}. The equalities in (8) and (9) are obtained
from the definitions in (6) and (7), respectively, and the
inequality in (10) follows from Jensen’s inequality due to
the concavity of the capacity function [34], [35]. Based on
the inequality in (8)–(11), it is obtained thatλ̂p

i ’s and P̂ p
i ’s

satisfy the minimum average capacity requirement in (2);
that is,

∑K

i=1 λ̂
p
i C

p
i (P̂

p
i ) ≥ Creq since

∑K

i=1 λ̂
p
i C

p
i (P̂

p
i ) ≥

∑K

i=1 λ̄
p
i C

p
max(P̄

p
i ) and

∑K

i=1 λ̄
p
i C

p
max(P̄

p
i ) ≥ Creq. Also,

it is noted from (12), based on (6) and (7), thatλ̂k
i ’s and

P̂ k
i ’s for k ∈ {p, s} satisfy the other constraints in (2);

that is,
∑K

i=1(λ̂
p
i P̂

p
i + λ̂s

i P̂
s
i ) ≤ Pav, P̂ p

i , P̂
s
i ∈ [0, Ppk],

∀i ∈ {1, . . . ,K},
∑K

i=1(λ̂
p
i + λ̂s

i) = 1, and λ̂p
i , λ̂

s
i ≥ 0, ∀i ∈

{1, . . . ,K}. Therefore, the inequality in (8)–(11), namely,
C⋆ ≤

∑K

i=1 λ̂i Ci(P̂i), implies that the optimal solution of (3)
cannot achieve a higher average capacity than that achieved
by (2); that is,C⋆ ≤ C∗. Hence, it is concluded thatC⋆ = C∗

sinceC⋆ ≥ C∗ must also hold as mentioned at the beginning
of the proof. �

Based on Proposition 1, the solution of the original problem
in (2) can be obtained from the optimization problem in (3),
which is more tractable than the one in (2), as investigated
in the following. Proposition 1 also implies that an optimal
strategy always utilizes the best channel for a given power
level, as noted from (3a), (3b), and (4), which is intuitive due
to the monotone increasing nature of the capacity expression.

As a first step towards characterizing the solution of (3),
the following proposition provides a useful statement thatthe
constraints in (3b) and (3c) always hold with equality.

Proposition 2: The solution of the optimization problem in
(3) satisfies the constraints in(3b) and (3c) with equality; that
is,
∑K

i=1 λ̄
p
i C

p
max(P̄

p
i ) = Creq and

∑K

i=1 λ̄
p
i P̄

p
i + λ̄s

i P̄
s
i =

Pav, where{λ̄p
i , λ̄

s
i , P̄

p
i , P̄

s
i }

K
i=1 denotes the solution of(3).

Proof: Assume that{λ̄p
i , λ̄

s
i , P̄

p
i , P̄

s
i }

K
i=1 is the solution of

(3) such that
∑K

i=1(λ̄
p
i P̄

p
i +λ̄s

i P̄
s
i ) < Pav. Then, the following

cases are considered4:

• If λ̄s
i = 0 , ∀i ∈ {1, . . . ,K}, then there exists at least

one P̄ p
i such thatP̄ p

i < Ppk since
∑K

i=1 λ
p
i P

p
i ≤ Pav

and
∑K

i=1 λ
p
i = 1 due to the constraints in (3c) and (3d),

respectively, andPav < Ppk by the assumption for (2).
Let P̄ p

l denote one of them. Then, consider an alternative
solution{λ̂p

i , λ̂
s
i , P̂

p
i , P̂

s
i }

K
i=1, where

P̂ p
l = min

{

Ppk, P̄
p
l +

(

Pav −

K
∑

i=1

λ̄p
i P̄

p
i

)

/λ̄p
l

}

,

(13)

λ̂p
l =

λ̄p
l C

p
max(P̄

p
l )

Cp
max(P̂

p
l )

, (14)

λ̂p
i = λ̄p

i , ∀i ∈ {1, . . . ,K} \ {l}, (15)

P̂ p
i = P̄ p

i , ∀i ∈ {1, . . . ,K} \ {l}, (16)

λ̂s
1 = λ̄p

l − λ̂p
l , (17)

P̂ s
1 = P̂ p

l , (18)

λ̂s
i = λ̄s

i , ∀i ∈ {2, . . . ,K}, (19)

P̂ s
i = P̄ s

i , ∀i ∈ {2, . . . ,K}. (20)

The solution {λ̄p
i , λ̄

s
i , P̄

p
i , P̄

s
i }

K
i=1 achieves an average

capacity ofC̄s = 0 due to λ̄s
i = 0 , ∀i ∈ {1, . . . ,K}.

On the other hand, the alternative solution satisfies the
constraints in (3) and achieves a larger capacity; that
is Ĉs = λ̂s

1 C
s
max(P̂

s
1) > 0 since λ̂s

1 > 0 and P̂ s
1 >

0. Therefore,{λ̄p
i , λ̄

s
i, P̄

p
i , P̄

s
i }

K
i=1 cannot be optimal if

λ̄s
i = 0 , ∀i ∈ {1, . . . ,K}, which contradicts with the

assumption at the beginning of the proof.
• For the case that̄λs

i > 0 , ∃i ∈ {1, . . . ,K}, define a set
as

M , {i ∈ {1, . . . ,K} | λ̄s
i > 0} . (21)

Next, consider the following cases:

– If P̄ s
k = Ppk , ∀k ∈ M , then there exists at least one

P̄ p
i that satisfiesP̄ p

i < Ppk since the constraints in
(3c) and (3d) hold. Let̄P p

l represent one of them and
consider an alternative solution{λ̂p

i , λ̂
s
i , P̂

p
i , P̂

s
i }

K
i=1,

whereP̂ p
l , λ̂p

l , λ̂p
i for all i ∈ {1, . . . ,K} \ {l}, P̂ p

i

for all i ∈ {1, . . . ,K} \ {l}, λ̂s
1, and P̂ s

1 are as in
(13)-(18) and the remaining terms are as follows:

λ̂s
2 =

∑

k∈M

λ̄s
k, (22)

P̂ s
2 = Ppk, (23)

λ̂s
i = 0 , ∀i ∈ {3, . . . ,K}, (24)

P̂ s
i = 0 , ∀i ∈ {3, . . . ,K}. (25)

The achieved average capacity by
{λ̄p

i , λ̄
s
i , P̄

p
i , P̄

s
i }

K
i=1 is C̄s =

∑K

i=1 λ̄
s
i C

s
max(P̄

s
i ),

which is lower than that achieved by the alternative

4In this case, it is assumed that multiple channels are available for
communication; that is,K > 1. In the case of a single channel available
for communication (i.e.,K = 1), a similar approach can be employed.
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solution due to the following relation:

C̄s =

K
∑

i=1

λ̄s
i C

s
max(P̄

s
i ) =

∑

k∈M

λ̄s
k C

s
max(Ppk) (26)

<
∑

k∈M

λ̄s
k C

s
max(Ppk)

+ λ̂s
1 C

s
max(P̂

s
1 ) (27)

=

K
∑

i=1

λ̂s
i C

s
max(P̂

s
i ) (28)

= Ĉs (29)

where (26) follows from the condition that̄P s
k =

Ppk , ∀k ∈ M , the inequality in (27) is due to
λ̂s
1 > 0 and P̂ s

1 > 0, (28) is obtained based on (13)-
(18) and (22)-(25), and finallŷCs in (28) denotes the
achieved average capacity by the alternative solution.
Based on (26)-(29), it is obtained that̄Cs < Ĉs.
Therefore,{λ̄p

i , λ̄
s
i , P̄

p
i , P̄

s
i }

K
i=1 cannot be optimal

and consequently the assumption at the beginning
of the proof must be false if̄P s

k = Ppk , ∀k ∈ M
for the case that̄λs

i > 0 , ∃i ∈ {1, . . . ,K}.
– If P̄ s

k < Ppk , ∃k ∈ M , then based on a similar
approach to that in Lemma 1 of [30], an alternative
solution{λ̂p

i , λ̂
s
i , P̂

p
i , P̂

s
i }

K
i=1 can be expressed as

λ̂p
i = λ̄p

i , ∀i ∈ {1, . . . ,K}, (30)

P̂ p
i = P̄ p

i , ∀i ∈ {1, . . . ,K}, (31)

P̂ s
l = min

{

Ppk, P̄
s
l +

(

Pav −
K
∑

i=1

λ̄s
iP̄

s
i

)

/λ̄s
l

}

,

(32)

P̂ s
i = P̄ s

i , ∀i ∈ {1, . . . ,K} \ {l}, (33)

λ̂s
i = λ̄s

i , ∀i ∈ {1, . . . ,K} (34)

where P̄ s
l is one of the power levels that satisfies

P̄ s
l < Ppk. SinceP̂ s

l > P̄ s
l andCs

max(P ) in (4) is
a monotone increasing function ofP , it is obtained
that the alternative solution achieves a larger average
capacity than{λ̄p

i , λ̄
s
i , P̄

p
i , P̄

s
i }

K
i=1 does. Therefore,

the assumption at the beginning of the proof must
not be true.

Based on the cases specified above, it is concluded by
contradiction that the solution of the optimization problem
in (3) satisfies the constraint in (3c) with equality; that is,
∑K

i=1 λ̄
p
i P̄

p
i + λ̄s

i P̄
s
i = Pav.

In the second part of the proof, the aim is to prove that the
solution of (3) satisfies the constraint in (3b) with equality. As-
sume that{λ̄p

i , λ̄
s
i , P̄

p
i , P̄

s
i }

K
i=1 is the solution of (3) such that

∑K

i=1 λ̄
p
i C

p
max(P̄

p
i ) > Creq. SinceCreq > 0 by assumption,

there exists at least one{λ̄p
i , P̄

p
i } pair such that̄λp

i > 0 and
P̄ p
i > 0. Let {λ̄p

l , P̄
p
l } denote one of them. Then, there exists a

non-negativeP̂ p
l < P̄ p

l such that
∑K

i=1 λ̂
p
i C

p
max(P̂

p
i ) ≥ Creq,

where λ̂p
i = λ̄p

i for all i ∈ {1, . . . ,K} and P̂ p
i = P̄ p

i for all
i ∈ {1, . . . ,K}\{l} sinceCp

max(P ) is a monotone increasing
and continuous function ofP .

• If λ̄s
i = 0 , ∀i ∈ {1, . . . ,K}, then consider an alternative

solution{λ̂p
i , λ̂

s
i , P̂

p
i , P̂

s
i }

K
i=1, where

λ̂s
1 = λ̄p

l , (35)

P̂ s
1 = P̄ p

l − P̂ p
l , (36)

λ̂s
i = λ̄s

i , ∀i ∈ {2, . . . ,K}, (37)

P̂ s
i = P̄ s

i , ∀i ∈ {2, . . . ,K}. (38)

• For the case that̄λs
i > 0 , ∃i ∈ {1, . . . ,K}, define a set

as

M , {i ∈ {1, . . . ,K} | λ̄s
i > 0}. (39)

Next, consider the following cases:

– If P̄ s
k = Ppk , ∀k ∈ M , then consider an alternative

solution {λ̂p
i , λ̂

s
i, P̂

p
i , P̂

s
i }

K
i=1, where λ̂s

1 and P̂ s
1 are

as in (36) and (37), respectively, and

λ̂s
2 =

∑

k∈M

λ̄s
k, (40)

P̂ s
2 = Ppk, (41)

λ̂s
i = 0 , ∀i ∈ {3, . . . ,K}, (42)

P̂ s
i = 0 , ∀i ∈ {3, . . . ,K}. (43)

– If P̄ s
k < Ppk , ∃k ∈ M , then based on a similar

approach to that in Lemma 1 of [30], an alternative
solution{λ̂p

i , λ̂
s
i, P̂

p
i , P̂

s
i }

K
i=1 can be expressed as

P̂ s
l = min{Ppk, P̄

s
l + λ̄p

l (P̄
p
l − P̂ p

l )/λ̄
s
l}, (44)

P̂ s
i = P̄ s

i , ∀i ∈ {1, . . . ,K} \ {l}, (45)

λ̂s
i = λ̄s

i , ∀i ∈ {1, . . . ,K} (46)

where P̄ s
l is one of the power levels that satisfies

P̄ s
l < Ppk.

Similar to the first part of the proof, all alternative solutions
specified for the cases above achieve a larger average capacity
than {λ̄p

i , λ̄
s
i , P̄

p
i , P̄

s
i }

K
i=1 does. Therefore, it is proved by

contradiction that the solution satisfies the constraint in(3b)
with equality; that is,

∑K

i=1 λ̄
p
i C

p
max(P̄

p
i ) = Creq. �

Even though Proposition 2 states that the constraints in
(3b) and (3c) are satisfied with equality, it is still difficult
to solve the optimization problem in (3). Therefore, the
following proposition is presented in order to provide a further
simplification for the optimization problem in (3).

Proposition 3: The optimal channel switching strategy
based on the optimization problem in(3) employs at most
min{3, 2K} communication links.

Proof: If K ≤ 1, then the assertion in Proposition 3 holds
obviously. Otherwise, (ifK > 1), then consider the following
transformations:

νi =

{

λp
i , if i ≤ K

λs
m, if i > K

, ∀i ∈ {1, . . . , 2K} (47)

Pi =

{

P p
i , if i ≤ K

P s
m, if i > K

, ∀i ∈ {1, . . . , 2K} (48)
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wherem , i−K. Also, define the following functions:

Cp
max,i(P ) =

{

Cp
max(P ), if i ≤ K

0, if i > K
, ∀i ∈ {1, . . . , 2K}

(49)

Cs
max,i(P ) =

{

0, if i ≤ K

Cs
max(P ), if i > K

, ∀i ∈ {1, . . . , 2K}

(50)

for all P ∈ [0, Ppk]. Based on the transformations in (47)
and (48) and the functions in (49) and (50), the optimization
problem in (3) can be written in the following form:

max
{νi,Pi}2K

i=1

2K
∑

i=1

νi C
s
max,i(Pi) (51a)

subject to
2K
∑

i=1

νi C
p
max,i(Pi) ≥ Creq (51b)

2K
∑

i=1

νi Pi ≤ Pav , Pi ∈ [0, Ppk] , ∀i ∈ {1, . . . , 2K}

(51c)
2K
∑

i=1

νi = 1 , νi ∈ [0, 1] , ∀i ∈ {1, . . . , 2K} (51d)

Next, define the following sets:

V =

{(

2K
∑

i=1

νiC
p
max,i(Pi),

2K
∑

i=1

νi C
s
max,i(Pi),

2K
∑

i=1

νi Pi

)

∈ R
3

∣

∣

∣

∣

∣

2K
∑

i=1

νi = 1 , νi ∈ [0, 1] , Pi ∈ [0, Ppk] , ∀i ∈ {1, . . . , 2K}

}

(52)

W =

{

w = {u1, . . . , u2K}

∣

∣

∣

∣

∣

ui ∈ Ui , ∀i ∈ {1, . . . , 2K}

}

(53)

where

Ui =
{(

P,Cp
max,i(P ), Cs

max,i(P )
)

∈ R
3
∣

∣ P ∈ [0, Ppk]
}

,

∀i ∈ {1, . . . , 2K} . (54)

It is noted that setV includes the solution of the optimization
problem in (51) by definition. LetWi represent theith element
of set W , which is also a set. Then, setV is equal to the
union of the convex hulls of setWi , ∀i ∈ {1, . . . , |W|};
that is,V =

⋃|W|
i=1 conv(Wi). Therefore,

⋃|W|
i=1 conv(Wi) also

includes the solution of the optimization problem in (51). The
definition of union implies that the solution of (51) is an
element ofconv(Wi) for some i ∈ {1, . . . , |W|}. Without
loss of generality, letl be one of them. Since the optimization
problem in (51) is a maximization problem, the solution of
(51) resides on the boundary of the convex hull of setWl.
Then, by Carathéodory’s theorem [36], [37], any point on the
boundary of the convex hull of setWl can be represented by a
convex combination of at mostd points in setWl, whered is
the dimension of space in whichWl resides. SinceWl ⊂ R

3

and the optimal solution of (51) corresponds to a point on the
boundary ofconv(Wl), the optimal channel switching strategy
employs at most3 communication links. �

Based on Proposition 3 and the study in [30], the optimal
channel switching strategy can be investigated as follows:
Let C̄req denote the achieved maximum average capacity for
the communication between the transmitter and the primary
receiver when there is no secondary receiver in the system.
Then,C̄req can be calculated as follows:

C̄req = max
{λp

i
,P

p
i
}K
i=1

K
∑

i=1

λp
i C

p
max(P

p
i ) (55a)

subject to
K
∑

i=1

λp
i P

p
i = Pav ,

P p
i ∈ [0, Ppk] , ∀i ∈ {1, . . . ,K} (55b)

K
∑

i=1

λp
i = 1, λp

i ∈ [0, 1], ∀i ∈ {1, . . . ,K}

(55c)

If the maximum average capacity achieved by the optimiza-
tion problem in (55) is strictly lower than the minimum
average capacity requirement for the primary receiver (i.e.,
C̄req < Creq), then there is no possible channel switching
strategy for the problem in (2) since the optimization problem
in (3) is infeasible. If C̄req = Creq, the optimal channel
switching strategy corresponds to switching between at most
two channels between the transmitter and the primary receiver
based on the optimization problem in (2) and Proposition 4 in
[30]. In that case, no communication is performed between the
transmitter and the secondary receiver. Therefore, the achieved
maximum average capacity isC⋆ = 0. Finally, if C̄req > Creq,
then the optimal channel switching strategy corresponds toone
of the following two strategies:

• Strategy-1 (Communicate with the primary receiver
over at most two channels and employ single chan-
nel for the secondary receiver): In this strategy, the
transmitter employs one or two channels to satisfy the
minimum average capacity requirement of the primary
receiver and uses only one channel in order to maximize
the average capacity of the communication to the sec-
ondary receiver. The achieved maximum average capacity
for the communication to the secondary receiver, denoted
by Cstr,1, can be calculated as follows:

Cstr,1 = max
λ1,λ2,λ3,P1,P2,P3

λ1 C
s
max(P1) (56a)

subject toλ2 C
p
max(P2) + λ3 C

p
max(P3) = Creq (56b)

λ1 P1 + λ2 P2 + λ3 P3 = Pav ,

P1, P2, P3 ∈ [0, Ppk] , (56c)

λ1 + λ2 + λ3 = 1, λ1, λ2, λ3 ∈ [0, 1] (56d)

• Strategy-2 (Communicate with the secondary receiver
over at most two channels and employ single channel
for the primary receiver): In this case, the transmitter
maximizes the average capacity of the communication to
the secondary receiver by employing one or two channels
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while meeting the minimum average capacity requirement
for the primary receiver via communication over a single
channel. In this case, the achieved average capacity can
be expressed as

Cstr,2 = max
λ1,λ2,λ3,P1,P2,P3

λ1 C
s
max(P1) + λ2 C

s
max(P2)

(57a)

subject toλ3 C
p
max(P3) = Creq (57b)

λ1 P1 + λ2 P2 + λ3 P3 = Pav ,

P1, P2, P3 ∈ [0, Ppk] , (57c)

λ1 + λ2 + λ3 = 1, λ1, λ2, λ3 ∈ [0, 1] (57d)

Based on Strategy 1 and Strategy 2, the maximum average
capacity for the communication between the transmitter and
the secondary receiver, which is the solution of (2), can be
calculated as

C⋆ = max{Cstr,1, Cstr,2} (58)

whereCstr,1 andCstr,2 are as in (56) and (57), respectively.
It is important to note that the optimization problems in (56)

and (57) have significantly lower computational complexity
compared to the original optimization problem in (2) since
each of (56) and (57) requires a search only over a3 dimen-
sional space5 whereas a search over a4K dimensional space
is required for the problem in (2), whereK > 1.

IV. OPTIMAL CHANNEL SWITCHING IN THE PRESENCE OF

MULTIPLE PRIMARY RECEIVERS

In the presence of multiple primary receivers, each having
an individual minimum average capacity requirement, the
optimization problem in (2) can be extended as follows:

max
{

λs
i
,P s

i
,

{

λ
pj
i

,P
pj
i

}N

j=1

}K

i=1

K
∑

i=1

λs
i C

s
i (P

s
i ) (59a)

subject to
K
∑

i=1

λ
pj

i C
pj

i (P
pj

i ) ≥ Cj
req , ∀j ∈ {1, . . . , N},

(59b)

K
∑

i=1



λs
i P

s
i +

N
∑

j=1

λ
pj

i P
pj

i



 ≤ Pav, (59c)

P s
i , P

pj

i ∈ [0, Ppk], ∀i ∈ {1, . . . ,K}, ∀j ∈ {1, . . . , N},
(59d)

K
∑

i=1



λs
i +

N
∑

j=1

λ
pj

i



 = 1, (59e)

λs
i , λ

pj

i ∈ [0, 1], ∀i ∈ {1, . . . ,K}, ∀j ∈ {1, . . . , N},
(59f)

where λ
pj

i and P
pj

i denote, respectively, the time-sharing
factor and the average transmit power allocated to channel
i for the communication between the transmitter and thejth
primary receiver,N is the number of primary receivers in

5Note that the search space dimensions of the optimization problems in (56)
and (57) are obtained by substituting the equality constraints in (56b)-(56d)
and (57b)-(57d) into the objective functions in (56a) and (57a), respectively.

the system,Cpj

i (P ) as defined in (1),Cj
req is the minimum

average capacity requirement for thejth primary receiver, and
the other parameters are as in (2).

It is noted that the optimization problem in (2) is a special
case of (59) when there exists only one primary receiver; that
is, whenN = 1. Therefore, it is in general more difficult
to solve the optimization problem in (59) since it requires a
search over a2K(N + 1) dimensional space, which is higher
than4K, corresponding to (2), forN > 1. However, the results
obtained for the problem in (2) can be extended for (59), as
explained in the following remark.

Remark 1: Based on a similar approach to that in Propo-
sition 1, it can be shown that an alternative optimization
problem to the problem in(59) can be obtained. Also, the
approach in Proposition 2 also holds for the optimization prob-
lem in (59) and consequently the solution of(59) satisfies the
constraints in(59b)and (59c)with equality. Moreover, similar
to the proof in Proposition 3, it can be stated for the opti-
mization problem in(59) that the optimal channel switching
strategy based on(59)employs at mostmin{N+2,K(N+1)}
communication links in the system, whereK(N +1) links are
available in total. Specifically, the optimal channel switching
strategy can be realized by switching among at most(N +2)
communication links in the presence of multiple available
channels in the system; that is,K > 1.

It is concluded from Remark 1 that the solution of (59)
can be calculated by solving a total of(N + 1) optimization
problems, each requiring a search over a2(N+2) dimensional
space, and then choosing the maximum among the obtained
average capacities. Hence, the optimal channel switching strat-
egy based on the optimization problem in (59) can be obtained
with low computational complexity.

For complexity comparisons, assume that there exist finitely
many possible values ofλk

i andP k
i for eachk ∈ {p, s} and

i ∈ {1, . . . ,K}, whereλk
i ∈ [0, 1] andP k

i ∈ [0, Ppk] for all
k ∈ {p, s} and i ∈ {1, . . . ,K}. Let Nλ denote the number of
differentλ values forλ ∈ [0, 1] andNP represent the number
of different P values forP ∈ [0, Ppk]. Then, the original
optimization problem in (2) has a computational complexity
of O(N2K

λ × N2K
P ). On the other hand, the complexity of

each optimization problem in (56) and (57) is in the order of
O(N3

λ ×N3
P ). Therefore, in the presence of multiple available

channels, instead of solving the original optimization problem
in (2) with a complexity ofO(N2K

λ × N2K
P ) whereK > 1,

the solution of (2) can be obtained with a lower computational
complexity by solving two optimization problems in (56) and
(57), each having a computational complexity ofO(N3

λ×N3
P ).

In the presence ofN primary receivers in the communication
system, the complexity of the optimization problem in (59) is
O(N

K(N+1)
λ ×N

K(N+1)
P ). However, the solution of (59) can

be calculated with a lower complexity by solvingN + 1 op-
timization problems, each having a computational complexity
of O(NN+2

λ ×NN+2
P ).

V. NUMERICAL RESULTS

In this section, several numerical examples are presented to
investigate the performance of the proposed strategies andto
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Fig. 2. Capacity of each link versus power for the communication between
the transmitter and the primary receiver, whereB1 = 1MHz, B2 = 3MHz,
B3 = 4MHz, B4 = 5MHz, B5 = 10MHz, N1 = N2 = N3 = N4 =
N5 = 10−12 W/Hz, |hp

1 |
2 = 1, |hp

2 |
2 = 0.1, |hp

3 |
2 = 0.1, |hp

4 |
2 = 0.1,

and |hp
5 |

2 = 0.05 .

illustrate the optimal strategy for various values of the average
power limit and the minimum average capacity requirement
for the primary receiver. To that aim, a communication system
is considered withK = 5 channels, the bandwidths and the
noise levels of which are given byB1 = 1MHz, B2 = 3MHz,
B3 = 4MHz, B4 = 5MHz, B5 = 10MHz, andN1 = N2 =
N3 = N4 = N5 = 10−12 W/Hz (cf. (1)). It is assumed that
all the channels are available for the transmitter and can be
used to communicate with both the primary and secondary
receivers. Also, for these channels, the channel power gains
from the transmitter to the primary and secondary receivers
are given by|hp

1 |
2 = 1, |hp

2 |
2 = 0.1, |hp

3 |
2 = 0.1, |hp

4 |
2 = 0.1,

|hp
5 |

2 = 0.05, |hs
1|

2 = 1, |hs
2|

2 = 0.1, |hs
3|

2 = 0.1, |hs
4|

2 = 0.1,
and |hs

5|
2 = 0.1 . In this scenario, the peak power constraint

in (2) is set toPpk = 0.1mW. The capacity of each link
available for the transmitter to communicate with the primary
and secondary receivers is plotted as a function of power in
Fig. 2 and Fig. 3, respectively.

In order to investigate the effect of the average power
limit on the performance of the optimal channel switching
strategies, the minimum average capacity constraint for the
primary receiver in (2) is set toCreq = 5Mbps first. Then,
by considering the channel links in Fig. 2 and Fig. 3, the
optimal average capacities are obtained for different average
power limits (Pav) based on Strategy1 in (56) and Strategy2
in (57), and the achieved maximum average capacities are
presented in Fig. 4. From Fig. 4, it is observed thatC⋆ = 0
for Pav < 0.031mW since there is no feasible solution of
the optimization problem in (2) forCreq = 5Mbps and
Pav < 0.031mW. On the other hand, forPav ≥ 0.031mW,
the optimal channel switching strategy can be obtained based
on (56) and (57), and it corresponds to Strategy1 for all
Pav ≥ 0.031mW since Strategy1 outperforms Strategy2
in terms of the achievable maximum average capacity for
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Fig. 3. Capacity of each link versus power for the communication between the
transmitter and the secondary receiver, whereB1 = 1MHz, B2 = 3MHz,
B3 = 4MHz, B4 = 5MHz, B5 = 10MHz, N1 = N2 = N3 = N4 =
N5 = 10−12 W/Hz, |hs

1|
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2|
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Fig. 4. Average capacity versus average power limit for Strategy 1, Strategy
2, and the optimal channel switching strategy for the scenario in Fig. 2 and
Fig. 3, whereCreq = 5Mbps.

the communication to the secondary receiver. Therefore, the
optimal strategy for the transmitter is to communicate with
the primary receiver over at most two channels and to employ
a single channel for the secondary receiver. It is also noted
that the solutions of the optimization problem in (2) for
different values ofPav ≥ 0.031mW satisfy the average power
and minimum average capacity requirement constraints with
equality as Proposition 2 states.

To analyze the optimal strategy in Fig. 4 in more detail,
Table I presents the solutions of the optimal strategy for
various values of the average power limit,Pav. In the table,
the optimal solution is represented by parametersλk

1 , λk
2 , P k

1 ,



10

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

C
req

 (Mbps)

A
ve

ra
ge

 C
ap

ac
ity

 (
M

bp
s)

 

 
Strategy 1
Strategy 2
Optimal Strategy

Fig. 5. Average capacity versus minimum average capacity requirement for
Strategy1, Strategy2, and the optimal channel switching strategy for the
scenario in Fig. 2 and Fig. 3, wherePav = 0.05mW.

P k
2 , ik, andjk for all k ∈ {p, s}, meaning that channelik is

used with time-sharing factorλk
1 and powerP k

1 , and channel
jk is employed with time-sharing factorλk

2 and powerP k
2

to communicate with the primary receiver fork = p and
with the secondary receiver fork = s. It is deduced from
Table I that there is no possible channel switching strategy
for Pav = 0.01mW, Pav = 0.02mW, andPav = 0.03mW.
On the other hand, for the otherPav values in Table I, the
optimal strategy for the average capacity maximization of
the secondary receiver is to communicate with the primary
receiver over channel1 and channel4 via channel switching,
and to employ channel5 exclusively to communicate with the
secondary receiver.

In Fig. 5, the maximum average capacities for the strategies
stated in Fig. 4 are plotted versus the minimum average
capacity requirement,Creq, based on the scenario in Fig. 2 and
Fig. 3. The average power limit in (2) is set toPav = 0.05mW.
From Fig. 5, it is obtained that Strategy2 is the optimal
strategy for Creq ∈ (0, 2.6]Mbps whereas Strategy1 is
optimal for Creq ∈ [3.9, 5.8]Mbps. On the other hand, for
Creq ∈ (2.6, 3.9)Mbps, both Strategy1 and Strategy2 are
optimal since the communication is performed over a single
channel for each of primary and secondary receivers. Also, it
is noted that there is no optimal strategy forCreq > 5.8Mbps
sinceC̄req in (55) cannot achieve a capacity equal to or higher
thanCreq; that is,C̄req < Creq.

Similar to Table I, the solutions of the optimal strategies for
various values of the minimum average capacity requirement
of the primary receiver,Creq, are presented in Table II. It is
noted from Table II that the optimal strategy for the values
satisfying Creq ≤ 2.5Mbps corresponds to the exclusive
use of channel1 for the primary receiver and to channel
switching between channel1 and channel5 for the secondary
receiver whereas for the values ofCreq with Creq ≥ 4.0Mbps
and Creq ≤ 5.5Mbps, it corresponds to switching between

channel1 and channel4 for the primary receiver and to the
use of channel5 only for the secondary receiver. Also, for
Creq = 3.0Mbps andCreq = 3.5Mbps, the optimal strategy
is to employ channel1 and channel5 for the primary and
secondary receivers, respectively. In this case, it is observed
that both Strategy1 and Strategy2 are optimal. Lastly, there
is no optimal channel switching strategy forCreq = 6.0Mbps.

VI. CONCLUDING REMARKS

In this study, the optimal channel switching problem has
been investigated for average capacity maximization in the
presence of multiple receivers in a communication system
where multiple AWGN channels are available for a transmitter
to communicate with the receivers. First, the optimal channel
switching problem has been presented for the communication
of a transmitter with the primary and secondary receivers inthe
presence of the minimum average capacity requirement of the
primary receiver and the average and peak power constraints.
Then, an equivalent optimization problem has been proposed
and it has been proved that the solution of this problem
satisfies the constraints in equality. Based on the proposed
optimization problems, it has been shown that the optimal
channel switching strategy does not involve more than three
communication links when multiple channels are available in
the communication system. Furthermore, the possible optimal
channel switching scenarios have been specified in terms of
the number of channels required for the transmitter to com-
municate with the primary and secondary receivers in order to
achieve the maximum average capacity of the communication
to the secondary receiver while fulfilling the minimum average
capacity requirement of the primary receiver. Numerical ex-
amples have been provided to illustrate the theoretical results
and to demonstrate the benefits of channel switching.
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