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Abstract

In this paper, Cramer-Rao lower bounds (CRLBs) for estimation of signal parameters related to periodically

moving objects in pulse based ultra-wideband systems are presented. The results also apply to estimation of vital

parameters, such as respiration rate, using ultra-wideband (UWB) signals. In addition to obtaining the CRLBs,

suboptimal estimation algorithms are also presented. First, a single-path channel with additive white Gaussian

noise (AWGN) is considered, and closed-form CRLB expressions are obtained for sinusoidal object movements.

Also, a two-step suboptimal algorithm is proposed, which is based on time delay estimation via matched filtering

followed by least-squares (LS) estimation, and its asymptotic optimality property is shown in the limit of certain

system parameters. Then, a multipath environment is considered, and exact and approximate CRLB expressions

are derived. Moreover, suboptimal schemes for parameter estimation are studied. Simulation studies are performed

for the estimation of respiration rates in order to evaluate the lower bounds and performance of the suboptimal

algorithms for realistic system parameters.

Index Terms— Ultra-wideband (UWB), impulse radio (IR), estimation theory, Cramer-Rao lower bound (CRLB),

matched filtering, least-squares (LS) estimation.

I. INTRODUCTION

After the US Federal Communications Commission (FCC) approved the limited use of ultra-wideband (UWB)

technology in February 2002 [1], communications and imaging systems that employ UWB signals have drawn

considerable attention. A UWB signal is defined to be one that possesses an absolute bandwidth larger than 500

MHz or a fractional (relative) bandwidth larger than 20%. The large bandwidth of UWB signals not only facilitates
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high-speed data transmission, but also results in high time resolution, which is crucial for precise ranging and

location estimation [2], [3].

Commonly, impulse radio (IR) systems, which transmit very short duration pulses with a low duty cycle, are

employed to implement UWB systems ([4]-[7]). In an IR communications system, a train of pulses is sent and

information is usually conveyed by the positions or the amplitudes of the pulses, which correspond to pulse position

modulation (PPM) and pulse amplitude modulation (PAM), respectively. In multi-user environments, in order to

prevent catastrophic collisions among pulses of different users and thus provide robustness against multiple access

interference, each information symbol is represented by a sequence of pulses and the positions of the pulses within

that sequence are determined by a pseudo-random time-hopping (TH) sequence specific to each user [4].

In addition to communication applications, UWB systems have also been considered for radar/imaging appli-

cations, such as medical imaging [8], [9], ground penetrating radars [10], through-wall imaging [11], [12] and

surveillance systems [13]. In this paper, we consider the problem of estimating the parameters of a moving object

in a given environment by means of pulse based UWB signals, where the main focus is to estimate the frequency

of a periodically moving object. The problem framework also covers the case in which there is no object in the

environment; hence, both detection of periodic movements and estimation of movement parameters are performed.

From this viewpoint, the problem can be considered in a UWB radar framework. The main advantages of UWB

radars [14] compared to conventional narrowband radars [15]-[17] are high accuracy, low transmission power, and

good penetration capability, which facilitates through-the-wall applications [11], [12], [18].

Parameter estimation problem for moving objects bears some resemblance to channel estimation problem as

well [19]-[22], since information on movement parameters can be obtained by observing the time variation of

the signal delays corresponding to reflections from the object. However, in the movement estimation problem,

the main parameters to be estimated are related to the time varying multipath components only, and the other

channel parameters such as the channel coefficients and delays (corresponding to other multipath components) are

all considered as nuisance parameters. On the other hand, the channel estimation problem [19], [20], [22] considers

channel coefficients and delays as the main parameters to be estimated. In addition, the observation interval in a

movement estimation problem is considerably larger than that in a channel estimation problem. For that reason,

multipath components are assumed to be static for the latter case. On the other hand, in a movement estimation

scenario, multiple pulse bursts are employed, where the delays between consecutive bursts are comparable to the
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period of the movement in the environment [23].

Estimation of signal parameters related to a periodically moving object has applications in vital signs monitoring,

such as respiration rate estimation, since UWB pulses have sufficiently high time resolution to detect movements

of a human chest, and even of a heart [23]-[27]. Use of UWB signals for vital signal monitoring facilitates many

medical applications, such as respiratory activity monitoring in intensive care units, cardiac monitoring, sudden

infant death syndrome detection and arterial-wall motion monitoring [24]. In addition to non-invasive monitoring

applications, estimation of vital (medical) signal parameters can be very important in many other scenarios, such

as searching people under debris after an earthquake and through-the-wall health monitoring of hostages [23].

Previous studies on (periodic) movement estimation via UWB signals were usually focused on medical or security

applications. In [24], possible medical applications of UWB signals are studied, and their penetration and reflection

properties are investigated. In [25] and [26], estimation of respiration and heartbeat rates via UWB signals is studied

experimentally. A mathematical framework for estimation of medical signal parameters is established in [23], which

investigates pulse based UWB signals and filtering approaches for estimation of respiration and heartbeat rates. In

[18], a UWB radar is designed to determine the location of moving people behind walls.

Although UWB parameter estimation problem for periodically moving objects was studied for medical and

security applications [18], [23]-[26], no studies have considered the theoretical limits and asymptotically optimal

solutions for this parameter estimation problem. In this paper, we derive Cramer-Rao lower bounds (CRLBs)

for estimation of signal parameters related to a periodically1 moving object, and study maximum likelihood

and suboptimal estimation algorithms for single-path and multipath channel conditions. We also numerically

evaluate CRLBs for a practical respiration rate estimation scenario, and compare the performance of the suboptimal

algorithms with the CRLBs.

The remainder of the paper is organized as follows. In Section II, the signal model used for parameter estimation

is presented. In Section III, the maximum likelihood (ML) solution is obtained and generic CRLB expressions are

derived. Closed-form expressions for theoretical limits and an asymptotically optimal solution are studied in Section

IV for single path AWGN channels. Then, in Section V, multipath channels are studied and theoretical limits and

suboptimal algorithms are investigated. Finally, numerical examples and simulation results are presented in Section

1The derivations are first obtained for any generic displacement function, not necessarily periodic. Then, simpler expressions are obtained
for sinusoidal movements.
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Fig. 1. Transmitted signal structure for estimation of signal parameters related to object movement. Pulses in each burst are used to improve
signal-to-noise ratio (SNR) at the receiver, and different bursts give information about movement parameters.

VI, followed by the concluding remarks in Section VII.

II. SIGNAL MODEL

The transmitted signal consists of a sequence of pulse bursts as shown in Figure 1, and is expressed as follows:

s(t) =
1√
N

N−1∑

k=0

wtx(t− kTs), (1)

where N is the number of bursts, Ts is the burst period, and wtx(t) is a burst of pulses, which consists of M pulses

and is expressed as

wtx(t) =
M−1∑

j=0

ptx(t− jTp), (2)

with ptx(t) denoting the transmitted pulse and Tp being the interval between consecutive pulses. It is assumed that

Tp > Tw where Tw denotes the width of ptx(t).

The burst of pulses in (1) is aimed at an object being monitored, and the reflections are collected by a receiver.

As in typical pulse based radar applications [28], pulses in each burst are employed to obtain a reliable channel

profile, and comparison of channel profiles obtained from consecutive bursts is used to estimate certain parameters

of the object in the environment.

The received signal can be expressed as

r(t) = gθ(t) + σn(t), (3)

where gθ(t) represents the signal part, with θ representing the vector of all unknown signal parameters, and n(t)

denotes zero mean white Gaussian noise with unit spectral density. It is assumed that the average noise power (or
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σ2) is known. From the transmitted signal model in (1), the signal part gθ(t) in (3) can be expressed as2

gθ(t) =
1√
N

N−1∑

k=0


 ∑

l∈L−{b}
αlwl(t− kTs − τl) + αbwb (t− kTs − τb − hk(λ))


 , (4)

where wl(t) is the received pulse burst via the lth multipath component, wl(t) =
∑M−1

j=0 p
(l)
rx (t− jTp), with p

(l)
rx (t)

denoting the received pulse via the lth path, L = {1, . . . , L} represents the set of indices for multipath components,

αl and τl are, respectively, the channel coefficient and the delay for the lth multipath component (l ∈ L), and

hk(λ) represents the time displacement function induced by the periodically moving object in the environment

with λ = [λ1 · · ·λK ] denoting the unknown signal parameters related to the displacement function. Note that the

channel coefficients and delays for all multipath components except the bth one are assumed to be constant during

the observation of N signal bursts [23], [27] and that the bth multipath component represents the reflection from

the object (e.g., a human chest), which results in a variable path delay among different signal bursts. Also note that

for the received signal model in (3) and (4), it is assumed that there is only one periodically moving object in the

environment.

The unknown parameter vector θ in (4) consists of unknown signal parameters related to hk(λ), and the

parameters related to the multipath channel, which can be expressed as

θ = [λ τ α] , (5)

with τ = [τ1 · · · τL] and α = [α1 · · ·αL]. Without loss of generality, the multipath components are assumed to be

ordered; i.e., τ1 < τ2 < · · · < τL.

It is also assumed that Ts > (τL − τ1) + (M − 1)Tp + Tw + max{hk(λ)} − min{hk(λ)}, so that there is no

interference between consecutive pulse bursts, which is usually the case in practical situations3 [23].

2L − {b} consists of the elements of set L that are different from b.
3Note that, for the simplicity of the expressions, we assume the same pulse width Tw for all UWB pulses p

(l)
rx (t) l ∈ L. The analysis in

the paper can be extended straightforwardly to the case in which UWB pulses received via different multipath components have different
pulse widths.
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III. ML SOLUTION AND GENERIC CRLB EXPRESSIONS

When the signal r(t) in (3) is observed over a time interval [0, T ], with T = NTs, the log-likelihood function

of θ can be expressed as

Λ(θ) = c− 1
2σ2

∫ T

0
|r(t)− gθ(t)|2 dt, (6)

where c denotes a constant independent of θ.

Considering real signals, the ML solution can be obtained from (6) as

θ̂ML = arg max
θ

∫ T

0

[
2r(t)gθ(t)− g2

θ(t)
]
dt, (7)

which requires exhaustive search over the parameter space for θ, which is impractical in most cases.

From (6), the components of the Fisher information matrix (FIM) I can be obtained as follows:

[I]ii = E

{(
∂Λ(θ)
∂θi

)2
}

=
1
σ2

∫ T

0

(
∂gθ(t)

∂θi

)2

dt, (8)

for i = 1, . . . , 2L + K, and

[I]ij = E
{

∂Λ(θ)
∂θi

∂Λ(θ)
∂θj

}
=

1
σ2

∫ T

0

∂gθ(t)
∂θi

∂gθ(t)
∂θj

dt, (9)

for i 6= j, where θi represents the ith element of the parameter vector θ in (5).

From (8) and (9), explicit exact and approximate expressions for the theoretical limits of signal parameter

estimation are derived in the following sections.

IV. SINGLE-PATH SCENARIO

A. General Theory

For an AWGN channel model with a single path component, the signal part gθ(t) in (4) can be expressed as4

gλ(t) =
1√
N

N−1∑

k=0

wb(t− kTs − hk(λ)), (10)

where θ in (5) becomes equal to λ in this case.

4In this case, it is assumed that the receiver is synchronized to the incoming signal. This assumption will be removed in Section V.



7

Although the signal model in (10) is not very realistic for wideband pulse based systems, the analysis for the

single-path scenario provides important intuition for the parameter estimation problem, and the main ideas in the

analysis can be employed to obtain results for a multipath scenario (Section V). Also, this model gets more accurate

when directional antennas are used for transmission and reception, and/or an efficient clutter removal algorithm [28]

is applied before parameter estimation. Of course, the theoretical limits on the accuracy of parameter estimation

obtained using the single path model in this section provides a lower bound for the multipath case as well, since

more nuisance parameters exist for the latter. Note, however, that the lower bound for the single-path case may not

be very tight for the multipath scenario.

From (10), (8) and (9) can be expressed, after some manipulation, as

[ISP]ii =
Ẽb

Nσ2

N−1∑

k=0

(
∂hk(λ)

∂λi

)2

, (11)

[ISP]ij =
Ẽb

Nσ2

N−1∑

k=0

∂hk(λ)
∂λi

∂hk(λ)
∂λj

, (12)

for i, j ∈ {1, . . . , K} and i 6= j, where the subscript SP denotes the single path scenario, and Ẽb is the energy of

the first derivative of the pulse burst wb(t) (denoted as w′b(t)); i.e.,

Ẽb =
∫ ∞

−∞

(
w′b(t)

)2
dt = M

∫ ∞

−∞

[(
p(b)
rx (t)

)′]2

dt. (13)

Note that from the definition of the effective bandwidth of wb(t), i.e.,

β =

(∫∞
−∞ f2|Wb(f)|2df∫∞
−∞ |Wb(f)|2df

)1/2

, (14)

with Wb(f) denoting the Fourier transform of wb(t), Ẽb in (13) can be expressed as

Ẽb = 4π2Ebβ
2, (15)

where Eb is the energy of wb(t).

The CRLB for the covariance of an unbiased estimate of λ can be expressed as [29]

Cov{λ̂} ≥ I−1
SP, (16)

where B1 ≥ B2 means that B1 −B2 is non-negative definite.
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Let λ1 = f denote the rate (frequency) parameter to be estimated (e.g., respiration rate). Then, the CRLB for

estimating f can be stated as

Var{f̂} ≥ [
I−1
SP

]
11

, (17)

where [B]ij denotes the element of matrix B in the ith row and jth column.

B. Sinusoidal Displacement Function

For the remainder of this section, the displacement function hk(λ) is modeled to have three unknown parameters;

frequency f , phase φ and time shift A corresponding to maximum displacement from nominal position. In other

words, λ = [f φ A]. The main parameter of interest is the frequency of the displacement function, which

corresponds, for example, to respiration rate of a human. The phase parameter is another unknown since the

initial position of the object (e.g., chest cavity) is not known by the receiver. Also, the time shift for the maximum

displacement amount from the nominal object position, A, is commonly unknown. Since the frequency is the main

parameter of interest, the phase and the maximum displacement parameters, φ and A, are treated as nuisance

parameters.

For the special case of a displacement function modeled by a sinusoidal function [23], [27], hk(λ) is given by

hk(λ) = A sin (2πfkTs + φ) . (18)

From (18), (11) and (12), the CRLB in (17) can be obtained as5

[
I−1
SP

]
11

=
Nσ2

2π2T 2
s A2Ẽ

(X22X33 −X2
23)

[
X11(X22X33 −X2

23)

−X12(X12X33 −X23X13) + X13(X12X23 −X22X13)
]−1

, (19)

5For the remainder of this section, the subscript b is dropped for convenience.
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where

X11 =
N−1∑

k=0

k2 (1 + cosψk) , X22 =
N−1∑

k=0

(1 + cosψk) ,

X33 =
N−1∑

k=0

(1− cosψk) , X12 =
N−1∑

k=0

k (1 + cosψk) ,

X13 =
N−1∑

k=0

k sinψk, X23 =
N−1∑

k=0

sinψk, (20)

with ψk = 4πfkTs + 2φ.

Although the exact CRLB can be obtained from (19) and (20), a simpler and more intuitive expression can be

obtained in the case of a large number of received pulse bursts N . The following result can be used to obtain an

approximate CRLB expression for large N .

Proposition 1: Assume that Ts < 1
4f . Then, as N −→∞, the CRLB for f multiplied by N2 is expressed as

lim
N→∞

N2
[
I−1
SP

]
11

=
6σ2

π2ẼA2T 2
s

. (21)

Proof: See Appendix A.

Note that, in practice, 1/Ts is selected to be larger than twice the maximum possible frequency of the displacement

function. For example, in [23], for respiratory-rate estimation, Ts is chosen to be 0.1 second, which corresponds to

1/Ts being about 10 times the common value for f . Therefore, the assumption of Ts < 1
4f is valid in most practical

situations.

For large N , the CRLB for f can be approximated, from (21), as

[
I−1
SP

]
11
≈ 6σ2

π2ẼA2T 2
s N2

≈ 0.0154
SNRβ2A2T 2

s N2
, (22)

where the second expression is obtained from (15), with SNR = E/σ2.

From (22), it is observed that as the maximum time displacement amount A or the number of bursts N increases,

the minimum achievable variance decreases with the square of these terms. In addition, Ẽ/σ2 (or, the product of

the SNR and the square of the effective bandwidth) is inversely proportional to the CRLB. It is also important to

note from (22) that the approximate expression for the minimum achievable accuracy is independent of the true

frequency and phase values. In other words, for any frequency satisfying f < 1/(4Ts) and any phase, the achievable
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Fig. 2. A two-step suboptimal solution for estimation signal parameters.

accuracy is the same for given A, T (T = NTs) and Ẽ/σ2 values.

Comparison of (22) with the CRLB for estimating the frequency of a sinusoidal signal (single tone) in AWGN

(e.g., pp. 56-57 in [33]) reveals that the CRLB in (22) is inversely proportional to the square of the number of

bursts N (or the observation interval), whereas the CRLB for frequency estimation of a single tone is inversely

proportional to the cube of the number of samples (or the observation interval). In addition, there is an additional

dependence on the effective bandwidth in (22) since the accuracy of frequency estimation depends on the accuracy

of time-delay estimation for the signal model given by (10) and (18), which is affected by the effective bandwidth

of the pulses.

C. Suboptimal Solution

Now that the best achievable accuracy for frequency estimation has been obtained, the problem of obtaining a

practical solution that (asymptotically) achieves this best accuracy is considered next. Note that the ML solution

in (7) is an optimal solution; however, it requires correlation of the received signal over the observation interval

[0, T ] with the template signal gλ(t) for various values of the parameter λ, which has prohibitive complexity for

practical implementations.

Instead of the ML solution in (7), the solution described in Figure 2 is proposed. Namely, from M pulses in each

burst, the delay (displacement) of the signal in that burst interval is estimated. Let δk
∆= hk(λ) denote the delay

of the kth burst. Note that δk can be estimated by the conventional TOA estimation algorithm based on matched

filter or correlator outputs [30], [15].

Let δ̂ = [δ̂0 δ̂1 · · · δ̂N−1] denote the delay estimates obtained from matched filter processing. Then, these delay

estimates are used by an LS estimator as shown in Figure 2 to estimate the unknown parameters:

λ̂ = arg min
λ

{
N−1∑

k=0

(
δ̂k − hk(λ)

)2
}

. (23)

Note that this two-step algorithm is considerably simpler and more practical than the ML solution in (7) since it
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does not have to perform correlations over the whole observation interval for all different values of λ. Instead, it

first performs a search over a single dimension, namely time delay, using the matched filter outputs for each given

burst. Then, it uses these time delay estimates from different bursts for the LS estimation of the desired signal

parameter(s).

The proposed two-step algorithm provides a suboptimal solution in general. However, it will be shown in the

remainder of this section that the performance of this two-step algorithm gets very close to the CRLB given by

(11)-(16), under certain conditions. Towards this end, the following result is considered first:

Lemma 1 [31], [32]: Consider the signal model

r̃(t) =
1√
N

w(t− δk) + σn(t), t ∈ [0, Ts], (24)

where n(t) is zero mean white Gaussian noise with unit spectral density, and δk is the time delay to be estimated.

If δk is estimated at a matched-filter output with large SNR.β2, where β2 =
∫

f2|W (f)|2df/
∫ |W (f)|2df , the

estimate can be modeled as

δ̂k = δk + nk, (25)

where nk is a Gaussian random variable N (0 , σ2
0) with σ2

0 = 1/(4π2β2SNR).

In other words, Lemma 1 states that for signals with large SNR and/or effective bandwidth β, the error of the

conventional time delay estimation can be modeled by a zero mean Gaussian random variable. Note that the result

of Lemma 1 basically follows from the fact that the matched filter (correlator) is an ML estimate for the time delay,

hence provides an unbiased estimate and achieves the CRLB asymptotically [29].

According to the two-step solution illustrated in Figure 2, the received signal r(t) in (3) is first used to estimate

time delays δk, k = 0, 1, . . . , N −1. More specifically, r(t) for t ∈ [(k−1)Ts , kTs] is used for estimating δk using

a conventional matched-filter approach. For large SNR.β2, these time delay estimates are modeled, according to

Lemma 1, as

δ̂k = hk(λ) + nk, (26)

for k = 0, 1, . . . , N−1, where n1, . . . , nN−1 are independent and identically distributed Gaussian random variables
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with zero mean and variance σ2
0 . Then, the following proposition states the optimality property of the two-step

algorithm in Figure 2.

Proposition 2: For a given set of time delay measurements δ̂ = [δ̂0 δ̂1 · · · δ̂N−1] modeled by (26), the CRLB for

the covariance matrix of an unbiased estimate of λ is the same as the expression in (16), where the FIM is given

by (11)-(13).

Proof: From the model in (26) for the time delay estimates, the distribution of δ̂ for a given λ is obtained as

pλ(δ̂) =
1

(√
2πσ0

)N
exp

{
− 1

2σ2
0

N−1∑

k=0

(
δ̂k − hk(λ)

)2
}

. (27)

Then, the FIM can be shown to be equal to that given by (11) and (12), by using the fact that the expression for

σ2
0 in Lemma 1, σ2

0 = 1/(4π2β2SNR), can be expressed as σ2
0 = Nσ2/Ẽ [33]. ¤

Note that the LS estimator in (23) can be shown to be the ML estimator for λ according to the signal model in

(26). Since the ML estimator asymptotically achieves the CRLB [29], which is equal to the CRLB given by (11)-

(16) according to Proposition 2, the LS solution in (23) provides an asymptotically optimal solution for estimating

λ under the conditions stated in Lemma 1.

V. MULTIPATH CASE

A. General Theory

For the multipath case, the unknown parameter vector θ in (5) consists of both the parameters of the displacement

function, λ, and those of the multipath channel, τ and α. Therefore, the FIM in (8) and (9) can be expressed as

IMP =




Iλλ Iλτ Iλα

IT
λτ Iττ Iτα

IT
λα IT

τα Iαα




, (28)

where the subscript MP represents the multipath case, and IT denotes the transpose of I.

The sub-matrices in (28) can be obtained from (4), (8) and (9) after some manipulation. For example, it can be

shown that Iλλ = α2
b ISP, where ISP is the FIM for the single-path case, given by (11) and (12). The expressions

for the remaining sub-matrices of IMP are given in Appendix B.

Direct calculation of the CRLB for frequency estimation,
[
I−1
MP

]
11

, requires the inversion of the (2L + K) ×

(2L + K) FIM in (28), which is computation intensive in most cases. However, it can be shown that the same
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CRLB can be obtained by inverting a reduced FIM depending on the pulse width, the displacement function, and

the multipath channel profile.

Assume that max
k∈{0,...,N−1}

|hk(λ)| < Tw; that is, the maximum time displacement is always smaller than the pulse

width6. Also assume that the interval Tp between consecutive pulses in a burst is sufficiently large so that there

is no inter-pulse interference; i.e., Tp > τL − τ1 + 2Tw. Let L(u)
1 (L(l)

1 ) denote the set of indices of multipath

components that arrive after (before) the bth multipath component and partially overlap with it in at least one burst

interval. In other words,

L(u)
1 = {l > b | τl < max

k
hk(λ) + τb + Tw}, (29)

L(l)
1 = {l < b | τl > min

k
hk(λ) + τb − Tw}. (30)

Similarly, let L(u)
n (L(l)

n ) represent the set of indices of multipath components that arrive after (before) the multipath

component corresponding to the maximum (minimum) element of L(u)
n−1 (L(l)

n−1), and partially overlap with it; i.e.,

L(u)
n = {l > l

(u)
n−1 | τl < τl

(u)
n−1

+ Tw}, for n = 2, . . . , N
(u)
L , (31)

L(l)
n = {l < l

(l)
n−1 | τl > τl

(l)
n−1

− Tw}, for n = 2, . . . , N
(l)
L , (32)

where l
(u)
n−1 = max{L(u)

n−1}, l
(l)
n−1 = min{L(l)

n−1}, and N
(u)
L (N (l)

L ) represents the number of consecutive non-empty

sets L(u)
n (L(l)

n ) starting from L(u)
1 (L(l)

1 ). Note that N
(u)
L and N

(l)
L can be expressed as N

(u)
L = min{n ≥ 0 | L(u)

n+1 =

∅} and N
(l)
L = min{n ≥ 0 | L(l)

n+1 = ∅}, respectively7.

From (29)-(32), the set of multipath components that partially overlap with the bth multipath component, directly

or indirectly, can be expressed as

L(u) =
N

(u)
L⋃

n=1

L(u)
n and L(l) =

N
(l)
L⋃

n=1

L(l)
n , (33)

for the multipath components arriving after and before the bth one, respectively. Note that L(u)
1 and L(l)

1 in (29)

and (30) represent the sets of multipath components that partially overlap with the bth one directly, while L(u)
n and

L(l)
n for n > 1 in (31) and (32) represent the sets of multipath components that partially overlap with the bth one

6This is a practical assumption for the cases of respiration or heartbeat rate estimation. For example, for a pulse width of 0.5 ns, the
maximum displacement should be smaller than 15 cm, which is always satisfied for those scenarios.

7Note that (31) and (32) are defined only for N
(u)
L > 1 and N

(l)
L > 1, respectively.
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indirectly; i.e., through other multipath components. For example, the multipath components in L(u)
2 (or L(l)

2 ) do

not overlap with the bth one, but partially overlap with at least one multipath component that partially overlaps with

the bth one; i.e., they partially overlap with the bth multipath component through some other multipath components.

Then, the set of multipath components that (partially) overlap the bth one directly or indirectly, including the bth

multipath component itself, can be expressed as

L̃ = L(u) ∪ {b} ∪ L(l), (34)

where L(u) and L(l) are as given in (33).

Then, the following result states that a reduced FIM based on (33) and (34) can be used to obtain the CRLB for

estimating the unknown parameters of the displacement function.

Proposition 3: For max
k∈{0,...,N−1}

|hk(λ)| < Tw, the CRLB for λ calculated from the FIM in (28) is the same as

the CRLB that is obtained by using the following reduced FIM:

ĨMP =




Iλλ Iλτ̃ Iλα̃

IT
λτ̃ Iτ̃ τ̃ Iτ̃ α̃

IT
λα̃ IT

τ̃ α̃ Iα̃α̃




, (35)

where8

Iλτ̃ = [Iλτ ]:L̃ , Iλα̃ = [Iλα]:L̃ , (36)

Iτ̃ τ̃ = [Iττ ]L̃L̃ , Iα̃α̃ = [Iαα]L̃L̃ , Iτ̃ α̃ = [Iτα]L̃L̃ , (37)

with L̃ being given by (29)-(34).

Proof: See Appendix C.

Proposition 3 states that inversion of the reduced FIM in (35) is sufficient to obtain the CRLB for estimating

the parameters of the displacement function, λ. The reduced FIM is a (K + 2NL̃) × (K + 2NL̃) matrix, where

NL̃ represents the number of elements in L̃, which is given by (34). The amount of complexity reduction depends

on NL̃, which is a random variable characterized by the channel statistics, the pulse width and the displacement

8[I]:A represents a matrix with its jth column being equal to the A(j)th column of I for j = 1, . . . , |A|, where A(j) is the jth element
of set A and |A| represents the number of elements in A. Similarly, [I]A1A2 represents a |A1| × |A2| matrix whose element in the kth row
of the jth column is equal to the element of I in the A1(k)th row of the A2(j)th column.
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function, as can be observed from (29)-(33).

For a multipath channel model with Poisson arrivals for the multipath components [34], it is possible to obtain

the (approximate) statistics for NL̃. Note that indoor UWB channel models [35], [36] also specify Poisson arrivals

for clusters and multipath components inside each cluster9.

Let C
(u)
i , for i = 1, . . . , L−b, denote the event that the (b+ i)th multipath component partially overlaps with the

(b + i− 1)th multipath component, or it partially overlaps with the bth one without partially overlapping with the

(b + i− 1)th one. Similarly, C
(l)
i , for i = 1, . . . , b− 1, represents the event that the (b− i)th multipath component

partially overlaps with the (b − i + 1)th multipath component, or it partially overlaps with the bth one without

partially overlapping with the (b − i + 1)th one. Also let Y (u) and Y (l) represent, respectively, the number of

elements in L(u) and L(l) in (33). Then, the probability mass function (PMF) of Y (u) can be expressed as

P
(
Y (u) = n

)
= P

(
C

(u)
1

) n∏

j=2

P
(
C

(u)
j |C(u)

j−1 · · ·C(u)
1

)(
1− P

(
C

(u)
n+1|C(u)

n · · ·C(u)
1

))
, (38)

for n = 1, . . . , L − b, and P
(
Y (u) = 0

)
= 1 − P

(
C

(u)
1

)
. Note that the PMF in (38) can be obtained by the

observation that Y (u) = n implies that each multipath components in the set {(b + 1), . . . , (b + n)} either collides

with the previous multipath component, or collides with the bth one directly without colliding with the previous

one10, and that the (b + n + 1)th multipath component collides with neither the (b + n)th nor the bth multipath

component. A similar expression can be obtained for the PMF of Y (l), as well.

Assume that hM = max
k
{hk(θ)} = −min

k
{hk(θ)}, b À 1, and L À 1. For a multipath channel with Poisson

arrivals and a single cluster, it can be shown that the events C
(u)
i for i = 1, . . . , L−b are approximately independent

for hM ¿ Tw (see Appendix D). Then, the PMF of Y (u) can be obtained from (38), after some manipulation, as

P
(
Y (u) = n

)
≈





e−ϕ(Tw+hM ), n = 0

e−ϕTw
(
1− e−ϕ(Tw+hM )

) (
1− e−ϕTw

)n−1
, n = 1, . . . , L− b

0, otherwise

, (39)

where ϕ is the rate of the Poisson process. This expression can also be used for P
(
Y (l) = n

)
by replacing L− b

9To be precise, the IEEE 802.15.4a channel model specifies a mixture of two Poisson processes for the ray arrivals in each cluster [36].
The analysis can be extended to cover that case as well. However, a single Poisson process is considered for clarity of the expressions.

10This is possible due to the variable delay of the bth multipath component.
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with b− 1.

From (39), the expected value of Y (u) can be obtained as

E
{

Y (u)
}
≈

(
eϕTw − eϕhM

)(
1− (

1− e−ϕTw
)L−b (

1− (L− b + 2)e−ϕTw
))

, (40)

and E
{
Y (l)

}
can be obtained from (40) by replacing (L− b)s by (b− 1)s. Then, the expectation of NL̃, the size

of L̃ in (34), can be obtained from E
{
NL̃

}
= E

{
Y (u)

}
+ E

{
Y (l)

}
+ 1.

Let Y = Y (u) +Y (l). Due to the independence of Y (u) and Y (l), which is a property of Poisson arrivals, the PMF

of Y can be obtained by the convolution of P
(
Y (u) = n

)
in (39) and P

(
Y (l) = n

)
as P(Y = 0) = e−2ϕ(Tw+hM ),

and

P(Y = n) ≈ e−2ϕTw

(
1− e−ϕ(Tw+hM )

) (
1− e−ϕTw

)n−2
(
2e−ϕhM

(
1− e−ϕTw

)
+

(
1− e−ϕ(Tw+hM )

)
Ξ(n, b, L)

)

(41)

for n = 1, . . . , L− 1, where

Ξ(n, b, L) =





n− 1, 1 ≤ n ≤ b

b− 1, b < n ≤ L− b + 1

L− n, L− b + 1 < n ≤ L− 1

0, otherwise

, (42)

under the assumption that L > 2b− 1.11

As an example, the cumulative distribution function (CDF) of Y is plotted in Figure 3 for various pulse widths,

where b = 20, L = 100, ϕ = 0.5 ns−1, and hM = 0.1 ns are used. It is observed from the figure that NL̃ (= Y +1)

is smaller than 15 most of the time, which is a considerable complexity reduction compared to 100 multipaths.

B. Resolvable Case

In the resolvable case, the bth multipath component does not overlap with any other multipath components in

any of the bursts12. In this case, a simple CRLB expression can be obtained.

11The expression for L ≤ 2b− 1 can be obtained in a similar manner.
12Multipath components other than the bth one can still overlap with each other.
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Corollary 1: For N
(u)
L = N

(l)
L = 0, the CRLB for f can be expressed as

Var{f̂} ≥
[
I−1
SP

]
11

α2
b

+
σ2

α2
bẼb

([
Υ−1

]
1:

γ
)2

(
1− 1

N γTΥ−1γ
) , (43)

where ISP is the FIM for the single path case in Section IV,

[Υ]ij =





∑N−1
k=0

(
∂hk(λ)

∂λi

)2
, i = j,

∑N−1
k=0

∂hk(λ)
∂λi

∂hk(λ)
∂λj

, i 6= j

, (44)

and γ = [γ1 · · · γK ]T , with

γi =
N−1∑

k=0

∂hk(λ)
∂λi

. (45)

Proof: See Appendix E.

It is observed from Corollary 1 that the CRLB does not depend on the nominal delay of the multipath component

reflecting from the object, τb. In other words, the exact pulse position is not crucial in the absence of partial overlaps

with the bth component. Also, it is noted from (11), (12) and (43) that the CRLB is inversely proportional to

α2
bẼb/σ2.

For a sinusoidal displacement function as in (18), a simple approximate result can be obtained for a large number

of bursts, N .
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Proposition 4: Consider a sinusoidal displacement function given by hk(λ) = A sin (2πfkTs + φ). Assume that

Ts < 1
4f and N

(u)
L = N

(l)
L = 0. Then, as N −→∞, the CRLB for f multiplied by N2 is expressed as

lim
N→∞

N2
[
I−1
MP

]
11

=
6σ2

π2Ẽbα
2
bA

2T 2
s

. (46)

Proof: See Appendix F.

For large N , the CRLB for f can be approximated, from (46), as

[
I−1
MP

]
11
≈ 6σ2

π2Ẽbα
2
bA

2T 2
≈ 0.0154

SNRbβ2A2T 2
, (47)

where the second equation is obtained from (15) with SNRb = α2
bEb/σ2. Similar to the single-path case in

Section IV, it is observed from (47) that as the maximum time displacement amount A or the observation interval

T increases, the minimum achievable variance decreases with the square of these terms. In addition, α2
bẼb/σ2

(or, SNRbβ
2) is inversely proportional to the CRLB. It is also important to note from (47) that the approximate

expression for the minimum achievable accuracy is independent of the true frequency and phase values.

C. Suboptimal Solutions

The ML solution in Section III requires correlation of the incoming signal with a template signal for all different

values of the parameter θ as described in (7), which has prohibitive complexity for practical applications. In order to

have an asymptotically optimal solution based on matched filter (correlation) processing at individual burst intervals

and LS estimation, as in Section IV-C, the matched filter template for each burst interval should in general match

to the received signal in a burst, which consists of L multipath components. In that case, the time delay estimates

for each multipath component can be approximated by Gaussian random variables around the true time delays [31].

Hence, an LS estimator based on matched filter outputs from different burst intervals can be designed. However,

the complexity of the overall algorithm is still very high, since the matched filtering at each burst interval needs to

be performed over unknown parameters of the multipath channel.

The only special case in which the two-step solution based on matched filtering and LS estimation results in a

low-complexity and asymptotically optimal solution is the resolvable case; i.e., the bth multipath component does

not collide with any other multipath components in any burst interval. In this case, if the nominal delay of the bth

multipath component, τb, is known (for example, by assuming the knowledge of the distance between the object,
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e.g., a human chest, and the transceiver), matched filtering with a template signal matched to the received pulse

(wb(t) in (4)) yields an estimate for hk(θ) for each k (k = 0, . . . , N − 1), which has Gaussian distribution around

the true displacement value, as in Section IV-C, for sufficiently large SNR and/or effective bandwidth. In other

words, the resolvable case with a known τb is the same as the single-path case in Section IV-C, since the other

multipath components has no effect on the bth one. Therefore, the analysis in Section IV-C also proves that the

two-step approach can asymptotically attain the CRLB for λ; i.e., Iλλ, for the resolvable case.

In practice, delays between multipath components in indoor UWB channels can be smaller than the pulse width.

Also there is no prior information about the collision of the multipath component from the object, the bth multipath

component, with any other multipath components. Therefore, it may not be very practical to assume a resolvable

case and employ matched filtering based on a single pulse. In order to overcome the effects of multipath components

interfering with the bth component, a filtering approach can be applied. Since the interfering multipath components

are all stationary whereas the signal component due to the object is time varying, a high pass filter can be applied

to the received signal to eliminate the signal components that do not vary among consecutive burst intervals13. The

easiest way to implement such a high pass filter is to subtract the average of the received signals in different bursts

from each signal in a given burst, as considered in [23]. After such a filtering operation, the filtered signal can be

obtained from (3) and (4) as

r̄(t) =
αb√
N

N−1∑

k=0

(
wb (t− kTs − τb − hk(λ))− 1

N

N−1∑

m=0

wb(t− kTs − τb − hm(λ))

)
+ n̄(t), (48)

where n̄(t) represents the filtered noise. After the filtering, the Fourier transform (FT) of the filtered signal r̄(t)

along a certain set of samples yields an estimate for the frequency parameter of the displacement function [23].

Due to the practicality of this filtering approach for multipath channels, the performance analysis in Section VI

will focus on the study of this approach instead of the matched filter based schemes.

VI. SIMULATION RESULTS

In this section, numerical studies and simulations are performed to evaluate the exact and approximate CRLB

expressions, and to investigate the performance of suboptimal algorithms discussed in Section IV-C and Section

13In radar terminology, the unwanted (interfering) multipath components are called clutter. Various filtering approaches were studied in
the radar literature in order to mitigate the effects of clutter for the case in which the object of interest (“target”) is moving while the objects
generating the clutter are stationary [28], [37], [38]. The conventional clutter removal approach in such a case is to use high pass filters.
[37].
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Fig. 4. The exact and approximate CRLB versus SNR for various pulse widths, where N = 50 bursts are transmitted.

V-C.

A sinusoidal displacement function, as in (18), is considered, and the following Gaussian mono-cycle is employed

as the received pulse shape for all multipath components [39]:

prx(t) =
(

1− 4πt2

ζ2

)
e−

2πt2

ζ2 /
√

Ep, (49)

where Ep is used to adjust the energy of the pulse in the simulations, and ζ determines the pulse width (Tw ≈ 2.5ζ).

In Figure 4, the exact and approximate CRLB expressions in (19) and (22), respectively, are compared for various

SNRs and pulse widths14. The system parameters are Ts = 0.1 s., f = 1.1 Hz, A = 0.1 ns., φ = 0, and N = 50.

Although the frequency and phase are set to certain values, the results are practically the same for any frequency

satisfying f < 2.5 Hz and any phase. From Figure 4, it is observed that the exact and approximate CRLBs match

very closely for all SNR and Tw values. In addition, the accuracy increases as the pulse width is decreased. This

is intuitive since higher time resolution results in better localization of the object. This can be also observed from

(22), since shorter pulses have larger Ẽ as can be deduced from (15). In Figure 5, the lower bounds for the

exact and approximate CRLB expressions are plotted against the number of bursts, N , for various pulse widths, at

SNR = 20 dB. It is observed from the figure that the approximation gets very accurate when more than 30 bursts

are transmitted.

14Square-roots of the expressions are plotted and the lower bounds are obtained in units of Hz.
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In Figure 6, all the parameters are the same as in the previous case, except that 700 pulse bursts are employed

as in the experiment in [23]. The lower bounds are plotted versus pulse width for various SNRs. It is observed

again that as the pulse width decreases, the accuracy of the estimation increases. Moreover, the slope decreases as

the SNR increases, which means that for high SNRs, the loss in accuracy when using wider pulses (pulses with

smaller bandwidths) is smaller than the loss for low SNRs.

Figure 7 compares the performance of the suboptimal LS solution in Section IV-C with the exact and approximate

lower bounds for N = 50, Tw = 1 ns., Ts = 0.1 s., and A = 0.1 ns. For the LS solution, averages over 10, 000
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realizations are averaged to calculate root-mean-square errors (RMSEs) for each SNR. For each realization, random

noise, f and φ values are generated. Considering a respiration rate estimation scenario, f is generated randomly

from [0.5, 1.5] Hz. From Figure 7, it is observed that for large SNR, the performance of the LS solution converges

to the lower bound, as expected.

In Figure 8, a resolvable multipath channel as described in Section V-B is considered, and exact and approximate

CRLBs are plotted against the number of bursts, N , for various pulse widths. The received multipath component

has an amplitude of 0.05; i.e., |αb| = 0.05, the SNR is 30 dB, and the other system parameters are as in the previous
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Fig. 9. The CRLB versus SNR for CM-1 and CM-3 of the IEEE 802.15.4a channel model [36], where N = 50 bursts are transmitted.

case. Both the generic expression in Proposition 3, and the simplified expression in Corollary 1 are plotted in order

to verify the simplified CRLB expression given by (43)-(45). It is observed from the figure that the approximate

expression given by (46) gets very close to the exact CRLB after around N = 25. Also, the CRLBs get smaller as

the pulse width decreases, since the narrower pulses provide more resolution.

In Figure 9, the channel models for line-of-sight residential (CM-1) and office (CM-3) environments according

to the IEEE 802.15.4a channel model [36] are considered15, and the average CRLB expressions, averaged over 100

channel realizations, are plotted. The system parameters are given by A = 0.1 ns, f = 1.1 Hz., φ = 0, Ts = 0.1 s.,

N = 50, Tw = 1 ns, and the nominal round-trip time of the multipath component reflecting from the object (with

respect to the first multipath component arriving at the receiver) is assumed to be 20 ns. Then, at each channel

realization, the multipath component closest to the delay of 20 ns is considered as the one reflecting from the

object. It is noted from the figure that both the generic expression in Proposition 3 and the exact and approximate

expressions for the resolvable case, (43)-(45) and (47), respectively, yield very close CRLBs. Moreover, the lower

bounds for CM-1 are smaller than the ones for CM-3, since the average power of the multipath component closest

to the 20 ns delay is 4.4 dB larger for CM-1 than that for CM-3. Also note that for reliable estimation in multipath

environments, an SNR of around 40 dB may be needed, which is not a very large value considering the fact that

15Note that the IEEE 802.15.4a channel models may not be very suitable for the scenario considered in this paper. However, the main
purpose is to verify the theoretical analysis.
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each burst can be transmitted in a time interval on the order of seconds (0.1 s. in the simulations)16.

Finally, Figure 10 compares the performance of the FT based algorithm [23] described in Section V-C with the

average CRLBs for CM-1 and CM-3. The same parameters as for Figure 9 are used, except that the frequency f

is generated randomly from [0.5, 1.5] Hz. For the FT based scheme, a sampling rate of 40 GHz is assumed [23]. It

is observed from Figure 10 that the FT based scheme gets quite close to the lower bound for high SNR values17.

However, for very high SNRs, the sampling errors cause an error floor.

VII. CONCLUDING REMARKS

Theoretical limits for estimation of signal parameters related to a periodically moving object has been studied

for pulse based UWB systems. First, a generic expression for the CRLB has been obtained for estimating the

parameters of a moving object. Then, the single-path scenario has been studied, and exact and approximate closed-

form CRLB expressions have been derived. Also, a two-step asymptotically optimal algorithm has been proposed.

Then, the analysis has been extended to the multipath case, and CRLBs and suboptimal algorithms have been

investigated. Simulations results have been used to verify the analysis and to evaluate the theoretical limits for a

practical respiration rate estimation scenario.

16Since the observation time is on the order of seconds, considerable signal energy can be collected at the receiver and quite large SNR
values can be observed depending, among other factors, on the distance from the object, the propagation environment, and the type of the
object.

17The nominal delay of the bth multipath component is assumed to be known in the simulations.
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APPENDIX

A. Proof of Proposition 1

Consider the following relation [40]:

N−1∑

k=0

sin(ky + x) = sin
(

x +
N − 1

2
y

)
sin

(
Ny

2

)
cosec

(y

2

)
, (50)

with x = 2φ and y = 4πfTs.

From (50) and its derivatives with respect to x and/or y, closed-form expressions for X11, X22, X33, X12 X13

and X23 in (20) can be obtained18. Then, the limit of N2[I−1
θ ]11 as N −→ ∞ can be calculated, after some

manipulation, as in Proposition 1.

In the derivations, sin(y/2) is assumed to be non-zero. Hence, the case in which 4πfTs/2 < π/2 is considered;

i.e., Ts < 1/(4f), as stated in the proposition.

B. FIM for the Multipath Case

By differentiating (4) with respect to various parameters, the sub-matrices in (28) can be obtained from (8) and

(9) as follows:

[Iττ ]l1l2 =





α2
l1

Ẽl1

σ2 , l1 = l2

αl1αl2
σ2 R̃l1l2(τl1 − τl2), l1, l2 ∈ L − {b}, l1 6= l2

αlαb

Nσ2

∑N−1
k=0 R̃bl(τb + hk(λ)− τl), l1 = b, l2 = l 6= b or l2 = b, l1 = l 6= b

, (51)

for l1, l2 ∈ L, where Ẽl is the energy of w′l(t) and R̃mn(x) =
∫∞
−∞w′m(t)w′n(t + x)dt,

[Iαα]l1l2 =





El1
σ2 , l1 = l2

1
σ2 Rl1l2(τl1 − τl2), l1, l2 ∈ L − {b}, l1 6= l2

1
Nσ2

∑N−1
k=0 Rbl(τb + hk(λ)− τl), l1 = b, l2 = l 6= b or l2 = b, l1 = l 6= b

, (52)

18The detailed expressions and the derivations are omitted due to space limitations.
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for l1, l2 ∈ L, where El is the energy of wl(t) and Rmn(x) =
∫∞
−∞wm(t)wn(t + x)dt,

[Iλτ ]nl =





α2
bẼb

Nσ2

∑N−1
k=0

∂hk(λ)
∂λn

, l = b

αbαl

Nσ2

∑N−1
k=0 R̃bl(τb + hk(λ)− τl)

∂hk(λ)
∂λn

, l 6= b

, (53)

for n = 1, . . . ,K and l ∈ L,

[Iλα]nl =





−αbÊb

Nσ2

∑N−1
k=0

∂hk(λ)
∂λn

, l = b

− αb

Nσ2

∑N−1
k=0 R̂bl(τb + hk(λ)− τl)

∂hk(λ)
∂λn

, l 6= b

, (54)

for n = 1, . . . ,K and l ∈ L, where R̂mn(x) =
∫∞
−∞w′m(t)wn(t + x)dt and Êl = R̂ll(0), and

[Iτα]l1l2 =





−αl1 Êl1
σ2 , l1 = l2

−αl1
σ2 R̂l1l2(τl1 − τl2), l1 6= l2, l1, l2 ∈ L − {b}

− αb

Nσ2

∑N−1
k=0 R̂bl2(τb + hk(λ)− τl2), l1 = b, l2 6= b

− αl1
Nσ2

∑N−1
k=0 R̂l1b(τl1 − τb − hk(λ)), l1 6= b, l2 = b

, (55)

for l1, l2 ∈ L.

C. Proof of Proposition 3

Let α̃ and τ̃ represent, respectively, the channel coefficients and the delays of the multipath components that

belong to L̃ in (34). In other words, α̃ = [α]L̃ and τ̃ = [τ ]L̃. Let α̂ and τ̂ represent the remaining elements of α

and τ , respectively; i.e., α̂ = [α]L−L̃ and τ̂ = [τ ]L−L̃.

Instead of calculating the FIM as in (28), one can consider the FIM Ǐ for the rearranged parameter vector

θ̃ = [λ τ̃ α̃ τ̂ α̂]:

Ǐ =



ĨMP J

JT Î


 , (56)
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where ĨMP is as given in Proposition 3,

Î =



Ĩτ̂ τ̂ Ĩτ̂ α̂

ĨT
τ̂ α̂ Ĩα̂α̂


 , (57)

and

J =




Ĩλτ̂ Ĩλα̂

Ĩτ̃ τ̂ Ĩτ̃ α̂

Ĩα̃τ̂ Ĩα̃α̂




. (58)

Since the multipath components in L − L̃ do not overlap with any of the multipath components in L̃ (cf. (29)-

(32)), it can be shown from (53)-(55) that J = 0. Therefore, Ǐ in (56) is a block-diagonal matrix, which implies

that
[
Ǐ−1

]
K×K

= Ĩ−1
MP. Hence, the CRLB for λ can be obtained directly from ĨMP in this case.

D. Approximate Independence of
{

C
(u)
i

}N
(u)
L

i=1

First consider C
(u)
1 and C

(u)
2 . The conditional probability of C

(u)
2 given C

(u)
1 can be expressed as

P
(
C

(u)
2 |C(u)

1

)
= P(τb+2 − τb+1 < Tw) + P (τb+2 − τb+1 ≥ Tw & τb+2 − τb < Tw + hM | τb+1 − τb < Tw + hM ) ,

(59)

where the independence of intervals between different path arrivals is used. After some manipulation, it can be

shown that

P
(
C

(u)
2 |C(u)

1

)
=

(
1− e−ϕTw

)
+

e−ϕTw − e−ϕ(Tw+hM )(1 + ϕhM )
1− e−ϕ(Tw+hM )

, (60)

where the first term corresponds to P (τb+2 − τb+1 < Tw).

For practical values of the system parameters and for hM ¿ Tw, the ratio between the second term and the first

term in (59) can be shown to be very small. For example, for hM = 0.1 ns, that ratio is plotted in Figure 11 for

various rate parameters of the Poisson process. Hence, it can be shown that

P
(
C

(u)
2 |C(u)

1

)
≈ (

1− e−ϕTw
) ≈ P

(
C

(u)
2

)
. (61)

Similar analysis can also be performed for P
(
C

(u)
i |C(u)

1 · · ·C(u)
i−1

)
for i > 2. Hence, the PMF of Y (u) in (38)



28

0 2 4 6 8 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Rate (1/ns)

R
at

io

 

 

T
w

=0.5 ns

T
w

=1 ns

T
w

=2 ns

Fig. 11. The ratio between the second and the first term of (60) for hM = 0.1 ns.

can be approximated as

P
(
Y (u) = n

)
≈ P

(
C

(u)
1

) n∏

j=2

P
(
C

(u)
j

)(
1− P

(
C

(u)
n+1

))
, (62)

from which (39) can be obtained. Similar analysis also applies to the PMF of Y (l).

E. Proof of Corollary 1

For N
(u)
L = N

(l)
L = 0, there is no multipath component overlapping with the bth component; i.e., L̃ = {b} (see

(33) and (34)). Therefore, the reduced FIM can be obtained from Proposition 3 and Appendix B as

ĨMP =



Iλλ B

BT D


 , (63)

where

D =
1
σ2




α2
bẼb −αbÊb

−αbÊb Eb


 (64)

and B is a K × 2 matrix with its ith row given by

[B]i: =
αbγi

Nσ2

[
αbẼb Êb

]
, (65)

with γi being given by (45).
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From the formula for block matrix inversion [41], it can be shown that

[
Ĩ−1
MP

]
K×K

= I−1
λλ + I−1

λλB
(
D−BT I−1

λλB
)−1

BT I−1
λλ. (66)

Then, from the fact that Iλλ = α2
bISP, the expression in Corollary 1 can be obtained from (64)-(66), (11) and (12),

after some manipulation.

F. Proof of Proposition 4

From the expression in (43), it is observed that

lim
N→∞

N2
[
I−1
MP

]
11

=
1
α2

b

lim
N→∞

N2
[
I−1
SP

]
11

+
σ2

α2
bẼb

lim
N→∞

(
N

[
Υ−1

]
1:

γ
)2

(
1− 1

N γTΥ−1γ
) . (67)

It can be shown, from (44) and (45), that the second term becomes zero19. Therefore, the result in the proposition

follows directly from Proposition 1.
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