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Abstract

We develop a physical approach to modeling and analyzing communication limits
in computation. We stress wireability and heat removal requirements as the major
limiting mechanisms and explore the interplay between these considerations and the
physical properties of optical, normally conducting and superconducting interconnec-
tion media, which we characterize in terms of the relations between their length, cross
sectional area, delay, bandwidth and energy.

We discuss not only the limitations of each interconnection medium in providing
communication among an array of computing elements, but also how they may be
used in conjunction to realize hybrid systems exhibiting properties unachievable with
any alone. In particular, the optimal combination of optical and normally conducting
interconnections maximizing given figure of merit functions is derived. These con-
siderations are extended to discuss the usefulness of optical digital computing and
the relative merits of globally and locally connected systems. Other implications for
computer architecture are also discussed.

A secondary theme is the study of the capabilities and limitations of optical in-
terconnection architectures. A basic result regarding the limitations of optical wave
fields in providing communication among an array of elements is presented and used
to evaluate several specific optical interconnection architectures. We propose two
architectures which may approach the best possible system size of any 2 and 3 di-
mensional architecture respectively. We also discuss the role of optical frequencies
in balancing information density and heat removal imposed bounds in a dissipative

computing environment.
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Part 1

An Interconnect Dominated

Model of Computation



Chapter 1
Introduction

In this thesis we concern ourselves with communication limits in computation. This
is not a study about distributed algorithms or graph theory, but rather about the
physical limitations to information transfer among an array of points. An array
of points communicating with each other is meant to suggest an abstraction of a

computing system.

1.1 Background

1.1.1 The increasing importance of interconnections

In a conventional electronic circuit diagram, a solid line drawn between two device
terminals represents an ideal connection. A voltage or current impressed on one end
of the line is assumed to appear immediately at the other end. This abstraction
is sufficient in representing real circuits as long as the physical wires are not too
long and the devices are not too fast, as has been historically the case for most
circuit applications [32]. With the use of faster devices and longer wires, it has been
necessary to account for the capacitive, inductive and resistive effects of the wires.
Thus, a computer has often been viewed as a collection of switches interconnected
with (parasitic) wires, which degrade the performance expected from an ‘ideal’ system
[147].
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However, several general arguments and observed trends suggest that with increas-
ing integration levels, measures of space, delay and energy tend to become dominated
by the interconnections (wires), rather than the switching elements [145] [54] [5] [6]
[65] [69] [63] [84]. In modern integration technology both the devices and the inter-
connections are characterized by the same minimum feature size, usually represented
by A. The area occupied by a device is then ~ A* whereas the area occupied by an
interconnection is ~ A¢, where £ is the length of the interconnection. Increase in the
integration level is achieved by lowering A or increasing system size (which results in
an increase in £) or a combination of both [82}. In any case the ratio of interconnection
area to device area is increased.

Likewise, interconnect energy dissipation can constitute very large fractions of the
system total. Eventually, interconnect area and power dissipation tend to determine
how close the devices can be packed together, hence determining the communication
delays between the devices and speed of operation of the overall system. In fact,
even yield considerations for integrated circuits may be more concerned about defects
occurring in the lines (leading to undesired shorts or disconnections) rather than those
in the devices [120], as the probability of occurrence of the former increases faster
than that of the latter with increasing integration levels.

It is well known that the intrinsic RC delay of an unterminated integrated circuit
interconnection does not change under ideal downscaling, if its length is downscaled
as well. However, scaling enables one to achieve a higher level of integration in the
same area. In addition, since allowable chip areas have grown the RC delays have
actually increased. The gate delays decrease with scaling so that the interconnects
become the performance limiting aspect of the overall system. This discussion was
given by Saraswat in 1982 [145] and the general trends predicted were confirmed in
more recent work [147]. Although several quasi-ideal scaling laws [4] [54] may be
applied to slow down this trend, it is not possible to circumvent it [139]. For example
the aspect ratios of the connections can be made closer to unity to improve the
capacitance, characteristic impedance and series resistance. However, this approach
becomes useless once the fringe fields begin to dominate and crosstalk is increased to

unacceptable levels.



CHAPTER 1. INTRODUCTION __ 4

Two important parameters of an RC limited VLSI interconnection are its switch-

ing energy and rise time. We write, following earlier authors [145] [4],

Evist = ClnV? = CEV? ' (1.1)
tvisr = (2Rq + ROCE

where R and C denote the series resistance and capacitance of the line per unit
length. Ry is the impedance of the driving device and £ is the length of the line. V
is the nominal voltage level. In writing these equations contributions of gate input
and output capécitances have been neglected. A more detailed discussion is given in
appendix 16.1 where more detailed design equations are shown to reduce to the above
for longer line lengths and submicron scaling. Although the appendix takes as an
example CMOS VLSI circuits scaled under a certain scaling rule, it is in general true
that with increasing integration levels, more interconnections will tend to exceed the
minimum feature size by greater ratios. Since both capacitance and series resistance
increase with interconnection length the gate contributions are quickly dwarfed in
comparison. In fact, for the longest interconnections or for a device technology where
transistors have high current driving capability, even 2R; may be neglected in the
expression for Tv7gr and we may write simply 7vzsr = RC#. For CMOS technology
(as shown in appendix 16.1), the above equations are valid for lines about a few
hundred times longer than the minimum feature size, when the minimum feature size
is reduced to submicron dimensions.

Even if we avoid the use of resistive interconnections, the delay along any form of
interconnection cannot be less the the speed of light delay which will exceed device
delays with increasing system sizes.

Although the shorter links may still be device dominated, for all but very lo-
cally connected systems, the longer connections—with larger energies, delays or cross
sections—will often tend to determine system performance and cost. This suggests
that the ultimate limitations to achievable computational power can be discussed

with little or no reference to a specific device technology.
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Moreover, some computational approaches aimed at circumventing the limita-
tions of conventional systems tend to exhibit large communication requirements, fur-
ther increasing the importance of interconnections. Examples of such approaches are
fine grain parallel computation, neural networks and other connectionist approaches.
Knowledge representation and processing concepts where the knowledge itself is stored
in the pattern of interconnections, rather than the devices themselves, have been pro-
posed {38]. Some of these approaches are inspired by the human brain.

In accordance with these trends, in this work we do not think of wires as mere

parasitics, but make them the basis of our models and abstractions.

1.1.2 Different interconnection media

As interconnections become more and more the factor limiting the performance of
large scale processing systems, the use of optical or superconducting interconnections
as an alternative to resistive wires has been suggested [59] [58] [128] [77] [87] {175].
Many authors have made comparative studies of optical and normally conducting
interconnections [92] [94] [40] [43] [65] [121] and superconducting and normally con-
ducting interconnections {50] [95] [100]. These studies have mostly been concerned
with comparing various parameters of isolated interconnections, without exploring
the simultaneous interplay of these parameters when these interconnections are em-

bedded in a system.

1.2 Purpose

Based on the discussion of the previous section, here we outline some of our goals.
First of all, we would like to develop a device independent, interconnect dominated
theory of computation emphasizing the physical properties of interconnection media.
We also hope that this will provide a framework in which the role and usefulness
of different interconnection media can be understood. And to some limited extent,
we would like to provide a basis for exploring the relationships befween computa-

tional requirements, architecture and the physics of interconnection media, based on
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the realization that choice of algorithm and architecture must take into account the
limitations to be encountered during actual physical implementation and operation,
which are strongly influenced by the physical properties of the interconnections.
More directly stated, our purpose in this work has been to set up and solve various
problems relating to the physical limitations to information transfer among an array
of points. Qur viewpoint is more that of a physicist, rather than that of an engineer.

Technological aspects of the problem will not be stressed in this thesis.

1.3 Approach

The problem we intend to attack is characterized by an intimidatingly large number
of parameters. One approach would be to try to specify in full detail a system
which seems can be actually constructed in the very near future, numerically account
for all {or most) known higher order effects, and present the results in the form of
numerical graphs. Straightforward as it is, there are two major drawbacks with such
an approach.

The first is the loss of generality due to the large number of specific assumptions
that must be made. In this work we will not try to fully specify a particular real
life implementation. In many instances, certain different ways of doing things do not
result in a numerical difference greater than a factor of the order of unity.

The second drawback is the loss of analytic transparency due to algebraic com-
plexity. In a study of this nature where we are trying to obtain understanding of what
is a very complicated problem, we must confront ourselves with the more difficult task
of trying to untangle the more important issues from the less important ones, rather
than try to include everything in an attempt to be ‘exact’. In other words, we will
try to isolate a section of reality in the form of a reasonably well defined physical
problem amenable to analysis. We are aware that a certain amount of subjectivity is
unavoidable in this process, and that many alternatives to our approach are possible.

We will assume practical, technological, economic, and production related prob-
lemns not to be limiting factors. We will eliminate details related to mechanical con-

struction. We will simply imagine our processor to be an array of points connected
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with some kind of wire. This will mean ignoring artifacts like packages, bonding pads,
boards etc. We might imagine that we are building the whole computing system on
a single huge chip. In practice, systems approaching this ideal might be possible by
assembling individually tested chips on a carrier substrate and connecting them with
VLSI-like metallization.

The general trend in integrated circuit technology seems to be—at least partially—
approaching that depicted by our idealized model. Wafer scale integration (WSI}, thin
film hybrid substrates and ceramic multilayer hybrids are attempts to be freed from
the deleterious effects of conventional chip packages and circuit boards [120] [155]
[174] [118] [117] [157] [6].

We will also make several general assumptions. We will assume that the charac-
teristics and parameters of our processor are spatially uniform and that it is spatially
isotropic, i.e. it is more or less compact in shape (square or cubic) and it does not
have any preferred axis or orientation. We will also refrain from introducing so called
‘safety’ or ‘efficiency’ factors which do not have any theoretical basis and cannot be
derived within the context of this study. Such factors are often close to, or of the
order of unity.

So as to minimize the arbitrariness involved in deciding which physical effects
should be accounted for and in choosing parameters for our numerical examples, we
will try to choose what seems the best possible from a physical standpoint, anticipat-
ing technological advances. In other words, we will look into the future and attempt
to analyze the basic limitations imposed on us after all technical and practical dif-
ficulties have been overcome. Determining the ultimate performance possible is a
formidable task, especially if one insists on numerical accuracy. Since our aim is to
develop general qualitative understanding, rather than to suggest practical design
schemes, we will be crude in our handling of numerical factors. Nevertheless, we
believe that our interconnection models represent the best achievable within a factor
of the order of unity. Of course, we are to a certain extent conditioned by the current
trends in existing technologies and the way present computing systems are built, so

we cannot exclude the possibility of breakthroughs or ingenuity not foreseen by us.
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As mentioned, some of our approximations are made with the interest of main-
taining generality (i.e. we are reluctant to introduce system specific parameters) and
others with the purpose of maintaining analytic simplicity and transparency. As an

1/2 + b where all quantities are positive. The

example, consider the equation y = ay
exact solution is y = (¢ + v/a? + 4b )?/4. An approximate solution may be written
as y = a® 4+ b by inspection and differs from the exact solution by at most a factor
of 4/3. Moreover, when either a® or b is large compared to the other, the approxi-
mate solution will be nearly exact. Likewise, we will often use max(z,y) and ¢ 4+ y
interchangeably, where = and y are positive quantitieé. The form y = vz2 + 1 will
be approximated by y =z for z > 1 and y = 1 for 0 < z < 1. Needless to say, care
must be exercised in employing such approximations, as raising such expressions to
high powers or using them in the argument of an exponential function can lead to
drastic errors.

An alternative approach would be to ignore constants and bounded variations
altogether, as is common practice in VLSI complexity theory. We have preferred not
to obscure the physical nature of the problem, and of course, order of magnitude
information is better than none. Those interested in greater accuracy should be
able to improve our results by incorporating the parameters or additional factors
characterizing their particular application.

In conclusion, our approach may be seen to be a compromise between more de-
tailed numerical engineering simulations which are meant to represent an actual to-
be-constructed system; and approaches of a higher level of abstraction such as VLSI
complexity theory. The first approach may yield more accurate results, but lacks gen-
erality and analytic transparency. The latter approach is of greater generality, but
is naive from a physical standpoint and does not even distinguish between different

kinds of interconnection media.
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Figure 1.1: Grid Model.

1.4 Overview

1.4.1 Grid model

The basic abstraction of a computing system is a graph, with its nodes corresponding
to the elements or switches, and its edges corresponding to the interconnections.

Figure 1.1 shows our computer with its elements arrayed on a regular cartesian grid.

We would like to make our system as small as possible. This is not only a merit
in itself, but will also result in smaller signal delays along the connections. However,

the interelement spacing d must be large enough to
1. Accommodate the elements.
2. Allow enough space for implementing the desired pattern of connections.
3. Satisfy heat removal requirements.

These are the major physical considerations behind our analyses.
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Figure 1.2: Tube Model.

1.4.2 Tube model

Of course, in reality, the interconnections are not 1 dimensional lines, but 3 dimen-
sional objects. In this work an interconnection is imagined to be a flexible tube
(figure 1.2) characterized by several parameters: length, cross sectional area, signal
delay, minimum bit repetition interval and energy per transmitted bit. Any intercon-

nection medium is characterized by the relationships tying these parameters together.

Books and journals dedicated to the analysis of transmission lines give detailed
empirical expressions and numerical results for parameters such as the attenuation
coefficient, characteristic impedance etc., which are only intermediate variables for
our purpose. To carry out a system level analysis, we need a characterization in
terms of the variables listed above which directly interface with our grid model. For
instance, the cross sectional area defines packing density, the energy per transmitted
bit is related to heat removal and so on. This characterization must be simple and
transparent enough to be used in a study of a relatively high degree of abstraction,
yet must still capture the essential limiting mechanisms and tradeoffs of each inter-
connection medium. Coming up with such models was one of the more challenging
tasks in this work.

We will use these tubes (characterized by the relations tying the mentioned param-
eters together) to provide communication among the nodes of our system, ensuring
that wireability and heat removal requirements are satisfied. This thesis is devoted

to the discussion of various facets of this physical problem. In particular, we have
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Figure 1.3: Communicative [part a.) and physical (parts b. and c.) connection graphs.

explored how the tradeoffs between the microscopic parameters listed above for a
single interconnection result in tradeoffs between the macroscopic parameters of our
system, such as the total number of elements, signal delay, bandwidth, system size

and power dissipation.

1.4.3 Graph distinctions

Before continuing, we must distinguish between different kinds of graphs. Part a. of
figure 1.3 shows a particular communicative connection graph among 4 nodes. An
edge joining two nodes indicates that one of these nodes can send bits to the other.
(The directionality of the edges makes no difference for our purpose.) The physical
connection graph represents the actual physical wires tying the nodes together. Part
b. shows a direct implementation of the communicative connection graph of part a.
Part c. shows an example of an indirect implementation where it is assumed that
each element has the capability of forwarding bits passed along from one of their
neighbors to the other. The physical connection graph associated with an indirect
implementation may involve additional dummy nodes for routing purposes, as will be
exemplified in chapter 13.

In most of this work we assume that the communicative connection graph is given

to us as a starting point. We are free however in choosing the physical connection
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Basic | Hybrid

Direct

Indirect

Table 1.1: Problem categories.

graph used to implement the given communicative connections. The communica-
tive connection graph is related to the problem and algorithm, whereas the physical
connection graph is related to actual physical construction.

Our analyses will not actually depend on these definitions, which are not meant

to be precise and were introduced for pedagogical purposes.

1.4.4 Problem categories

We classify the problems that can be considered within our framework under 4 cat-
egories (table 1.1). The categories falling to the left involve the use of only one
interconnection medium at a time for all connections, such as using normal conduc-
tors for all connections. Those to the right involve the use of more than one at the
same time, such as using normal conductors for some connections and optics for other
connections. The upper categories are direct implementations where the communica-
tive connection graph is directly copied as the physical connection graph, whereas in
the lower categories some form of indirect implementation is utilized. In this thesis

we will mainly concentrate on direct implementations.

1.4.5 Outline

In part I we develop the general framework and models used in this work. Chapter 2
discusses wireability limitations and how we quantify the connectivity of computing
systems. In chapter 3 we discuss heat removal limitations and derive a heat removal
model for 3 dimensional systems. In chapter 4, we introduce several variables en-

abling us to tie together our grid and tube models; and also discuss how the results
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to be derived in chapters 10 and 11 may be interpreted in relation to the computa-
tional requirements of particular applications [136]. Tube models for optical, normally
conducting and superconducting interconnections are derived in chapter 5 [136]. In
chapters 2, 3 and 5, presentation of the models are followed by their derivation and
justification. A

Part II of this thesis concentrates on issues specific to optical systems. In chap-
ter 6 we derive a basic result regarding the ability of optical wave fields in providing
communication among an array of points [134]. Then, in chapter 7, we compare vari-
ous specific optical interconnection architectures in terms of system size, and propose
two new architectures which can potentially achieve the least possible system size of
any two and three dimensional architecture respectively [132] [133]. Chapters 8 and
9 present relatively fundamental results for dissipative optical systems.

In part 111, we discuss general applications of the models presented in part I. First,
in chapter 10, we consider the use of one interconnection medium at a time for all
connections and derive tradeoff relations between signal delay, bandwidth, number of
elements, system size and power dissipation for each interconnection medium [136].
Then, in chapter 11, we consider the joint use of optical and normally conducting
interconnections and discuss in what combination they must be used so as to obtain
a system with desired properties [135]. Chapter 12 discusses the implications of these
considerations to the usefulness of an optical digital computer. In chapter 13, we
briefly discuss the usefulness of indirect implementations in exploiting the high band-
width potential of optical and superconducting interconnections [137]. Chapter 14 is
an attempt to pave the way for future research regarding the comparison of locally
and globally connected approaches to constructing future very large scale systems.

Chapter 15 summarizes and concludes this thesis.



Chapter 2

Wireability Limitations and

Connectivity Model

It was mentioned in the introductory chapter that the spacing between the elements
of our system must be large enough to allow sufficient space for the interconnections
to pass between them. Systems employing longer connections will require greater
interelement spacing than systems employing shorter connections. We will speak of
systems employing greater fractions of longer connections as being highly connected.
In this chapter we present a model which enables us to quantify the connectivity of
computer circuits to first order and can predict the interelement spacing required to

ensure that there is enough space for implementing the desired pattern of connections.

2.1 Description of the model

For the purpose of this work, a processing system is a collection of N given similar
primitive elements connected to each other according to a prespecified graph [10]
[11] [14] [170]. The primitive elements may be simple switching devices or relatively
complex subsystems. k will denote the number of connections (graph édges) per

element!, so that there is a total of N = kN connections. Within a factor of 2, we

1 For simplicity we are considering pairwise connections only, the extension to fan-out and fan-in
is discussed in appendix 16.2.

14
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Figure 2.1: Layout of the connection graph. For convenience we lay out the elements
in a cartesian array of cells. The size of a cell is to be determined according to the

size of the elements, the space that must be provided for the interconnections and
heat removal requirernents.
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may also interpret kN as the total number of input-output ports. We will assume
that the number of input-output ports of each element does not vary greatly from
element to element, so that each element has ~ % ports. We will treat k as a given
constant, although many of our results are easily extended to the case where k is a
function of N. dy will denote the linear extent of the elements (also referred to as
devices). Of course, the elements should be at least large enough to accommodate
their input-output ports (transducers in the case of optical interconnections).

Let the N >> 1 elements comprising our system be laid out on an e dimensional
regular cartesian grid of as yet unspecified lattice constant d with N /e elements
along each dimension (figure 2.1). In this work we do not attempt an interpretation
of fractional values of e so that e = 2 or ¢ = 3. Figure 2.2 depicts a hierarchical
partitioning of our array of cells.

During the course of our analyses, it will be necessary to specify the following

quantities in order to obtain explicit results:
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Figure 2.2: Binary hierarchical partitioning of the array of cells. (After [34].)

1. The average connection length 7 of the layout (in grid units). Higher order

moments will also be useful in deriving some results.
2. The longest connection length r.,., (in grid units).

3. The number of connections P(N') emanating from a group of N' elements in

the partitioning of figure 2.2.

All of the above quantities can be specified by postulating the distribution of line
lengths for our system®. Obviously, we cannot hope to account for all possible con-
nection patterns. Rather, we seek a simple analytic distribution function with a few
variable parameters, which we hope will be representative of the wireability require-
ments of typical circuits.

We will define the line length distribution g(r) in terms of the connection fluz

distribution f(r), which we will assume to be of the form

f('f') = krelr-1) (1 - : ) 1€7r £ Thmas (21)

where r denotes distances in units of grid spacing so that physical distances are given
by £ = rd. rmes 3> 1 denotes the longest connection length (in grid units), assumed to

be of the order of the linear extent of the system. We will take Tmar =~ N1/¢ without

2The terms line, connection and greph edge are used interchangeably.
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concerning ourselves with precise geometrical factors®. N f(rp) gives the expected
number of connections of length ro or greater. Note that f(1) = k and f(rmaz) = 0.
The parameter 0 < p < 1, known as the Rent exponent, is our measure of connectivity.
The smaller p is, the quicker f(r) decreases. Systems with larger Rent exponents have
a larger fraction of longer connections. The factor (1 —r®/+:, ..} has been introduced
to account for the finite extent of the system and may be ignored either when r is
not close to rp,.; or when p is not close to 1. (In this work the largest value of p used
in numerical examples will be 0.8, so that whether this factor is included or not will

make little difference.) The line length distribution may now be defined as

g(’r) - ——%-(-E)* 1 <7 < s (2'2)

Ng(ro)Ar gives the expected number of connections in our system with lengths lying
in the interval [rg,ro + Ar]. Of course, we have [ Ng(r)dr = kN. k™ lg(r) may be
interpreted as a probability distribution defined over {1,7,,,,]. When p is small, it
is more likely for a connection to be made to close by elements, rather than distant
elements. When p = 1, we have g(r) o r°~1, so that it is equally likely for connections
to be made to elements at any distance (notice that there are o r*~! elements at
distance 7). This is consistent with the usual interpretation of p = 1.

The fractal dimension of information flow of our layout is defined by n = 1/(1~p)
[112] [26] [27]. This parameter will be used as an equivalent measure of connectivity.
A brief justification of the use of the term ‘dimension’ is given in the following section.

A useful approximation for the mth moment (r™} = k7! [ r™g(r) dr may be de-

rived as
e<mn (r™)=(,Ne~% : (2.3)
e=mn {r™y=_ 1loN
e>mn (rmy = (1

where the coefficients are functions of m, n = 1/(1 — p) and e. Because it is most

often used, we will use the special symbols 7 = {r) and x = (; for the first moment,

5There seems little to be gained by trying to specify and carrying around factors such as V2 etc.
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the average connection length:

1 b e=—1
e<n F=gN:n =gNP™2 (2.4)
e=n Fom k'ln N
e>n 7 k"

Notice that when e < n, the average connection length is proportional to the ratio of
the linear extent of the system in e-space (N'/¢), to that in n-space (N/").
Our line length distribution is also consistent with the following expression for the

number of connections P(N') emanating from a group of N’ elements:

P(N') = kN ( (2.5)

N~ N' )
where N is the total number of elements in the system. When N’ < N/2 or so,
the term in parenthesis can be ignored so that P(N") = kEN'. Tt is also easy to see
that when p == 1, it is equally likely for connections to be made to elements at any
distance, consistent with the usual interpretation of p = 1. (Simply notice that in
this case, among the k connections made by an element, k(N — N')/N will be made
to elements outside the group, and AN'/N to elements inside the group.)

Note that we are not accounting for the external connections of our system
(P(N) = 0). We are implicitly assuming that input and output from our system
is established by impressing or reading off information from the ox N(¢~1)/¢ peripheral

elements.

2.2 Justification of the model

According to our model, the number of connections emanating from a group of N’
elements in figure 2.2 is given by the relationship P(N') = kN when N’ < N/2. This
relationship is widely known as Rent’s rule. Statistical variations from this formula
are to be expected.

Historically, Rent’s rule precedes the line length distribution. Rent’s rule was

originally established as an empirical relationship [103] {144] and later shown to be
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Figure 2.3: Connections made by an element to other elements.

a consequence of the logic design process {35] [36]. Such a power law may also be
justified based on a principal of self similarity [34] [142]. We now understand that
Rent’s rule is also related to the separator concept of VLSI complexity theory [164]
[106], which provides a formal basis for the layout of given graphs, and to the theory
of fractals [112]. This relationship has been used widely as a wiring model for two
decades [163).

Donath [37] and Feuer [45] were the first to show that Rent’s rule is consistent
with a line length distribution similar to what we are assuming. Here we will give
a crude derivation so that the reader can gain some insight regarding the relation
between Rent’s rule and the connection flux distribution. Ignoring edge effects and
the distinction between cartesian and Euclidean distances, we will assume that the
connection flux and line length distributions can be thought to describe the connec-
tions emanating from each element. That is, f(ro) may be interpreted to give the
ezpected number of connections originating from a certain element and emanating
from a spherical surface of radius ro centered at that element, as suggested by fig-
ure 2.3. (Likewise ¢(ro)Ar may be interpreted as the ezpected number of connections

originating from an element and terminating in the interval {ro, 7o + Ar].) Thus the
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expected number of connections emanating from a group of N’ elements is given by
P(N') > N'f(N"/¢), since this group is of linear extent ~ N''/¢, This evaluates to
P(N') ~ kN'"(1 — N'/N), as given in the preceding section (equation 2.5).

The expressions for the moments, given in equation 2.3, are obtained easily by eval-
uating (r™) = k™' fr™g(r)dr. The first and second moments were already derived
by Donath [34] [37]. A discussion of the approximations leading to these equations
and expressions for the coefficients are given in appendix 16.3.

We now briefly justify the use of the term ‘dimension’ for the quantity defined as
n = 1/(1 — p). The perimeter of a square region is proportional to the 1/2 power of
its area. The surface area of a cube is proportional to the 2/3 power of its volume. In
general, the hyperarea enclosing a hyperregion of e dimensions is proportional to the
(e —1)/e power of its hypervolume. Let us now make an analogy between ‘hyperarea’
& ‘number of connections emanating from a region’, and ‘hypervolume’ <> ‘number of
elements in the region’. According to our model the number of connections emanating
from the region is proportional to the pth power of the number of elements in the
region. Thus, it makes sense to speak of the quantity n defined by the relation
p = (n—1)/n as the dimension of information flow. The interested reader is referred
to the work of Mandelbrot for a discussion of the relationship between inverse power
law distributions and fractal forms [113] [111] [110}.

Given the interelationships between layout theory, Rent’s rule, fractal geometry
and inverse power law distributions, we are convinced that our model is indeed a
meaningful way of quantifying the connectivity of computer circuits to first order.
Qur confidence is increased by the fact that similar models have been used by many
other authors in the past (for instance [86] [163] [6]). Further discussion of these
interelationships is beyond our scope and is not necessary for our ?urpose if the reader
is willing to accept the inverse power law distribution of line lengths with parameter
p as a starting point. Some authors have simply assumed similar distributions [62]
without any underlying theory. The use of such a line length distribution may also
be justified empirically [54] [53].

Notice that r is actually a discrete quantity. It is possible to find graphs for which

our continuos approximation leads to erroneous results. For instance, according to
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equation 2.2, a simple pla,na,r mesh for which p = 1/2 laid out in ¢ = 2 dimensions has
g(r) ~ r~2. Though a quickly decreasing function, this is a very crude representation
of the actual line length distribution, which is concentrated at » = 1, and would
result in overestimates of higher order moments. Graphs exhibiting a high degree of
regularity for which exact values of the moments may be calculated by combinatoric
methods are best handled per se. The reader will notice that all of our results may
be cast in a form that depends only on the first few moments of g(r), the length
of the longest connection and the functional form P(N’), without requiring a full
specification of g(r). The inverse power law distribution we are using is an attempt
to describe the irregular nature of typical digital circuits, as suggested by earlier
authors [34] [37] [45] [6].

A significant quantity is the number of graph edges passing through each cell,
which we denote by K. If ¥ > 1 parallel physical lines are used to establish each
edge of the connection graph, the cross section (or width) of each cell d*~! must be
wide enough to allow the passage of xK physical lines, in addition to accommodating
the element itself [85]. A moments reflection reveals that K is given by K = k7 [66]
[62], since kF is the total connection length per cell in grid units. Letting W denote
the transverse linear extent of a single physical line, including its share of line to line
spacings, the above condition may be expressed as d*~! > y KW*=!. Combining this
with the condition d > dj, we will write d > max{dy, (xk7)/~DW). Notice that the
error we incur in pretending that the interconnections and elements may cooccupy
the same physical space is less than a factor of 2.

We will not consider statistical variations from cell to cell. We will ignore the
fact that there will be a greater demand for wiring space towards the center, and
also assume 100% utilization of the available wiring space. Of course, in practice, a
less than unity efficiency factor will be involved. Typically, an approximately equal
number of tracks will be running in each of the e orthogonal dimensions. We will not
be concerned with this distinction and associated numerical factors. M will denote

the number of interconnection layers for 2 dimensional layouts.
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The bisection H is defined as the number of graph edges crossing an imaginary sur-
face dividing the system in two roughly equal parts* and is given by H = N te~1)/e .
since there are N(¢=1/¢ cells adjacent to this surface. When n > e, 7 = g N/e~1/» =
g Ne=(e=1}/e 56 that H = kxN?. This must be multiplied by y to obtain the number
of physical lines crossing the surface in question.

We will mostly concentrate on highly connected systems, characterized by large
values of p {(or equivalently n). The method of analysis is easily extended to other

cases.

2.3 Graph layout

In this work, we do not concern ourselves with how a given graph must be laid out on
the grid of figure 2.1. We assume that the placement of the elements is determined
independently and given to us as a starting point. One particular way of laying out
the elements would be to place them randomly. This would result in a Rent exponent
of p = 1, regardless of the topology of the connection graph. Although optimal graph
layout is in general an NP-complete problem, several heuristic methods [73] can result
in layouts with more localized and shorter connections and a smaller value of p. We
are assuming that upon layout, our system exhibits a distribution of line lengths of
the form g(r) as defined earlier. Of course, we cannot expect arbitrarily given graphs
to have this property. However, analyzing layouts which we assume result in such a
line length distribution will enable us to understand the dependence of our results on
the connectivity of the system.

The Rent exponent is a property of both the graph topology and the layout
algorithm. However, for a given graph, there is a bound to how much the Rent
exponent can be reduced with any layout algorithm.

The grid model and method of accounting for wireability requirements we are
using is attributed to Keyes [85] [84]. We should note that several approaches to
graph layout [106] [164] {12] [105] employ a somewhat different grid model attributed
to Thompson [158].

4This surface is also referred to as the bisection.
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2.4 Conclusion

Overall, our model is a useful paradigm enabling us to quantify the connectivity of
computer circuits to first order and can predict several parameters of our layout.
Aithough similar models have been used by many authors in the past, we must
understand that it is not capable of describing everything and that it must be seen
as an instrument facilitating a general analysis. Our method of analysis, however, is
applicable not only to layouts with different distribution functions, but also'to any

layout for which the quantities 7, P(N') etc. can be meaningfully specified.



Chapter 3

Heat Removal Model

The interelement spacing d in our grid model must be large enough so that we can
successfully remove the dissipated power. Packing the elements too densely may

result in unacceptable temperature rises and destruction of the system.

3.1 2 dimensional systems

For 2 dimensional systems, we assume that there is an upper limit to the amount of
power we can remove per unit area, denoted by @@ (W/m?). This model has been
extensively used by other authors [79] {80]. Thus the linear extent £ of a square
system uniformly dissipating a total power P must at least be (P/@Q)'/2.

To give a feeling for the order of magnitudes involved, we note that the power
density arriving from the sun is about 0.1 W/cm? [126]. The human body gives away
about 10mW /cm?® Boiling water may carry away up to 10 W/cm?K per degree of
temperature rise. For thermal radiative transfer at 100K, we obtain o(100K)* ~
1 mW /cm? where o = 5.67 x 10~® W/m?K* [T1]. We will concentrate on fluid con-
vection, which seems to be the most effective means of heat removal.

We do not embark on a quantitative discussion of 2 dimensional heat removal at

this point, as our 3 dimensional model will also serve as a 2 dimensional model.

24
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Figure 3.1: & dimensional heat removal.

3.2 3 dimensional systems

Whatever the modality (conduction, convection or radiation), heat transfer must take
place through a surface. Thus for 3 dimensional systems, it is not possible to quantify
our heat removal ability by specifying the amount of power we can remove per unit
volume. In what follows, we will show that our ability to remove heat from a 3
dimensional system can be quantified by a quantity ), interpreted as the maximum
amount of power we can remove per unit cross section of the system, consistent with
the intuitive notion of heat flow, and in analogy with the 2 dimensional case. This is
most easily visualized by considering the flow of a cooling fluid through our system, as
illustrated in figure 3.1. Thus the linear extent £ of a square prism system dissipating
a total power P must at least be (P/Q)Y/2.

3.3 Derivation of the model

Let P denote the total power dissipated in a square prism of volume £ x £ x H with
H < L as illustrated in figure 3.2. H/L will be kept fixed throughout our discussion.
We assume that the total power P is dissipated uniformly in the solid volume between
the tubes. A coolant fluid will be forced to flow through the tubes of diameter 2rq

and axial separation 2r;. Thus there are £?/4r? tubes each with internal surface
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Figure 3.2: Heat removal from a square prism via fluid convection.

area 27roH. So as to ensure that the volume of the tubes does not exceed a certain
fraction of the total volume £L2*H, we will require that = ro/r1; < ez < 1.

We are interested in determining the minimum value of £ at which we can suc-
cessfully remove the dissipated power from the system. Based on the conservation of
energy, we might immediately claim that the weakest growth rate of £ as a function
of P is « P12, since the surface area of the system grows as < £2. However, it is not
obvious that this minimum growth rate can be achieved under constant applied pres-
sure difference. Not only will the increasing length of the tubes tend to hinder fluid
flow, but also the solid-fluid interface will limit the amount of heat we can transfer
onto the fluid.

Since our purpose is to illustrate the general principles involved in as transparent
a manner as possible, rather than make engineering predictions, several textbook [71]
assumptions will be employed.

We consider laminar flow of an incompressible fluid. We assume that the temper-
ature gradients do not affect fluid flow and that the pressure is uniform at any cross
section, decreasing linearly in the axial direction. We also assume that the flow is

fully developed, i.e. invariant in the axial direction [71].
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We ignore edge effects. Based on similar arguments as in {86], we assume that heat
conduction is significant only in the transverse plane. Thus, the heat flux entering
from the walls of the tubes is uniform along the axial direction, resulting in a constant
temperature gradient in the axial direction.

We also assume the material parameters involved to be constant, however, one
should be aware that the viscosity of most fluids is actually quite temperature depen-
dent.

Our analysis is modeled on that of {162] [161]. The two dominating components
of thermal resistance are those due to the heating of the fluid (Q. = ATy /P) and
due to the transfer of heat at the solid-fluid interface (Ocony = AT sony/P). Opas may
be expressed as 1/pC,F where p(C, denotes the volumetric heat capacity of the fluid
and F is the total fluid flow rate. The flow rate through a single tube is given by
rraAP/8uH where AP is the applied pressure difference and p is the viscosity of the
fluid {71]. Multiplying this with the number of tubes to find F, we obtain

Q=21 # M (3.1)

Ocone may be expressed as 1/hs where s denotes the total internal surface area of
the tubes and h is the heat transfer coefficient. h is given by Nu /D where & is the
conductivity of the fluid and D is the hydraulic diameter, equal to its geometrical
diameter for a tube [71]. Since we are assuming a fully developed flow, we will take
the Nusselt number Nu to be equal to its steady state value of 48/11, based on similar

arguments as in [162]. Thus

11 1 r?
Ocone = o377 (3-2)

Note that it is optimum to set = 7mer. Then the value of r; minimizing © =
Ocat + Ocone and the resulting thermal resistance is found to be

'F‘g = (nmazrl )d = 34.9 mpcﬂzp 7’{2 (33)

345 @ )P 1
@ = 2@(:0.1 - 3 (pCsKAP) £2 . (3.4)

Tt'ma.a:
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It is interesting to note that the optimum value of r; depends only on H whereas the
minimum value of @ depends only on £. The resulting temperature rise is expressed
as AT = ATvat + AT ony = 24T = OP. We can now define the more intrinsic
quantity @ by the relation QL? = P, so that Q@ = AT/OL?. If the maximum allowed

temperature rise is specified, we may express ¢} as
1
C.kAP\?
Q=0.2972,, (&—E—-—) AT. (3.5)

Once £ = (P/Q)"? is calculated, we can go back to equation 3.3 to calculate the
optimum value of ry for given P.
We finally express () in terms of ¥pmqe, the maximum fractional volume occupied

by the tubes, rather than fmee. Using (7/4)0%., = ¥mas, We obtain

1
2z
Q = 0.37 Ve (&f—:—s—-}—)—) AT. (3.6)

Choosing r? o H keeps the hydraulic resistance of the tubes and the mean flow
velocity v through the tubes constant. It can be easily shown that v = r]AP/8uH =
0.74 (kAP/pC,p)*/?, independent of £ and P. Likewise the mean flow velocity
through the system v, = (nr2/4r?)v is given by 0.58 72, (kAP/pC,p)"/?, in terms
of which we may write the intuitively appealing @ = pC,v, AT = pC,v,AT/2,
consistent with equation 3.5.

Let us also calculate the viscous power dissipation P, = APF associated with the
fluid flow. Using the previously derived expression for F and expressing everything
in terms of P, we obtain P, = (2AP/pC,AT)P, an exceedingly simple result. P,
is proportional to the power dissipated by the devices. We will later show that for
typical values, P, € P.

In our analysis we have ignored the effects of conduction in the solid medium
in which the circuits are embedded. Consider the cell of dimensions 2ry . x 2ry x H
enclosing each tube. Clearly, there will be no heat transfer through the boundaries of
this cell (except near the edges of our system). For the purpose of calculation, let us
pretend that this cell is distorted into a cylinder of diameter 2ry. Now, it is possible

to solve Laplace’s equation £,V2T(r) = —g, inside the solid, subject to the boundary
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condition that the radial derivative of the temperature (which is proportional to the
heat flux) vanishes at r = ry. T(r) denotes the radial dependence of the temperature
for ro < r < 7, &, is the conductivity of the solid and ¢, is the volume density
of generated power and is given by = P/{1 — n?)L?*H. Once we solve for T'(r), the
additional temperature rise AT,,,g and resulting thermal resistance © ong = AT ona/P
due to conduction in the solid is easily found as

1
Ky HL?
where A(n) = (In{(1/5%) — (1 — 77))/4(1 — %). Once again the largest possible value
of n is preferred. For instance, A{0.5) = 0.21. Noticing the similarity of the above

econd - A(T})

(3.7)

expression to equation 3.2, it is easy to see that the effects of conduction in the solid

may be accounted for by replacing

1 1 + 127 A(n)

kK 11%, (3.8)
in our previous analysis. We see that the effects of solid conduction may be ignored
with little error if x, > 10« or so, as would almost always be the case.

We have also assumed uniform power dissipation throughout the solid. This would
be appropriate for systems where the majority of power is dissipated on the wires. If
instead the power P, associated with each device is dissipated within a small radius
of r4, an additional temperature rise of ~ 3P;/87k,ry would be observed. (This
result is derived by an elementary application of Laplace’s equation. We calculate
the difference in temperature rise when the total power is dissipated within a radius of
rq and when it is dissipated within a much larger radius.) ¥ Py = 1mW, ry > 0.1 pm
and &, ~ 150 W/mK (corresponding to silicon), we find that this temperature rise

does not exceed ten degrees and 1s usually acceptable.

3.4 Numerical example

We now present numerical results assuming H/L = 1, p = 10°kg/m?, C; = 5 x
12J/kgK, & = 0.5W/mK, g = 107°kg/msec (corresponding to water), AP =
10° kg/msec? and AT = 100 K. We take fmqsz = 0.5 so that the volume occupied by
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the pipes is less than 25% of the total system volume. Thus the following results may

be derived:

r2=187x10"H =178 x 1071 Ps (3.9)
0 =8.73 x 1077 215 = 96.0»-?15 (3.10)
Q=1.1x10® (3.11)

v = 2.34 (3.12)

v, = 0.46 (3.13)

P,=4x10"P P (3.14)

where everything is in SI units. 10 KW can be removed per square centimeter. For in-
stance, for a total power of 1 KW we find £ = 3mm, r = 24 ym and © = 0.096 K/W.
On the other hand, for a total power of 1 MW, we find £ = 95mm, ro = 133 um and
© = 0.6x107° K/W. A megawatt can be removed from a liter, quite larger than what
was previously thought possible. We also note that the viscous power dissipation is
negligible in comparison to the device power dissipation.

Let us finally check some of our major assumptions. The Reynolds number
Re = vpD/p should be less than 2100 in order to validate our assumption of laminar
flow {71]. This leads to the condition P < 128 MW which would allow 10! circuits
each dissipating 1 mW in a cube of edge length of about a meter. The fluid may be
considered to be fully developed (justifying our use of the steady state Nusselt num-
ber) when the distance z from the entrance of the tube satisfies = /(D Re Pr) > 0.02,
provided the Prandtl number Pr = uC,/x > 5 or so [161]. Since Pr = 10 in our
example, upon substitution we obtain z > 0.35H, so that the velocity and tempera-
ture profiles are well developed over a greater portion of the distance along the tube.
(This is not a coincidence, but a direct outcome of the optimization procedure [161].
It is easy to demonstrate that the relation H/(D Re Pr) = 1/4 Nu holds in general,
which immediately leads to the above result.) Let us also check whether axial conduc-
tion in the conductor is small with respect to radial conduction. The power carried
through each tube by the coolant is P/(L?/4r%). The axial flow may be estimated as
~ w(r? — r&&,AT/2H. The ratio of the latter to the former after substituting our

chosen numerical values is found to be 4 x 107%/H. Thus if H > 1mm, this ratio is
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less than 5%, validating our assumption. Thus our analysis is applicable for systems
ranging from ~ 1mm to ~ 1 m in size.

In 1981 Tuckerman and Pease experimentally demonstrated the removal of 790 W
from a 1cm x 1cm surface using cooling fins about 0.04cm in height [162]. This
corresponds to 790 W/(1 cm x0.04 cm) ~ 20 KW /cm? of power being removed per unit
area along the direction of fluid flow, in reasonable agreement with our predictions.
{The factor of two discrepancy is easily traced down to the different values of AT,
AP and v utilized.) In fact, if we imagine that we stack 25 such assemblages on
top of each other, we obtain a system which crudely resembles figure 3.2. The major
difference is that the channels are narrow slits, instead of circular tubes. Provided
their total area is always the same fraction of £2, the use of alternate cross sectional
shapes for the channels alter the general results of this paper only by geometrical
factors close to unity. Whereas a general proof seems difficult, it is possible to show
that for narrow slits extending along the full width of our system, the value of @ is

within 10% of what has been calculated for circular tubes.

3.5 How further can ¢ be increased?

Let us exarnine the various factors in equation 3.6. Water already exhibits one of the
highest pC,x/p ratios found among all materials (mercury is slightly better) [161].
Even if our circuits could withstand very large operating temperatures, an upper
limit to AT is set by the difference in freezing and boiling points of the liquid used.
If water is used, AT < 100K.

Without going into a detailed analysis, it is possible to claim that v ~ 0.5 or so is
optimum. Increasing v beyond 0.5 would increase () by at most another factor of 2,
while decreasing the volume available for the circuits drastically. Reducing v below
0.5 would increase the volume available for the circuits by at most a factor of 2, while
drastically reducing our heat removal ability. This argument allows us to decouple
heat removal issues from wireability issues and thus greatly simplifies the use of our
model.

The only remaining parameter is AP. Ultimately, the upper limit to AP will be
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set by viscous power dissipation. If viscous power dissipation becomes comparable to
P, it must be added on to the total power dissipation. Thus £ must be large enough
to satisfy

2AP
2 > —
LQ>P+P, =P [1 + (pC’,AT)] (3.15)

since P, = (2AP/pC,ATYP. By substituting for @ from equation 3.5 and differen-
tiating with respect to AP, we can find that the optimal value of AP resulting in
minimum £ is given by AP = pC,AT/2, as we might have guessed directly: the vis-
cous power dissipation should not exceed the power dissipated by the circuits. With

this value of AP, we obtain a more fundamental limit to ¢}:
Q = 0.172,,(p"Clr /) * AT, (3.16)

Once again, water exhibits one of the highest p>C?x/y ratios among all materials
[161). With the same numerical values we find that ) may not exceed 2.8 x 10° W /m?.

3.6 The effect on scaling of heat removal require-

ments

A detailed analysislof the effects of heat removal and wireability considerations will
be presented in a later part of this thesis. Here we discuss an important consequence
of our heat removal model in its simplest form.

Let us assume a system with a bounded degree connection graph and constant
power dissipation per element.

In 2 dimensions, wireability requirements dictate that the linear extent of a system
of N elements grow as o« N? where 1/2 < ¢ = max(p,1/2) < 1. On the other
hand, heat removal requirements dictate that the linear extent of the system grow
as o N1/2, Thus, unless ¢ = 1/2, wireability requirements will surpass heat removal
requirements with increasing N. Larger values of p enable greater connectedness,
but result in larger layout area and delays, so that a detailed analysis is necessary to

determine the optimal value of p resulting in a system with optimal properties [6].
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In 3 dimensions, wireability requirements dictate that the linear extent of the
system grow as o« N9? where 2/3 < ¢ = max(p,2/3) < 1. Heat removal again
dictates a growth rate ox N'/2, Thus, for large N, the choice of p has little if any
effect on the resulting system size. Since smaller values of p will not reduce system
size and delays, we might as well employ high values of p, increasing connectivity.
This suggests that it will be more beneficial to employ highly connected approaches
in large scale 3 dimensional computing systems.

The above arguments must be modified if the power dissipation per element cannot
be assumed constant. However, it should be evident that 3 dimensional systems
exhibit a tendency to be heat removal limited, so that highly connected approaches

can be employed with little effect on system size and delays.

3.7 An alternate approach to 3 dimensional heat

removal

The only other approach to modeling 3 dimensional heat removal at a similar level
of abstraction that we are aware of relies only on steady state conduction [80]. By
assuming a homogeneous conductivity &, throughout space and assuming that a power
P is uniformly dissipated in a spherical system of diameter L, it is possible to show (via
solution of Laplace’s equation) that the minimum value of £ for given temperature
rise AT is L = P/4nk,AT. Notice that the system linear extent «x P rather than the
best possible x (P/Q)/?, which was achieved by the conductive-convective system

we analyzed.

3.8 Analogies between heat removal and wire-

ability requirements

After reading chapter 10, the reader will notice that the limitations imposed by optical
and superconducting interconnections are similar to those imposed by convective

heat removal. Constant cross section is required for the flow of information or heat
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(via convection) over any distance. On the other hand, conductive heat removal is
analogous to normally conducting interconnections. The heat removal scenario we
have analyzed makes joint use of convection and conduction. This is similar to the
joint use of optical and normally conducting interconnections, which will be analyzed

in detail in chapter 11.

3.9 Power distribution

In this study, heat removal and communication (wireability) requirements are em-
phasized as the major factors limiting packing density and system performance. The
effects of power distribution are not considered. This is usually considered appropri-
ate for existing or foreseeable technology [139]. Here we briefly discuss the limitations
imposed by power distribution requirements.

From a fundamental perspective, power distribution may be seen as the opposite
of heat removal. Thus, we might suspect that power distribution will impose similar
growth rates on system size as heat removal. The quantity of interest is the amount
of power we can feed per unit cross section.

First, consider optical power distribution (such as to feed modulating devices or
optical switches). Even if we use a separate spatial channel to feed each element, the
cross sectional area A? needed per element will often be less than that imposed by
heat removal ((10 gum)? for Q = 10 KW /cm? and elements dissipating 10mW each).
The distributing lines can be made to consume even less space by organizing them in
the form of a 2 or 3 dimensional H-tree.

With the use of superconductors, the critical current density will determine the
maximum power density. The power flow along a superconducting transmission line
of characteristic impedance Z; is given by I?Zs where I is the current through the
conductor. In chapter 5, we will see that Zg = \/;T/—eh/ w when h >t > A, where
and ¢ are the permeability and permittivity of the dielectric, A is the superconducting
penetration depth and the dimensions %, w, t and A = 4wh are defined in figure 5.6.
The maximum current is given by I = J,.w where J,. is the surface critical current
density. Thus the power density is given by I2Zp/A = ch\/;/-e /4. (1t is also possible
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to show that the power density decreases if ¢ is reduced below A, so that we are not
overlooking any room for improvement in this direction.) With J,, = 50 mA/pm, we
find that about 10 W/m? of power can be supplied. This is much larger than the
maximum amount of power we can remove and thus imposes a weaker restriction.

Finally, we consider the use of normal conductors. The axial voltage drop AV on
a normally conducting supply line must not exceed a certain fraction of the supply
voltage. For a line of length £, cross sectional area A and resistivity p, we have AV =
plI/A. Thus, for given AV, the maximum power density is VI/A = VAV/pl ~
V?/pf which evaluates to about (4 x 10" W/m)/{ for V = 1V and room temperature
conductivity. For a system of the order of a meter in size, this is comparable to
@ ~ 108 W/m?2. Often, due to the use of less aggressive heat removal methods, the
value of (J will be less than 108 W/m? Thus, even in the normally conducting case,
power distribution requirements need not be considered until system sizes of the order
of ~ 1-10m are reached.

The space consumed by the clock distribution system (if any) is also not considered
in this work. We can assume the use of a 2 or 3 dimensional (probably optical [28])
H-tree for clock distribution. The space consumed by such an H-iree can always be

absorbed in the space consumed by the elements themselves with little error.

3.10 Conclusion

We have considered the problem of heat removal from a square prism of volume £ x £ x
‘H in which a total power P is uniformly dissipated. Referring to the configuration
of figure 3.2, we showed that choosing the number and cross sectional area of the
tubes proportional to their length was optimum. With this choice, we found that
a heat removal imposed lower bound to the system linear extent £ can be written
as L2 > P/@Q where @ is a function of the material parameters of the coolant fluid,
the applied pressure difference AP and the maximum allowed temperatui‘e rise AT.
Thus @ is conveniently interpreted as the maximum amount of power we can remove
per unit cross section, in a,ﬁalogy with the 2 dimensional case where it is customary

to specify the maximum amount of power we can remove per unit area [86]. With
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AP = latm, AT = 100K and assuming water is the coolant fluid, we have estimated
Q ~ 10KW/cm?.



Chapter 4
System Characterization

In this chapter we will first introduce several variables which will serve as an interface
between our grid, connectivity and heat removal models and the tube models of
interconnections to be presented in chapter 5.

In this work we assume that the performance of our systems can be characterized
in terms of 3 parameters (figure 4.1): the number of elements N, the bit repetition
rate B along each edge of the connection graph and the inverse signal delay S (worst
case or average). In this chapter we will also discuss how this characterization can be

related to the computational requirements of given applications/algorithms.

4.1 Some definitions

One way to increase the processing power of a system is to increase the number of
elements N. This may enable the system to handle larger problem sizes in a given
amount of time, or given problems in a shorter amount of time (because of the increase
in parallelism), or other intermediate combinations.

Another way to increase the processing power of a machine is to increase the rate
at which information percolates among the elements of the system. The solution of a
problem will in general require a certain number of time steps. The physical duration
of a time step (measured in seconds} is set by one of several mechanisms, as illustrated

in figure 4.2. Information transfer takes place along the edges of the connection

37
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Figure 4.1: 3 parameter characterization.
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Figure 4.2: Factors determining the speed of the system. Two elements (graph nodes)
sharing an (inter)connection (graph edge) of length £ are shown. 74 is the time
which elapses between arrival of new input to an element and updating of the output
values. T is the minimum temporal pulse width. 7, is the propagation delay along
the interconnection.
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graph in the form of binary pulses of minimum temporal width T' = max(Ty, T%),
as set by the greater of device (drive) or line imposed minimum pulse widths. We
assume that a pulse must be completely received for the value of a transmitted bit
of information to be properly registered. T, denotes the propagation delay along the
interconnection. The meaning of these and subsequent quantities will become clearer
when we specify them for specific technologies in chapter 5. 7; denotes the time which
elapses between arrival of new input at the elements and the updating of their output
values accordingly. The largest of these quantities will determine the rate at which
computational processes involving the cooperation of elements situated at a distance
£ from each other will proceed. Let us denote this rate as § = 1/7 where 7, the signal
delay, is defined by

7 = max(rs, T, T,) (4.1)

and is a non-decreasing function of £. In a synchronous system, the physical duration
of a time step is determined by the worst case delay among all connections [5]. When
we are speaking of an isolated connection, the quantities T', T}, T, 7 and S defined
in this paragraph, and the quantities T,, x and B which will be defined in subse-
quent paragraphs will refer to the properties of that particular connection. When
we are talking about a system, these gquantities will refer to the worst case over all
connections. Ty, 74 and T,y {to be defined) will be assumed to be constants.

In certain cases, the worst case S may be a pessimistic measure. In general, each
element will want to communicate with a certain set of other elements at different
distances. Let 7., be defined as the average of 7 over all connections. Saye = 1/7ane
is the inverse of the average delay over all edges of the connection graph and can
be thought to be a measure of the speed (in nodes traversed per second) at which
information flows through paths [10] of the connection graph. Whether S or S.y. is
the relevant quantity will depend on how we operate our system. In this work we
will mostly limit our attention to S so as not to further lengthen our treatment. All
of the analysis presented may be easily modified for S,... Most major qualitative
conclusions will remain unchanged.

Another measure of speed is the rate B (in bit/sec) at which information is piped

through the edges of the connection graph. We assume that this rate is kept constant
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for all lines and thus is determined by the worst case value of B over all lines. Let
T, denote the minimum pulse repetition interval, i.e. bits may be emitted into each
physical line at a rate of one every T, seconds. In most cases, T, will approximately
equal T, the minimum pulse width. If we desire to increase B beyond 1/T., we may
employ x > 1 parallel physical lines to establish each edge of the connection graph.
Let 1/T,; denote the maximum rate at which the elements can emit information
into each edge of the connection graph when x — oo. Thus B may never exceed
1/ max(T,/x, Tra).

The use of ¥ > 1 physical channels per graph edge will require an increase in the
number of physical input-output ports by a factor of x. This may in turn dictate an
increase in element size d;. If the cross section of each port is not greater than the cross
section of each physical channel, this increase in dy will always be overshadowed by the
increase in necessary communication (wiring) space, and thus need not be explicitly
kept track of'. We will mostly assume this to be the case. In practice, however, input-
output ports may be much larger than the cross section of the physical channels so
that we must explicitly set the element size to be large enough to accommodate ~ xk
ports.

Notice that the effects of 74 and T.,.q are to simply hard limit S and B to 1/7y
and 1/T,q respectively. In this work we are interested in the limits imposed by the
interconnections, rather than the elements. Thus without further mention, we will
assume T4 to be negligibly small and that 7, is no greater than 7.

We will be interested in the HS (bisection-inverse delay) and HB (bisection-
bandwidth) products of our systems. These products are appropriate figure of merit
functions for communication limited applications. The communication complexity of
many problems may be stated in terms of the amount of information that must pass
through the bisection of the sysiem [164] [130] [7], so that these products are direct
measures of system performance.

Although it would certainly be desirable, it is not possible to arbitrarily increase

S, B and N simultaneously due to physical limitations. We will quantify this by

1The use of wavelength division multiplexing constitutes an exception and must be treated
separately.
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deriving bounds of the form ®(S, B, N) < Cg for different interconnection media in
chapter 10. For our present purpose, it is sufficient to realize that there will be a
surface defining the region of mutually consistent values of 5, B and N. This region
will satisfy the following property: if (So, B, No) is an element of this region, so is
(¢150, ¢2Bo, t3No), where ¢; < 1. The optimal operating point in this region must
be determined in conjunction with the requirements of the application, as discussed

next.

4.2 Towards a unification of physical and algo-

rithmic approaches

We desire to solve problems of ever increasing size, despite the fact that the human
life span is more or less constant. Let us say we are interested in solving a problem
of certain size in a certain finite amount of time. We will construct our processing
system by assembling together a set of primitive elements with given function. We will
agree on a certain procedure in which the number of elements N may be increased by
introducing new elements to the system in a useful way, and on how the computation
is to be performed (i.e. the algorithm). In conjunction, we will agree on a family of
connection graphs, one for each value of N, with connectivity p.

It is possible to an extent to tradeoff between the three quantities S (or S,ue), B
and N in solving a given problem. For instance, it may be possible to solve a given
problem in a given amount of time with a small yet fast system, or alternatively with
a large yet slower system. In general, the set of all possible triplets (5, B, N) which
will enable us to solve the given problem in the given amount of time will define a
region in S-B-N space, satisfying the following property: if (Sp, Bo, No) is an element
of this region, so is (4150, t2Bp, t3Np), where ¢; > 1. This region may be described
as ¥(S,B,N) > Cy. We will speak of this region as the W-region and the surface
defining this region as the ¥-surface. Simple examples of such considerations are the
area-time bounds of VLSI complexity theory [164].

These lower bounds should be interpreted in conjunction with the upper bounds
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Figure 4.3: U-surfaces versus ®-surfaces. Part a. illustrates a situation where there
are no common points among the regions defined by the lower and upper bounds.
In part b., the requirement on computation time has been relaxed so that a point of
intersection is obtained. In c. we are free to choose from a range of possible values of

S and N.

of the form &(S, B, N) < Cs mentioned at the end of the previous section, for which
the terms ®-regions and ®-surfaces will be used. If there exists a triplet compatible
with both bounds, we will be able to solve the given problem in the given amount of
time with the given interconnection medium.

By comparing the regions (5, B, N) £ Cp and ¥(S, B, N) > Cy, it is not only
possible to decide whether a given interconnection medium is capable of handling
given problems, but also to determine the appropriate choice of S, B and N. Fig-
ure 4.3 illustrates the various possibilities, where for simplicity in illustration we
assume that B is not involved in the tradeoff. Part a. illustrates a situation where
the ®-surface completely lies below the W-surface. This interconnection medium is
not capable of performing the prespecified task in the given amount of time. It is
necessary to relax the W-surface by increasing the time allowed for computation until
a point of intersection is reached (part b.). Thus it is possible to determine the min-
imum time in which the task may be performed. There will be a certain value of N
for which this minimum time value can be achieved. Part c. shows a situation where
we have the flexibility of choosing S and N from a finite interval where the ®-surface
lies above the W-surface.

We now see how we may compare various interconnection media characterized by
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Figure 4.4: Comparison of interconnection media. Part a. illustrates the ®-surfaces
associated with two different interconnection media, one of which is superior to the
other. In part b., again the surfaces of two media are shown, one is superior for values
of N larger than a critical value, the other for lower values. Part c. shows a W-surface
which has an intersection with only the surface belonging to the first media, whereas
part d. shows one which intersects only the second.

the functional forms ®(S, B, N) < Cy with reference to the computational require-
ments of a given problem and algorithm. We illustrate this in figure 4.4 where we
have again assumed that B is not involved. Part a. shows the upper bounds for two
different interconnection media. The surface lying to the upper right is superior to
the other regardless of problem requirements and operating point. Part b. illustrates
a situation where one medium is superior to the other for N greater than a certain
critical value. Neither, one, or both may be able to perform the stated task in the
stated amount of time. Parts c. and d. of figure 4.4 illustrate two different ¥-surfaces,
one of which has an overlap with only the first $-surface, the other with the second.

Let T denote the total time of computation, £ the total energy consumption over
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this period of time and V (or A for a 2 dimensional system) the size of our system.
As shown in part c. of figure 4.3, increasing the total time 7 allowed for computation
allows us to choose between many possible values of N and $ (and in general also B).
Each of these particular implementations will result in a particular V' and £. In other
words, we can map the region of mutually consistent values of S, B and N (as defined
by the relationship ®(S, B, N) < Cg) into a region of mutually consistent values of
7,V and £ Many points may be mapped into one. Now, given an optimization
function (i.e. a figure of merit function) involving 7, V and £, we can pick the
optimal implementation(s). Remember that the Rent exponent, choice of algorithm
and choice of interconnection medium (including the use of more than one medium at
the same time) are hidden parameters in this formalism and offer additional degrees
of freedom we can optimize over. In short, this procedure (in principal) enables us
to find the optimal medium (or combination of media), Rent exponent, algorithm,
number of elements and bit repetition rate and resulting inverse delay of the most

desirable system.

4.3 Conclusion

The use of ¥-surfaces is only one of many possible ways to characterize the compu-
tational requirements of a problem-algorithm, but one which we believe is especially
suitable for interfacing the algorithmic and physical aspects of computation. Their
determination is independent of the physical construction of the system. Likewise,
the determination of ®-surfaces is problem and algorithm independent. The two
considerations are tied together through the parameters S, B and N.

Hillis {70] has noted the disparity between traditional abstractions of computing
systems and their physical implementation. For instance, much of the literature
on parallel computation is based on models which may not be possible to directly
implement [164].

The mentioned abstractions have been inherited from a time when all computing
systems were device limited. Although this is no longer true, there is still a tendency to

consider wires to be mere parasitics degrading the intended performance of the devices
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they interconnect [147]. With increasing system sizes, it is probably more appropriate
to base our expectations of intended performance on interconnect oriented models
and consider device limitations as parasitics degrading these expectations. This is
the philosophy of this work.

(Parallel) algorithms must be developed in conjunction with their physical im-
plementation. As an example, we consider the work of Feldman et al. [42]. They
consider the problem of matrix-vector multiplication, which may be solved in parallel
on many graph topologies. They, however, introduce a new family of graphs on which
this problem may be solved which also have efficient optical implementations due to
their space invariant properties.

Choice of interconnection medium is dependent on the problem, algorithm, con-
nectivity etc. Likewise, choice of algorithm and architecture is dependent on the
physical properties of the interconnections. Thus, determination of the most desir-
able system requires that both aspects of the problem be treated in conjunction and
jointly optimized over.

In chapter 10 we will limit ourselves to an examination of the behavior of S as a
function of N for constant B, to an examination of the asymptotic properties of the
bisection-inverse delay and bisection-bandwidth products and some other particular
optimization functions. Based on the discussion of this chapter, the reader will realize
that these are mere examples, which we have chosen for their simplicity and general
interest. A complete treatment employing the formalism of this section is an area for

future research.



Chapter 5
Tube Models of Interconnections

In this chapter we present the interconnection models used -in this work. We will
first give a general discussion of the origin of the different properties of conducting
and optical interconnections. Then we will present the relationships between length,
cross sectional area, signal delay, minimum bit repetition interval and energy per
transmitted bit for optical, normally conducting, repeatered normally conducting
and superconducting interconnections. Finally, we will present a justification of these

models.

5.1 Survey of interconnection alternatives

Historically, normally conducting wires have been used to interconnect the elements
of electronic circuits. The use of conductors enables good confinement of the wave
fields (in the sense that the internal electric and magnetic fields can terminate at
the charges and currents on the conductors) and promises deep submicron scaling.
However, by nature, normal conductors are lossy. This requires an increase in the
cross sectional area’ and energy per transmitted bit of such lines with increasing line

lengths.

We will exclusively concentrate on double conductor normally conducting lines

1That is, if we are to maintain length proportionate delay. To be precise, the cross sectional area
can be kept constant, but then the delay and bandwidth degrade sharply.

46
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supporting quasi-TEM modes. The use of hollow conductor waveguides, resulting in
TE and TM modes is not beneficial, as in this case there is a limit to how narrow
these lines can be before the cut-off frequency exceeds the fundamental frequency
component [29].

Optical interconnections rely only on dielectric inhomogeneities for confinement
and thus suffer relatively little loss. {The use of conductors, which would be extremely
lossy at these frequencies, is out of the question). For the very same reason however,
the cross sectional area per independent spatial channel cannot be less than the carrier
wavelength squared. (It is for this reason that we prefer to modulate a high frequency
optical carrier, rather than simply send baseband signals. In the latter case, even at
microwave frequencies each channel would have to be several centimeters wide.) Again
for the same reason, such interconnections suffer from coupling and radiation losses.
Since the dielectric constant variation in nature is much less than the conductivity
variation, we cannot avoid ‘spilling photons’. (This observation also has a positive
side. Optical interconnections need not suffer to the same degree from termination
problems.) Thus the cross sectional area and energy per transmitted bit for optical
interconnections are relatively large but approximately independent of line length.

In conclusion, because of the length dependence of cross sectional area and energy
per transmitted bit with normal conductors, they are preferred over shorter distances
whereas optical interconnections are preferred over longer distances.

At first, superconducting interconnections seem to offer the best of both worlds,
since they offer conductor confinement without loss; however they have their own
limitations which must be considered in detail.

Chemical transmission and mass transport, although widely observed in biological
systems, have not found their way into artificial computing systems and are not

considered.

5.2 Presentation of the models

In this work an interconnection is imagined to be a flexible tube with the following

parameters:
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Figure 5.1: Tube model of interconnections.

1. Interconnection length £.

2. Cross sectional area A or transverse linear extent W where A = W?. These
parameters define packing density for 3 and 2 dimensional systems respectively

and thus include any necessary line to line separations.

3. Signal delay 7. As discussed in the previous chapter, the signal delay is given
by the greater of the propagation delay 7, and the minimum temporal pulse
width T, which in turn is the greater of a line imposed component T; and a

device imposed component Tj.

4. Minimum pulse repetition interval T,, which is usually equal to T', the minimum

temporal pulse width along the interconnection.
5. The energy per transmitted bit, F.

Any interconnection medium is characterized by the relationships tying these param-
eters together. For instance, it is immediate that for any medium, the signal delay
cannot be less than £/c, where ¢ is the speed of light.

The tube model we use for optical interconnections is the simplest possible. The
cross sectional area is taken to be proportional to the wavelength squared: A4 = W? =
(f))? where the constant f can be as small as ~ 1 for a diffraction limited system but
may be larger in practice. The signal delay is taken to be the greater of the speed of
light delay and the device rise time: 7 = max(£/c, Ty). Since the effects of dispersion

and attenuation can be made small for the length scales in consideration, the minirum
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T T E ter.
W? < 16pevd 16pe~¢€,~2~2~ 16pe-p‘%,f5- 2¢Vi  no
W? > 16pevt £ 16pessy  2eV20T  yes

Table 5.1: Normally conducting interconnection model when Ty < T;. The delay
7 = max(T, T,), pulse width T" = max(T;, T;) and energy E are given as functions of
length £ and width W. The last column indicates whether the line is to be terminated
or not in that region.

pulse repetition‘ interval T, and energy per transmitted bit E are assumed to be
constants.

In table 5.1 and figure 5.2 we see the relationships tying the length, cross sectional
area, delay and energy for normally conducting lines for the case T; < T;. The symbols
p, €, p and v denote the resistivity of the conductor, permittivity and permeability of
the dielectric and propagation velocity in the dielectric respectively. V' denotes the
nominal voltage level. The lower right of the slanted line corresponds to terminated
transmission, where the delay is proportional to length and independent of cross
sectional area. The upper left region corresponds to unterminated charge-up. What
is unique to our model is that it intrinsically accounts for the proper scaling effects due
to the skin effect and deals with RC lines and transmission lines in a unified manner,
One immediate conclusion that may be derived from our model is that the use of
a single wide line is more beneficial than many narrow ones in terms of obtaining
maximum information density. Yet another conclusion is that, it is beneficial to scale
down wire limited layouts until we are in the RC limited region. After this, further
reduction in scale does not further improve system signal delay. This conclusion 1s
related to a well known argument stating that the rise time of an RC line remains
constant when all of its dimensions are downscaled.

The use of active repeater devices along the line changes the curves for delay versus
linewidth as shown in table 5.2 and figure 5.3. We should note that we employ a highly
idealized model for repeaters; for instance we do not address power distribution to the
repeating devices and we ignore their discrete structure. RoCo denotes the intrinsic

delay of the repeating devices. The use of repeaters weakens, but does not eliminate
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Figure 5.2: Normally conducting interconnection model when Ty < Tj.
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T ¥ ter.
W<4\/P—~m—— 4/ Fo Efgpe RoCo 2eV 2 no

W > 4,/e==0 R°C N/ RyCh 86V21/£"%g'9“-‘% yes

Table 5.2: Repeatered interconnection model. The delay 7, pulse width T and energy
E are given as functions of length £ and width W. The last column indicates whether
the stages of the line are to be terminated or not in that region.

i

K 41/ pRoCo/ p

W

Figure 5.3: Repeatered interconnection model.

L |

the inverse dependence of the delay on the width of the line. The delay along a
repeatered line also remains constant with downscaling.

In table 5.3 and figure 5.4 we can see the delay as a function of linewidth for
superconducting lines. Our models take into account the proper scaling effects asso-
ciated with the superconducting penetration depth A and the critical current density
Jse.

An immediate conclusion is that for wire limited layouts, it is optimal to scale
down the system until we are in the intermediate region. Once we are, the delay
starts exhibiting an inverse dependence on width. So, even with ideal lossless super-
conductors, the signal delay remains constant with downscaling. Because of this, the
signal delay possible with superconductors for a wire limited layout is very similar to

that possible with optics, although the superconducting system may be much smaller
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T T E ter.

W < i 14 — 16;::"-‘(53 T, 2eV2H no
e #/e < W <4 -‘-‘j\-%— Ty 2[V2W 4 yes
W > 4) £ Ta 2,/:VTy  yes

Table 5.3: Superconducting interconnection model when Ty < T, (or Ty < Ty in the
lumped case). The delay v = max(T,,T), pulse width T’ and energy E are given as
functions of length £ and width W. The last column indicates whether the line is to
be terminated or not in that region.

N
N 0
M
4V/(Jserff € ) 4
Figure 5.4: Superconducting interconnection model when Ty < T, (or Ty < Tp in the
lumped case).
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in size, if deep submicron scaling is employed. We are not aware of an interconnection

~ medium that enables continual improverment of signal delay through downscaling.

5.3 Justification and derivation of the models

5.3.1 Optical interconnections

Conceptually, the simplest structure one might use to transmit optical signals is a
single mode waveguide. If a sufficiently high numerical aperture is utilized (through
use of a sufficiently high refractive index difference between the core and cladding),
guide widths of the order of a wavelength are possible [98]. Use of a sufficiently
high refractive index difference ensures that the evanescent fields in the cladding will
decay within a short distance. In general, the cross talk between adjacent guides is
proportional to the product of the coupling constant and the length of the guides.
This would mean that for increasing systems sizes, one would have to increase the
separation between the guides in order {o maintain an acceptable crosstalk level.
However, the coupling constant is an exponentially decaying function of the guide
separation [177]. This means that the required guide separation is a slowly varying
function of system size. For this reason, we will take the necessary guide separation
to be constant and also of the order of a wavelength?. Decreasing the separation will
increase crosstalk excessively with little gain in density. Increasing the separation
somewhat beyond a wavelength may be desirable, but not by a factor much greater
than unity.

In 2 dimensions the relevant quantity is the width W allocated to each line,
whereas in 3 dimensions it is the cross sectional area A allocated to each line. For

optical lines we will write

W = 2X (5.1)
A=W? =4\ (5.2)

21t is also possible to envision a design methodology for which the crosstalk does not increase with
systemn size. This might be established through the use of design rules which exploit the periodic
nature of coupling with distance and set the lengths of parallel runs accordingly.
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independent of all other parameters. Although it would be considerably difficult to
do any better than this in practice, theoretically there is still a little more room
for improvement [134]. In this work we treat optical communication links as if they
are solid wires of cross section (2))? (i.e. as is the case when waveguides are used—
whether we allow them to intersect or not does not make a significant difference). The
results thus obtained represent the limitations of all forms of optical communication
(guided wave or free space) within a factor of the order of unity. This generalization is
possible by virtue of a result to be derived in chapter 6 that states that the minimum
volume required for providing optical communication among an arbitrary array of
points is ~ A*f4,51, Where £y5401 is the total interconnection length [134]. Because of
the arbitrariness of the factor 2, we will never mix it with other constants so that
the reader may modify our end results conveniently. In fact, we will sometimes more
generally write W = f where the constant f can be as small as ~ 1 for a diffraction
limited system but may be larger in practice. The essential feature of our model is that
the cross section need not be increased with increasing line length [134]. A ~ 1lpum
will be used in numerical examples.

The energy E per transmitted bit will also be assumed to be constant and in-
dependent of line length. The attenuation constant o can usually be made small
enough so that the condition of < 1 will be satisfied for the length scales in consider-
ation. The major sources of loss (coupling and device inefficiency) are independent of
length. Expressions for the required energy per transmitted bit were given previously
by many authors [92] [40] [121] [39] assumning the use of laser diodes {31], light emit-
ting diodes and light modulators [16] as output transducers. We assume the use of
light modulators so that no threshold term is involved. The following is a refinement
of the calculation of [121].

To generate a voltage change of V' on a detector with capacitance Cp an energy

hvCpV
nq

E = (5.3)

is required. & is Planck’s constant, ¢ is the charge of an electron, v is the optical
frequency and % is the overall differential quantumn efficiency of the system, i.e. ratio

of detector current to source current. We do not expect that the value of n in a large
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system can be improved beyond ~ 0.1. We must also include the energy required by
the modulator, Cp V. Also we take into account the dissipation associated with the

photocurrent {121]. The total energy is found to be

hvCpV o Vu hvCpV ‘
= CuVip + 5.4
ng MIMT (hlg) ng (54)
which numerically becomes
Ap(pm?®) . Am(pm?)
E(f)) ~ 24 + 3 5.5
) hp(pm) hyi(pm) (55)

where Ap (AM).a,nd hp (har) are the area and thickness of the detector (modulator)
respectively, V =1V, Viy = 5V, 7 = 2.5% and a relative permittivity of 12 for the
device material were assumed. For devices of (5 pm)? area and 1pm thickness, we
find £ ~ 1pJ.

The reader is referred to Feldman et al. [40] for a discussion of the effects of fan-out
on the energy.

For optical interconnections, Ty is simply the minimum pulse width the modulating
and detecting devices can handle. We will be content with a smooth ‘hump’, rather
than a square pulse with sharp edges, so that the highest frequency content need
not be much greater than the inverse pulse width. This is consistent with our earlier
requirement that a pulse be completely received before its value is registered. Thus,
the minimum pulse width will often be approximately equal to (or twice) the slower
of the rise times of the modulators or detectors. Electron-hole diffusion or transit
time limitations may also contribute to T;. T; will most probably be set by material
dispersion, since we are assuming single mode guides. Even if we launch an impulse,
a bump of width Ty will arrive at the detector. For free space systems, T; will be set
by the (spatial) dispersive properties of the imaging elements. Pulses shorter than Ty
will not be allowed so that the imaging system performs its intended function. For the
length scales involved in a computing environment, the effects of dispersion can be
made negligible. Thus we will take 7' = max(7}y, T¢) = Ty. Since the refractive indices
of most materials are close enough to unity, we will take the propagation velocity as
the vacuum speed of light ¢, so that T, = {/e¢. If a single wavelength source is available,

T, will often be approximately equal to 7T, unless there are additional restrictions
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Figure 5.5: Section of distributed RLC interconnection model

requiring an elapse of time between consecutive pulses, as might be the case with
certain types of optical switches. If multiple wavelength sources are available, the use
of wavelength division multiplexing might enable the effective value of 7, to be much
less than T'.

5.3.2 Normally conducting interconnections

QOur analysis will be based on the distributed parameters R, L and C; the resistance,
inductance and capacitance of the line per unit length (figure 5.5). As is mostly ap-
propriate [120], the shunt dielectric conductance is ignored. {This is further discussed
in appendix 16.4.) Figure 5.6 depicts the physical cross section of our model. Other
geometries are also possible and would change our results by only geometrical factors.
It is well known that once a line starts becoming taller than it is wide, the line to line
separation must be increased greatly to maintain acceptable crosstalk levels, whereas
the capacitance and characteristic impedance are improved at most logarithmically
[121]. For this reason, we will require that our lines satisfy ¢ < h and A < w/2. With
these constraints, we will assume—based on a similar argument regarding crosstalk
as in the optical case—that the minimum packing dimension is W = 2w in 2 di-
mensions and A = WH = 2w x 2(h + t) in 3 dimensions, independent of length.

Whereas the numerical factors involved are again somewhat arbitrary, they seem to
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Figure 5.6: Physical cross section of interconnection model. ¢ and & are the heights
of the conductor and dielectric respectively. We constrain ¢t < & and k < w/2. These
constraints not only ensure reasonable confinement of the fields, but also justify ap-
proximate use of a parallel plate model for calculating capacitances and inductances.
W = 2w is the two dimensional minimum packing dimension. A = WH = 4w(h+1) =~
4w max{h,t) = 4wh is the three dimensional minimum packing area.

be representative of the geometry to which technology is converging [100]. The re-
sistance, inductance and capacitance per unit length; and propagation velocity and
characteristic impedance of this line are approximately given by R = p/w min(t, §),
C = ew/h, L = phfw, v =1//IC = 1/,/f€ and Zs = \/IT/_a = \/—;Ue'h/w respec-
tively. p is the resistivity of the conductor and € the permittivity of the dielectric.
We will use room temperature aluminum resistivity and a relative permittivity ¢, = 4
in our numerical examples. The permeability g will be taken equal to that of free
space. § = 1/2p/wp denotes the classical skin depth at frequency w. Unless otherwise
stated, the voltage level will be taken as V' = 1V in numerical examples.

Based on this model, we will show that the line imposed minimum temporal pulse
width for a normally conducting interconnection is given approximately by

£ 2

We will not mix the constant 16 with other constants so as to enable easy modification
of end results. As in the optical case, the device imposed minimum temporal pulse

width Ty is set by the intrinsic limitations of the transmitting and receiving devices



CHAPTER 5. TUBE MODELS OF INTERCONNECTIONS 58

and is assumed to be a given constant. Thus T = max(Tq, T;) is the minimum tempo-
ral width associated with each bit®. For conducting interconnections, the minimum
pulse repetition interval is simply given by T, = T = max(Ty, T;) so that we will drop
the subscript r. |

Equation 5.6 is valid for both RC lines which are left unterminated and charged
up, and for terminated transmission lines. For unterminated lines, T' = max(Ty, T}
is simply the RC rise time of the receiving end voltage and satisfies T' > T, = £/v
where v is the propagation velocity {152]. As in the optical case, we are not requiring
sharp square pulses and are content with smooth ‘humps’. Pulse transmission is not
possible along high-loss lines (i.e. lines for which R{ > Zy); such lines must be charged
up. In general, it is energetically wasteful to terminate a line if T' > T}, since in this
case the energy per transmitted pulse E = V?T/Zp would exceed that possible with
an unterminated line £ = V2C¥. However, when T < T, (which is possible only for
lines with sufficiently low loss), it is beneficial to terminate the line so as to pipeline
pulses through the line with less energy without worrying about reflections. In this
case of terminated transmission, T corresponds to the minimum temporal width of a
pulse traveling along the line. Thus we are agreeing to leave a line unterminated when
T > T, and to terminate it when T' < T,,. We assume perfect termination is possible.
The signal delay for any normally conducting line can be written as max(Ty, T, T5).
I T < T, and the line is terminated, T,/T pulses may be simultaneously in transit
along the line.

We derive equation 5.6 first for unterminated lines. It is known that the skin
effect need not be considered in this mode of operation [152]. The rise time of the
line is given by ~ (R, + R{)CY{ where Ry is the drive impedance [145]. Assume for
the moment that the line is not drive limited; then the rise time and energy per bit

are given by

pew, pel2  ww £
e T PR TTE] (5.7)

31n practice, Ty and Tz may be coupled, as in MOS VLSI technology. However, it is mostly possi-
ble to break the total pulse width into the maximum (or sum} of a line independent constant Ty and
a device independent function of line parameters T, enabling us to maintain a device independent
model. This is further discussed in appendix 16.6.

T, = RC{* =
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¢
E=VCl= ev“’-% (5.8)

where W = 2w has been used. It is evident from these equations that one should
choose h/w and t/w as large as possible. Just as it is not beneficial to make lines tall
and skinny, neither is it to make them flat and wide. Thus with A=w/2 and t = h
we obtain equation 5.6 and an expression for the energy: E = 2¢V%{. This discussion
is consistent with and confirmed by the somewhat different approach of Masaki {114].

The performance of present day MOS VLSI lines may be much worse than pre-
dicted by the above, because such lines are often drive limited [147] [167], i.e. Ry > RL.
The above corresponds to what may be achieved with arbitrarily strong drivers. A
more detailed discussion is given in appendix 16.6, where we discuss how the contri-
bution of drive resistance to the delay may be absorbed into the parameter 7;.

Now we turn our attention to terminated transmission lines. We ignore the effects
of dispersion, anomalous skin effect and assume the quasi-TEM approximation to be
valid. {This is further discussed in appendix 16.5.) We will show that the funda-
mental frequency satisfies wL > R so that we may ignore the correction terms [116]
1/(1 + R?*/8w*L?) and (1 — jR/2wL) associated with the propagation velocity and
characteristic impedance respectively.

In this case, the minimum pulse width satisfies ' < T, = £/v. Since we are not
insisting on sharp square pulses, but are satisfied with rounded ‘humps’, the highest
frequency content need not be much greater than the inverse pulse width. Of course,
since T' < T, & frequency of at least w ~ 2/T, = 2v/{ exists. Since the attenuation
coefficient « of a transmission line is given by R/2Z, [143], we require approximately
Rf < Z, so that attenuation is kept at an acceptable level®. Using these relations,
we may immediately show wL > R which we have promised above. Furthermore, one
can show that the skin depth § = \/2p/wp satisfies §2R < ph/w. The resistance per
unit length R is given by R = p/w min{?, §) so that 6% < hmin(t, §). Since ¢t < k, this
leads to 6 < h.

Since H is already determined within a factor of 2 by h, we will agree never to

set 1 < & and unnecessarily increase the resistance. We can always do this without

4This corresponds to degradation of the signal level by e~ % = 705 = 0.6.
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violating the constraint ¢ < h since we have just shown that § < h. Thus, we have
R = p/wé.

Now the attenuation condition R{ < Z, may be used to set a lower bound on hé

hé > p\/g 3 (5.9)

A lower bound on the skin depth leads to an upper bound on the largest frequency

as

component and hence to a lower bound on the minimum pulse width 7;. Thus using
w ~ 2/T; and the definition of the skin depth we obtain the minimum line imposed

pulse width as
2 2 2 2

T, = pe}% = 4pe (%)2 —-é—;—z- = (16{)6)“];%—2 = (16pe)%. (5.10)
where we have taken h = w/2 to keep T} as small as possible. Of course, no matter
how small T} is, we cannot shape pulses shorter than Ty so that T = max(Ty, T}).
The energy is given by E = V2T /Zy = (w/h)\/e/u V?T which also indicates that
we should choose h/w large. Thus we obtain F = 2\/6/_[.L V2T as the energy per
transmitted bit in this case.

When T exceeds T;, we may express the condition T =T, < T}, as 16p\/e/u £ =
16pevf < W? = A. If this condition is not satisfied, the line is high-loss and pulse
transmission is not possible, Our model equations are summarized in table 5.1 and
figure 5.2 for the case Ty < T;. Of course, neither T’ nor 7 may actually be less than
T4. We also note that it is suboptimal to work with T; > 7. If for any given W and
£ we have T; < T3, we can reduce the width W of the line until 7} = T}, ending up
with a wire that occupies less space with the same pulse width and delay.

Referring to equation 5.6, we ask whether it is beneficial to use a bundle of narrow
lines or a single wide line in order to achieve the greatest information throughput.
First consider a 3 dimensional layout. Increasing W by two (i.e. A by four) decreases
T: by four, corresponding to a potential increase in bit repetition rate by four. How-
ever, we are now able to pack only a fourth as many lines in the same cross sectional
area. Thus in 3 dimensions, the same amount of information can be transmitted
through given area in given time. Of course, we should never attempt to reduce T

below Ty, since then the increase in W cannot be compensated by an increase in bit
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repetition rate. In 2 dimensions, T} is again reduced by four, but the linear packing
density is reduced by only a factor of two, so that throughput is increased! Thus, as
long as T¢ dominates Ty, we will agree to use a single wide line (x = 1) rather than

many narrow ones to establish each edge of the connection graph.

5.3.3 Repeatered normally conducting interconnections

The inhibitive square law behavior of normal conductors may be alleviated with
the use of repeater structures. In our treatment, we will consider a highly idealized
situation. We will not address the issue of power distribution to the repeating devices
and will not be concerned with the discrete structure of such lines, treating them as
if they were a continuous structure. We will assume repeatered lines are used for all
connections, although the optimal number of stages for the shortest connections will
be less than unity. We also assume that the system is large enough so that the longest
line requires more than one stage. Bakoglu [4] derived the optimal configurations
of such interconnections for the lumped case (i.e. when inductive effects need not

be considered). Within numerical factors the optimal number of stages £ and the

RO
gﬂ_\/ROCO (5.11)
T, ~ /RoCoRCL2 . (5.12)

In this section T, denotes the time it takes a single bit to ripple through the ¢ stages,

resulting delay are given by

rather than an electromagnetic propagation delay as in earlier sections. RoCy is the
intrinsic delay of the repeaters. Following similar arguments as in the preceding

section, our model equations may be derived as

~a | PE L
E~d RCo W (5.13)
T =TTy~ Ty o2 RoCly (5.14)
T,=¢T ~4 RgC’opeéfu (5.15)
E >~ 2¢V, {5.16)
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As before, the numerical factors are crude. We are assuming bits may be pipelined
through each line at a rate of one every T seconds, the time it takes one bit to traverse
a single stage. Depending on RoCy, the value of T' may be low enough to challenge
other high bandwidth approaches. Most importantly, it is independent of other line
parameters. The optimum value of ¢ is proportional to £/W; the number of stages
increases linearly with distance. The length of each stage depends only on W and

may be found to be

£

| £ 1V e W (5.17)
which together with W2 < 18pevfygqge dictates that approximately W < 44/pRoCo/p
is necessary for inductive effects not to be considered. This evaluates to about W <
5 um for ReCo = 100 psec and our usual choice of physical parameters. If W is set
to 41/pRoCo/p , we obtain T, = (/fi€l. If W is greater than this value, each stage
will become propagation limited and the delay will still be given by this expression
independent of W. When this is the case, we will agree to individually terminate each
repeater stage. The energy for this repeatered transmission case may be calculated in
a similar manner as for repeaterless transmission. We multiply the number of stages

£ by V2T/Zy, the energy per stage. Thus, we find that the energy per transmitted

E ~ min (zevﬂe,&evﬂ f ”—%-QE %) . (5.18)

The aspect ratio of a single stage is given by a4 /W = (1 /4)y/ RoCo/ pe which
evaluates to ~ 2500 for RyCo = 100psec. If W ~ 1um, all lines up to a few

millimeters will be single stage and longer ones multistage.

bit is given by

We finally inquire whether it is safe to ignore the space occupied by the repeaters in

comparison to the wires. For concreteness, let us consider CMOS VLSI repeaters. The

optimum transistor strength (and hence area) was derived to be s = \/ROC’—/C'QI_Z =
v/ Ro/Co \/;-:7,; \/Jl; w times that of a minimum sized transistor {4]. Remember that
we took t = h and w = W/2. With By = 20K and Cp = 5{F consistent with
RoCo = 100psec, and W ~ 1 pm, we find s ~ 35 which we compare with {qg./W
found above. Thus the space occupied by the drivers may be absorbed into that

occupied by the wires with little error.
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Our model is summarized in table 5.2 and figure 5.3.

5.3.4 Superconducting interconnections

The propagation delay and characteristic impedance of a superconducting transmis-

sion line are essentially given by [116]
AR E |
T, = Jfie | coth (X) +1| ¢ (5.19)

= JER o ()
Zom\/:w[hcoth 3 +1 (5.20)

where all parameters are defined as previously, except A, which denotes the supercon-
ducting penetration depth throughout this section. We again refer to figure 5.6 and
invoke similar geometrical constraints. Attenuation and dispersion are small enough
to be safely ignored for the length scales in consideration [100]. Thus, just as in the op-
tical case, we assume that the minimum temporal pulse width T = max(Ty, T;) = Ty
is set by device limitations in transmission mode. During lumped operation, T} will
correspond to the rise time of the output end voltage and may or may not be greater
than Ty. As with normally conducting lines, the minimum pulse repetition interval is
just T = T, so that we drop the subscript r. We again assume perfect termination
in transmission mode is possible.

Throughout our analysis, we will use as an example the high critical temper-
ature superconductor Ba-Y-Cu-O with T, = 92.5K, absolute penetration depth
Xo = 1400 A, normal resistivity p, = 200 ) cm operated at 77K [100]. The value of
the penetration depth at T = 77K may be calculated as A = Ao/ \/ 1—(77/92.5)% =
1942 ~ 2000 A. We will assume these materials to have standard superconducting

behavior below critical current, critical field, critical temperature and energy gap
frequency.

In order to maintain desirable superconducting behavior, both the flux entry field
and the critical current density should not be exceeded. If a surface barrier to flux
entry is not present and breakdown at edges can be neglected, the flux entry field

is just H.i, the lower critical field of the superconductor. If the thickness of the
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conductor is larger than the penetration depth, current only flows through a sheet
of thickness A. The maximum surface current density that can be allowed before
vortices enter the superconductor is just J,, = He. A value of J,, = 8mA/um
was estimated [50] based on earlier experimental results (The author extrapolated
a critical field value of 500 Qersted measured at a lower temperature to 100 Qersted
at 77K). Kwon et al. [100] estimated 50 mA/pm for low temperatures based on the
same data. In general, a few hundred QOersteds seems to be a value which one might
reasonably expect to achieve. When the penetration depth exceeds the conductor
thickness it is preferable to speak of a volume critical current density J.. Based on
intuitive grounds, we would expect J. to satisfy J,A ~ Jy.. Indeed, with A = 2000 A,
the above mentioned values for J,. are consistent with often cited values for the
volume critical current density (J, = 105-107 A /cm?). However, for films this thin,
edge effects become increasingly important so that one must be careful in interpreting
the physical origin of J, and the implications of our simple model.

The energy per transmitted pulse is given by E = V*T/Zy with T = T3. Thus
equations 5.19 and 5.20 lead to

T,E = evai;:-e. (5.21)

This product does not depend on W = 2w or the cross sectional area A = WH =~ 4wh,
but only on the ratio (w/h). For any given cross section, it is optimal to set w/h to
its smallest value of 2, leading to T,E = 2¢V*TL. A knowledge of T}, directly leads to
a knowledge of E and vice versa.

First assume that h > ¢ > A. Within factors close to unity,

T, = el = -5- | (5.22)
_1 /e
Zp = 2\/: (5.23)

E= 2v2\/§ T. (5.24)

Since W = 2w and we take h = w/2, the condition ¢ > A may be expressed as
W > 4A(h/t). By choosing t = &, the region of validity of the above equations may
be extended down to W = 4A.
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So that the critical current density is not exceeded we require V/Zy < Jycw. Using
the above expression for Zy, this condition can be expressed as 4V/ (JSCM) <W. I
the critical current is high enough and the operating voltage low enough this condition
is less restrictive than W > 4\(h/t). Even for t = k, with presently achievable critical
currents as cited above, voltage values somewhat less than 1V are sufficient to ensure
this. One expects much lower voltage values to be used at these low temperatures.
Also, we might expect materials with even higher critical current densities to be
produced. Hence we will assume A > V/ (J,,c\/,u—/;) throughout our analysis. This
means that we need not be concerned with the critical current density in this regime
of operation.

Now, let us consider the case { < h < A. Again within numerical factors close to

unity,
£
Tp - -\/}ME)\ —i T (525)
hits
i, h
Zo = JE X (5.26)
€ iz

The critical current condition can now be written as V/Zy < J.wt which translates

into V/ (Jc)\\/;/.é) < RY?*Y? making it desirable to choose h and t as large as

possible. If this condition is violated, we can use a sufficiently large drive impedance
Ry > Zy to limit the current and charge up the line

|4

Jowt

The lumped delay and energy are then expressed as Ty = RyC¥ [147] and E = V(Y

T, = %‘f—% - -}i%iﬁ%% (5.28)

E =2V (5.29)

Ry =

> Zo. (5.27)

where W = 2w = 4h was used. We immediately observe from the above that ¢t = £ is
the optimal choice, leading to T} = (16eV/J,){/W? in the region W < 4V/(Jc\/p/€).
If the critical current condition is not violated, then using equations 5.25 and 5.26

the delay, characteristic impedance and energy are expressed as

AN £ (B\?
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_LE (k)
- (Y

= (5.32)

where v = 1/,/i¢ was used. We previously showed T, £ = 2¢VETL. For given £, any
pair of T, and E compatible with this equation determines the value of W(t/h)!/%.

Thus to minimize W we choose t = h, leading to

R:%% (5.33)
R IE

%_§¢:W (5.34)
V2T

E= (5.35)

valid in the region 4V/(Jsey/ufe) < W < 4A,

Finally, we consider the case t < A < h. If A* < ht, then a very similar analysis
as for the case b > ¢t > X applies. If A* > ht, then a very similar analysis as for the
case t < h < X applies. In both cases we again find that ¢ = h is the best choice {or
at least as good as anything else) so that this case collapses.

Thus we agree to set t = h = w/2. In some cases, a smaller value of { may
do just as well, but since this can improve H by at most a factor of 2, we will not
be overlooking any significant room for improvement in this direction. As remarked
before, due to the arbitrariness of our constraints, the actual optimum dimensions
may be somewhat, but not greatly different from these. Table 5.3 and figure 5.4
summarize our superconducting model when Ty < T}, (T4 € T for the lumped case),
i.e. when Ty has no effect in determining the delay. Of course, the delay may never
actually be less than T;. Note that it is suboptimal to work with Ty > T, (or Ty > T
in the lumped case), since we can reduce W until Ty = T, (or Ty = T%), ending up

with a line occupying less space with the same delay.
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5.4 Extensions

Though not presented, we have considered several extensions of our models. For
instance, for a guided wave optical interconnection, T is usually proportional to £
or £? (depending on the applicable dispersion model [109] [67]) which may exceed T}
and dominate T = max(Ty, T¢) for very large £. However, in most cases it should be
possible to reduce T} below Ty for £ < 10m, so that we are justified in taking T' = Tj.

It is also possible to derive models accounting for the effects of attenuation in
superconducting interconnections. Again, such effects are often negligible for the
length scales in consideration.

We also note some of the other effects that have not been accounted for in our
models. We did not take into account the cost and non-ideal behavior associated with
terminating conducting interconnections. We have ignored the effects of electromi-
gration. Also, in their present form, our models do not allow for the effects of fan-out

to be taken into consideration.
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Chapter 6

Lower Bound for the
Communication Volume Required
for an Optically Interconnected

Array of Points

In the first part of this thesis, we introduced what we termed tube models of in-
terconnections. Whereas the motivation for such a model is immediate when solid
conducting wires or optical fibers/waveguides are employed, the reader may justly
question whether free space optical interconnections can be made to fit into this
model.

The limitations of optical communication in terms of information density are well
understood in a telecommunication context, where two points are communicating with
each other (figure 6.1). However, in a computation context, where many points are
communicating with each other with possible overlap among many independent wave
fields, it may not at first be evident what the limitations might be. One often comes
across remarks in the literature referring to how the “3 dimensional non-interacting
nature” of optical communication may enable one to overcome the “intrinsic lim-
itations” of solid wires. At least one author has expressed hopes that the “space

collapsing” properties of light waves might enable linear growth of system volume

69
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Figure 6.1: Communication through a finite surface.

with increasing number of elements [62]. In what follows we show that the use of
optical communication is similar to the use of solid wires in the sense that the total
volume that must be allocated for optical communication must grow proportional to

the total interconnection length of the system.

6.1 Introduction

The capacity of an information channel can be specified as the number of bits per
second that can be transmitted across the channel. Since, in principle, this capacity
can be increased by adding further parallel channels, another relevant quantity is
the number of bits transmitted per second per cross sectional area. The maximum
number of independent channels per unit area for optical fields was discussed in
an information theoretical context by Gabor [51] and later elaborated by Winthrop
[171], among others. Winthrop gave the following result! for the number of degrees

of freedom F associated with a quasi-monochromatic optical wave field over a given

11t may be noticed that we are omitting certain factors of 2 which Gabor and Winthrop originally
included in writing similar relations. So as not to confuse our discussion we will consistently exclude
these seldom applicable factors from our expressions, with the understanding that they can be readily
included whenever appropriate. A discussion of the various sources which bring in an additional
factor of 2 is given in appendix 16.7.



CHAPTER 6. LOWER BOUND FOR THE COMMUNICATION VOLUME 71

Figure 6.2: The accessible Fourier area at a point P. A frame of reference has been
introduced with its origin coinciding with the point P and its z axis along the direction
of the unit normal fi to the surface S at that point. The surface S is not shown for
clarity. The cone solid angle of allowed wave vectors is determined by the image of
the aperture stop of the system as observed from the point P. The projection of
the allowable wave vectors on the ¢,-0, plane determines the accessible Fourier area,
as given by equation 6.2. The area of a cell of unit degree of freedomn centered at
P, denoted by A(P), satisfies the relation A(P)x(P) = 1, as discussed in the text.
(After Winthrop [171].)

surface S:
Fmwaws (6.1)
where x(P) is the accessible Fourier area at the point P relative to the surface S

passing through it and is defined as
1 1
= QuP) =5 [ cost .
x(P) 33 Q.(P) % Jocr cos 0dQ) (6.2)

with # being the angle between the element of solid angle and a unit vector perpen-
dicular to the surface in question (figure 6.2). X is the wavelength of light used in the
medium of propagation. (P} denotes the cone of allowed wave vectors as limited by
the image of the aperture stop of the system as observed from the point P. Notice
that 0 < x(P) < 7/A® since (P) may at most be the complete hemisphere which
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has projection w/A\? at a radius of 1/A. If A(P) denotes the area associated with a
cell of unit degree of freedom (F' = 1) centered at point P on the surface and x(P)

is slowly varying at that point, then from equation 6.1 we may write
A(P)x(P)=1. (6.3)

This relationship is guaranteed to be preserved with free propagation [171] and in
passing through arbitrary imaging elements as a consequence of Abbe’s sine condition
(known in its paraxial form as the Smith-Helmholtz-Lagrange invariant [15]), and is
also closely connected to radiometric and thermodynamic considerations [126]. Given
the accessible Fourier area at a given point on a surface along an imaging system—
as determined by the image of the aperture stop as observed from that point—the
area of a cell of unit degree of freedom is determined. Since x(P) is bounded from
above, A(P) is bounded from below. (Determination of x(P) for particular apertures
is illustrated in appendix 16.8.)
~ Hence, the spatial information carrying capacity of optical wave fields is usually
stated in terms of an area density as being related to communication between two
regions in space, distinctly separated by a surface, as symbolically depicted in fig-
ure 6.1. A few authors [7] [43] have adapted results from VLSI complexity theory (for
instance, see [158] [164]) based on solid wires to optically communicating systems by
noting the fact that no more than a finite number of degrees of freedom exists over
a finite surface. However, these studies considered communication among a planar
array of points or through a planar surface, inhibiting the generality of the results.
Here we consider the problem of establishing optical communication among an
arbitrary array of points. These ‘points’ may be optical switches or input and output
transducers of electronic processing elements. We show that a lower bound for the

total volume that must be allocated for communication is

)\2
V = é—q;gtomr (64)

where #5101 is the total interconnection length of the system, i.e. the sum of the lengths
of all the component interconnects. This result accounts for all possible noninterfering

overlap between independently excited optical wave fields. This essentially means that



CHAPTER 6. LOWER BOUND FOR THE COMMUNICATION VOLUME 73

for the purpose of calculating the volume or critical cross sections of the system, we
may assume each independent optical information channel to have a minimum cross
section of A\*/2x as if it were a solid wire.

In other words, the fact that any confined optical beam has a finite angular spread
means that only a finite number can share the same physical volume. This in turn
means that the results of area-volume complexity theory based on solid wires as a
medium of communication are also applicable to systems employing electromagnetic

wave propagation as a medium of communication.

6.2 Analysis

Our discussion is based on a scalar theory of light. We will assume all sources to emit
spatially coherent quasi-monochromatic radiation of given center frequency v. We wiil
also assume that the information modulation bandwidth is greater than the linewidth
of our light sources, so that the frequency deviation from the nominal optical carrier
can be mainly attributed to the former effect.

We will consider the following model as illustrated in figure 6.3. It is assumed
that the space allocated for communication is, in general, a multiply connected finite
volume, the unshaded region in the figure. We are concerned with the problem of
forming optical connections between specified transducers located at the surfaces of
the shaded ‘islands’. We assume that binary intensity modulation is used to impress
information on the optical carriers emitted by the output transducers. The rate at
which this information is generated (i.e. the temporal information modulation band-
width) will usually be limited by the speed of the transducers or switching devices.
Although it will be convenient to think of pairs of points being connected, the ex-
tension to fan-in and fan-out will be straightforward (appendix 16.9). The signals
emitted by the output transducers are to be guided to the input transducers with
the use of an arbitrary imaging system located inside the communication volume,
The communication length of each connection formed may be defined naturally by
multiplying the propagation delay along that interconnection with the velocity of

propagation in the medium. Obviously, the communication length is greater than or
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Figure 6.3: Volume allocated for optical communication. The unshaded region, of
volume V, is allocated for establishing optical communication between transducers
located on the islands and/or enclosing surface.

equal to the Fuclidean distance between the two points being connected.
We begin with the following relation for the spectral density of modes for a given
volume V, as given in many physics texts [46]:
87V

=T

D(v) (6.5)

¢ being the speed of light in the medium of propagation. As written, the above
includes a factor of 2 to account for polarization. Also, we are not allowing double
sidedness along the direction of propagation, as discussed in appendix 16.7. So, we
divide by 4 to maintain consistency with our discussion:
2y
Dv) = Yk (6.6)
Let Av < v denote the temporal bandwidth of the optical channels (which will
most likely be limited by the speed of the transducers or optical switches). Then,
according to the above equation, (27V/cA?)Av degrees of freedom will be at our
disposal. It is of intuitive appeal to write this in an alternate form assuming that Av
is a fraction p of the optical carrier frequency, i.e. Av = gv with ¢ < 1. p27xV/X% is
then the maximum number of binary pulses that can be in transit at a given time in
an optical communication network of volume V. This quantity has been referred to

as the population capacity of a communication network [63].
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In order to derive our main result let us assume that we modulate our sources
at a rate B = Av (i.e. we make full use of the available temporal bandwidth). This
quantity will cancel out in our final result. Let each connection be numbered with
the index ¢ = 1,2... A, where it is assumed that there are A pairwise connections.
If £; denotes the communication length of the ith connection, the number of bits in
transit on this connection is

B Av  Av  Avi
1/m 1/m e/l o«

(6.7)

where 7; is the propagation delay along the ith connection. The total number of bits

in transit at any given time on all connections is then

N oAave, Av
3 — = mzmzei. (6.8)
gz} [t |

This cannot exceed the number of degrees of freedom D(v)Av, thus we may write

2wV Av X Av
WAV > — ;E; = ""E"'etota.l (6.9)
or
Az
y 2 'é";gtom]. (610)

Thus we have shown that, under the stated assumptions, the total volume that must
be allocated for optical communication must at least be A2f;,e01/27.

When it is the case that we are technologically confined to two dimensions, as in
an integrated optic guided wave network, our results can be modified to show that

the corresponding lower bound for the communication area is Alyotq1 /7.

6.3 A derivation based on tubes of unit degree of

freedom

Winthrop develops the concept of tubes of unit degree of freedom [171]. He argues that
the so called structural information in optical wave fields behaves like an incompress-

ible fluid. Elementary tubes of flow may be defined such that each tube corresponds
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to one spatial degree of freedom. Here we will present an intuitive derivation of our
result based on this concept.

The problem of establishing communication among an array of points can be
viewed as an imaging problem. Each source must be imaged onto the appropriate
detector. Modulated radiation emanating from each source might undergo expansion,
focuéiug, reflection etc. as it finds its way to a detector. We will imagine that a tube
of unit degree of freedom emanates from each source and is guided to the appropriate
detector. Let us denote the position along the path belonging to the ith connection
as z;. The cross sectional area and accessible Fourier area along the path of this
tube satisfy the relation A;(wx;)x:(z:) = 1 (equation 6.3). Tubes of unit degree of
freedom associated with different sources may overlap provided their solid angle of
wave vectors do not overlap. Also remember that the accessible Fourier area x:(z;) is
related to the solid angle of wave vectors (;(z;) by the relation x;(z;) = Qi {z;)/
where 0 ;(z;) is the perpendicular projection of Q;(x;) (equation 6.2).

Now, consider an arbitrary point in the communication volume (figure 6.4), sur-
rounded by a small cubic volume element of diameter 6. This quantity has no physical
significance and is merely an instrument in our counting argument. Several tubes of
unit degree of freedom may overlap this volume element without interacting. We will
choose § small enough so that neither A;(z;) nor xi(z:) changes appreciably along
this distance é.

The ith tube will overlap A;(z;)/§* cubes over the interval [z;, z;+6] along its path.
However, these cubes will be available for use by other tubes with nonoverlapping
wave vectors. To avoid multiple counting, let us introduce a sharing factor shi{z;) =
:(z;)/2x. This quantity accounts for the fact that this tube is only consuming
a fraction of the total available solid angle 2r (= 47 /2, since we are not allowing
double sidedness along the direction of propagation). Also, let us denote the distance
z; along the ith connection in units of § as z; = j;6 and write A;(z;) = Ay etc.
Now, summing along the path of the 7th line and then over the A connections in our
system, we obtain the total number of cubes consumed by all tubes

£ /6
N &/ Ajj

Zzsh,'j*gé—. (6.11)

f=1 g=1
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Figure 6.4: A volume element in the communication volume. A cubic volume element
of diameter 4 situated at an arbitrary point inside the volume allocated for optical
communication is shown. In general, several independent tubes of unit degree of
freedom will overlap the volume occupied by this element.

Multiplying this by 6* will give a lower bound for the volume V. Using the definition of
Sh,’j = Q,‘j/fZ‘R‘, A,‘j - )\2/0_1_,'3', noting that 1 S Q;j/ﬂ_{_ij and Z:\;l Eﬁ:——{‘f 6= Zﬁi f,' =

Liotat, We algebraically obtain V > A?{,,,/27, as before.

6.4 Discussion

Our main conclusion (that the minimum communication volume required for an op-
tical interconnection network with total communication length Liotar 18 A2440101/27) is
stated in a global manner; it does not correspond to saying that each light path is
confined to a cross section of A?/2x. Nevertheless, for the purpose of calculating lower
bounds on volumes and cross sections, our result can be stated in another equivalent
form if one imagines each light path to occupy constant width tubes with no fur-
ther overlap allowed, i.e. by treating them like ‘solid wires’: the minimum effective
nonoverlapping cross sectional area required for each independent spatial channel in
an optical communication network is A?/2x.

It is not necessary that f# ~ 1 imaging be used in guiding the light emanated

from the output transducers to the input transducers in order to achieve globally
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an effective cross section of ~ 2. Use of higher f#’s means that, with a carefully
designed system, the spread of allowed wave vectors can be smaller, so that through
the use of different nonoverlapping regions of wave vector space, a larger number
of light paths can noninterferingly overlap and share the same volume, despite the
greater cross sectional area associated with each independent channel of information
(i.e. each degree of freedom). This is a direct consequence of equation 6.3. Hence,
even with transducers larger than the order of a wavelength it would be in principle
possible to approach the lower bounds, provided that care is exercised so that the
sources emit into only a single degree of freedom. Although the source will emit into
a large volume of space, since the cone of wave vectors may be kept narrow, this
volume is available for further usage by other beams.

One way of approximately approaching the bounds would be to use single mode
waveguides with high numerical aperture, such that the guide cross sections are = A%,
Clearly, it is in principal possible to ‘wire up’ an arbitrary pattern of interconnections
by using such waveguides. This serves as an existence proof that the lower bounds
can be approached for an arbitrary pattern of interconnections, not being restricted
to space invariant connections only. It further means that for f# ~ 1 imaging the
advantage of being able to overlap the light paths and share the communication
volume is only a small numerical factor. For larger f#’s, however, it is necessary
to be able to overlap the light paths so as to efficiently utilize the available Fourier
space.

The factor of 27 appearing in our equations is simply the solid angle associated
with a hemisphere. Qur bounds are tight in the sense that they may be closely
approached if nearly complete utilization of this 2z of solid angle available for the
wave vectors is accomplished at every point. In practice, squeezing out the last
factor of 27 or so may not be practical. In general, if the volume required is roughly
predicted by the above stated results we will call such a system communication volume
fimited. For this to hold for a certain communication architecture with the number
of connections A as a parameter, we require that the volume be given by the above
stated results, within a constant of the order of unity and independent of . This

will be clarified through examples below and in chapter 7.
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The reader may have noticed that until now we refrained from discussing how the
communication lengths are specified. A full treatment employing the connectivity
model of chapter 2 is postponed until chapter 10. Here we simply illustrate the major
mechanism which determines £;0:,; for a communication volume limited system. For
concreteness, let us assume that A connections are to be established among a more

or less cubic array of points. From equation 6.10 we may write
A? N
> —NY 12
= 27 (6.12)

where Z denotes the average interconnection length. For the purpose of this chapter £
will be assumed to be proportional to V*/3. Thus with £ = xV'/® where & is a constant,

we can solve for the total volume and average propagation delay as V > (A\2kA/27)%/2

and _ a2\ g
¥4 K z
ave — 2 6.13
=22 (S2) 2 | (6.13)
which we write as .
Nz 2
Tove S (_;5375—) Vo~ (6-14)

where v is the frequency of the optical sources. The last equation represents a tradeoff
between the propagation delay and the number of optical connections established.
Our result may be considered to be a generalization of that given by Shamir for the
more conventional configuration of communication between two planes [149], to an
arbitrarily overlapping pattern of interconnections among a three dimensional array
of points. Shamir has already noted that this result constitutes a fundamental limit
for parallel processing involving global communication.

To illustrate a case which is not communication volume limited, let us a.ssuxﬁe
that the transducers among which connections are to be established are constrained
to lie on the surface of a sphere. Assume that there are a total of 2A/ transducers with
N connections to be made between them. We wish to determine the minimum radius
L£/2 and volume V of the sphere as a function of the number of connections . Let the
transducer areas d?, be expressed as (fA)?. The surface area, radius and hence volume
of the sphere are constrained to minimum values of 47(L£/2)? = 2N d}, = 2N f?)%,
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(£/2) = (N /2x)/2f ) and

dr (L\® 1 /2\% 3,58 .35
—_— e 2y 22 5 ~ NE 33 ;
R 1C) T
The lower bound to the communication volume is, using Vi, > A2ANZ/2n
y :KNncmi(i)%“N%fz\arvnN%fﬁ (6.16)
B~ on 7 \27 '

where we used £ = kL since £ is the linear extent of the system. The ratio between

the two previous equations for volume is approximately

Yy f?

It is seen that for large f (i.e. transducer areas 3> A?) or small « (i.e. £ < system linear
extent) we are doing considerably worse than as predicted by our lower bound. The
situation will be even worse when £ does not grow in proportion to £. We will term
such cases transducer surface limited. However, since one can arbitrarily increase
the surface area enclosing a given volume (for instance by ‘wrinkling’ the surface
rather than insisting on a sphere), given the freedom of rearranging the points to
be connected in a more flexible manner, it should be possible to improve on this
situation.

Most optical interconnection architectures that have been suggested for intra-chip
or chip-to-chip communication for VLSI circuits involve a holographic optical element
situated above a planar array of devices at a distance comparable to the linear extent
of the device plane (which is necessary to be able to form connections between devices
located at opposite ends of the layout) [59] [92]. Architectures based on conventional
space invariant imaging configurations are communication volume limited only if dy, ~
X and £ ~ L. (An example of a system satisfying these conditions is an f# ~ 1
Fourier plane processor [56].) Since such architectures cannot provide an arbitrary
pattern of connections, several authors have considered the use of space variant multi-
facet architectures [92] [41] [19]. However, these architectures have a very inhibitive
growth rate of system volume {(appendix 16.10) and are even farther away from being

communication volume limited. We noted that high numerical aperture single mode
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waveguides of cross section ~ A? serve as an existence proof that an arbitrary pattern
of connections may be achieved with communication volume limited systems. A
problem of great practical interest is to devise free space architectures having this
property. Such an architecture may involve a three dimensional layout of the points

to be connected. We will suggest one such architecture in chapter 7.

6.5 Conclusions

We saw that for an arbitrary array of points communicating with each other, it is
possible to view optical communication density limits in a global fashion by treating
optical links as if they were solid wires of cross section A?/2x. This result accounts
for all possible noninterfering overlap between independently excited optical wave
fields. The main point is that any number of independent wave fields are allowed to
overlap in coordinate space, or in Fourier spa.ce,‘ but not both. In deriving this result
no specific assumptions regarding the configuration of the points, the shape of the
surface enclosing the communication volume or the imaging system were made. Thus
results of area-volume complexity theory based on solid wires are also applicable to
optically communicating systems.

As an alternative formulation of our result, we showed that the maximum number
of binary pulses that can be in transit in an optical communication network is bounded
by 027V /)3, where g is the modulation bandwidth of the transducers normalized by
the carrier frequency.

The utility of our global viewpoint is that it enables one to model the basic
mechanisms which limit how closely one can pack an array of optically interconnected
primitive computing elements to form a larger computing system. The advantage to
be gained by using free space alternatives (i.e. overlap of independently excited wave
fields possible) over guided wave alternatives (no overlap allowed except possibly at
crossings) were seen to be (in a fundamental sense) not more than a factor of the
order of unity, assuming f# ~ 1 imaging. This is because a significant fraction of the
available Fourier space is already utilized and not much further overlap is allowed.

As the f#’s in question increase, however, it becomes more and more important to
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be able to non-interferingly overlap independent wave fields so as to make better
utilization of the Fourier space, and hence the available modal volume.

Most suggested optical interconnection architectures consist of a planar array of
devices. Such systems often do not enable the least possible system volume to be
achieved. The problem of minimizing the volume will increase in importance as
reduced device delays result in the speed of light being the dominant factor in deter-
mining the overall speed of large computing systems. Such being the case, it would
be extremely beneficial to devise communication architectures which enable efficient
utilization of both coordinate and Fourier spaces. We will address this problem in
chapter 7.

Another important conclusion may be drawn from equation 6.10. Observe that
the minimum communication volume is only linear in the total communication length.
This may be interpreted as a consequence of the fact that unit cross sectional spatial
response functions for electromagnetic propagation are of the form sinc(z, y) or jinc(r)
[66] [18], functions whose self-convolutions are identical to themselves. Thus, apart
from the effects of aberrations, the diffraction limited spot size does not increase
upon cascading several identical imaging systems to ‘relay’ optical information over
any distance. In other words, the effective cross section required per independent
channel is (at least in a fundamental sense) independent of length. In contrast, the
volume required for communication with conducting transmission lines is superlinear
in distance. This is because longer lines must be made larger in cross section in order
to maintain acceptable attenuation levels. Thus with increasing system sizes, the
communication volume required for establishing optical interconnections will grow

slower than that required for establishing conductor guided interconnections.



Chapter 7

Optimal Optical Interconnection

Architectures

In this chapter we compare the system size of some optical interconnection architec-
tures and introduce the folded multi-facet holographic interconnection architecture
which has the potential to approach the minimum possible system size of any 2 di-
mensional architecture in providing an arbitrary pattern of interconnections among
a 2 dimensional array of points. We also discuss a 3 dimensional version of this

architecture.

7.1 Introduction

We assume that N = kN pairwise interconnections are to be established among a
collection of N elements. For simplicity, the extension to fan-out is not considered.
In accordance with our model, the layout area (or volume) will be expressed as Nd?
(or Nd®). d must be chosen large enough so that there is enough space to establish
the desired interconnections. Of course, d must also be large enough so that there
is enough space for the elements and satisfy heat removal requirements; however, in
this chapter we concentrate on the value of d as set by communication requirements
only. As introduced earlier, £ will denote the average interconnection length of the

layout, where £ denotes the length of a particular interconnection and the overbar
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A B C D
area - - _ (kR )2 N2 fI57
volume  (kx)ENF 0% kaNTFEfOX° (RN)fON° _
linear extent  (kk)ZN% fX N3 fA EN fA kkNYFA

Table 7.1: System size for some optical interconnection schemes for large N. Columns
A and D give the minimum system size achievable with any 3 or 2 dimensional optical
architecture respectively. Column B gives the minimum for any architecture in which
the points to be connected are constrained to lie on a plane but communication paths
are allowed to leave the plane. Column C is for the reflective multi-facet architecture.

denotes averaging. We remember from chapter 2 that this quantity is expressed as
? = kN9124 for a 2 dimensional array of points, where & is a coefficient which is
often of the order of unity and ¢ is related to the Rent exponent as ¢ = max(p,1/2)
so that 1/2 < ¢ < 1. Similarly, remember that for a 3 dimensional array of points,
the average connection length may be expressed as K N9~?/3d with ¢ = max(p,2/3)
so that 2/3 <¢< 1.

As usual, order of magnitude accuracy is sufficient for our purpose so that factors
such as 2, v/2 etc. will be ignored. In this chapter we will also ignore slowly varying

logarithmic factors for simplicity.

7.2 System size considerations

We now refer to table 7.1 which gives the system size for various situations. A denotes
the optical wavelength. f is a dimensionless factor which in principle can approach the
order of unity, but may be quite larger in practice. The results given in columns A, B
and D will be derived within the framework of a more general analysis in chapter 10.
The result given in column C for the reflective multi-facet architecture is derived in
appendix 16.10. '

The best possible 3 dimensional growth rate (column A) may be approached by
using discrete fibers of diameter ~ fA. However, the resulting system size would

nevertheless be large because of the relatively large value of f . Similar comments
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apply to the case where the points to be connected are constrained to lie on a plane
(column B). Alternatively, it is possible to achieve this growth rate with a small value
of f by using free space interconnections in conjunction with multiplexed holograms.
However, this method not only results in poor diffraction efficiency, but also constrains
the pattern of connections due to the ambiguity associated with the Bragg cone.

One way of achieving an arbitrary pattern of interconnections among a planar
array of points is to use the reflective multi-facet architecture [92] (illustrated in
part a. of figure 7.1) or one of its variants [43] [41]. However, due to diffraction
considerations, the growth rate associated with this architecture (column C) is larger
than the best possible {column B), although the value of f involved can be of the order
of unity. In fact, unless ¢ = 1, this growth rate is even worse than that achievable in
2 dimensions (column D).

The best possible growth rate for fully 2 dimensional layouts (column D) may
be achieved by using waveguides with average effective line to line spacing of ~
fA. However, the value of f must be relatively large due to crosstalk and routing

considerations [76].

7.3 The folded multi-facet architecture

We now consider the folded multi-facet architecture based on the substrate-mode
holographic system [3] [146] shown in part b. of figure 7.1. Such an imaging system
will be used for each connection. In this manner we will be able to realize an arbitrary
pattern of connections. (In certain situations involving a regular (perhaps space
invariant) pattern of connections, as in Fourier plane filtering, it is possible to send
more than one data channel through the imaging system, leading to a simpler design,
as in [78].) This system is composed of two identical holographic optical elements
(HOEs) which were recorded on the same plate. The first one, H,, collimates a
coherent point source into a plane wave which is trapped inside the plate by total
internal reflection. The second HOE, H.., focuses the collimated wave onto a detector.
Since the holographic plate can be located very close to the source and the detector,

and the light is guided inside the plate, this system can be very compact and easy
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Figure 7.1: Holographic optical interconnection architectures. Only one source-
detector pair and its associated facet(s) are shown for clarity. Part a. depicts the
reflective multi-facet architecture. Part b. depicts the folded multi-facet architecture
in its most primitive form. Part c. depicts a modified version which achieves the best

possible growth rate of system size in 2 dimensions.
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to use. Unlike the reflective multi-facet architecture, here the path length of light
is proportional to the distance £ between the source and the detector. In fact, since
the total internal reflection condition must be satisfied, the proportionality constant
is merely an obliquity factor not much greater than unity (such as v/2). Thus, the
path length of light may be taken approximately equal to £.

In order to achieve the least possible growth rate of system size, we will show
below that, due to diffraction considerations, the area of both holograms should be
chosen proportional to £. Unfortunately, since the distance h between the device
plane and the hologram plate, and the f# of the sources are constant, the area of H,
is fixed and cannot be chosen proportional to £.

To calculate the minimum value of d with this version of our architecture, we
equate the total area occupied by the holograms associated with the kN interconnec-

tions to the total available area Nd?
EN(dZ + d2(0)) = Nd? (7.1)

where d,(f) = fM/d,. f can approach the order of unity for diffraction limited
operation. The overbar denotes averaging over all connections. Using the previously
derived expression for the second moment {¢2) = (; N?d* we obtain
FAZEGNPE
&=k (d§ + Lm)m_.&.gmm (7.2)
which we can solve for d and optimize over d; in order to obtain d? = 4(fA)2k2(,N?

leading to a system linear extent of
Nid~ k¢E N £ (7.3)

This growth rate is worse than the least possible oc N7 = Nmax(p1/2),

One way of achieving the least possible growth rate of system size is to use repeater
holograms at equal intervals. However, we rule out this method since it would result
in quickly decreasing interconnect efficiency with increasing length.

Thus, in order to achieve the least possible growth rate of system size, we modify
the architecture discussed above as follows: A, and hence d, and d, (the diameters of

H, and H, respectively), are fixed for connections of all lengths and are preferably
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as small as possible. Two more holograms, H, and H;, with diameters d, and d; are
added. The route of the light from source to detector is shown in part c. of figure 7.1.
‘H, and H; can be reflection holograms, or when the holographic emulsion is coated
with a cover glass, transmission holograms. Unlike the area of H, in part b., the areas
of H, and H; are not fixed by the f# of the sources and can be chosen in a manner
so as to minimize total system size, as quantitatively discussed below.

To calculate the minimum value of d, we again equate the total area occupied

by the holograms associated with the kN interconnections to the total available area

Nd®

EN(d? + d2 + d2(£) + di({)) = Nd° (7.4)
where dy(£) = fA/d,(£). d may be minimized by choosing d2({) = di(£) = fAL. That

is, we use larger facets for longer interconnections. With d; = d, we obtain
& = 2kd? + 2f \ex N*"5d (7.5)
which approximately leads to a system linear extent of
Nid o (kN)3dy + ke N9 FA (7.6)
which becomes, for ¢ > 1/2 and large N,
N7d~ ke N?fA (7.7)

Since the value of f need not be much greater than unity [3], the folded multi-
facet architecture can approach the best possible system size achievable by any 2
dimensional system both in terms of growth rate and numerical factors.

The interconnection scheme presented is similar to the use of waveguides in that
each interconnection consumes area proportional to its length. Whereas guiding (i.e.
focusing) takes place in a distributed manner along the length of a waveguide, in our
architecture it is concentrated at the end points.

Although passage through four holograms is necessary, the overall diffraction ef-
ficiency can still be over 80% if thick phase holograms with individual diffraction
efficiencies of ~ 95% are utilized. To prevent reflection from the glass-gelatin surface,

the average refractive indices of these materials must be equal.
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Several design issues must be addressed during practical implementation of our
architecture, some of which we briefly mention. Let  denote the angle the optical
rays bouncing inside the glass plate make with the normal. # must exceed ~ 43° so as
to satisfy the total internal reflection condition. Another issue is that as they undergo
several bounces, the rays impinge on holograms which belong to other connections.
In order to avoid crosstalk, # should differ from the Bragg angle of the impinged
upon hologram. Since the holograms have very high obliquity, they are very angle
sensitive. By proper selection of very thick emulsion and comparatively low depth of
modulation, we may ensure that the hologram efficiency falls to nearly zero when 8
differs more then +1°-2° from the Bragg angle. Since there is considerable flexibility
in choosing #, with careful design the light rays will impinge only at their destination
holograms at the proper Bragg angle. It does not seem that the design problem of
choosing @ appropriately for each interconnection is more formidable than that of

routing solid wires or waveguides.

7.4 The 38 dimensional multi-facet architecture

Now we describe a 3 dimensional version of the architecture of the previous section.
To the best of our knowledge, this is the first free space architecture whose growth
rate of system size is equal to the least possible for any value of p. It also serves as a
good illustration of how a free space optical system leads to the same growth rate as
systems employing solid wires, as discussed in chapter 6.

The system is constructed in the form of a sandwich of a large number of layers,
as illustrated in figure 7.2. The layers are separated by glass slabs. There are two
kinds of layers. There are N'/3 element layers, on which N'/3 x N1/ elements are
arrayed in cartesian manner. (In the figure, we choose N = 3* for illustration. In
practice N will probably be much larger.) Between the element layers are an as yet
unspecified number of holographic emulsion layers, spaced at a small distance h from
each other. The holograms in these layers can be fabricated directly as computer
generated holograms [104], can be recorded holographically as computer originated

holograms [2] or can be recorded recursively from other aspherical holograms [3].
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Figure 7.2: The 3 dimensional multi-facet architecture I. Side and top views of a
system with N = 3° elements are shown.

Ultimately, in the more distant future, it may be possible to fabricate the whole
system (including electronics, transducers and holograms) monolithically with MBE-
like techniques. The height of the system is equal to its lateral linear extent £, forming
a perfect cube, so that there are ~ L£/h emulsion layers, assurning the elements are
not very thick. The average refractive index of the emulsion material is equal to that
of the glass slabs.

Each connection is established in at most 6 hops, using 5 holograms. The path
of light for a connection between two transducers situated on elements located at
diametrically opposite corners of the cube is symbolically depicted in figure 7.3.

The diameters of holograms H, and H,, which we denote by d, and d, respectively,
are independent of the length of the connection. Both d, and d, should be chosen as
small as possible, however d, must be chosen consistent with the f# of the source and
the distance of H, to the source. Most probably, the holograms H, and H, would be
located immediately above the sources and detectors. The diameters of holograms H,
(da), Hp (dy) and H, (d.) are chosen according to the length of the connection. Larger
holograms will be used for longer connections so as to compensate for the effects of

diffraction.

For many connections, all six hops may not be necessary. However, the above
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Figure 7.3: The 8 dimensional mulli-facet architecture II. The path of light for a
connection between two transducers situated on elements located at diametrically
opposite corners of the cube is shown.

scheme ensures that a connection between any two elements can be established re-
gardless of their relative position. Several other schemes likewise employing a bounded
number of holograms regardless of distance are also possible. The crucial point is that
the line-of sight-problem can be overcome by breaking the connection into a bounded
number of hops whose total path length does not exceed the Euclidean distance be-
tween the two elements to be connected by more than a bounded geometrical factor
of the order of unity. It is important to keep the number of hops bounded with in-
creasing number of elements and system size so that the interconnect efficiency does
not decrease with increasing N. For instance, if each hologram can be fabricated with
> 95% diffraction efficiency, the interconnect efficiency will be > 75% regardless of N.
Also note that there is great freedom in choosing the paths and hologram locations
for the various connections.
Since there are L£/h emulsion layers, the total area available for the holograms is

L2 x L/h = L£3/h. Equating this to the area required for the 5 holograms associated
with each of the &N connections yields

£3

- =

where the overbar denotes averaging over all connections. The area of any 2 consec-

EN(d? + d2(€) + di(L) + d2(€) + d2) (7.8)

utive holograms M, and H, must be chosen such that d, = fAly,/d, where £y, is



CHAPTER 7. OPTIMAL INTERCONNECTION ARCHITECTURES 92

the path length between them. 4., will not be different than the Euclidean distance
between the elements by more than a numerical factor of the order of unity. Thus
to simplify our analysis let us take d2 = d} = d? ~ fM for all holograms and also

assume d, = d, == constant. Then, within a numerical factor of the order of unity

5; ~ kN(d® + fARNT1L) (7.9)

since £ = kN9=2/3d = kN=2/3([/N'/?) = k N*~* L. Thus the system linear extent is
found to satisfy

L~ (kd?R)3NT + (kk)E N2 /(FA)A (7.10)
which becomes for ¢ > 2/3 and large N,

L~ (ke)2 N2/ (FA)R (7.11)

which exhibits the least possible growth rate of any 3 dimensional system o< N9/2.
Numerically, we are worse off than the smallest possible system size (kx)/2N%/2f) by
a factor of (R/fA)Y? > 1. If f ~ 1 and h ~ 100 ym, then we are doing about an order
of magnitude worse than the best possible. As an example, the linear extent £ of a
system with N = 10%, k = 50 and ¢ = 0.8 would be of the order of ten centimeters.

Again, as in the 2 dimensional case, care must be exercised so that the wave
vector of any propagating beam does not unintentionally fall on the Bragg cone of a
hologram it is supposed to pass through without interaction. Given that there is a
very large degree of freedom at our disposal in choosing the locations of the holograms
for each connection, this should not become a problem. It is possible to envision a
computer aided design procedure that would determine the optimal locations for each
connection.

The multiple emulsion layers between the element layers are necessary to achieve
the o« N¥/? growth rate. If we allowed only one emulsion layer per element layer,
then the total available area for the holograms would be £2N'/3, Equating this to
~ EN(fAeNT1L), we find a system linear extent £ o« N?"/3, which is worse than
the optimal o< N9/2 since ¢ > 2/3.

In perspective, we can view the problem of optically interconnecting an array

of points as an imaging problem. Conceptually, the sources can be imaged onto
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their target detectors by tailoring the refractive index distribution n(z,y, z) of the
medium between them. In other words, an optically interconnected computer may
be viewed as a volume hologram with the computing elements embedded into it. The

architecture we have proposed is a particular way of realizing such a system.

7.5 Conclusion

In conclusion, the folded multi-facet architecture {(which is essentially a ‘free space’
architecture) allows near diffraction limited operation and can potentially approach
the smallest possible system size of any 2 dimensional system. This is difficult to
achieve with waveguides, which must usually be packed at an effective line-to-line
spacing much greater than ~ A.

The 3 dimensional multi-facet architecture can achieve the least possible growth
rate of system size of any architecture with increasing N. Numerically, this archi-
tecture may approach the best possible within an order of magnitude, depending on
how small the spacing between the emulsion layers can be made.

Dr. Yaakov Amitai was a collaborator in devising the folded multi-facet architec-
ture and its 3 dimensional version [132] [133]. He also experimentally demonstrated
that diffraction limited operation is possible with such substrate mode holographic

systems [3].



Chapter 8

The Optimal Electromagnetic
Carrier Frequency Balancing
Structural and Metrical
Information Densities with
Respect to Heat Removal

Requirements

In this and the following chapter we will divert from the main theme of this thesis in
order to discuss some relatively fundamental implications of our heat removal model
for dissipative systems employing electromagnetic wave propagation as a medium of

communication.

8.1 Introduction

Of the four basic forces in nature, only the electromagnetic force is effective on a
scale comparable to biological organisms. The human visual and nervous systems

are essentially based on electromagnetic interactions. Most man made computing
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systems rely on electromagnetic phenomena for both regenerative nonlinearities and
communication among their elements. The nonlinear operations may be based on
electronic interaction.

Electromagnetic wave propagation is a most basic means of information transmis-
sion. In this chapter we will consider the use of modulated electromagnetic carrier
waves to establish communication between the elements of a computing system. We
assume that the signals are guided to their destinations with dielectric media only
(including lenses, holograms, waveguides etc.), the use of conductors is excluded from
consideration. |

The elements of our computing system may be relatively simple switching devices
or relatively complex processing elements. In any event we will assume them to be
very small in size. We would like our overall system to be as compact as possible.
Being able to handle vast amounts of information in a small volume is not only a
merit in itself, as exemplified by the human eye, but also results in smaller speed
of light limited communication delays between distant elements of our system. As
discussed in previous chapters, spatial information density and heat removal are two
major physical considerations which will limit how densely we can pack the elements
of our computing system. These considerations are intimately tied together through
the carrier frequency. Increasing the carrier frequency improves spatial information
density; however it also increases the amount of heat we must remove per unif cross
section and time. Since our heat removal ability is limited, there exists an optimal
carrier frequency resulting in smallest possible system size and delay.

We will show that the optimal carrier wavelength is insensitive to system specific
parameters (such as the number of elements, number of connections per element and
interconnection topology) and lies near the infrared and visible bands of the spectrum.

Owing to the general nature of this discussion, our analysis is necessarily approx-
imate. We have also preferred to leave out certain geometrical factors of the order of

unity for simplicity and generality.
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8.2 Preliminaries

In this section we review the two major physical mechanisms which will limit how

closely we can pack the elements of our system.

Spatial information density We will assume that information transfer takes place
along each independent spatial channel in the form of binary digital pulses impressed
on a sinusoidal electroma,gnetic“ca.z‘rier of wavelength A. We know from chapter 6 that
the total volume allocated for communication in a system with total interconnection
length £;5101 must at least be

~ A tal- (8.1)

Thus we see that the spatial {or structural [171]) information density can be increased
by reducing the carrier wavelength A, or in other words by increasing the frequency

v,

Energy dissipation and heat removal The energy of a single photon of electro-
magnetic radiation is given by hv = hc/.)\ where h is Planck’s constant and c is the
speed of light. With increasing frequencies, the increasing energy of a single photon |
will require larger energies to maintain reliable communication, leading to a decrease
in the so called meirical [51] information density. In general, based on statistical
considerations 9 > 1 photons will be required per transmitted bit. The human eye,
under optimum conditions, can detect as little as 100 photons per second [150]. If
it is assumed that the eye can still differentiate events spaced about 100 msec apart
under these conditions, this corresponds to 10 photons per bit. Properly designed
shot noise limited systems may require ~ 100-1000 photons, depending on the error
rate we are willing to tolerate. We will follow Smith [151] in taking # = 10°. The
actual communication energies involved in practical systems may be quite larger than
E = 9hc/ A due to various forms of overhead, as accounted for in chapter 5. However,
for the purpose of this chapter, the energy per transmitted bit will be taken equal to
that of ¥ photons.
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The energy associated with each switching or regeneration event can usually be de-
creased with decreasing temperatures [79] [83]. Thus for sufficiently low temperatures
and operating voltages, the communication energies will dominate electronic switch-
ing and regeneration energies. We are assuming that these energies are irreversibly
dissipated.

Two remarks are appropriate at this point. First, we note that in principal, the
energy associated with each transmitted bit may be reduced down to £ >~ hB, where
B is the bit transmission rate [141] [178]. This will be discussed in chapter 9. Second,
we are assuming that the energy associated with each transmitted bit of information
is dissipated upon detection. It has been argued by many authors that this is not a
fundamental necessity [9] [102] [49] [24]. Thus, our assumptions do not correspond to
ultimate physical limitations, but rather to an idealization of dissipative shot noise
limited communication systems.

The dissipated power must be removed from the system. Our heat removal a‘%ility
is quantified by the parameter @, introduced in chapter 3. Ultimately, how much we
can increase @ is limited by material parameters, which are in turn related to atomic
constants. Thus, even allowing for advances in materials; we do not expect that
the value of Q can be further improved beyond a few more orders of magnitude, if
we are to construct our processing systems from solid state materials under ‘earthly’
conditions. Whereas such a conclusion is too imprecise to have any engineering value,

it will suffice for the purpose of this chapter.

8.3 Analysis

Our model computing system is to be constructed by establishing a prespecified pat-
tern of connections among an array of N1/3 x N3 x N/ elements laid out on a
regular cubic grid with as yet unspecified lattice constant d. The system 1s confined
in a cubic box of volume Nd®. Let k denote the average number of connections per
element and 7 denote the average length of the connections in units of grid spacing.

Ignoring numerical factors of the order of unity, we have 1 <7 < N /3 The total
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connection length in real units is fio1a = kN7d, since there are a total of kN connec-
tions. Using equation 8.1, we find that a volume of at least ~ A?kNFd is necessary
to establish these connections. We must choose d so that the system volume Nd°
exceeds this minimum required volume plus the volume of the elements. Assuming

the volurne occupied by the elements to be negligible, we find that d must satisfy
d® > Nk, (8.2)

The total amount of power dissipated is kNEB where E = dhc/A and B is
the rate at which bits of data are being emitted into each connection. Let us refer
to figure 3.1 and assume that we are able to remove () of power through unit cross
sectional area. Since the cross sectional area of our system is N?/3¢%, the total amount
of power we can remove is QN?/3d?. Requiring that this be greater than the total
power dissipated, we find

EN39heB
-
&> 0

We would like to minimize d both for sake of maintaining a compact system and—

(8.3)

when it is a limiting factor-~minimizing speed of light limited communication delays.
The delay across the extent of the system is given by
N3d

T = p (8.4)

Thus, given N and B, one may choose A so as to minimize d and 7. Equating the
right hand sides of equations 8.2 and 8.3 and solving for A we obtain, with ¢ = 10°
and @ = 100 W/cm?,

A= {fg} 94 BE{1, N3} ~ 0.5 B5{1, N} um (8.5)

where B is in Gbit/sec, and the notation {1, N*/°} means that any value between
the two extremes is possible. Most present day computers operate at rates of 10-
1000 Mbit /sec. Switches operating at ~ 100 Gbit/sec have been built. How large can
N be? The connection machine [70] has ~ 10° elements. Some computers may have
10® transistors or more. The human brain has 10'! neurons [159]. Although both B
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and N may vary over a large range, the optimal value of A is quite insensitive to this
variation.

Often B will not be specified independently. One way of relating B to the other
parameters is to express it as a fraction of the carrier frequency v which it may never
exceed. Thus, using B = pv and equations 8.2 and 8.3 we obtain

2R . s ] 1 1
A= [—Q—] 9ipi {1, N13} ~ 15 {1, N1z} pm. (8.6)
Even if p = 1, we find that A ~ 50 um or so, corresponding to a frequency v ~
5 x 1012 Hz. Presently, we are far from being able to achieve such modulation rates.
o ~ 1072 would be more realistic, leading to A ~ 3 {1, N %} pm.

In most cases, the rate B at which pulses of information are emitted into each
connection will be related o the cycle time of the system, determined by the worst
case signal delay 7, as given by equation 8.4. This approach was taken by Keyes [79].
Thus let us write B = B/7 where 8 is a constant. Most authors take § = 1 without
discussion; however there is no reason why § should not be larger (i.e. we may allow
pipelining). This time, using equations 8.2, 8.3 with equality, equations 8.4, 8.5 and

B = B/t we might solve for the optimal value of A as
2174 1 1
A= [E"ﬁ] ?9%—1—&—-1— ~ 15 ““i'""'é:““f“ pm. (8.7)
Q ks{1,Ns} ks{1,Ns}
The optimal wavelength is very insensitive to both how it is calculated and to the

various parameters. Equation 8.7 is plotted in figure 8.1 for 7 = 1 and ¥ = N'/? with

¢} as a parameter.

8.4 Discussion

In this chapter we considered the use of a full 3 dimensional layout which may not

always be possible to realize. Our analysis may be repeated for a fully 2 dimensional

1Here we are implicitly assuming that the length of the longest interconnection is of the order
of the linear extent of the system. We should also note that r may not be of direct significance in
some cases, such as a nearest neighbor connected system.
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Figure 8.1: The optimal carrier wavelength. Equation 8.7 is plotted with @ as a
parameter. We take 9 = 10% and 5%/4/k/® = 1. The horizontal lines correspond to
=1 and the slanted lines correspond to 7 = N/3.

planar layout, for which the optimal wavelength is found to be of the order of ~
0.1 um. The optimal wavelength is smaller in this case because a fully 2 dimensional
layoﬁt is much more restrictive in terms of providing communication. The optimal
wavelength is also somewhat more strongly dependent on the system parameters in
2 dimensions. For layouts lying between these two extremes, the optimal wavelength
will lie between this value and that found above for full 3 dimensional layouts.
Apart from system parameters with limited effect, the optimal carrier wave-
length is given essentially by A ~ [c¢*A/Q]'/* which is equal to a few microns for
Q = 100 W/cm? Human eyes, as well as those of many other living beings, operate
at wavelengths around 0.5 um. Even bees, despite severe diffraction problems, have
developed compound eyes enabling them to operate at only slightly higher frequen-
cies [47]. There exist ‘windows’ at visible frequencies in the absorption spectrum of
water (figure 8.2) [172] and the spectral distribution of solar radiation 5rriving at the
earth (figure 8.3) [1} [71]. Many electronic energy levels, in particular semiconductor
bandgaps, correspond to visible and infrared frequencies, enabling the construction
of efficient sources and detectors at these frequencies. Although it would be unwar-
ranted for us to draw any conclusions from these facts, one is tempted to think that

they are not unrelated. After all, ) is intimately related to atomic constants through
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Figure 8.2: Absorption spectrum of sea water. The broken lines indicate the visible
spectrum [172].

material parameters.

8.5 Relation between S, B and N

Once the optimal carrier wavelength is calculated, it is an easy matter to calculate the
minimum value of d and 7. Then we can show that the inverse signal delay S = 1/7

satisfies

h
We note that the tradeoff between S, # = B/S and N is weakly dependent on the

other parameters and especially on ¥ (which depends on the pattern of connections).

1
2 F
SpiNtr = k9T [E—Q} . (8.8)

We will have more to say about a similar relationship between S, # and N in chapter 9.

8.6 Conclusion

We considered the use of electromagnetic radiation for communication among the
elements of a computing system. In general, increasing the frequency of radiation
enables higher information densities which potentially offer smaller system size and

communication delays. Even when delay is not an issue, the ability to handle vast



CHAPTER 8 THE OPTIMAL CARRIER FREQUENCY 102

. __.. before onterivg atmosphens |
‘_;"; _ _nisenjevel
v trADEMitATICE

08

08
0.7+
06
a5t
[ 2
03}

02X

intersity (arbitrary units} and trarsmittance

0.1

PO" 100 10

wavelength {microns)

Figure 8.3: Spectral distribution of solar radiation reaching the earth. The solid curve
shows the distribution of solar radiation reaching the upper limits of the atmosphere.
The dotted curve shows the transmittance of the atmosphere under normal conditions.
The broken curve, obtained by multiplying the previous two, shows the distribution of
radiation reaching sea level at normal incidence [1]. The ozone layer screens harmful
ultraviolet radiation. Most of the infrared radiation with A > 1 pm is actually ab-
sorbed by CO, and water vapor (not shown}, resulting in a greenhouse effect which

keeps the surface of the earth warm. For a more detailed graph and discussion, see
[71].
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amounts of information in a compact volume is desirable in itself. Increasing the
carrier frequency v also increases the energy per transmitted bit. Thus, assuming
these energies are dissipated, the amount of heat that must be removed from unit
volume per unit time quickly increases. The maximuin removable heat pertaining
to ‘earthly’ conditions may be estimated based on physical considerations. After a
certain frequency, we can no longer benefit from the high information and packing
densities offered because we will fail to meet the heat removal requirements.

We have shown that there exists an optimum carrier frequency balancing infor-
mation density and heat removal imposed bounds on element spacing resulting in
smallest possible system size. This frequency is found to depend on the speed of
light, which simply relates the frequency to the minimum resolvable dimension A, on
Planck’s constant, which relates the frequency to the minimum resolvable energy, on
our heat removal ability as quantified by @ and also on other system parameters.
Since the optimal value of v is only weakly dependent on all paramneters, it was pos-
sible to obtain a system independent estimate of v ~ 10* which corresponds to the
infrared and visible bands.

Needless to say, care must be exercised in arriving at any practical conclusions
from our results which have been derived for an idealized computing system limited

by simple physical considerations only.



Chapter 9

A Fundamental Consideration for

Dissipative Computing

In this chapter we explore the consequences of assuming that the energy per trans-

mitted bit is reduced down to that dictated by Heisenberg’s uncertainty limit.

9.1 A fundamental consideration for dissipative
computing

In chapter 8, we assumed the energy per transmitted bit to be proportional to the
energy of a photon at the carrier frequency employed. This is not a fundamental
necessity, but rather a consequence of the way we operate our communication chan-
nels. In principle, each photon can be put into one of many time slots, so that more
than one bit of information can be conveyed per photon. The energy flow that must
accompany the transfer of information has been discussed by many authors [20] [8]
[102] [141]. Other references pertaining to quantum channel capacity theory may be
found in [178].

We will take the following result, valid for a single spatial channel, as our starting
point [141]:

(rate of information flow)? < (rate of energy flow) (3 z ;T = 2) : (9.1)
Il

104
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If we restrict our attention to binary aigitai transmission, the rate of information flow
is simply the bit repetition rate B. The rate of energy flow is likewise expressed as
EB in terms of our parameters. Ignoring the numerical factors, we then find that
the minimum energy per transmitted bit is proportional to the bit repetition rate:
E =~ hB. Intuitively, this may be interpreted as a consequence of the Heisenberg
uncertainty relation. If a temporal spread Af is associated with each transmitted bit,
this determines the bit repetition rate B ~ 1/At and E ~ h/At, consistent with the
above result.

The most significant property of the above result is that the energy per transmitted
bit can be reduced by using a greater number of parallel spatial channels. If the total
bit rate B is concentrated through a single spatial channel, we have £ ~ hB. If
however, x parallel channels are used, E ~ h(B/x). Thus there is a tradeoff between
energy per transmitted bit and information density. Starting from this relationship,
one can pursue an analysis similar to that of chapter 8 and derive expressions for
the optimal value of x etc. Here we will not pursue this exercise. Instead, we will
explore the limitations imposed by heat removal requirements alone, assuming that
the heat removal imposed system volume will be large encugh to accommodate as
many spatial channels as needed. (Remember that the space occupied by each spatial
channel can be reduced by increasing the carrier frequency, which has no effect on
the energy according to the assumptions of this chapter.)

As in chapter 8, we are assuming the energy flowing through each independent
spatial channel to be dissipated upon detection. If there are a total of AV = EN
connections, the total power dissipation is N'EB, implying a system linear extent
of L > (NEB/Q)Y? (regardless of whether the system is 2 or 3 dimensional). The
delay across the extent of the system satisfies + > L/e. Of course, the signal delay

cannot be less than the temporal uncertainty At. Thus

7 > min (_i_ (ﬂgﬁ) , At) _ (9.2)

Since At o~ h/FE, 7 is bounded from below. Now, it is an easy exercise to show that
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the inverse signal delay S = 1/7, # = B/S and A satisfy the following relation:

1
201

SBING < {wﬂ : (9.3)

The inverse delay is found to be very weakly dependent on the number of connections

and the value of (). For this reason, it is possible to put an approximate upper bound

on S despite the fact that it is difficult to put a precise upper bound on Q. Based on

our previous discussion of heat removal, we may write
1, -
SHINT ~ 10" sec™? (9.4)

independent of all system dependent parameters. Even a several order of magnitude
improvement in ¢}, which seems unlikely, would have little effect on this expression.

The fact that the right hand side of equation 9.3 is weakly dependent on @ has
a simple dimensional interpretation. If we start with the quantities ¢, A and @ and
form a quantity with dimension of time, we find that the proper combination involves
the fourth root of Q.

We do not wish to give the impression that equation 9.3 is unsurpassable. This
result relies on the assumptions that the energy flow per transmitted bit F is related
to the temporal spread of each transmitted bit At through the relation EAt ~ h and
that this energy is dissipated upon detection. As mentioned in chapter 8, it has been

argued by several authors that dissipation is not a fundamental necessity [33].
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Chapter 10
Basic Analysis

In this chapter we will employ the models presented in the first part of this thesis
to investigate the tradeoffs between the quantities S (inverse signal delay), B (bit
repetition rate) and N (number of elements) and the cost of power and space for each

interconnection medium.

10.1 Optical interconnections

10.1.1 Relations between S, B and N

We postpone the inclusion of heat removal requirements until later. Thus the in-
terelement spacing d is primarily set by the size of the elements and the number of
‘wiring’ tracks that must pass through each cell [85] [84] [52] [5]. When we speak of
a ‘volume’, it will be understood that we mean an actual volume when e = 3 but
an area when e¢ = 2. A similar convention will apply for the use of the term ‘cross
sectional area’. To find the smallest possible value of d, we equate the total volume

occupied by the interconnections and primitive elements to the total system volume:
max(NkxfWe ™, Nd) o NkxIWe™? + Nd§ = Nd°. (10.1)

where x is the number of parallel physical channels used to establish each edge of

the connection graph and £ = 7d is the average connection length in physical units.

108
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Figure 10.1: Cell size for communication limited systems. We take k =5, y = 1 and
W =2\

Ignoring d; we find
d = (kxF)=TW. (10.2)

Of course, d may never actually be less than d;. Note that the same result can be
obtained directly by equating KxW®"! to the cell cross section d°~!, as discussed in
chapter 2. When n > e, 7 x NY¢~1/? 50 that we find d o« N{"~e)/ele-1) The increase
of the volume d® per element with increasing N has been termed space dilation [63].
Space dilation occurs when n > e. Equation 10.2 is plotted in figure 10.1. Given &
and dg, we can use these plots to predict beyond what value of N the system volume
will be determined by communication requirements, rather than by element size. The

linear extent of the system may be obtained as
Ned = Ne(kx?)=TW. (10.3)

Of course, the system linear extent may actually never be less than N'/¢d,;. In all
numerical plots we will vary N from 10* to 10'° {for comparison, the human brain has
about 10" neurons [159]). One should keep in mind however that the larger values
of N in this range may lead to unrealistic system sizes for 2 dimensional layouts.

When T' = Ty is small, § = 1/7 = 1/T, = ¢/l satisfies

1

Srmeet™T = (o) (k) (10.4)
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where £0r = Tmaod denotes the length of the longest connection. When n > e, using
F = kNVe U and rpee = NV¢ we obtain
n—t ¢ =1 -
SNFED = (5) (kxk)=5. (10.5)

When BT, < 1, we simply set ¥y = 1. When BT, > 1, we must choose! ¥ = BT,
since a single physical channel is incapable of transmitting information at a rate of
B. Then

S BT ringa T = (‘5\‘) (k)& BT, 21 (10.6)
which becomes for n > e,
SR N = (5‘:;\-) (kT.)3 BT > 1. (10.7)

Of course, S may never actually exceed 1/T or ¢/N'/¢d,. Thus in general there
are three regions in the rejationship between S and N. The leftmost (small N) region
is the device speed limited region (S = 1/T), the middle region is the element size-
speed of light limited region (S = ¢/NY%d;) and the rightmost (large N) region is
the communication volume-speed of light limited region (equation 10.5 with x =1
or equation 10.7). If p is large, element size is small and/or devices slow, the central
region may disappear.

We remind the reader that the elements must be at least large enough to accom-
modate ~ ky transducers. Also, if an m-fold reduction in 7, was made possible by
wavelength division multiplexing of m distinct wavelength sources, this number must
be further multiplied by m.

If feasible, the use of multiple layers can contribute to 2 dimensional system per-
formance. The width of a cell d must now satisfy d > max(Kx/M,1)W where M
denotes the number of layers [85] and since d must at least be wide enough to admit
the passage of one physical channel. Of course, d will have to be large enough to sat-
isfy several other requirements, including d > dy. It is important to note that there is
a maximum useful value of M. Assuming this maximum useful value is not exceeded,

we may write d = K'W where K' = Ky /M is the number of physical wiring tracks

YStrictly speaking, x, being an integer quantity, is given by x = [BT,], which we approximate
as max{1, BT;).



CHAPTER 10. BASIC ANALYSIS 111

per cell per layer. The right hand sides of the above equations (10.5 and 10.7} are
improved by a factor of M. If the number of layers is large, the effects of vertical
runs must be taken into account. This is considered in detail in appendix 16.11.

To illustrate the usefulness of our formulation, we consider a simple example
derived from concurrent computer architecture. It is often the case that one desires
to minimize the first-to-last bit communication latency 7, of L bit messages. Thus,
we desire to minimize

TL=T+—;5=—IS-+EI;-. (10.8)
Let us assume N = 10%, k =10, e =2,n =3, T = T, = Insec and L = 20. Using
equation 10.7 we find that the optimum value of B is o~ 4 Gbit/sec so that we choose

x = 4. S and 71, may be calculated as o~ 150 x 10°sec™ and = 12 nsec respectively.

10.1.2 Heat removal

We assume that the energy F associated with each transmitted bit is dissipated and
must be removed from the system. We also assume that the dissipation associated
with the elements are negligible. If not, we simply need substitute £ — E + F;/k
where E, denotes the energy dissipation associated with an element.

The 2 and 3 dimensional cases are treated separately.

2 dimensions

Heat removal considerations will also set a lower limit to the cell size d, and hence
system size and delay. The total power dissipation is given by kNEB. Let ¢ denote
the amount of power we can remove per unit area. Thus we must maintain QNd* >
kNEB. Starting from this relation, the heat removal limited version of equation 10.7

may be derived as
[

(E/Q)*

When both communication volume and heat removal considerations are taken into

-
talm

SBIN e (10.9)

account we have (for p > 1/2)

1_Nid N: oo (kxch”"E(2z\), (@> ) . (10.10)

5 c ¢ Q@
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Figure 10.2: The effect of heat removal requirements in 2 dimensions. We take k = 5.
da, Ty and T, are assumed small enough to have no effect. The range of variation
of EB/Q has been chosen based on the typical ranges of variation of the individual
parameters. For smaller values of EB/(Q), the system is communication limited so
that the curves corresponding to these values coincide.

where ¥ = max(1, BT}). Of course, as always, S can never be greater than ¢/N'/2d; or
1/T. Notice that when the system is heat removal limited 1/5 oc (N B)Y/2, whereas
when the system is wireability limited 1/S o« NPmax(1, BT,). Equation 10.10 is
plotted in figure 10.2 with FB/@ as a parameter. We have assumed d; and T to
be negligible so as to make transparent the effects of heat removal. Notice that if
B is kept constant, for large enough N the system is always communication volume
limited, rather then heat removal limited. The critical value of N beyond which heat
removal is no longer a limiting factor is plotted in figure 10.3 for various values of
p. In some cases, the device speed and/or element size-speed of light limited regions
may extend into the communication volume-speed of light limited region so that the
heat removal limited region completely disappears.

As we have discussed in chapter 7 and [134] [132], many seemingly 3 dimensional
optical architectures actually impose wireability requirements similar to 2 dimensional
systems. In particular, certain multi-facet holographic architectures [92] [41] [43] can
be very inhibitive. In fact, when p < 1 and the longest interconnection is of the
order of the linear extent of the array of elements, these architectures are even worse

than the fully 2 dimensional case we have considered. In this case, the linear extent
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Figure 10.3: Critical value of N beyond which heal removal s not o limiting factor.
We take k = 5 and assume T’ is small so that x = 1. EB/Q is varied over the same
range as in the previous figure.

of the system grows as « N as opposed to o N? which we have found for the
fully 2 dimensional case (equation 10.5). Because of their flexibility in providing an
arbitrary pattern of connections, these particular multi-facet architectures form the
basis of many suggested optical computing schemes. Our results are also valid for
systems where the primitive elements are optical switches, provided we interpret £
as the switching energy. Thus we conclude that for large N, heat removal is not the

limiting factor for such systems as well.

3 dimensions

Just as in the 2 dimensional case, () will be specified as the power which we can remove
per unit cross sectional area. The fluid flowing through a cross section d* must carry
away the power dissipation associated with a stack of N'/® elements. Thus the heat

removal condition in this case is
Qd®> > kEBNE, (10.11)

We can also arrive at this by requiring QN?/3d® to exceed the total power dissipation
kENEB. The above equation results in a larger value of d than for the 2 dimensional
case, but the same system linear extent N*/3d = (kEB/Q)*/2N/2.



CHAPTER 10. BASIC ANALYSIS 114

T P————

e EBQuEON-12) m2
) o FBQ107(-10) m2
| S -

S {Lisec)
)
7
7

1@ o

Figure 10.4: The effect of heat removal requirements in 3 dimensions. We take k = 5.
dy, Ty and T, are assumed small enough to have no effect. The second term of
equation 10.12 dominates over the whole range.

Thus, using the above constraint and equation 10.2 we can show

1
1. -Ajgf—max (ExxN?P=%)3(2)), (

! ) 0.2

Q

which is plotted in figure 10.4. Again we assume device related limitations to be
negligible. If B is kept constant as N is increased, the heat removal term eventually
dominates the communication volume term, unless p = 1, when they grow together.
Thus, for large N, highly interconnected systems do not suffer greater delay than
locally interconnected ones.

On the other hand, if B is decreased according to the relation B = g5 with
constant 3, it is easy to show that wireability requirements dominate heat removal
requirements when p > 2/3. What we are trying to emphasize is that whether heat
removal or wireability requirements will become more important with increasing N

depends also on how B is related to N and/or S.
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10.1.3 Asymptotic properties

We make several observations regarding equation 10.7. For given N, B can be arbi-
trarily increased® by incurring a reduction in S. This would be desirable when massive
data transfer is required but the time elapse in which this transfer takes place is not
critical. Thus the HB = kxkN? B product can be arbitrarily increased by suffering a
decrease in S. In fact, using equation 10.7, the tradeoff between' HB and S may be

written in the transparent form

S[HBJ = (2%) =3 (10.13)

Unlike B, S cannot be arbitrarily increased by redﬁcing B, since once B drops
below 1/T,, equation 10.5 with x = 1 is applicable. The growth rate of the delay
with increasing N is then given by 7 o« N?/(=-1), Thus, for given B, the dependence
of HS on N is given by

HS « NET. (10.14)

We observe that HS may be arbitrarily increased by increasing NV provided e > 2. If
the largest possible value of e = 3 can be attained, we have HS o N?/2. Despite the
faster growth rate of delay, systems with larger p have a faster increase of HS with
N.

The above results must be modified if heat removal is accounted for. B and
HB can again be arbitrarily increased at the expense of S, this time according to
equation 10.10 or equation 10.12, for 2 and 3 dimensions respectively.

In both 2 and 3 dimensions heat removal considerations result in a growth rate of
the delay o« N/2, Thus

| HS o« N3, (10.15)

The resultant growth rate of HS is thus the slower of those given by equation 10.14
and the above.
It is also possible to consider other figure of merit functions of signal delay, band-

width, system size and power dissipation and discuss their numerical and asymptotic

20f course, as far as the interconnection network is concerned, remember that we are assuming
Tra to be negligibly small.
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properties and derive a variety of miscellaneous conclusions. We will not further

pursue such exercises.

10.2 Normally conducting interconnections

10.2.1 Relations between S, B and N

In order to accommodate K = k7 wiring tracks, the linear extent of a cell d must
satisfy d*=t > KWe! [85]. We must also satisfy d > dy and the heat removal
requirement, which will be discussed later. We are free in choosing W provided
it exceeds a certain minimum manufacturable value Wy, If dy is small and heat
removal is not an issue, we would prefer to set W to this minimum so as to make d
and the overall system as small as possible. In this case, d*~1 = KW;;,. However,
if element size or heat removal require that we set d*~! > KWg;L, we will agree to
increase W until d°1 = KWe ', If d and hence the lengths of the lines are already
set by factors other than wiring density, we increase W so as to fill up available space.
In this way, we reduce the resistance of the lines as much as possible. Despite the fact
that increasing W no longer decreases the pulse width or delay once the line becomes
device or propagation limited, we will never be at a disadvantage by choosing W in
this manner. As noted before, the error associated with assuming that the elements
and wires may cooccupy the same physical space is bounded by a factor of 2 (i.e. we
are using max(z,y) > ¢ + ).
Thus using d*~! = KW*"! and equation 5.6 with {0, = Tma-d we immediately
obtain
= (16pe)r2,_(kF)TT, (10.16)
Masaki previously derived similar relationships between wire delay and connection
length [114]. When T¢ > Ty so that T = T, the maximum value of B satisfies
B=1/T;or
Br2 7T = (16pe) ket BT: <1 (10.17)

which becomes, for € <'n, USINE Tmae & NV and 7 = gN/e-1/n)

BN = (16p¢) ! (ke)&X BT; < 1. (10.18)
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If the above equation predicts B < 1/Ty, then we are justified in assuming that
T, > T,;. Otherwise, we must use x = BT, > 1 parallel physical lines per graph edge
in order to improve B beyond 1/7;. Since each physical line is bottlenecked by Ty,
there is no use making T; any smaller than T;. Thus with Ty = T, = (16pe)fZ, . /W*,
det = yKWe™! and x = BT, we obtain

=3

B2 5ot = (16p¢) k1T BT, >1 (10.19)
which becomes for € < n,
gu-d
BENTED = (16pe) " (kr)*=1 = T BT; > 1. (10.20)

The above assumes the use of a constant W for lines of all lengths. Actually, since
we are only interested in the delay and pulse width along the longest (worst case)
connection®, we may make shorter lines narrower with the objective of reducing cell

size. Thus, for the case BTy < 1, let us set

2
= Tp = (16p€) oo (dz) = constant (10.21)

for all lines. That is, the width of each line is chosen in proportion to its length so

1
B

that all lines have the same 7;. Then, since a wire of length rd occupies volume {or

area) rdW(r)*~!, the minimum value of d must satisfy
& = j rdW (r)*=2g(r) dr. | (10.22)

Solving for W(r) from equation 10.21 and performing the integration we find

% =T, = (16p6)(k(r*))™  BTy<1 (10.23)
leading to, for e < n,
BN = (16pe)~ (k) S BT; <1 (10.24)

which represents an improvement over equation 10.18 by only a constant factor! The

asymptotic dependence of B on N remains unchanged. Similarly, when BTy 2> 1,

3The average signal delay 7qy. is discussed in appendix 16.12.
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one can show that equation 10.20 is improved by the same factor. It is important to
note that this calculation overestimates the improvement possible since we may not
be able to manufacture the shortest lines as narrow as dictated by equation 10.21.

The use of multiple layers in 2 dimensions contributes greatly to performance.
The number of layers M may exceed the order of ~ 10 [13]. Of course, our previous
comments regarding the existence of a maximum useful value of M apply to this case
as well. Increasing M beyond this value will no longer contribute to performance.
Assuming this value is not exceeded, the right hand sides of the above equations are
improved by a factor of M2.

Equations 10.18 and 10.20 define the relation between the maximum possible value
of B and N over the whole range of N. This relation has been plotted in figure 10.5
along with the corresponding relation derived using equation 10.21. The improvement
possible using nonuniform linewidths is greater when p is small and less when p is
large. When p is small, there exists a larger fraction of shorter lines so that greater
reduction in cell size is possible.

The above relations are scale invariant in the sense that they do not depend on the
actual choice of W, provided W is chosen large enough to fill available wiring space,
as discussed at the beginning of this subsection. This result, based on interconnect
scaling, is in contrast to those based on device scaling, which predict ever increasing
performance as the scale is reduced {145].

It is also possible to show that the bisection-bandwidth product HB is given by

[ o

HB = (kxNP)s3 (16p¢)™ BT, <1 (10.25)
HB = (16,0(—:)1 5

2T,7 BT, > 1. (10.26)

We will further discuss this quantity later.

Until now, we refrained from mentioning S. By definition, S may never exceed-
1/ max(Ty, Ty, T,). The relations for B may be used to find § = 1/ max(1/B,T4,T,).
Remember that the condition for 7}, < T, was W% < 16pevf. As we scale down the
system photographically, all linear dimensions are decreased in proportion. Thus,
below a certain critical W, this condition is satisfied so that propagation effects (i.e.

inductive effects) need not be considered. Indeed, downscaling is recognized as a
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Figure 10.6: Critical width and cell size below which inductive effects need not be
considered. Each part of this figure corresponds to those of the previous figure. '

useful tactic to ensure that S is not worse than 1/ max(Ty,Ty) = 1/ max(l/B,Ty)
[114]. But is this critical value of W manufacturable? Using the above condition

with Lmee = Tmaed and d = (kxF)V/("UW we can show that for the longest line not

to be propagation limited, the scale must be reduced down to

W < 16p€0r s kX7) =T

(10.27)

which is plotted in figure 10.6 for e < n along with the corresponding cell size d. These

W values are certainly manufacturable. Somewhat different considerations apply if

we employ the nonuniform width distribution, nevertheless the qualitative behavior

remains unchanged; inductive effects need not be considered for large N.
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Two other factors may be an impediment to downscaling. One is the size dg of
the elements. Since d may not be less than dg, the critical value of dy below which
inductive effects need not be considered may be directly determined from figure 10.6,
from which we see that this does not become a problem for large N. The other is

heat removal requirements, which will be considered below.

10.2.2 Heat removal
2 dimensions .

Heat removal has no effect on the relations between B and N derived in the preceding
subsection, which are scale invariant. If the system can be downscaled sufficiently so
that the longest line is not propagation limited (i.e. 7, < T'), it does not have any
effect on § either. In 2 dimensions, this is often possible. Since the energy dissipated

per bit along a line of length £ is 2¢V?/, the heat removal condition becomes

Qd® > k(2V*)B = 2¢V*k7dB (10.28)

2
4> 2¢V

k7B (10.29)

where f = 7d. Let us assume Ty — 0 and that the maximum possible bit repetition
rate is employed, as given by equation 10.18. Thus, we may calculate the minimum

value of d as set by heat removal. For e < n we find

. 26V2 —~1 p g2 AF—p—i

which quickly drops below the critical cell size presented in figure 10.6 for voltages
V ~ 1V and the modest Q@ = 1 W/cm® Thus, with increasing N, heat removal is
not a limiting factor in 2 dimensions.

Figure 10.7 provides a comparison of the S versus N curves for optical and nor-
mally conducting interconnections. We assume dy and Ty to be small so as to push
the element limited regimes as far as possible to the left. Based on the discussion of
the preceding paragraph, we assume V2/@Q is small enough to enable the scale to be
reduced to the extent that T, < 7' on the longest line. Thus § = B for the normally
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Figure 10.7: Comparison of optical and normally conducting interconnections. We
take £ = 5 and assume dy, Ty and T, to be small so as to isolate their effects. Heat
removal is not considered for normal conductors. We take M = 10 for normal con-
ductors and M = 1 for the optical layout. Both the constant width and nonuniform
width cases are shown for the normally conducting case. For the optical case, EB/Q
ranges from 1072 m? to 10~* m? in increments of 1072 m?, as in figure 10.2.

conducting case. The curves for the optical case are in terms of the parameter EB/(),
as in figure 10.2.

These curves do not provide a fair comparison, as they assume that B is kept con-
stant with increasing N for optical interconnections, whereas it must be involuntarily
decreased for normal conductors. Thus in figure 10.8 we set B to the largest possible
value allowed by normal conductors.

In general we observe that there is a critical value of N beyond which optical com-
munication offers superior performance over normal conductors. Normal conductors
are beneficial for small systems since the linewidths can be reduced much below than
ever possible with optical lines. However, with increasing system size and line lengths,
we must either: keep linewidths constant and suffer quadratic increase of delay; or:
increase linewidths so as to keep attenuation at an acceptable level and maintain
linear growth rate of delay with length, once again resulting in quadratic growth rate
of delay with system size (since the growth of line lengths are compounded by the
increase in linewidths). Optical communication has the advantage of enabling us to

keep the effective communication cross section constant with increasing system size
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Figure 10.8: Comparison of optical and normally conducting interconnections for
same values of B. Similar parameter values are taken as in the previous figure. E/Q
ranges from 10~2! m?sec to 1073 m?sec in increments of 10~ m?sec.

[134). This discussion is easily quantified. If the linewidths W are kept constant
with increasing system size, we eventually have 7 o H?. If the linewidths are in-
creased according to W? o {4, so as to maintain length proportionate delay so that
T X bmag ~ HW, we again find 7 o« H? since Lo, = HW implies W o< H.

For large p, certain multi-facet holographic optical architectures [43] [132], as we
have discussed in an earlier section, exhibit similar behavior to the fully 2 dimensional
case we have considered. Thus we see that despite their inhibitive nature, these
architectures are superior to 2 dimensional normally conducting layouts for large N.

As discussed above, heat removal quickly ceases to be a problem for 2 dimensional
normally conducting layouts, in the sense that it has no effect on the resulting signal
delay. Nevertheless we present the following analysis which enables us to determine
the scale of the system as set by heat removal considerations.

We will assume that pulses of identical temporal width are launched into all lines
regardless of their length. Thus the minimum value of this pulse width is set by
the longest connection. (In principle, there is nothing that stops us from launching
shorter pulses into the shorter lines, resulting in some energy savings. The following

analysis may be modified for this case.) The minimum pulse width for the longest
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line is given by ,

T == max(Ty, T¢) = max (Td, (lﬁpﬁ)%%) (10.31)
where {pmqr = (ke N? /M)W, provided the number of layers is not too large. The above
expression for T is independent of the scale of the systemn. Pulses of this duration are
emitted into lines of all lengths. According to our tube model, the shorter lines, for
which T > T, will be left unterminated, whereas the longer lines, for which T < T,
will be terminated. Let us denote the breakeven length (in grid units) as r,. Thus,
lines for which r.d/v < T will be left unterminated and those for which rzd/v > T
will be terminated. If the length 7mee o~ N2 of the longest line in our system satisfies
Tmazd ~ N12d < T'v, all lines will be unterminated.

The problem is that we do not initially know d, which depends on the total
power dissipated, which in turn depends not only on d but also on what fraction
of the lines are unterminated. Let us initially assume that N/2d < Tw so that all
lines are unterminated. Then, the energy per bit is given by 2¢V?£, leading to (see

equation 10.29)
2 p..-...l—
i> 2eViERN ZB.

Now, if indeed N'/2d < Tw, justifying our assumption, we are done. If not, this

(10.32)

means that some of the longer lines will be terminated, for which the energy per bit
is given by 2¢V*vT. Then the total power consumption and heat removal condition

may be expressed in terms of a piecewise integral

Q& > [ [ 2evirdg(r) dr + [ 2evrory(r) dr] B (10.33)
1 Tz
which becomes
Qd* > k [ZeVzmgp“ld + Zev%frrf}f’“”z] B (10.34)

where z = (1 — r2/r2 ) < 1. Now, using r, = vT/d, it is possible to solve for d as
2eVE(uT Y k[k + 2] B -
3 .

Since z < 1, we can replace £ + z ~ x with little error. It is interesting to note that

d* > (10.35)

this expression forms continuity with equation 10.32 at ¥ /24 = »T. Combining the



CHAPTER 10. BASIC ANALYSIS 125

0.6 b p08
109 . veon T ey 108 ey wers Lo
— VHOHNAVERIW ] e VAR UONA) V2 2
1wk - W VHQRION-E VEmAYW | w0l - - VHO=1006) V2 r2 W
oo VHQUION-B) VZmW 3 E V2/Qu10M-8) V2 m2/W

d pams)
g

10T

100}

e, 0

7 i i e
N N

43
g

Figure 10.9: Cell size as set by heat removal. B is set to its largest possible value.
We take k = 5, M = 10 and assume that Ty is negligibly small.

two expressions, we may write the minimum interelement spacing d as set by heat

removal in the form

1
2 -1 2 2p—1 35
PR (2ev keNP2B. (2ev (vT) krsB) ») | (10.36)

Q@ Q

This expression is plotted in figure 10.9. The system linear extent is of course simply

given by £ = N*/2d. The total power dissipation may be likewise expressed as
P = 2eV2min(L, (vT)P 1L Pk NP B, (10.37)

The heat removal limited normally conducting case is of historical importance and

has been subject to many previous studies, most notably by Keyes [80] [81] [86].

3 dimensions

We saw that for typical parameter values, 2 dimensional layouts may be downscaled to
the extent that inductive effects need not be considered on the longest line (i.e. T, <
T) so that S is given by 1/ max(1/B,T;). This may not be possible for 3 dimensional
layouts. For room temperature voltages and for the range of N in consideration,
it may be the case that the cell size need be greater than the values given in part
c. of figure 10.6. Thus, the value of S may be quite worse than min(B,1/Ty). Of
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Figure 10.10: Comparison of optical and normally conducting interconnections in 3
dimensions. We take k = 5, p = 0.8 and assume dy, T; and T, to be small. Heat
removal is not considered for normal conductors. For the optical case, EB/Q varies
from 1012 m? to 10™* m? in increments of 1072 m?, as in figure 10.4.

course, for ever increasing values of N, heat removal will eventually cease to be an
issue since B necessarily decreases, and wiring requirements become more stringent.
Before embarking on a complete analysis, let us pretend that the system can be
downscaled enough to eliminate propagation effects (as might be possible by reducing
the temperature and V). Then, a similar comparison as for the 2 dimensional case is
possible and is presented in figures 10.10 and 10.11. Observe that the advantage of
optical communication is greater when p is large and/or the dimension e is low.
Now we give a complete analysis of the effects of heat removal. We initially assume
NY3d/v < T so that
Qd? > N32eV?knNP-3dB. (10.38)

If the value of d calculated from the above expression does not satisfy the assumed

condition, then, just as in the 2 dimensional case we may show
Qd® > N3 E[2eV2er®2d + 2V 20Tr32) B (10.39)

where z = (1 ~ r3/r8 ) < 1. Using r, = vT/d, we can solve for d as

S 2eV2(vT)* 2k N B
B Q

dSp-—I

(10.40)
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where we again used £+ 2z ~ x. This expression forms continuity with equation 10.38.

Thus, the minimum value of d as set by heat removal requirements is given by

2 p-i 2 3p—2 1 T
d = min 2eVikr N 3B’ 2¢V4(vT)***kxN: B (10.41)
Q ¢
and the resulting power dissipation may be expressed as
P = 2V min(L, (vT)*~2L30-P)kx NP B. (10.42)

Now, the inverse signal delay is given by 1/§ = max(N'/®d/v,T). Since d is an
increasing function of B, we have a tradeoff between S and B. If we set B to its
largest possible value of B = 1/T, this will result in a particular value of 5. This
is illustrated in figure 10.12. These curves should be compared to those for optical
interconnections in figure 10.11 to determine which medium is superior. Notice that
the curve for normal conductors in that figure which ignored heat removal is quite
optimistic.

However, we need not set B to its largest possible value = 1/T. By choosing B to
be smaller (i.e. by operating at a smaller duty ratio), we can reduce power dissipation,

pack the elements more densely (i.e. reduce d) and thus decrease propagation delays,
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Figure 10.12: The effect of heat removal for normal conductors in 3 dimensions.

resulting in an increase in S. There is no purpose in reducing B beyond a certain
extent however, as once the scale of the system is reduced to the extent that all lines
become unterminated, further reduction in scale will not improve S. Note that there
is an upper limit to both of the quantities S and B regardless of the other, however
they can be traded off for each other over a certain range. Given any optimization
function involving B and S, we can find the optimum operating point.

As an example, let us assume that we would like to maximize S = B. This
optimization function might be appropriate for a synchronous system where the clock
rate is set by the signal delay along the longest connection.

We will use the duty ratio z < 1 as an optimization parameter. Thus the bit
repetition rate may be expressed as B = z/T. We will assume Ty to be small enough
to have no effect. In part a. of figure 10.13 we plot the optimum duty ratio for selected
parameters. We observe that rather small duty ratios are optimal for a wide range of
N. However, as N becomes very large, the optimal duty ratio tends to unity, because
of the increase in 7. As mentioned before, the maximum value of B involuntarily
drops with normally conducting systems, so that eventually less and less power is
dissipated and heat removal ceases to be an issue. Part b. of the figure shows the
optimal value of § = B, as well as the maximum possible value of B = 1/T, and
the resulting value of S when this value of B is employed (by choosing z = 1). As

z is decreased, smaller values of B are employed, resulting in a decrease in system



CHAPTER 10. BASIC ANALYSIS 129

L p=08 b pel8
101 frmrmprrrrm perprem——————r e 10 Lo S
E eene, ORI X E E ~ . optimum S~B
P 10w%
[ Sk
§

M g 2 L
3 v 3
i é gl
5 w07 L

10 108 104 107 108 plid Lol 104 0 108 107 108 109 103
N N

Figure 10.13: Optimum duty ratio and resulting performance. We assume V2/Q =
1078 V2 m?/W and that Ty is small enough to be ignored. Part a. shows the optimal
duty ratio z. Part b. shows the resulting optimal value of § = B, the maximum
possible value of B (when z = 1) and the value of S for this value of B.

size and increase in 5. Of course, no matter how much B is decreased, S cannot be
increased beyond 1/T.

This example serves as a good illustration of how our analysis can predict an
interesting effect and provide us with a quantitative understanding of it.

The existence of a tradeoff between switching speed and wire lengths for 3 dimen-
sional systems based on heat removal has been independently noted by Nakayama

[127] in a very recent paper.

10.2.3 Asymptotic properties

In this subsection we assume arbitrarily fast devices (ITy — 0), negligible element
size dy and arbitrarily small manufacturable linewidths. As N increases heat removal
ceases to be a problem. Thus, the scale of the system may be reduced sufficiently so
that inductive effects need not be considered and S = B as given by equation 10.18.

Equation 10.18 immediately leads to an important conclusion: for given N, there
is an upper limit to B. This is in contrast with the optical case where B could be
arbitrarily increased by suffering a decrease in 5. Any attempt at increasing B by

using wider lines or x > 1 parallel channels is thwarted by the increase in line lengths,
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since Ty ox £2 /W2,
Let us also investigate the dependence of the HS = HB product on N. We find

HS = HB « N5 (10.43)

which cannot be improved by increasing N since e < 3. In fact, since fully 3 di-
mensional circuits are very difficult to realize, these quantities will often decrease
with increasing N. Thus, once N is large enough to bring us into the interconnect
dominated regime for which our analysis is applicable, further improvement in these
products is not possible. The use of normal conductors is inhibitive for applications

for which these products are a suitable figure of merit.

10.3 Repeatered interconnections

10.3.1 Relations between S, B and N

First assume that element size and heat removal need not be considered. As in the
optical case, T' = RyCy is a constant independent of other line parameters. Thus if
BT <1 we set ¥ = 1. Then, for e < n, using d*~1 = ke N(r—e)/neW}e=1 and

T, = 41/ RoCope Nl;d (10.44)

we obtain »
SN = (4,/Recope) (k) (10.45)

where we assumed T, > T so that S = 1/T},. Of course, S may actually never exceed
1/T. This relation is similar to the corresponding relation for optical communication
in form (equation 10.5 with x = 1), despite being numerically inferior. The relation
between S, B and N when BT > 1 is also similar to that derived previously for the
optical case (equation 10.7).

Upon comparison with the coefficient of equation 10.5, we see that repeaters are
worse than optical communication by less than a factor of 10, assuming RoCo =
100 psec and an optical wavelength of about a micron. Thus, if fast devices are

available, we may approach the performance offered by optical communication within
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an order of magnitude. Such a system may be more compact than the corresponding
optical system, if deep submicron scaling is employed.

Notice that equation 10.45 is scale independent, assuming W is small enough so
that inductive effects need not be accounted for (< 5 um for ByCo = 100 psec). When
element size is accounted for, S is given by the minimum predicted by equation 10.45
and 1/8 = /€ N'/°d,.

10.3.2 Heat removal
2 dimensions |

Since equation 10.45 is scale invariant, heat removal has no effect unless it requires
that the scale be chosen large enough to lead to inductive effects. The power dis-
sipation per cell is kEB where E is the average of E given by equation 5.18 over
lines of all lengths. The power dissipation per cell must not exceed Qd%. Just as in

the repeaterless case, we are agreeing to fill up available wiring space by choosing
kxFW/M = d. Since £/W = rd/W = rkx7/M, we find that we must maintain

Qd? > kF min (26V2d, 86V2”£%—C:2%£) B (10.46)

so that d must be at least

26V k7B (8€V2\/PROCG/# ) * kB3 (10.47)

Q Q M3

d = min

This is to be compared with the critical value d = (kx7/M)4,/pRoCo/pt below which
inductive effects need not be considered. If the first term is less than the second, we
can show that d is less than the mentioned critical value. Then, equation 10.45 is
applicable. If the second term is less than the first, we find that d is greater than the

mentioned critical value. Then

1 .

5= T, = /EEN#d (10.48)
where d is given by the preceding equation (which is dominated by its second term

in this case). In general, S is given by the smaller predicted by equations 10.45 and
10.48. The resulting dependence of S on N is presented in figure 10.14.
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Figure 10.14: S versus N for B = 1Gbit/sec for repeaters in 2 dimensions. We take
k=5 M=10and T = RyCo = lmsec so that x = 1. dy is assumed to be small
enough to have no effect. The curves corresponding to the two smaller values of vi/Q
overlap.

Let us take a closer look at the dependence of the heat removal limited value of
d on the various parameters. First of all note that d « 7, a direct consequence of the
fact that the energy always increases with line length. Assuming B > 1/T so that

x = BT, we may reexpress d as follows

2 (862 /pRaColi BoCo\*
d = k7B min 262; ( ‘ p}gﬂ;/”}% 0) (10.49)

which we may simply write as d = k7B(constant). For @/V? = 10 W /cm®V? and
our usual parameters, (constant) is given by ~ min(0.7,3.5 (RoCo)*/*/M"/?)(m fsec)
where RyCy is in nsec. Thus, if RoCp is not small or M is not large we will most likely
be operating in the lumped regime so that equation 10.45 is applicable. The growth
rate of d as imposed by heat removal is & 7B whereas wiring requirements dictate
d « x7 which is also o #B when BT > 1. Thus which mechanism will dominate
depends on numerical factors, in contrast to the optical case where heat removal
requirements were always overshadowed by wireability requirements with increasing
N (for p > 1/2).
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Figure 10.15: S versus N for B = 1 Gbit/sec for repeaters in 3 dimensions. We take
kE=25,p=08and T = RyCo = lnsec so that xy = 1. d; is assumed to be small
enough to have no effect.

3 dimensions

We repeat the analysis presented for 2 dimensions. Now the minimum cell size is
found to be

hNAB (8eVipRaColu ' ,
d = min | 2~ ’gN B,( ‘ ‘;R" "/‘“) xi(k#)iNEB? | . (10.50)

Thus the resulting delay is the greater of 1), = /e N /34 and that given by equa-
tion 10.45 and is illustrated in figure 10.15.

10.3.3 Asymptotic properties

The asymptotic behavior of repeatered systems is similar to that of optical systems,
when heat removal is not considered. It remains the same for 2 dimensional layouts
even when heat removal is considered. However, the situation is worse when heat
removal is considered in 3 dimensions.

For the 3 dimensional case we refer to equation 10.50. For large N and B, the
second term in this equation will be applicable so that d o« #¥/4B¥*N'/% as opposed

to d o 7/2BY? dictated by wiring requirements. Thus the resulting growth rate
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of signal delay becomes 7 « 73/4B3%*N1/2 as opposed to «x BY2N'/2 possible with
optical communication. For given B, the growth rate of the bisection-inverse delay

product is then found to be (for e < n)
HS « N% (10.51)

which is inferior to the optical HS o« N?~1/2 in its range of applicability (e < n or
equivalently p > 2/3).

If we do not terminate each stage of the repeaters individually and charge up
the segments, then the first term in equation 10.50 becomes applicable so that 7 «
FBN?2/3_ In this case we find that for given B, the bisection-inverse delay product

cannot be increased with increasing N, an inhibiting situation.

10.4 Superconducting interconnections

10.4.1 Relations between S, B and N

As was with normal conductors, we agree to choose W so that the condition d°* >
kx7We=1 is always satisfied with equality. We will mostly be at an advantage (because
of the inverse dependence of 7 on W for given £), and never at a disadvantage by
doing so (within the limits of our abstraction}.

We refer to figure 5.4. If dg is small and heat removal need not be considered,
a moments reflection reveals that it is optimal to work in the intermediate region,
assuming we can manufacture W < 4X. To see this, simply notice that as we scale
the system photographically, £ varies in linear proportion to W. The key quantity to
be calculated is £yee/W. If B < 1/T, = 1/T = 1/Ty so that x = 1, then for e < n we
obtain Lmas /W = Tmez(kr)/ "D N=e)/ne(e-1)  Gince in this region T, = (4A/v)¢/W,

and assuming 7y is small so that 7 = T}, we find, With rpe, ~ NV/¢
n-1 v =1
SN = (Z’J\") (hr) & (10.52)

This relation is independent of the specific choice of W, as long as it lies between
4V/(Jeer/ptf€) and 4X. Can a nonuniform distribution of linewidths help? 42 is
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already less than a micron. Unless we can manufacture W less than 0.1 gum or so,
there is not much room for variation, even if we assume 4V/ (Jsc\/;;/-e) to be small.
Thus we do not consider this case.

Notice that this relation is identical in form with equation 10.5 derived for optical
interconnéctions. The relation for BT; > 1 is likewise similar to equation 10.7. If
¢, o 4 for the superconducting interconnections and optical wavelengths (A ~ 0.5 ym)
are utilized for the optical interconnections, the relations become numerically identical
within a factor of 2.

We stress that despite the similarity of the above relation to the corresponding
optical relation, the superconducting system may be smaller in size. The reduction
in line lengths is precisely cancelled by the inverse dependence of the delay on W, so
that there is no performance advantage. The potential advantage in terms of cost of
area is limited by how small we can manufacture W and how much the voltage can

be reduced and/or critical current increased.

10.4.2 Heat removal
2 dimensions

Heat removal has no effect on performance unless it requires that d be large enough
that W > 4X. Wireability dictates d > kxFW/M whereas heat removal dictates
d > (kEB/Q)"/?. Thus with increasing N, heat removal is not a problem in 2
dimensions. For finite values of N, heat removal may require W to be larger than 4.
The analysis is very sirnilar to the optical case; in fact, figure 10.2 is approximately
applicable to superconductors as well, provided we interpret E = 2V?\/e/uTs. If
low voltage values are used, this energy can be much less than ever achievable with
optical interconnections. '

When heat removal or element size is not a limiting factor, reducing W also
reduces £pnuz, keeping fn../W and the system delay constant. This not only reduces
system size, as mentioned earlier, but results in less total energy consumption (since
Zs o< 1/W in the intermediate region), making it desirable to choose W as small as

possible. However, this increases power dissipation per unit area. Thus, if we use the
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expression for energy FE = 2\/6/—;1_ V2T, valid in the region W > 4\ and find that heat
removal requires that the scale be large enough that W > 4, we know that we are
not excluding any room for improvement in the W < 4A region. When heat removal
allows W < 4, S does not depend on heat removal parameters anyway and is given

by equation 10.52.

3 dimensions

This case is likewise similar to the corresponding optical case, with the above remarks
in mind. We only need interpret figure 10.4 with the appropriate superconducting

energy .

10.4.3 Asymptotic properties

The asymptotic behavior is identical to that of optical interconnections whether heat

removal is considered or not and is not repeated.

10.5 Discussion

In this work we have emphasized certain basic physical considerations which we be-
lieve are major factors limiting the computational capacity of large scale processing
systems. We must not forget that a multitude of engineering issues {163] must be
faced in the actual construction of such systems.

Of the many implementation related issues and limitations we have not considered,
we briefly mention a few. Satisfactory termination of transmission lines may prove
to be very difficult, putting optical systems at an advantage. We are still far from
being able to construct fully 3 dimensional conducting systems. In fact, we are un-
able to realize 3 dimensional optical circuits that can provide an arbitrary pattern of
connections and which can approach the diffraction limited W >~ A we have assumed,
although the architecture presented in chapter 7 comes close. The performance of

stacked 2 dimensional or other ‘quasi’ 3 dimensional layouts would lie between the
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fully 2 dimensional and fully 3 dimensional cases we have considered. The construc-
tion of efficient, reliable and small size transducers is a major difficulty with optical
interconnections. A mature thin film technology for superconducting interconnections
is still to be developed. On the other hand, the use of laminated conductors promises
improvement (even if by only a constant factor) for normal conductors [99].

Another issue we did not directly account for is that of fan-out. Architectures
involving large fan-outs tend to faver optical communication {40].

In this work we have assumed p to be constant throughout the system hierarchy.
More generally, p may be a function of hierarchical level. Although it is possible
to extend our analysis to this more general case, here we have not attempted to
do so as this greatly complicates the analysis without contributing any additional
understanding,.

Perhaps our most important reservation regards the underlying paradigm of com-
putation inherent in our models, which is essentially related to the way electronic
digital computers have been traditionally built. For instance, we are assuming the
energy associated with the transmission of each bit of information to be irreversibly

dissipated. For some applications, this need not be the case at all [24].

10.6 Summary and conclusions

Combining our system (chapters 2, 3 and 4) and physical (chapter 5) models, we
derived relations of the form ®(S,B,N) < Cy for each interconnection medium.
These relations bound the largest simultaneously possible values of S (inverse signal
delay), B (bit repetition rate) and N (number of elements). An abstract formalism
enabling us to relate these bounds to the computational requirements of given appli-
cations was described in chapter 4. The analysis of this chapter has provided us with
a quantitative and qualitative understanding of the limitations imposed by different
interconnection media, and how they compare to each other and to device limitations.

We saw that none of the interconnection media we have considered enabled con-

tinual reduction of signal delay by downscaling. {Optical interconnections cannot be
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downscaled, and all kinds of conducting interconnections exhibit an inverse depen-
dence of delay on linewidth, below a certain linewidth.)

In discussing the limitations of conducting interconnections, we allowed arbitrarily
small scaling and arbitrarily fast devices. We saw that normal conductors, whether
terminated or not, did not allow B to be kept constant with increasing system size
(which is possible with the other media). Both B and S were found to sharply decrease
with increasing N. Making longer lines wider leads to improvement by only a constant
and does not change the asymptotic dependence on N. The bisection-inverse delay
and bisection-bandwidth products were found to be bounded from above. This is in
contrast with the other media with which it is possible to arbitrarily increase B and
the bisection-bandwidth product for any given N, by suffering a decrease in 5.

If repeater structures employing very fast devices are possible, the performance
for 2 dimensional layouts may approach that possible with the other media we have
considered within an order of magnitude. For large system sizes, they will still be
more costly in terms of power consumption. In 3 dimensions, repeaters are inferior
to optics and superconductors since they result in faster growth of signal delay and
slower growth of the bisection-inverse delay product with increasing N.

Optical and superconducting interconnections lead to very similar performance
for same dimensional layouts and similar communication energies. Although super-
conducting layouts may be much smaller than optical layouts, they do not result in
smaller delay because of the inverse dependence of delay on linewidth, once conductor
thickness drops below the penetration depth. Optical interconnections may enable a
3 dimensional layout and freedom from termination problems. On the other hand,
superconductors may offer much lower energies, especially if the voltage level is re-
duced. In 2 dimensions, this leads to improved performance for only a limited range
of N, since wireability becomes more important than heat removal as N increases.
In 3 dimensions however, this will usually enable lower signal delay.

In this chapter, we compared the ability of given interconnection media in pro-
viding communication among a given array of elements. In the following chapters,
we discuss how these media may be used in conjunction to achieve performance not

possible with any alone.



Chapter 11
Optimal Hybrid Implementations

In this chapter we will investigate how different interconnection media can be used
in conjunction to realize a system not possible with any alone. More specifically, we
will determine the optimal mix of optical and normally conducting interconnections

maximizing a given figure of merit function.

11.1 Introduction

In chapter 10, we considered the use of only one interconnection medium at a time
to implement all connections. We found that normally conducting interconnections
were preferable for smaller numbers of elements whereas optical and superconducting
interconnections were preferable for larger numbers of elements. This suggests that
we can do better by joint use of normal conductors (for the shorter connections) and
optics or superconductors (for the longer connections). The question is beyond what

point should we start employing optics?

11.2 The breakeven distance approach

The way this problem was originally addressed in the literature was by deriving a
breakeven distance beyond which the use of optical communication was preferable to
the use of normal conductors [92] {40] [121] [65] .

139
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For instance, Feldman [40] and Miller [121] claimed that optical communication is
energetically favorable for connections of length £ > 1 mm or so. We find Feldman’s
analysis somewhat pessimistic about normal conductors and Miller’s somewhat op-
timistic about optics. In chapter 5 we estimated the optical communication energy
to be about 1pJ for typical parameter values (including modulator energy and 2.5%
overall differential efficiency for (5 um)? devices operated at V = 1V). The energy
per transmitted bit along an unterminated normally conducting line was estimated
to be about 100{J/mm (operating voltage V = 1V}, so that the breakeven length for
energy for this particular choice of parameters is about ~ 1 cm. For superconduct-
ing lines, we may similarly estimate the energy per transmitted bit to be about 1pJ
{assuming 0.1 nsec pulses and an operating voltage of V = 1V}, similar to optics.
However, note that this figure can be made much smaller if the operating voltage can
be reduced.

There have also been attempts to compare the information density of optical and
normally conducting interconnections [65]. However, these comparisons were based on
rather arbitrary assumptions, especially regarding normal conductors. We can derive
a breakeven length for information density using our tube models. First, assume that
we would like to maximize the throughput of information per unit area. For optical
interconnections, the maximum information density is 1/T,.(f))? (in bit/m?sec) (since
each channel operates at a rate B < 1/T, and occupies an area (fA)?). For normally
conducting interconnections, the maximum information density is 1/{16p€)f* (since
B < /T, = W?/(16p€)€?), which decreases with increasing length. With room
temperature conductivity, f = 2 and T, = T; = lnsec, we find that the breakeven
length for information density is about 2 cm, the same order as the breakeven length
for energy. For superconducting interconnections, the maximum information density
is J21/16€V?Ty (since the minimum value of W = 4V/(Juey/i/€)), which is about
the same as for optical communication, assuming J,. = 25mA/pm and V =1V.

An alternative breakeven length which emphasizes signal delay, rather than bit
repetition rate can also be derived. Remember from chapter 10 that the signal de-

lay of a wireability limited layout was proportional to the linewidth divided by the
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propagation velocity. For optics, this quantity is (fA/c) (equation 10.5). For nor-
mal conductors, maintaining length proportionate delay at a propagation velocity
v requires W? > 16pevf (table 5.1). Thus, comparing the minimum value of W/v
to (fA/c) with our usual choice of parameters we find that optical communication is
preferable for lengths greater than about 0.5 mm. For superconductors, the linewidth-
propagation velocity ratio is 4A/v, which is of the same order as optics for several
thousand Armstrong penetrations depths.

Whereas this approach to comparing various interconnect media can be instruc-
tive, it is unsatisfactory in many ways. First of all, it enables comparison of only one
quantity at a time, without paying attention to the others. Whether information den-
sity or energy is of greater importance will depend not only on whether the system is
heat removal, wireability or device limited; but also on the relative emphasis we give
to various measures of performance (signal delay, bit repetition rate etc.) and cost
(system size, power dissipation). Since the length scale of the system is related to the
properties of the interconnections through wireability and heat removal requirements
in a complicated manner, we do not know initially the physical length £ = rd of a
line of length r in grid units. The comparison of isolated lines of given length has
little meaning when these lines are embedded in a system. Even the comparison of
an all optically connected system with an all electrically connected system (discussed
in chapter 10) does not tell us which connections to implement optically in a hybrid

system.

11.3 Outline of the analysis

For the reasons discussed above, we will take a more general approach to this problem.
We will start with a layout of N elements (gates or switches) which we will partition
into N/N; groups of N; elements each (figure 11.1). All connections internal to
a group will be made electrically whereas connections between elements in different
groups will be made optically. For given N and B, we will calculate the optimal value
of N; maximizing our optimization function I', which in general can be a function

of inverse signal delay, total system size and power consumption. We will mostly be
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N,

Figure 11.1: Partitioning a system of N elements into N/N;y groups of Ny elements.

interested in high performance systems for which system size and power dissipation

are only secondary considerations. We will employ the optimization function

S

D=

£—0 (11.1)

which gives full precedence to maximizing inverse signal delay S for given N and B,
and secondarily tries to minimize total power dissipation P. We will also consider
optimization functions putting a greater emphasis on cost of size and power.

Now we actually outline the steps of our analysis (figure 11.2). The linear extent
L, (also denoted as dy) of an electrically connected group of N, elements must be

large enough to:
1. Accommodate N; elements.
2. Accommodate the (electrical) wires connecting them.
3. Accommodate kNY optical transducers.
4. Satisfy heat removal requirements.

Then d,, the intergroup spacing of the electrically connected groups (also referred to

as ‘modules’) must be large enough to

1. Accommodate d;.
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Figure 11.2: Analysis of optimal hybrid layouts.

2. Accommodate the optical channels connecting the groups.
3. Satisfy any additional heat removal requirements.

Based on these considerations we can write expressions for the signal delay (which will
be taken as the worst case over all connections), system size and power dissipation
as functions of N, B, N; and pick the value of N; maximizing our figure of merit
function.

We note that we have relaxed our assumption regarding a uniform array of ele-
ments. Clustering the N elements forming each electrically connected group together
enables considerable energy savings with respect to a fully uniform layout. However,
the N; elements in each group and the N/N; groups are still uniformly laid out.

We have carried out this analysis for a variety of layout constraints, combinations
of media and physical parameters. It is not possible (and perhaps not useful) for us
to reproduce all of our results. Rather, we will try to present representative examples,
chosen for their illustrative and instructive qualities and qualitatively discuss several

general conclusions deduced from the study of a large number of cases.
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11.4 Notation and nomenclature

The subscripts o, n, r and s will be used to distinguish between the parameters
of optical, normally conducting, repeatered and superconducting interconnections
respectively. When no subscript is used, this will mean that that particular parameter
is taken to be the same for all interconnection media.

The notation (N2d) will denote a fully 2 dimensional layout employing only nor-
mal conductors. The notation (N2d,02d) will denote a fully 2 dimensional layout
where normal conductors are used to establish the shorter connections and optics is
used to establish the longer connections. (N3d,03d) denotes the fully 3 dimensional
analog of this layout. The notation (OPI) denotes an optical layout where the ele-
ments are constrained to lie on a plane, but optical communication paths are allowed
to leave the plane. Thus (N2d,0P1) denotes a 2 dimensional array of modules (with
normally conducting internal connections), interconnected with out of plane optical
communication, such as a 2 dimensional array of VLSI chips communicating via a
hologram situated above them. (N2d,52d,03d) would denote a 3 dimensional array
of optically communicating ‘boards’. Each board is a 2 dimensional array of 2 dimen-
sional modules (with normally conducting internal connections), interconnected with
superconducting interconnections.

We will often speak of ‘electrical interconnections’ without specifying whether we
mean normally conducting, repeatered or superconducting interconnections. Which

we are referring to will be evident from the context.

11.5 Regarding numerical examples

As discussed in chapter 1, in our numerical examples we will try to look into the
future and select reasonably optimistic parameters for each interconnection media.
We will also consider the effects of degrading the optical parameters from what seems
their best possible values.

" We will assume 10 GHz devices, i.e. Ty = 0.1 nsec. We will allow a2 maximum of
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10 conducting signal layers' but only M, = 1 signal layer for 2 dimensional opti-
cal layouts, We will use a nominal voltage level of V = 1V and room temperature
aluminum conductivity. We will allow a maximum power dissipation per unit area
of @ = 10W/cm® The minimum manufacturable value of W for conducting in-
terconnections will be taken as Wpin = 0.2 um. The element (gate) size dy will be
assumed to be 10 times this value. We will assume there to be k = 5 connections
per element. The optical transducers will be assumed to be di, = 5 pm in diameter.
We will assume the best possible optical communication energy to be £, = 1pJ but
also consider degradation of this value by a factor of one hundred. Likewise, we will
consider near diffraction limited operation (f = 2) but also consider degradation of
this by up to one hundred (f = 200). We will consider two different values of the
Rent exponent, p = 0.6 and 0.8 to observe the effects of connectivity on the results.

In chapter 10, we often ignored the effects of parameters such as the minimum
manufacturable linewidth, transducer size etc. since the end results could be easily
modified to account for their effects. Since the analysis of this section is somewhat
more complicated, we will include these parameters in our expressions. However, the
values chosen above for Wiy, da and d,., which seem realizable in the near future,
are already small enough that in most cases, totally ignoring the effects of these
parameters would have little or no effect on our results.

We have set the parameter ¢ in equation 11.1 to 107? so as to cause the least
arbitrariness. (We observed that choosing values as large as 107° or as small as 10712
makes no difference. Values larger than 107° start changing the results in favor of
systems exhibiting somewhat larger signal delay but less power dissipation. Values
lower than 10~'% start causing numerical problems on PRO-MATLAB [125].)

A note on the numerical optimization procedure: the optimum value of N, is
determined by discretizing the optimization function I' and picking out the value of
N, that results in the largest I'. This procedure is repeated for discrete values of N.

There are about 2 or 3 samples in every order of magnitude of N and Nj.

1for smaller values of Ny, the maximum useful number of layers may be less than this value. In
what follows we assume that the value of M, etc. is set to this maximum useful value.
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11.6 Some analytical considerations regarding hi-

erarchical analysis

In this chapter, we employ an analysis similar to that of chapter 10 in hierarchical
succession. That is, we first apply this analysis to a group of N; elements. Then
we take these groups as our ‘superelements’ and apply our analysis to a collection of
N/N; such superelements. Qur use of Rent’s rule based wireability analysis in such
a hierarchical manner is similar to that of Bakoglu [6], who used such an analysis to
predict the optimum parameters and performance of multi-chip modules etc.

In this section we derive some results regarding the hierarchical usage of Rent’s rule
based wireability analysis. For simplicity we assumee=2,p>1/2, M =1, x =1
and the use of optical interconnections for both levels of the hierarchy: (02d,02d).

We previously showed that the linear extent of an optically connected system as

imposed by wireability considerations is given by
L = ke NPW. (11.2)

Let us derive the same result based on hierarchical considerations. The linear extent
of a group of N; elements is £y = ke NJW. Obviously, the linear extent of the whole
system must at least be (IN/N;)!/? times this. Furthermore, the whole system can be
viewed as a collection of N/N; superelements with kN connections per superelement.
This implies a system linear extent of £ = max(kNF&(N/N, YW, (N/N,)/2L,) which
upon substitution of the expression for £; is found to be the same as equation 11.2.
Thus, the hierarchical calculation of the system linear extent is consistent with its
direct calculation.

The total area £? = fi,:,iW is proportional to the total interconnection length
£i01a1. Thus, the above result may be interpreted as a consequence of the invariance of
the total interconnection length under hierarchical analysis. The total interconnection
length is given by {itqr = ENkN?P-1/2d where d = kx NP~12W so that

gtotal - (kfi)zszW. (11.3)

Let us now calculate the same quantity based on hierarchical considerations. Again
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consider N/N; superelements with kN] connections per superelement. First let us cal-
culate the contribution of the longer connections (between modules) to the total con-
nection length. It is given by kNT(N/Ny)s(N/N, )P~ /%d,,, (where d,, = L/(N/N{)*/?)
which can be shown to be equal to £ as given by equation 11.3. Thus, the
contribution of the shorter connections (those internal to the modules), given by
(N/Ny)(k&)*NP*W, must be negligible in comparison, as is also easily shown. Thus,
in addition to showing that the hierarchical calculation of £y, is consistent with its
direct calculation, we see that the area occupied by the shorter interconnections can
be neglected in comparison to that occupied by the longer ones (provided N; and
N/Nj are both sufficiently large).

In conclusion, the Rent’s rule based wireability analysis we employ is self-consis-

tent under hierarchical usage.

11.7 Layouts confined to a plane: normal conduc-

tors and optics

11.7.1 Description

In this section we discuss fully 2 dimensional layouts where normally conducting
interconnections are used to provide connections internal to each group and optical
interconnections are used to provide connections between groups: (N2d,02d}.

We refer to figure 11.2. As before, there are k connections per element. Some
of these connections are made to elements in the same module and are implemented
using normal conductors. Other connections are made to elements in other modules.
Such connections are established optically, by tying optical transducers at the to-be-
connected terminals and guiding the light emanated from the source terminal to the
target terminal with some kind of optical imaging system. It matters little whether
the transducers are on a separate layer or side by side with the electrical wiring (since
max(z,y) ~ ¢+ y).

The intergroup spacing d,, may have to be larger than d; = £;, because of the

space necessary to accommodate the optical channels. Again, it makes little difference
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whether we assume that the optical channels are on a separate layer or compeﬁe for
the same space with the modules.

One implementation may involve a 2 dirnensional array of VLSI chips with optical
transducers located on a topmost layer or dedicated islands. The imaging system may

be a glass waveguide overlay or the folded multi-facet architecture of chapter 7.

11.7.2 Analysis

Remember that our purpose is to determine, for every N and B, the value of N;
maximizing our figure of merit function. We can immediately set an upper bound on
Nj since we know that the maximum value of B is a decreasing function of the number
of electrically connected elements. This was derived previously as (equations 10.18
and 10.20 with e = 2)

2
-11-3~ = max ((lﬁpe) (%g—) N (16p¢ Td)% (%) N{’) (11.4)

assuming that the optimum value of x = max(1, BT} is chosen. We can solve each
of the component equations above for Ny and take the minimum as the largest value
of N, compatible with given B. We will denote this value of Ny as Ny,,,,. For given
B, Ny must be chosen to lie between 1 and Ny,,4;-

The linear extent of each module d; must satisfy

kNVE,B

Q
The first term is trivial. d; must at least be large enough to accommodate N; /2 % NI /2

3 |
& > (Nﬁ“dd,N;%K;Wm,-n,d;,( ) ,(kfo)%dt,,kxN{’(f,\)). (11.5)

elements of linear extent d; each. The second term is simply N; /% times the necessary
physical wiring tracks per cell per layer times the minimum manufacturable linewidth.
The number of normally conducting wiring tracks required per cell per layer is given
by K! = K,x/M, = kxxcN} -1/ 2IM,. d; denotes the minimum linear extent of the
module as set by heat removal considerations due to dissipation on the normally
conducting wires. It is given by (equation 10.36)
2V keNIEB (20T, )P knB\ %
a ( Q ) )

= N7 min ( (11.6)
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where the minimum temporal pulse width T, is given by

2
T, = max ((lﬁpé) (%) Nf”,Td) : (11.7)

The term after d} accounts for optical power dissipation on each module. We are
assuming that the power associated with optical interconnections is dissipated at the
transducers. According to Rent’s rule, there will be kN connections per module,
resulting in a power dissipation of kNVE,B. Of course, di must actually satisfy
Qd? > (electrical dissipation + optical dissipation) where the electrical dissipation is
a function of d;. However, the error associated with decoupling the value of d; as
imposed by electrical and optical power dissipation is at most a factor of V2, since the
resulting linear extent is proportional to the square root of the total power dissipated.
The term involving dy, accounts for the fact that the module must at least be large
enough to accommodate kN7 transducers, since x = max(BTy, 1) optical channels
are used per graph edge. The final term accounts for the fact that the linear extent of
the module must be large enough to allow for the passage of kN{x optical channels
through the module, otherwise the channels emanating from the transducers would
not be able to get out of the boundaries of the module. (Such a problem will not
arise when we allow out of plane optical communication.)

The intermodule separation d,, must satisfy
dm 2 max(dy, K,(f1)). (11.8)

Apart from being large enough to accommodate the module, the intermodule spac-
ing must be large enough to accommodate a sufficient number of optical channels.
The number of tracks per module cell per layer is given by K| = K,x/M, =
ENPx(N/N.Y?~1/2/M,. Since no power is dissipated off the modules, we do not
require any additional heat removal terms.

The system signal delay is finally given as the worst case over all connections:

i 2
T maE (va_) dn (16p¢) (%—) Nf’”,i‘—,'rd) : (11.9)

1 c n v
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The first term is the speed of light delay along the longest optical interconnection.
The second and third terms correspond to the delay along the longest normally con-
ducting interconnection and the last term accounts for device delay. The total power
consumption P is also easily expressed as

P = (-N{V-) (kN}E, + electrical energy per module)B (11.10)
1

where the electrical energy per module is given by (equation 10.37)
min (2¢V2kk NP dy, 26V (vT)? kNPT ) . (11.11)

Severa) of the terms in the above analysis are actually redundant and have been
included for completeness. We will now present a stripped down version for further
transparency. We assume M, = 1 and y = 1, as will be the case in all of our numerical
examples. Often dy, d;, and Wy, will be small enough not to be an issue and d; will

be small enough that all lines are unterminated. Then

0 , 0 (11.12)

Assuming fast devices are used the delay is then given by

T = max (anP (_f_{) (:’_V__)% (kaEoB)% (N)% 2¢V*kx NT B

r % 2 o3
dy > max (ka( ), (kM EOB) 26V 2kr N} B) .

c Ny c2Q N cQ ’
ke \? 2
(16p¢) (-ﬁ-—) Nﬁ’). (11.13)

The first term, which is independent of Ny, is also the delay of an all optically con-
nected system of N elements (equation 10.5 with x = 1). Thus, we conclude that
use of a hybrid layout cannot reduce the system size and delay with respect to an all
optically connected system, when the system is wireability limited. This is, of course,
a consequence of the discussion of section 11.6. Since the contribution of the shortest
interconnections to total area is negligible anyway, it does not help to make them out
of submicron normal conductors.

Since 1 < Ny < Ny, the first term in the above equation will eventually

dominate the others with increasing N. When this is the case, the choice of Ny will
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have no effect on the delay. Thus, we will choose that value which results in minimum

power dissipation:
P = NBmax(kE,N'™, 26V kNI dy). (11.14)

When d; is given by the first term of equation 11.12, the value of Ny minimizing total

power dissipation is given by

___ B
2eV2(fA)kk

For larger values of B, either of the latter two terms in equation 11.12 may dominate.

N? (11.15)

Interestingly, whichever of these terms dominates, it is possible to show that the value

of Ny minimizing equation 11.14 is given by the same expression:

_ kEQ
= V)2 B

We see from this equation that the optimal value of N; increases with the optical

N? (11.16)

communication energy and our heat removal ability, and decreases with the bit rep-
etition rate and the Rent exponent. It obviously increases with increasing E,, as
optical communication becomes energetically more expensive. It also increases with
increasing @: if we are able to remove larger amounts of power per unit area, this
means that the scale of the electrically connected groups can be reduced, reducing
the energy cost of electrical interconnections. On the other hand, increasing B re-
duces Ny, since it results in an increase in power dissipation and d;, making electrical
interconnections more expensive. N; also decreases with increasing p. Systems with
larger p have a larger fraction of longer connections so that it is beneficial to make
fewer electrically.

Of course, since we are giving full precedence to minimizing signal delay, keeping
the latter terms of equation 11.13 below its first term will have priority over minimiz-

ing power. For instance, so that the last term of equation 11.13 does not exceed the

2\ %
N < ({2,{:%) " N3 (11.17)

Thus, the optimal value of N, is determined by three considerations. For large N,

first, we must maintain

it will be that value which minimizes total power consumption, as given by either of
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Figure 11.3: Ny versus N for (N24,02d) I. p= 0.6, f = 2, E, = 1pJ.

equations 11.15 and 11.16, with the restriction that it can never exceed Ni,q.. These
two considerations will determine the optimal value of N, for large N, which we will
denote as Ni.,. The optimal value of N; should also not exceed the ‘envelope’ given
by equation 11.17. This last restriction will relax with increasing N. Notice that
the effect of varying p on all three of these considerations is the same: larger Rent

exponent’s favor the use of more optics.

11.7.3 Numerical examples

Throughout all of this chapter, we will keep all but three of the physical parameters
the same for all examples, as discussed in section 11.5. Thus in the following we only
specify the values of p, f and E, for each example.

In our first example we consider a system with Rent exporent p = 0.6, optical
communication density only f = 2 times worse than diffraction limited and an optical
communication energy E, = ‘lpJ . Figure 11.3 shows the optimal value of N, as a
function of N with B as a parameter. For the two lower values of B, it is optimal to
make all connections electrical (i.e. Ny = N) until about N =~ 2 x 10°, after which
the optimal value of N; is independent of N and is that value which minimizes total
power consumption. For these relatively low values of B, the size of each electrically

connected group d; is given by di = ENT(f)). All conducting interconnections turn
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Figure 11.4: S versus N for (N2d,02d) I. B = 100 Mbit/sec, p = 0.6, f = 2,
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out to be unterminated in this example. Thus the total power dissipation is given by
equation 11.14 with dy = kNJ(f}). The value of N; that minimizes power dissipation
is given by equation 11.15 and is indeed consistent with that observed in figure 11.3
for the two lowest values of B. For the two larger values of B, the latter terms of
equation 11.12 dominate so that the optimal value of N, is given by equation 11.16,
which indeed predicts the optimum values of N; for the two larger values of B in
figure 11.3.

Figure 11.4 illustrates the resulting dependence of S on N for B = 100 Mbit /sec.
The solid curve corresponds to the optimal choice of Ny. The broken curve corre-
sponds to making all connections optical and coincides with the solid curve for larger
values of N, and is given by 1/§ = 7 = k&N?fA/c. The dotted curve, which ini-
tially overlaps with the solid curve corresponds to making all connections electrical,
and is given by (16p¢)(kx/M,)2N?. We cannot make all connections electrical once
N > Ninup = 5.7 x 10%, so that the dotted curve terminates at this value of N.
After a certain value of N, making all connections optical is as good as the optimal
hybrid combination in terms of minimizing‘system size and delay, as discussed in the
previous section (following equation 11.13).

However, making all connections optical results in power dissipation about an

order of magnitude larger than the optimal hybrid combination for the largest value
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of B and about two orders of magnitude larger for the smallest value of B. The reason
the disparity is greater for smaller values of B is because the optimal value of N; is
larger when B is smaller. In other words, the all optical system (Ny = 1) is farther
away from the optimum. These considerations have no effect on the resulting system
size and signal delay, since 2 dimensional systems tend to be wireability, rather than
heat removal limited. Another consequence of this is that the resulting value of S for
different values of B is identical (since also BTy < 1 so that x = 1).

The entrance of optical interconnections after N ~ 2x10° elements is accompanied
by a drastic increase in system size, as illustrated in figure 11.5. The linear extent
of the all electrical system is given by 2¢V2kxN?B/Q. Once we start using optical
communication for the longer connections they dominate the system area leading to
a linear extent given by kxN?fA. The curve for S is continuous because the fast
velocity of propagation of optical interconnections compensates for the increase in
system size. The jump in system size can be avoided by keeping all connections
electrical; however in this case the value of S will be less than that possible with
a hybrid system. This is one example of a situation where the use of optics allows
performance not possible with normal conductors alone, but at a significant penalty
in terms of system size.

Let us now explore the effects of degrading the optical parameters. The optimal
value of N; when f = 50 is plotted in figure 11.6. We observe that it is beneficial
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Figure 11.6: N; versus N for (N2d,02d) II. p = 0.6, f = 50, E, = 1pJ.

to stick to an all electrical system (N; = N) until N > Ny, after which the
entrance of optics is unavoidable?. Once this occurs, the module size dy is hmited
by the term ENP(f)) for all values of B. The resulting large value of d; makes
electrical connections expensive, leading to a small optimal value of Ny, as given by
equation 11.15. Notice that although increasing f leads to an overall degradation in
performance and cost, it results in greater use of optics when N > Njypp.

Figure 11.7 illustrates the resulting dependence of § on N. Notice that in this
case, unlike the previous example, a sudden drop in § is observed. This is because
we are forced to use optical interconnections prematurely so as to maintain the given
value of B, before the value of S for an all electrical system falls below that for an
all optical system (as was the case in figure 11.4).

In other words, when f > 10 or so, we have a region in S-B-N space where a
small increase in N or B is accompanied by a large increase in system size and a large
decrease in S. This behavior may have algorithmic implications, as suggested by the
framework described in chapter 4. Among several algorithms designed to solve a given
problem, it may be preferable to employ those requiring relatively smaller values of
N and/or B, if possible, since even small increases in these parameters require a large

sacrifice in terms of §. For instance, if we are trying to maximize a figure of merit

21f £ is too large, the increase in £ accompanying the entrance of optics may be unreasonably
large, so that increasing N beyond Nip,q, while maintaining the given value of B may not be feasible.



CHAPTER 11. OPTIMAL HYBRID IMPLEMENTATIONS 156

1083 e TPt

—__ optimal hybrid
_ _alioptical

8 (Ifsec)

10‘150“ 108 hiig 107 10* 109 e

N

Figure 11.7: S versus N for (N2d,02d) II. B = 100 Mbit/sec, p = 0.6, f = 50,
E, = 1pJ.

function of the form $*BY, where z,y > 0 and £ is not much smaller than y, it is likely
that we will settle for an operating point not involving any optical interconnections.

In conclusion, if the use of optics is to be worthwhile for two dimensional systems,
it is of paramount importance to bring f as close as possible to unity. The folded
multi-facet architecture of chapter 7 was devised to meet this requirement.

Now we discuss the effects of increasing the optical communication energy hun-
dredfold (figure 11.8). For large N, the optimal value of Ny is seen to hit Ny,p,,. For
smaller N, we observe the envelope Ny o« N/ given by equation 11.17. Despite the
fact that increasing the optical energy results in a drastic shift in Ny, it has no effect
on the resulting value of S, which is still as given in figure 11.4. This is because the
system is still wireability limited. (An exception occurs for very large values of B,
for which the system may be heat removal limited up to a certain value of N.}

Of course, now the total power dissipation is much larger and the discrepancy
between the optimal system and the all optical system in this respect is even greater
than before. The entrance of optics results in a large increase in total power dissi-
pation (figure 11.9). The all optical and all electrical system power dissipations are
given by kNE,B and (2¢V*kxNPB)?/Q respectively. The total power dissipation for
the optimal hybrid case is given by N&NT “1E,B with Ny ~ 5 x 10° for larger N.

Let us now consider that p is increased to 0.8. The downward shift in the optimal
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values of N; is easily explained by the changes in the values of Ny,.,. Once again

the envelope given by equation 11.17 is observed.

11.8 Layouts confined to a plane: repeaters and

optics

11.8.1 Description

In this section we consider the use of repeatered interconnections instead of plain
normal conductors: (R2d,02d).

11.8.2 Amnalysis

There is no maximum value of N, for given B when repeaters are used. The linear
extent of each module must again satisfy equation 11.5 where d} is now given by
(equation 10.47)

; kNP2 B (8eV2pRoCalr \ x}kn T~ B
4, = NZ min 2V k“QNl B,( - gt’o ﬂ/”) Xekely "B (11.18)

X
2

My
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with y = max(BTy, 1) as usual. The intermodule separation d, is calculated similarly.

Finally the system signal delay is given by

N ?lz'dm kx p dy
T = max ((—N—l-) ———;:——,4\/p€RgCO (—AZ) NY, ;»,Td) . (11.19)

The total power dissipation is again given by equation 11.10 where the electrical

energy per module is now given by

2
min (zev%andl,Sevz,/”Ii';C" an’j_r”) pr) . (11.20)

As long as the first term of the above equation dominates, equations 11.15 and 11.16

will still be applicable.

11.8.3 Numerical examples

In chapter 10 we discussed that the relations between S and N for repeatered and opti-
cal layouts were identical in form and differed only by the numerical factors (fA/¢)/M,
versus 41/peRoCo /M,. Optical interconnections have larger linewidths and faster
propagation velocity. Repeatered interconnections can (and must) be scaled down
to smaller linewidths but have a slower propagation velocity. Let us first consider
a system with optical communication density f = 50 times worse than diffraction
limited and an optical communication energy of E, = 1pJ. The same results are
obtained whether p = 0.6 or p = 0.8. (For these parameters an all repeatered layout
results in signal delay over 40 times less than that possible with an all optical layout.)
We find that an all electrical system (Ny = N) is best for the range of N and B in
consideration. What essentially happens is that with 10 GHz devices repeaters allow
fast propagation. Much smaller linewidths and 10 wiring layers result in much smaller
system size, more than making up for the deficiency compared to the speed of light.

It is also interesting to note that no optical communication is used even when
the system size exceeds a centimeter, which is the breakeven length for energy for
this choice of parameters. This illustrates the inadequacy of ‘breakeven length’ ap-
proaches. A submicron repeatered line cannot be replaced with an f ~ 50 optical

line even though the latter may have a smaller communication energy. (Of course,
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Figure 11.11: Ny versus N for (R2d,02d). p =08, f =2, E, = 1pJ.

for large N, the total power dissipation for the all repeatered system will be greater
than possible with a hybrid system. Remember however that our original figure of
merit function gives full priority to minimizing signal delay.)

Now, let us assume the value of f is reduced down to 2, which we are assuming
to be its best possible value. In this case, the discrepancy between the use of all
repeaters and all optics is reduced to less than a factor of two. As long as the system is
wireability limited, our optimization procedure still favors all repeaters over anything
else, since it gives full priority to minimizing delay. An exception occurs for very
large values of B for which the system tends to be heat removal limited. Then,
minimizing delay is equivalent to minimizing power dissipation. The optimal value of
Ny is illustrated in figure 11.11. For the largest value of B, the all repeatered system
is heat removal limited and resulis in signal delay greater than that given by the wire
limited equation 10.45. In this case, hybridization (N; < N} is beneficial.

Apart from such cases, when f ~ 2, the signal delay of an all optical system
is very close to that of an all repeatered system (i.e. equations 10.5 and 10.45 are
numerically very close)®. The all repeatered system has much smaller area. When
p = 0.6, the power dissipation of the all repeatered system lies quite below that of

the all optical system for the range of N in consideration (although it grows faster

3This does not mean however that we can interchangeably use optics or repeaters for the indi-
vidual connections in the same system, because of scale incompatibility.
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with increasing N). Thus, unless B is very large so that the system is heat re-
moval limited (as discussed above), an all repeatered system would be preferred.
When p = 0.8, the power dissipation for the all repeatered case grows faster so that
hybridization according to equations 11.15 and 11.16 may be beneficial. (Again,
based on similar arguments as those leading to equation 11.17, we must ensure that
4/7eRaTy (ks /M) NT < (FAf<)(kre/Mo)NP.)

In conclusion, the only situations in which it is desirable to use optics is either
when B is very large so that the system is heat removal limited, or when f ~ 2, p
is large and we give priority to minimizing the cost of power over the cost of system
size. In practice it is relatively difficult to achieve f ~ 2 imaging. Furthermore, a
larger number of conducting signal layers and faster devices may become possible in
the near future. Thus, it seems that as long as the optical communication paths are

constrained to the plane, optics may have limited usefulness.

11.9 Out of plane optical communication: normal

conductors and optics

11.9.1 Description

In this section we will consider layouts where the elements and conducting intercon-
nections are confined to the plane, but optical communication paths are allowed to
leave the plane: (N2d,0P1).

We again assume that the N/N; modules are laid out on a 2 dimensional array
and, as in appendix 16.11, that the system is confined in a box with dimensions
(N/Ny)Y2d,, x (N/N;)Y2d,, x M,(f)), i.e. the height of the box is measured in units
of f) and M, is loosely interpreted as the number of ‘layers’.

Such a system can be realized by actually using M, guided wave layers with
interchannel spacing f2, if such a structure can be constructed. Alternatively, it can
be ‘wired up’ by using discrete fibers of diameter fA. A free space imaging system
would be most desirable, since it would allow a small value of f and would be easier

to construct.
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11.9.2 Analysis

The initial part of the analysis closely follows that of (N2d,02d) layouts. The linear

extent of each module must satisfy

Q

which is similar to equation 11.5 apart from the absence of the last term. In the

L NP 3
dy > (Nﬁdd,NéK;Wm,-,,,d;, (M) ,(kXNf)%d,,,) (11.21)

present case, the optical channels are allowed to vertically leave the modules.
The rest of the analysis follows that of appendix 16.11. The minimum intermodule

separation is given by

dm = max (d;, ka"”(ﬁ/ M)y fA)) (11.22)

where we are free to choose M,. Of course, there is no utility in choosing M, greater
than ENPxx(N/N;Y*~13(f))/d;. Then the signal delay can be expressed as

1 2
7 = max ((WN{%) flé“m,--—IV—IE—E%C—/\—),(16;&6) (%) pr,%,Td) (11.23)

where the second term accounts for the vertical contribution to the delay. Again, it
makes little difference whether we actually add or take the maximum of the first two

terms. The optimal value of M, minimizing signal delay can be calculated as

1 r P—3
M, = max (min ((kxch”)ﬁ", k) XE(NQNl) (f/\)) ,1) (11.24)
1
which leads to
2y 1 2
r = max ((kXKch) (f'\)’ (%)2 %,(16;’6) (%f") Nf?’, %}_,Td) i (1125)

It is also easy to show that the height of the system H = M,{fX) is less than or equal
to its lateral linear extent £ with the optimal choice of M.,.
The calculation of total power dissipation is likewise similar to that for (N2d,02d)

layouts, other than the slightly different expression for dy. Since the constraint d; >
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Figure 11.12: Ny versus N for (N2d,0Pl) 1. p =06, f =2, E, = 1pJ.

kxNF(f)) is eliminated, equation 11.16 will be applicable for lower values of B as
well.

Most of the time, the optimal value of M, will bring d,, down to d; (equa-
tion 11.22). In such cases, minimization of signal delay is equivalent to minimiza-
tion of (N/Np)/%d;. If all conducting lines are unterminated, as will often be the
case, dy will be given by dy = max((kN]E,B/Q)"/?,2¢V2kx N B/Q). 1t is possi-
ble to show that the value of Ny minimizing (N/N;)/?d; is precisely that given by
equation 11.16. Not so surprisingly, for a 3 dimensional layout which is heat removal
limited, minimizing total power is equivalent to minimizing signal delay.

Once again N; must be chosen so as to satisfy a similar condition as equation 11.17.

11.9.3 Numerical examples

The optimal values of N} and the resulting dependence of S on N for our first example
are shown in figures 11.12 and 11.13. The optimal values of V; for large N are given
by equation 11.16, as discussed above. For smaller N, the optimal values of IV; are
limited to smaller values. This is because the electrical delay term (16p€)(kx /M, )2 NE¥
must be kept below the system delay given in figure 11.13. For instance, in the device
limited region where 7 = Ty, requiring that the electrical delay be less than Ty leads
to Ny < 10°, as observed in figure 11.12. After this the delay is given by bN'/?
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where the constant b depends on B, so that we require that the value of Nj satisfy
Ny < (b/(16pe)(kx/M,)?*)/? N*/4_ This equation explains the curves for the optimal
value of Ny for the two lower values of B.

Unlike the (N2d,02d) layout where the optimal value of the system linear extent
and S were equal to those for the all optical case, here we see that the value of
S for the hybrid case is better than both all electrical and all optical alternatives
(again as a consequence of the fact that the system is heat removal limited). This
example provides a good illustration of how both media can be used in conjunction to
obtain performance and cost much better than possible with any alone. An order of
magnitude improvement in S and a hundredfold reduction in power is achieved over
the all optical case.

Increasing f by a factor of one hundred has hardly any effect on the optimal value
of N; and the resulting performance, and is not shown. Since the interelement spacing
is set by heat removal, and not wireability requirements, increasing f within certain
bounds has no effect on system size and delay.

So let us consider also increasing E, by a factor of one hundred (figures 11.14 and
11.15). The value of S for the all optical case degrades by an order of magnitude
(since delay is proportional to the square root of power dissipation). The value of S

for the optimal hybrid case does not undergo a full order of magnitude degradation
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Figure 11.14: N; versus N for (N2d,0Pl) II. p = 0.6, f = 200, E, = 100pJ.

however, since the system ‘adapts’ itself by employing fewer optical interconnections
(larger Ny). For large N, the optimal values of Ny hit the Nipq, ceilings. For smaller
N, the optimal values of N; are limited to smaller values so as to keep the electrical
delay below the system delay. (Since overall larger delays are observed with respect
to the case when the energy was E, = 1pJ, the conditions on Ny based on this
consideration are now weaker. However, overall smaller delays are observed with
respect to the fully 2 dimensional case, so that the ‘envelope’ is tighter with respect
to this case (figure 11.8).) We also note that there is a narrow region around N ~ 10°
when the system is wireability limited and the slope of the curve for § is p/2 = 0.3.
Finally, let us look at the effects of increasing p to 0.8 (figures 11.16 and 11.17).
The optimal values of Ny are explained in a similar manner as in the previous
paragraph. Smaller values of N; are preferred with respect to the p = 0.6 case. The
value of S for the all optical layout (given by equation 10.9) is the same as that when
p = 0.6. The value of S for the optimal hybrid layout is somewhat worse than when
p = 0.6, however, the effect of increasing p on S is relatively little compared to the 2
dimensional case. Also notice that S o« N~*/2 regardless of p.
When E, ~ 1plJ, the discrepancy between the all optical and optirﬁal hybrid
implementations is less for larger B, both in terms of power dissipation and delay.
When E, is increased by one hundred, the optimal hybrid system suffers less than

the all optical system, since it can ‘adapt’ by employing a larger fraction of electrical
P 3
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connections. The room for adaptation is less for lower values of B, since in this case
we are already employing a large value of Ny. For larger values of B, there is greater
room to adapt, so that in this case the degradation in performance of the optimal

hybrid system is less when F, is increased.

11.10 Owut of plane optical communication: re-

peaters and optics

11.10.1 Description

The system is identical to that discussed in the previous section with the excep-

tion that plain normal conductors are replaced with repeatered interconnections:

(R2d,0P)).

11.10.2 Analysis

The analysis is an obvious combination of the analyses of sections 11.8 and 11.9.
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11.10.3 Numerical examples

First consider that p = 0.6, f = 2 and E, = 1pJ (not shown). In this case the
use of repeaters does not offer significant improvement over the use of plain normal
conductors. This is because the expression for energy is the same for unterminated
lines, and because the optimal values of N; are small enough that the electrical delay
term for repeaters is not significantly less than that for plain normal conductors.

Figure 11.18 and 11.19 are for p = 0.8. The optimal values of IV; are explained
as before. Making all connections optical results in a heat removal limited system.
Making all connections repeatered results in a wireability limited system for all but
the largest value of B. The signal delay for the all optical system is worse than that
for the optimal hybrid system by only about a factor of two, for these large values of
p = 0.8 and B = 10 Gbit/sec. We will have more to say about this in chapter 12.

As a final example let us consider figures 11.20 and 11.21 where E, and f have
been increased hundredfold. Quite larger values of N; are preferred with respect to
the previous example, since optical communication is now more expensive and since
the overall drop in S allows larger electrical delays to be tolerated.

Broadly speaking, the use of repeaters often offers limited improvement over the

use of plain normal conductors, since repeaters do not start exhibiting a pronounced
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advantage over plain normal conductors for the values of Ny for which it starts be-
ing beneficial to use optics (often corresponding to connection lengths less than a

centimeter).

11.11 Other systems

Other than those that have been described, we have also considered several other
combinations of layout constraints and interconnection media. Here we will briefly
mention some general considerations and results.

We have considered the case where fully 3 dimensional electrically interconnected
modules are arrayed in a 3 dimensional optically interconnected grid: (N3d,03d).
The analysis is a straightforward 3 dimensional analog of the 2 dimensional analysis.
The only difference is that heat removal requirements must be considered also when

determining the intermodule separation, which must satisfy

¥
dy, > max | dy, | kxN? (E) (FA),

b D : :
( ( N )a (kNTE, + electrical energy per module) B ) ) (11.26)

i

N Q
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Figure 11.22: Ny versus N for (N34,03d). p =08, f =2, E, = 1pJ.

since the power dissipation from a stack of (N/N;)*® modules must be removed
through the cross section d%,. As a numerical example let us consider figure 11.22.
The optimal values of N, are predicted by equation 11.16 which can be shown to hold
for the 3 dimensional case as well.

We have also considered systems where a 3 dimensional array of two dimensional
modules are interconnected optically: (N2d,03d). The optimal value of N; and the
resulting value of S is hardly changed with respect to the (N2d,0P1) case. Since the
system is heat removal limited in both cases, it does not matter whether we confine
the modules to the plane or array them in 3 dimensional space. In most cases, an
(OPI) layout is as good as an (O3d) layout. We have also observed that (N2d,03d)
layouts are not much worse than (N3d,03d) layouts. We already saw that (R2d,0P1)
layouts were not much better than (N2d,0P1) layouts in section 11.10. As a very
crude conclusion, it is probably fair to say that if an (O3d) or (OPl) organization is
used for higher level interconnections, whether we use (N2d), (R2d), (N3d) or (R3d)
for the lower level makes little difference. The system is heat removal limited, and
the energy per transmitted bit for electrical interconnections is the same for all of
these alternatives. This conclusion is more true for systems for which E, ~ 1pJ or
so. For such cases, the optimum value of Ny is such that an (R2d) layout does not
yet start exhibiting a strong advantage over an (N2d) layout etc. For larger values

of E, however, it is desirable to choose larger values of Ny. In such cases, it may be
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beneficial to use (R2d), {(R3d) or (N3d) rather than (N2d), so that the electrical delays
can be kept as small as possible, enabling us to choose the value of Ny minimizing
total power dissipation and system size.

We now briefly discuss how some of the results are altered when superconduc-
tors are employed instead of optics. First consider the fully two dimensional case
(N2d,52d). Remember from chapter 10 that if the superconducting penetration depth
is of the same order as f), and if the energy per transmitted bit E; is similar to that
for optics, the use of superconducting interconnections results in similar behavior to
optical interconnections. However, also remember that it is relatively difficult to re-
alize optical systems with f ~ 1 and E, ~ 1pJ. With superconductors, it should
be easier to approach equation 10.52, provided satisfactory termination is possible.
With V = 1V and Ty = 0.1 nsec we find E, = V2T;/Zy = 1pJ. E, can be made much
smaller if lower voltage values are employed. Furthermore, the use of superconductors
can result in smaller system size. Thus, apart from the termination problem which
we have not taken into account, superconductors can do at least as well as optics,
and perhaps better, for fully 2 dimensional systems.

Since 2 dimensional optics cannot offer an advantage over superconductors, we
considered the case where optical communication paths are allowed to leave the plane,
but superconductors are not, and that E; = 1pJ and E, = 100pJ. As usual, for
small N, an all normally conducting layout is preferred. With increasing N, it is
beneficial to use superconductors for the longer connections. The use of optics is not
yet beneficial, because for these relatively small values of N, 2 dimensional wireability
limitations are not yet very severe. The use of optics would result in a heat removal
limited system, not offering any advantage over 2 dimensional superconductors. For
larger values of N however, the use of optics for the longer connections is desired,
since 2 dimensional wireability limitations become exceedingly severe so that it is
beneficial to employ out of plane communication. As expected, the switch to optics

occurs Jater for larger B, because of the greater importance of heat removal.
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Figure 11.23: Ny versus N for (N2d,02d) V. p= 0.6, f =2, E, = 1pJ.

11.12 Cost based optimization

Until now we concentrated on the optimization function given by equation 11.1 which
gave full precedence to minimizing signal delay and only secondarily tried to minimize
power dissipation. The cost of system size was not accounted for at all. Now we
consider two other example optimization functions which account for the cost of
system size and power dissipation.

First, we consider dividing equation 11.1 by the system area L

S

I'=

(11.27)

Of course, it is always possible to employ more complicated functions if desired.

Figure 11.23 shows how the optimal values of Ny are changed for the (N2d,02d)
layout considered earlier. As discussed before, the entrance of optics is accompanied
by a drastic increase in system size. Thus with our new figure of merit, it is beneficial
to stick to an all electrical system until larger values of N despite the fact that
the resulting signal delay will be worse than that possible with a hybrid system.
However, once N tends to exceed Nz, the entrance of optics is unavoidable. Once
optical interconnections are entered, the steep increase in system size is observed.
For N > Nias, the optimal values of Ny are identical to those in figure 11.3.

Now let us consider (R2d,0P1) systems. This time we divide equation 11.1 by the
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system volume. So as to enable comparison of 3 dimensional all optical and hybrid
layouts to the 2 dimensional all electrical layout, we must agree on a minimum height
Humin for our systems. We will take M,in = 1mm. Then

S
T L2 max(M,(fA), Hoin ) P

r (11.28)

Figure 11.24 shows the optimal values of Ny for relatively large values of E, and f.
We observe that all electrical systems are preferred until very large values of N. After
a certain value of N however, the signal delay becomes so bad that we revert to a
hybrid system. After this, the optimal value of Ny is similar to that with our original
figure of merit.

Now let us consider the figure of merit
'=— (11.29)

which puts greater emphasis on power than equation 11.1. Again we observe an
increase in the optimal values of Ny (figure 11.25), however less than when the cost
of volume was emphasized.

In conclusion, accounting for the cost of system size and power dissipation results

in all electrical systems being preferred until very large numbers of elements.
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11.183 Discussion and conclusions

In this section we present some of the more general conclusions derived from the study
of a large number of examples, including those presented above.

Up to a certain value of N (which usually includes the device limited region for
which © = Ty), it is preferable to make all connections electrical. In chapter 10, we
saw that beyond a critical value of N, even an all optical layout was preferable to an
all normally conducting layout. Thus it will be beneficial to start employing optics
on or before this critical value.

Broadly speaking, we have found that the use of optics may enable performance*
unachievable otherwise, however possibly at a significant cost of space and/or power,
depending on the information density and energy per bit achievable. The use of optical
interconnections may enable smaller signal delay and larger bandwidth in comparison
to an all electrical system. However, they will usually not enable a reduction in our
measures of cost. The system size and power dissipation of the higher performance
hybrid system will often exceed that of the all electrical system.

This behavior can be a result of a number of reasons. First of all, remember that

optical lines cannot be scaled down to submicron dimensions so that they lead to

4Remember from chapter 4 that to increase performance means to be able to access previously
unaccessible points in S-B-N space in a desired direction.
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large system sizes. However, they may still enable greater performance than an all
electrical system, since the signal delay along a longer optical line can be less than
the rise time of a shorter normally conducting line. A similar argument applies to
heat removal limited systems. A hybrid system may dissipate more power than an
all electrical system, leading to larger system size, but may still have smaller delay.

Another reason why we must use optics despite the large cost of system size and
power dissipation is because we may want to increase N and B simultaneously beyond
what is possible with normal conductors. In such cases, we might be willing to employ
optical communication regardiess of how large f, E, and the resulting cost of space
and power is. We can avoid falling into this situation by using repeaters; however
there are still points in S-B-N space which are not accessible without the use of
optics, no matter at what cost. B may be arbitrarily increased with repeaters, but in
some cases resulting in larger signal delay than possible with a hybrid system (and
sometimes even larger cost of space and energy).

Figure of merit functions emphasizing the cost of system size and power dissipation
tend to favor all electrical systems until very large numbers of elements. If full priority
is given to minimizing cost of system size and/or power dissipation, almost always
an all electrical system will be preferred. (The major exception arises when we want
to increase N beyond Nip...) Even if equal priority is given to minimizing signal
delay and measures of cost, as in our examples (section 11.12), all normally conducting
systems are usually preferred until N > Ni,.... When repeaters are used, all electrical
layouts are preferred until even higher values of N, until eventually a hybrid layout is
preferred because the signal delay becomes much worse than possible with the hybrid
system, outweighing the emphasis put on measures of cost.

2 dimensional systems tend to be wireability limited. Consequently, the resulting
performance is found to strongly depend on the connectivity, as measured by p.
How much we can approach diffraction limited information densities has a significant
effect on whether optics is worth using at all, especially if repeatered connections are
employed. When hybridization #s desirable, the optimal value of N, for large N is
usually that which minimizes total power dissipation. As long as it is not very large,

the value of E, has little or no effect on the resulting performance (since the system
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is wireability limited), although it strongly affects the optimal value of ;.

If f ~ 2 for 2 dimensional systems, then a value of E, ~ 1pJ leads to optimal
values of N, of the order of ~ 10*-10%. Increasing E, hundredfold results in Ny ~ 108,
If repeaters are used, optical interconnections are useful only for very large values of
B (when the system is heat removal limited). If f > 10 or so, there hardly seems to
be any room for the beneficial use of optics, if repeaters are available. If not, we may
resort to optics so as to achieve large values of N and B simultaneously. However
if f is too large, the resulting system size may quickly reach unrealistic proportions
(> 10m), so that such a system would not be feasible anyway.

3 dimensional systems tend to be heat removal limited, so that the value of f is
relatively unimportant. A hundredfold degradation from what seems the best possible
(f ~ 2) has little effect on the results. On the other hand, the value of E, not only
determines how much optics should be used, but also has considerable effect on the
resulting performance. If E, ~ 1pJ, the optimal value of N, is of the order of ~ 104
whereas a hundredfold increase in E, leads to Ny ~ 10°.

The degradation in signal delay corresponding to a degradation in E, is less for
larger values of B, since such systems have greater room to adapt to a larger value
of E, by employing a larger value of Ny, relative to systems with smaller values of
B (which already employ large values of Ny). Likewise, systems with smaller values
of p are hurt less by a degradation in E,, since such systems have a smaller fraction
of longer connections and are relatively less dependent on using optics. On the other
hand, an increase in E, by one hundred may lead to nearly an order of magnitude
degradation in signal delay for systems with large p, nearly as much as the all optical
case.

The value of p has less effect on resulting signal delay for 3 dimensional systems.
The power dissipation and system size of a heat removal limited all optical system are
independent of p. For a hybrid system, smaller values of p enable some energy savings
and consequent reduction in system size, since a greater fraction of connections will fall
below the breakeven length for energy and can be replaced with normal conductors.

Hybridization is most important when the system is heat removal limited. For

2 dimensional systems which are often wireability limited, hybridization has little
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effect on resulting signal delay. An all optical system is just as good in this respect
(although it may have much larger power dissipation).

" 'When E, is of the order of ~ 1pJ, even the longest normally conducting lines are
usually short enough to be left unterminated (of the order of a centimeter or less).
Terminated lines are not observed; RC lines are followed directly by optical lines.
It is fortunate that the breakeven occurs at a point where terminated lines are not
yet necessary, since satisfactory termination can be a significant problem. For large
values of E, (or f in 2 dimensional layouts) however, the module size may be forced
to be large enough that the longer normally conducting lines have to be terminated.

Based on the considerations of this thesis, it seems fair to conclude that if the
optical communication energy can be reduced to the order of a picojoule and out of
plane architectures with f ~ 100 or less can be realized, the use of optics has the
potential to contribute significantly to the performance of large scale systems.

As a final remark, we note that there is considerable latitude in the choice of Ny,
leaving room for other technological considerations. In other words, we can deviate
quite a bit from the optimal value of Ny while deviating only little from the optimal
performance and cost. This is illustrated in figure 11.26 where the signal delay and
power are shown as functions of Ny for N = 10° and B = 10% Mbit/sec. We leave it

to the reader to trace down the origins of the various regions in the figure.
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11.14 Related work

The problem of comparing optical and normally conducting interconnections has re-
ceived steadily increasing attention since 1984. As mentioned at the beginning of this
chapter, many authors have made comparative studies of isolated lines. Some au-
thors have also compared all optically connected systems to all electrically connected
systems. Feldman et al. compare a 3 dimensional optical system to a 2 dimensional
electrical system [43]. In a very recent study Stirk et al. compare 3 dimensional opti-
cal and electrical permutation network implementations based on yield considerations
[153].

The problem of how to use both media in conjunction has received less attention.
Other than this work, we are aware of only one very recent study of a similar nature.
Kiamilev et al. discuss how a perfect shuffle network should be partitioned into VLSI

chips which are then interconnected optically [88].



Chapter 12

On the Usefulness of Optical
Digital Computing

In chapter 11, we addressed the problem of determining the optimal mix of optical and
normally conducting interconnections resulting in a system with optimal properties.
In some cases, we found that making all connections electrical was optimal (Ny =
N). However, it was never the case that making all connections optical was optimal
(Ny = 1). Nevertheless, it is interesting to inquire how worse off we are if we do
make all connections optical. In situations where it is found that this does not result
in performance and cost much worse than the optimal hybrid system, it might be
meaningful to consider the construction of an all optical computer.

In this chapter we will speculate as to when an optical digital computer might
be useful, based on the considerations of chapter 11. Since optical communication
is preferable for establishing connections exceeding a certain length, for large system
sizes the beneficial use of normally ;:onducting wires for the shortest connections be-
comes an edge effect and can be ignored. This suggests that the performance and
cost of an all optical computer might not be much inferior to an optimal hybrid alter-
native. We argue that for applications for which high bit repetition rates are useful
despite large propagation delays, it might make sense to contemplate the construction

of an optical digital computer.

180
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Several researchers have addressed this issue in the past, often with negative con-
clusions. We believe that the increasing understanding regarding the importance of
communication in computing and the realization that the architectural-logical con-
struction of a computing system can no longer be divorced from its physical construc-
tion justifies a reevaluation of previous arguments and a search for hitherto unexplored
perspectives.

One cannot be overcautious in interpreting our discussion. Such studies can never
be definitive and our arguments unavoidably rest on floating ground. We nevertheless
present the following with the hope that it will provide a seed for further investiga-

tions.

12.1 Introduction

The possibility of an optical digital computer has attracted considerable attention.
Despite the vast literature on devices, systems, architectures and algorithms for opti-
cal digital computing [23], there has been considerable discomfort as to its usefulness
as compared to other approaches. Switching energy arguments on power-delay dia-
grams, such as in [79] [151] have resulted in the digital optical computer being mostly
viewed as an esoteric curiosity. Following Goodman et al.’s seminal paper [59], the
interest in ‘optical computing’ shifted towards ‘optical interconnections’. This led
to the notion of the hybrid optoelectronic computer. Nevertheless, the assumptions
underlying the negative arguments have not remained unchallenged [75] and optical
computing research has not ceased. In this chapter we explore several issues relating
to the potential usefulness of an optical digital computer and try to identify the con-
ditions under which it would make sense to consider it as an alternative to existing
approaches.

A digital computer can be viewed as a collection of nonlinear switching elements
interconnected according to a certain graph. The nonlinear switching elements often
rely on electronic interaction. Usually, this is true even of so-called ‘optical switches’,
since in most optical switches, photons interact indirectly via electrons. On the

other hand, communication among the elements is often established via photons,
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even in fully electronic computers [123]. The question is whether conductors are
used to confine the wave fields. Thus, we define an all optical computer to be one
which does not employ conducting materials for the purpose of guiding signals among
its switching elements. The all optical computer, as defined, is a special case of
hybrid optoelectronic computers which employ both conducting wires and optical
communication for this purpose.

We will first review some of the essential ingredients of our discussion. Then
we argue that an all optical computer need not be much worse than an optimal
hybrid computer under certain conditions, so that an all optical computer might be
preferred for its relative simplicity compared to a hybrid computer. Then we discuss
some objections to our argument and some issues pertaining to the construction and

utilization of an all optical computer.

12.2 System characterization and evaluation

As discussed in chapter 4, we will characterize our processing systems with 3 param-

eters:
1. The number of elements N.

2. The bit repetition rate B along the connections. For simplicity we assume that

the bit rate is the same for all connections.

3. The inverse delay S = 1/7 across the linear extent of the system. 7 will in
general be the sum of a propagation (speed of light) component and a device
component. The number of device delays that are incurred while an influence
traverses the extent of the system is fixed by graph topology. For given topology,
the best we can do is to minimize propagation delay, which is equivalent to

minimizing system linear extent.

Notice that here the delay 7 is defined somewhat differently than in chapter 4. In
previous chapters we explored the relationships between .5, B and N for a given graph

of connectivity p, and compared various implementations in terms of performance and
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cost. In this chapter we will try to compare the performance of systems with different
connectivities. The above definition of S will serve as a general measure of the speed
at which information ‘percolates’ among the elements of our system. Also, note that
in previous chapters, we mostly considered systems where the length of the longest
connection was of the order of the linear extent of the system, whereas in this chapter
we will also consider examples for which this does not hold.

Remember that how much we can increase all three of these quantities simulta-
neously depends on the choice of interconnection medium and is ultimately limited
by the laws of physics, and that the particular application/algorithm at hand will
determine which we will prefer to increase at the cost of the other(s).

Our first priority will be to maximize performance. Quantitatively, we will try to
maximize § (i.e. minimize 7) for given N and B. (Our choice of N and B as the
independent variables is arbitrary.) If additional degrees of freedom are left in our

design, we will try to minimize total power consumption.

12.3 Lower bounds to system size

We already noted that minimizing global propagation delays is equivalent to mini-
mizing system linear extent. We know from earlier chapters that two major physical
considerations lead to lower bounds to system size: wireability and heat removal re-
quirements. In chapter 3, we argued that the linear extent of a 3 dimensional system
with constant power dissipation per element will become limited by heat removal
considerations with increasing N. In some situations, the power dissipation per ele-
ment may increase with system size, strengthening our conclusion. (Note that if B
does not increase with N, the existence of optical interconnections ensures that the
power dissipation per element need not increase with N either.) On the other hand,
if the power dissipation per element were to decrease with increasing N, this might
invalidate our conclusion. We will come back to this point later.

Given that there are upper limits to device speed, the best we can do to construct
ever powerful computing systems is to make them 3 dimensional and of an ever

increasing number of elements N. Thus, based on the argument of the preceding
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paragraph, we conclude that heat removal will be the major factor determining how
densely we can pack the elements of our system. This means that employing layouts
with larger fractal dimension (or Rent exponent) will not result in greater system
size and delay (still assuming constant power dissipation per element). This suggests
that highly interconnected approaches, which offer greater functional flexibility, will
be preferred in future large scale systems.

‘Of course, there are applications which intrinsically require only limited or local
communication and which would not benefit from the opportunity for direct global
communication; even when it is available at no cost. However, there are other sit-
uations where intermediate results of computation depend on information located
at distant parts of the system. Such applications would benefit from direct global
connections rather than relying on indirect transfer of information or influences over

local connections via several elements.

12.4 Optimal hybrid partitioning

Minimization of system size and propagation delay is possible with a hybrid layout,
involving both normally conducting and optical interconnections, as discussed in de-
tail in chapter 11. Let us consider an e = 3 dimensional system: (N3d,03d); with
N =10% %k = 5 and p = 0.8 {n = 5) operated at B = 10 Gbit/sec. Let the optical
communication energy be E, = 1plJ, based on the discussion of chapter 5; and the
electrical energy be v = 100fJ/mm per unit length, so that the energy per transmit-
ted bit for a normally conducting line of length £ is E,, = £ [121]. We have assumed
that an unterminated line is charged up to 1 V. The corresponding expression for
terminated lines is more complicated, as discussed in chapter 5; however it is in gen-
eral true that the energy per transmitted bit must increase with line length because
of resistive loss. For this choice of parameters, optical interconnections require less
energy per transmitted bit for lines longer than £ = 1cm. Finally, let us be capable
of removing @ = 10 W/cm?® of power per unit cross section of our system.

We will now show that under the above assumptions, employing an optimal hybrid

combination of normal conductors and optics results in a system with linear extent
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L =~ 0.5m. Any other than the optimal mix of optics and normal conductors will
result in a larger linear extent.

In the {following simplified derivations we consider only the effects of heat removal.
Wiring density, bandwidth and rise time considerations are actually all coupled to
energy considerations. However, since heat removal is the dominating consideration,
detailed calculations as in chapter 11 give similar results. '

We consider that a total of N elements is partitioned into N/N; groups of Ny
elements each. Connections internal to a group are established with conducting wires
and external connections are established with optics.

First, let’s find the minimum size £; of an electrically connected cube of N,
elements. The average connection length per element is given by k€ ~ kN{ ~234 for an
e = 3 dimensional layout?. Thus the power dissipation per element is y(£NT =3 *d)B.
Also d = £;/N} /% Heat removal requires that the total power dissipation associated

with the N; elements not exceed QL} where @ is the amount of power we can remove

per unit cross section. Thus

QCt > leNf“"%%fyB (12.1)

Ny
giving £y > kNY 'yB/Q and a total power dissipation of Py = (kN{yB)?/Q per
electrically connected cube of N; elements.
There are kNT edges and hence the same number of optical connections per each
cube of N; elements (Rent’s rule). Thus the global heat removal condition requires

that the systern linear extent £ satisfy

QL > %[kN;’EoB + P4l (12.2)

Substituting for P;, minimizing over N; we find

-51“ 5&"112! —
kB ) ’ e (12.3)

L3> N3 (__.._, E, *
0 v
where y = g#=9/? 4 ¢(@r-10/? and ¢ = (1 — p)/(2p — 1). Notice that whereas a lower

value of p would result in smaller £, it would not change the dependence of £ on

'In this chapter we take x ~ 1 for simplicity.
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N which is still o« N2, With our chosen parameters we find the optimal value of
N; ~ 190, resulting in a system linear extent £ =~ 0.5m. This result is supported by
figure 11.22.

We would now like to determine how worse off we are if we make all connections
optically. In this case, the total power dissipation is kNE,B leading to a system
linear extent of £ = (kNE,B/Q)"? = 0.7m and power dissipation twice as much as
the optimal hybrid system. It is also possible to show that making all connections
electrical would result in a system linear extent in excess of 3m.

In general, the ratio of the linear extent of the optimal hybrid system to that of
the all optical system is given by (for n = 1/(1 — p) > 3)

kB~? =D
QE,

with kBy?/QE, = 1/200 for our numerical example. Interestingly, this ratio is in-

ol

y (12.4)

dependent of N. If p is large, say p = 0.8 as in our example, it is insensitive to the
other parameters.

If the disparity between 0.5m and 0.7m is not considered significant, we might as
well make all connections optically. This might simplify the design and construction
of our system. It should not be surprising that the all optically connected system is
almost as good as the optimal hybrid system in terms of size, delay and power. After
all, in our example the beneficial use of conductors for the shortest connections is an
edge effect and can be neglected.

Until now we did not specify the function of the elements. Given that they have
only a small number of pinouts, let us for the moment presume that they are simple
switching devices or gates.

What does our all optically connected system look like at this point? An array of
N electrical switches or gates with sources/modulators at their outputs and detectors

at their inputs.
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12.5 An argument for optical digital computing

The all optically connected system described at the end of the preceding section
already qualified as an all optical digital computer according to our definition, since
it does not utilize any conductive wiring for communication among its elements.
However, we can do even better by replacing the discrete detector-electrical switch-
source/modulator combinations by their integrated versions. We will speak of an
integrated version of such a combination as an optical switch. A SEED [122] [124] is
an example of such a device.

Such an integrated replacement can only reduce the overall energy consumption.
Notice that there is no distinction between the optical communication energy and the
optical switching energy, as the optical communication energy was that required for
the optical modulator and detector, which we have now merged together to be the
optical switch.

The derivation given in the preceding section reveals that the disparity between the
size of the optimal hybrid system and the all optical system decreases with increasing
B and p. Tt is also necessary for N to be large for the validity of our analysis. Thus,
in general, when N, B and p are large, an all optical system is almost as good as the
optimal hybrid system.

We already argued that future 3 dimensional computing systems of ever increasing
numbers of elements will tend to employ large values of p. If, in addition, we assume
that large values of B are employed, we see that the conditions stated at the end of
the previous paragraph coincide with the trend in constructing ever more poweriul
computing systems.

Large values of B and p are also comsistent with other desirable properties of

optics: ultrafast switching and interactionless cross through respectively.

12.6 The importance of bit repetition rate B

With increasing system size and delays, some algorithms may have a tendency to be

bottlenecked by communication latencies, so that working with a high bit repetition
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rate B may not be of any utility. Thus, there may be a tendency to operate at slower

rates with increasing N. This would invalidate our argument in many ways:

1. First of all, as evident from our analysis, when B is not high, the discrepancy
between the all optical implementation and the optimal hybrid implementation

increases.

2. If B decreases with N, the power dissipation per element decreases, weakening
our argument that 3 dimensional systems become heat removal limited with

increasing 'N.

3. When the value of B is less than the large intrinsic bandwidth of the optical
communication channels, it is possible to employ various strategies to exploit
this bandwidth in order to reduce system size. In such cases, the use of normal

conductors for the shorter connections may be useful. This is discussed in
chapter 13 and {137].

Thus, for applications for which large values of B are not useful with increasing
system size and propagation delays, an all optical computer would probably not be

useful for foreseeable values of V.

12.7 Comparison of systems with different con-
nectivity

In chapter 3 and section 12.3 we argued that since e = 3 dimensional systems are
heat removal limited, the value of p has no effect on the resulting system linear
extent. However, since our assumption regarding constant power dissipation per
element does not hold for hybrid designs, this is no longer precisely true, as evident
from equation 12.3. So as to provide a basis for comparison, let us also calculate the
linear extent of a system with parameters identical to that considered above, excepting
p. Let all connections in this system be to nearest or second nearest neighbors only so

that the average connection length per element is o~ kd. (This layout has n =e¢ =3



CHAPTER 12. ON THE USEFULNESS OF OPTICAL COMPUTING 189

and p=1~1/n = 2/3.) Since all connections are short, we consider making all of

them electrical. The heat removal condition may be written as
QL* > Nv(kd)B. (12.5)

Remembering d = L£L/N1/3, we can show that the linear extent of this system is about
L = 0.5m. (It can also be shown that nonuniformizing the elements as in the hybrid
case does not offer any advantage.)

Let us also consider the optimal hybrid implementation of this system. The deriva-
tion is very similar to the case where p = 0.8, with p = 2/3 instead. We find that the
linear extent can be reduced to £ = 0.27m with N; o~ 2800.

The bisection-bandwidth product of this system is six times less than that of
our original example. Since all connections are to nearest neighbors, the transfer
of influences across the extent of this system takes N/® device delays, which with
100 psec switches amounts to 10nsec. This is an order of magnitude greater than
the speed of light delay across the linear extent (0.27m)/(3 x 10® m/sec) = 1nsec.
Our original example with p = 0.8 may for instance be a 5 dimensional mesh. N*'/®
device delays are suffered in traversing the linear extent of such a system, adding up
to 1.6 nsec which is comparable to the speed of light delay (0.7m)}/(3 x 10° m/sec) =~
2.3 nsec. The total delay is 3.9 nsec. Our all optical 5 dimensional system is superior
to the optimal hybrid 3 dimensional system in terms of both bisection-bandwidth
product and global delay, despite its greater linear extent. This strongly suggests
that there should exist problems/applications for which the total time of computation
would be less on the all optical 5 dimensional mesh. Of course, an optimal hybrid 5
dimensional mesh is even better, but not by a significant amount (total global delay
= 3.3 nsec).

Tables 12.1 and 12.2 summarize these results, which will be further discussed in

a later section.
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n  All optical £ Optimal hybrid £ Al electrical £
3 0.7m 0.27m 0.5m
5 0.7m 0.5m 3.2m

Table 12.1: System linear extent for n = 3 and n = 5 dimensional meshes laid out in
e = 3 dimensions. N = 10%, k = 5, B = 10 Gbit/sec, E, = 1pJ, v = 100{J/mm and
Q = 10W /cm?.

n Al optical HB Optimal hybrid HB All optical 7 Optimal hybrid =
3 500 Thit/sec 500 Thit /sec 12 nsec 11 nsec
5 3200 Tbit/sec 3200 Thit/sec 3.9 nsec 3.3 nsec

Table 12.2: Bisection-bandwidth product and global deley for n = 3 and n = 5 di-
mensional meshes laid out in e = 3 dimensions. N = 10%, k = 5, B = 10 Gbit/sec,
E,=1pJ, ~ = 100£fJ /mm, @ = 10 W/cm? and device delay = 100 psec.

12.8 Some credible objections

In this section we address some of many possible objections to our arguments. First
of all, we must not forget that our discussion is based on certain basic physical
considerationis only. We cannot claim that other considerations will not completely
swamp them. Other optical considerations such as noise, crosstalk or aberrations
may be shown to deem such large systems impossible. And of course, a myriad of
engineering issues must be faced in the construction of a real computer.

The global delay across the linear extent of the system need not be a good indi-
cator of performance. For instance, for some tasks which are divisible into a large
number of relatively independent subtasks, the speed of local communication may be
more significant than that of global communication. The worst case delay may not
bottleneck operation.

A major objection to our argument rests on the following question: what if the
elements are not just gates but more complicated circuitry, still of the same size and

number of pinouts. In this case, even if making all connections optical is shown to
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be not worse than the optimal hybrid combination, we cannot replace these detector-
element-source/modulator combinations with simple optical switches. In fact, this
may be considered as a proof that a hybrid system can always have more computa-
tional resources than an all optical system. The size of an optical switch cannot be less
than ~ 1 um, whereas in a microns space, several electrical switches can be squeezed
if deep submicron technology is employed. However, Rent’s rule will be broken: the
switches will have limited communication with the outer world. Information flow at
the original fractal dimension is not possible through the boundary of the elements
and some form of serialism must be employed.

Thus this objection boils down to the question of what usefulness an element of
internal sophistication but limited pinouts may have. Of course, an element with
sophisticated internal structure would always be desirable over a simple switch with
the same number of pinouts, if it is available at no cost, since it could easily simulate
the simple switch. However, the question is whether such elements will have sufficient
utility to make their usage worthwhile. A simple example of an element with limited
pinouts but arbitrarily large internal structure is a shift register, which can serve as a
memory. However, this memory will have a large access time. We might argue that a
shift register is always preferable to a single gate, since a slow memory is better than
none. On the other hand, this memory might have such limited usefulness in certain
situations due to its slowness that we might not bother having it.

Another example is a microprocessor which has far less pinouts than Rent’s rule
implies [44]. Whereas such so-called ‘functionally complete’ units are consistent with
existing systems approaches, it is not clear that this is the most advantageous way
of constructing supercomputers {84]. It may be that a massive and homogeneous
collection of switches connected with a uniform Rent exponent is more beneficial.
Alternatively, it may be that optical nodes with some internal sophistication and
function integrated into them do have some usefulness. Whether such an integrated
structure is still considered to be an optical switch or rather an electronic circuit
with optical ports is a matter of definition. Indeed, Lentine et al. [108] have noted
the fuzziness in the definition of an ‘all optical’ computer: “Because of the limited

functionality achievable in ‘all optical’ logic gates, a growing interest is seen in ‘optical’
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processing elements made using optoelectronic devices with greater functionality.”.
Whether or not this trend is merely a legacy of existing design approaches, it seems
that the first optical computers and switching systems will employ ‘optical’ nodes
with relatively sophisticated functionality.

We cannot arrive at any general conclusions. Whether limited pinout elements are
useful will mainly be determined by the particular application. Nevertheless, general
observation seems to indicate that the percolation of information is crucial in the
working of computing and cybernetic systems [84]. It is difficult to think of where
human civilization would be if we had less of our five senses, even magically granted
the same brains. Living systems are characterized by their ability to keep their
entropy low and their orderliness high. They achieve this by energy consumption
and information exchange with their surroundings [178] [21] [148]. Perhaps, such

considerations may be thought to apply to artificial systems too.

12.9 What might the optical computer look like?

The example of section 12.4 illustrates the order of numerical values for which it is
meaningful to consider an all optical computer. For greater performance we might
increase N as much as possible. For instance, a system with 10° elements would be
7m 1In size. ‘

How can we quantify the performance of our system? A figure of merit of per-
formance which jointly emphasizes parallelism, connectivity and bandwidth is the
bisection-bandwidth product, defined in chapter 4. The bisection-bandwidth product
of the system we considered as an example is given by £N?B = 3200 Tbit/sec. A
system with N = 10° elements would have kN?B > 10° Tbit/sec.

It is also interesting to note that the number of bits of information such a system
can ‘remember’ at any given instant can be greater than the number of switches N
since several bits are simultaneously in transit along the longer connections, which
Serve as memory.

The vision of the digital optical computer emerging from our considerations is as
follows. It will be large (N ~ 107-10® and £ > 1m), highly interconnected, operated
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at very large repetition rates (multi Gbit/sec) and due to its size exhibit large speed
of light limited delays between its distant elements (~ 10nsec). Its bisection-band-
width product (kN?B) might be of the order of 10'®bit/sec. It will be suitable for
situations in which a large repetition rate is useful despite large speed of light limited
propagation delays. In other words, it will be appropriate for applications where one
prefers large values of B at the expense of N and S,

How can such a system be actually constructed? It is possible to show for our
original example that there is enough spacing between the elements to wire up the
system using discrete fibers of about one millimeter diameter. This approach is
intimidating from a constructional viewpoint. Since the system is heat removal limited
and we are interested in the worst case global (and not average) delay, it makes little
difference, if instead of situating the elements on a 3 dimensional grid, we lay them
out on a plane, and use the third dimension for the purpose of communication. We
simply lay the 10° elements about 0.7 mm apart in the form of a 10® x 10% array.

It is preferable to use free space optics rather than discrete fibers. However,
conventional imaging systems allow free space interconnections at high density only
for a regular pattern of connections. Since the system is heat removal limited anyway,
multi-facet holographic approaches [92] [43] may be used to provide an arbitrary
pattern of connections for smaller N. However, the resulting system size with these
approaches is crudely £ ~ kN (chapter 7 and [134]) so that for N > 10°, they would
not be desirable.

We do not know if a system with a regular pattern of connections of the same
computational power as that of an irregularly connected one is always possible. Huang
seems to argue in favor [74] whereas the maximum entropy approach of Keyes would
seemn to indicate otherwise [84] [86].

I the 3 dimensional multi-facet architecture of chapter 7 can be built, it would
solve once and for all the problem of being restricted to a regular pattern of connec-

tions.
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12.10 What is it good for?

What do we do with a > 10% x 10°% array of globally connected switches? It does not
seem that straightforward mapping of conventional digital logic as it exists in today’s
electronic computers would make the most of such a system. The author does not
know what kind of functional implementation (existing or to-be-discovered) would be
best, although one possibility is suggested below.

As mentioned before, a 5 dimensional mesh with radix N'/® is an example of a
graph with p = 0.8 and k& = 5. This graph may represent the connection pattern
of a 5 dimensional nearest neighbor (in 5 dimensions) connected cellular automata.
In section 12.7, we also considered a 3 dimensional mesh, which may represent the
connection pattern of a 3 dimensional nearest neighbor connected cellular automata.
The resulting linear extent, bisection-bandwidth product and global delay for these
systems were presented in tables 12.1 and 12.2. Based on a comparison of their
bisection-bandwidth products and global delays, we conjecture that there exist con- '
crete problems (such as sorting etc.) for which the time it takes to solve these problems
on our 5 dimensional examples is less than on our 3 dimensional examples, despite
the fact that our 5 dimensional examples have greater linear extent and connection
lengths. If one can find an example of a problem which can be solved in shorter time
on our optimal hybrid 5 dimensional mesh of £ = 0.5m than on the optimal hybrid
3 dimensional mesh of £ = 0.27m, this would serve as an existence proof that indeed
for some applications, highly interconnected approaches are preferable for large € = 3
dimensional systems. It would be even more interesting to provide an example prob-
lem which can be solved in shorter time on the all optical 5 dimensional mesh with
£ = 0.7m, than on the optimal hybrid 3 dimensional mesh with £ = 0.27m.

Multidimensional cellular automata offer an alternative to computing based on
functionally complete entities (assuming one finds a better way of performing useful
computation other than simulating conventional logic functions in the automata).
The latter approaches allow us to view functionally complete entities at a lower level
as black boxes, greatly facilitating design and construction. Without the benefit

of such structuring, the conception and design of large scale ‘arbitrarily connected’
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systems would be intimidatingly complex. One way to avoid this is to resort to

systems exhibiting some form of regularity. This brings us back to the question of

whether requiring such regularity takes back any of the potential advantages.
Another alternative to functionally complete approaches is that of neural comput-

ing, which is beyond the scope of this discussion.

12.11 Beyond dissipative computing

QOur discussions ‘assume dissipative computing. There is general consensus that dissi-
pationless computing does not contradict the laws of physics. In particular, it seems
that it is possible to perform a large number of operations with only limited dissipa-
tion (if we don’t care to observe intermediate results) [24].

In the limit of very large systems and extremely fast devices with very little or no
energy dissipation, one envisions that a nearest neighbor (in 3 dimensions) connected
cellular automata can be used to simulate any other computing system with little

degradation, as well as any other finite portion of the universe.

12.12 Conclusion

To build ever powerful processing systems, we must increase the number of elements
N. If the bit repetition rate B along the connections of our system is large, heat
removal considerations tend to dominate wireability considerations for 3 dimensional
systems, suggesting (but not proving) that highly interconnected approaches may
be preferred to increase parallelism and functional flexibility. For such systems, the
fraction of connections with lengths greater than the energy breakeven between nor-
mally conducting and optical interconnections will be large, so that we might as well
make all connections optically. It is meaningful to consider such a system because
using conductive wiring to establish the shorter interconnections will not result in
considerable improvement in system size and global delays. (Nor will it necessarily
make them worse, and it is a subjective issue whether it is considered more simple

to keep it all optical or to keep the number of optical connections minimum by using
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conducting wires as much as possible.)

Thus, if large values of B are useful despite large propagation delays, it might be
meaningful to consider the construction of an all optical digital computer.

Needless to say, our arguments cannot be exhaustive or definitive. Our discussions
must be looked at as being more of a thought experiment than a conclusive argument.
One important implicit assumption that we made is that the Rent exponent is uniform
over all hierarchical levels of the system. A more conclusive discussion of this issue
will require a deeper understanding of how the solution of a problem relates to the
- percolation of information at various levels of the system.

Ultimately, more solid answers to the questions raised in this chapter will emerge
when the theory of algorithms is merged with a physically realistic theory of computer
construction to create a physical theory of computation, as alluded to in chapter 4.
Then it will be possible to compare and optimize jointly over many possible construc-

tional and algorithmic approaches.



Chapter 13
Indirect Implementations

Until now, we limited our attention to direct implementations where the communica-
tive connection graph was directly copied as the physical connection graph. In this
chapter we will discuss the importance of organizing information flow in computation
in a manner enabling multiplexing of signal paths with distinct source and destina-
tion localities, and show how this can be achieved by indirect implementation of the
communicative connection graph. Such implementations allow efficient use of high
bandwidth interconnection media, leading to a decrease in system size and propaga-
tion delay for wireability limited layouts. Among the three methods we consider, the

fat tree architecture is found to be near optimal.

13.1 Introduction

As we have discussed in detail in earlier chapters, a major advantage of optical and
superconducting interconnections is their ability to transfer large amounts of infor-
mation per unit cross section over long distances. Let the maximum information
flux a given communication medium can support be denoted by 7 and be measured
in bit/mZsec. For the length scales involved in a computing system (< 10 m), it is
possible to reduce the effects of dispersion and attenuation to the extent that 7 may
be assumed to be independent of length for optical and superconducting intercon-

nections. On the other hand, 7 is a decreasing function of communication length for

197
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resistive interconnections, making them disadvantageous over longer distances. How-
ever, for distances less than about the order of a centimeter, they can provide greater
information flux than optical or superconducting interconnections.

As defined earlier, T} will denote the minirmum pulse repetition interval for a single
physical optical communication channel (i.e. corresponding to a single spatial degree
of freedom). Since we are ignoring dispersion, T, will probably be set by the speed of
the switching devices or electrooptic transducers. If wavelength division multiplexing
is employed, an appropriate effective value of T, should be used.

As usual, we would like to establish a prespecified pattern of AN pairwise con-
nections among a collection of NV 3> 1 elements with k connections per element. B
will denote the rate at which binary digital pulses are emitted into each connection.
Although we restrict ourselves to a fixed connection pattern, the extension to recon-
figurable or message routing systems should be possible. We also limit ourselves to
single layer 2 dimensional layouts, the extension to multilayer and 3 dimensional lay-
outs being straightforward. As usual, our purpose is to implement the given pattern
of connections in a manner that results in smallest possible system area, which we
assume is dominated by the space required for establishing communication (which is
often true for 2 dimensional systems).

The number of binary pulses in transit at any given time in an optical communi-
cation network occupying area A may not exceed o~ A/(fAcT, ), where c and A denote
the speed of light and wavelength of radiation respectively. (This is the 2 dimensional
version of the result derived in chapter 6. As defined earlier, f is a dimensionless con-
stant factor which in principle can approach the order of unity, but may be larger in
practice.) The number of pulses in transit in our system is given by kN B7,,. where
Tave = £/¢ is the average delay and { is the average interconnection length. Remember
that 7 may be expressed in terms of the system linear extent £ = AY% = N*/2d as
? = kNP~12J = x N*~1[ when p > 1/2. Using these relations, we find a lower bound

on the area and linear extent of our system:

A
kENB ave L e
Tave = FAcT,

A > EN(BT})cTane fA = kN(BT,)f (13.2)

(13.1)
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L= A% > kxN?(BT,)fA. (13.3)

The above bounds represent the intrinsic information carrying capacity of optical
wave fields and apply to any architecture or implementation. Notice the tradeoff
between system size and B. _ _

One way of implementing the desired pattern of connections is simply to allocate
[BT,] ~ max(BT,,1) parallel channels between every pair of points to be connected.
When BT, > 1, such an implementation is as efficient as any other in terms of
making maximum usefulness of the available capacity of the optical channels. In this
case, the above lower bounds may be approached, for instance, by use of waveguides
with effective! line to line spacing of fA. To see this, notice that the total area
required for commmunication is 4 = kN (BT,)ef ), since BT, > 1 physical channels,
each occupying an average area of £f) are allocated per connection. Thus A =
EN(BT,)xN?~-*AM?f), leading to equation 13.3. However, if B is less than 1/T;,
the channels are underutilized and the bound of equation 13.3 cannot be approached,
since no matter how small B is, a channel with capacity 1/7, is allocated for every
pairwise connection. Thus when B < 1/7T,, the layout area is not any less than when
B = 1/T,, so that £ can at best approach the bound

L > kxNPfA. (13.4)

Equations 13.4 and 13.3 are analogous to equations 10.5 (with x = 1) and 10.7.

In the rest of this chapter we concern ourselves with methods of restoring the
broken tradeoff between system size and B when BT, < 1. If B is independent of
N, such methods may lead to reduction of the system linear extent by a constant
factor of BTy, compared to the direct implementation just described (equation 13.4).
In some cases, B may decrease with increasing N, since the computational processes
become bottlenecked by the increasing propagation delays. When this is the case,
restoring the mentioned tradeoff allows one to slow down the growth rate of system
size as a function of N, as evident from equation 13.3. In fact, if B decreases at the
same rate as 1/7yye, linear growth of A as a function of N can be achieved regardless

of the value of p, as evident from equation 13.2.

1That is, including all inefficiency factors due to routing etc.
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 'To achieve our objective, we would like to multiplex 1/BT, > 1 independent
signal paths into the same physical channel, so as to saturate its capacity. However,
this is not straightforward when the many signal paths have distinct source and
destination localities. In the following sections we describe 3 architectures which
enable information flow to be organized in a manner enabling overlap between such
signal paths, allowing them to be multiplexed. The reduction in the number of
physical channels thus possible results in a decrease in system size and propagation

delay for communication limited layouts.

13.2 The multiplexed grid architecture

The multiplexed grid architecture is based on the family of m-ary v-dimensional
meshes (grids) of m” = N nodes [30]. The hypercube [169] is a special case with
m = 2 and v = log, N. For sake of illustration, we consider the case » = 2 and
m = N2, which corresponds to the familiar planar mesh with N'/2 nodes on an edge.
An arbitrary connection is established in several nearest neighbor (in v-space) ‘hops’,
and multiplexed together with other connections with which it overlaps, as illustrated
in figure 13.1. Notice that this procedure enables us to break down independent signal
paths into overlapping segments which may then be multiplexed. If at least 1/BT;
connections can be overlapped along each edge of the mesh, then complete utilization
of the available capacity 1/7, of the physical channels may be achieved. Finally, the
multiplexed » dimensional mesh is laid out in 2 dimensions, as described in [30]. Of
course, this is a trivial task when v = 2.

The price that must be paid in return for efficient utilization of the high capacity
optical channels is the additional area and delays associated with routing of inde-
pendent signal paths. Low dimensional meshes allow a larger number of connections
to be overlapped, but increase the number of hops, and hence the number of device
delays a signal must go through. High dimensional meshes decrease the number of
hops but do not enable as many signal paths to be overlapped and multiplexed, pos-
sibly resulting in less than complete utilization of the capacity of the channels and

thus larger layout area and propagation delays. The optimal value of v minimizing



CHAPTER 13. INDIRECT IMPLEMENTATIONS . 201

c o ¥

a. - b. C.

Figure 13.1: The multiplezed grid architecture with v = 2, m = 4 and N = 16. Part
a. shows two of many to-be-established connections. Part b. shows each connection
established in several hops. Part c. shows overlapping portions of these connections
multiplexed into high capacity channels, reducing the total number of physical chan-
nels and thus layout area.

overall signal delay (propagation plus device) is found to decrease with increasing NV
and asymptotically approaches 2 for 2 dimensional layouts.

Emulation of fixed connection graphs on multidimensional meshes in the manner
described may in certain cases enable one to improve over the bounds ®(S, B,N) <
Cy derived in chapter 10 and also alter the comparison of interconnection media.

Hartmann and Ullman [63] discuss what they call a delay balanced architecture,
which is a special case of what we are discussing with p = 1 (uniform message dis-
tribution assumption) and v = 2, in the context of simulating a parallel random
access machine. When p = 1 the average and worst case signal delays differ by only
a constant factor. They show for this case that if the bit repetition rate is decreased
according to B = 38 = (/7 where § is a constant, then A ox N, i.e. the area increases
only linearly as a function of the number of elements. More generally (when p # 1),
this will be true if B = 85,0¢ = /7Tave. This is a direct consequence of equation 13.2.
Since only a finite number of bits can be in transit in a system of finite area, the
only way to maintain constant area per element is by keeping the number of bits in
transit per element constant. The condition B = f/7,.. enables precisely this, since

B, is the average number of bits in transit per connection. Also note that in this
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case, all physical connections are to nearest neighbors and the interelement spacing
can be kept constant so that any interconnection medium results in the same perfor-
mance and cost within a constant factor. However, if B is not decreased o 1 /74y, the
interelement spacing will unavoidably increase so that optical and superconducting
interconnections will be preferred over normal conductors after a certain point.

We finally note that in situations where heat removal tends to be the factor limiting
system size, larger values of » are preferred, for reasons similar to those discussed in

section 3.6.

13.3 The multiplexed global interconnection ar-

chitecture

We now turn our attention to another architecture, illustrated in figure 13.2. The N
elements among which connections are to be established are partitioned into N/N,
‘modules’ of N; elements each. All connections between elements in one particu-
lar module to another particular module are bundled together and multiplexed into
the smallest possible number of physical channels. The relatively short connections
between elements in the same module are made directly and would probably be im-
plemented with conductive wiring, because of the greater density they offer over short
distances.

The larger the value of Ny, the larger the number of connections between each
module pair, so that a greater number of independent signal paths may be bundled
(overlapped) and multiplexed together, resulting in a reduction of the area consumed
by global communication channels. On the other hand, increasing N, increases the
area required by the internal connections. Thus there is an optimal value of N,
resulting in minimum system area.

The multiplexed global interconnection architecture is not very useful for connec-
tion patterns exhibiting a great degree of locality. In such systems there will not be
enough connections between distant module pairs to saturate the capacity 1 /T. of a

single physical channel. It may be useful, for instance, for the implementation of fine
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Figure 13.2: The multiplezed global interconnection architecture with N/Ny = 4. Con-
nections internal to a module (not shown) are made directly, probably with conductive
wiring. A connection to a destination in another module is first wired to a common
locality with other connections destined to the same target module and multiplexed
together. Demultiplexing takes place at the destination module, followed by wiring to
the individual destinations. Thus 2 node delays are involved for global connections.

grain parallel random access machines [63] or connectionist systems.

As a more specific example, this architecture can be used to implement a com-
plete graph on N nodes with BT, < 1. This might roughly model a multiprocessor
interconnection scenario where each element wants to be able to talk to every other,

but only at a relatively low long term average data rate.

13.4 The multiplexed fat tree architecture

The fat tree architecture, illustrated in figure 13.3, was first advocated by Leiserson
[107] in 2 multiprocessor interconnection context. We defire the fat tree to have
[kN'?] ~ kN'® connections emanating from subtrees containing N’ elements, consis-
tent with Rent’s rule. This definition is somewhat different than that originally given
by Leiserson.

For cdncreteness, let us assume that waveguides of effective line to line spacing of
fX are used. Assuming that the area required for routing functions is not the limiting

factor, the linear extent £(N') of a subtree containing N’ elements can be seen to
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Figure 13.3: The multiplezed fal tree architecture. The elements to be connected
are located at the leaves, and the internal nodes provide routing functions. Each
connection is established in several hops, 2log, N in the worst case. The number
of connections emanating from the subtrees increase as we go up the tree. The
overlapping portions of the connections are multiplexed into the smallest possible
number of physical channels.
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satisfy the recursion
L(N') = 2L(N'[4) + max(kN"BT,, 1) f) (13.5)

since the kN connections emanating from a subtree of N’ elements can be multi-
plexed into max(kN'? BT, 1) physical channels. £(1) corresponds to the linear extent
of a single element d;. From this recursion we may show that £(N) approximately

satisfies
max (kN?(BT,)fA, N#dy) < £(N) < max (kN?(log, N3)(BT.)fA, N3d,) . (13.6)

The second term N/2d,; is unavoidable for any 2 dimensional layout. The first term
corresponds to the communication area and is what we are interested in. Upon
comparison with equation 13.3, we observe that the multiplexed fat tree allows the
smallest possible system size to be approached within a logarithmic factor. {Of course,
if BT, is not small enough to satisfy BT, < &/logy N, the use of a fat tree may not
prove advantageous.) What essentially happens is that the total communication
area is dominated by the longer higher level connections, in the same sense that a
geometric series is dominated by its leading terms. We succeed in multiplexing these
to the greatest possible extent so that we can reduce the layout area near to that
predicted by equation 13.3. The fat tree architecture allows a greater number of
signals to be multiplexed than the multiplexed grid architecture at a cost of fewer
node delays.

Once again the price paid is the area and delays associated with routing functions.
It would probably be preferable to partition the N elements into N/N; modules with
direct internal connections (implemented with conductive wires) and then use a fat
tree organization to connect the N/N; modules. This would enable reduction of the
number of device delays incurred and the routing circuitry. Larger values of Ny would
result in fewer node delays. Smaller values of N; would enable multiplexing at deeper

levels of the system. A detailed simulation would reveal the optimal value of Nj.
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13.5 Conclusion

We have discussed the importance of organizing information flow in a manner enabling
maximum maultiplexing of independent signal paths, leading to a reduction in the
number of physical interconnections, which results in smaller communication area
and propagation delays. Among the architectures discussed, the fat tree is near
optimal in this respect.

The latter two of the presented architectures provide a natural environment for
the joint use of optical and conducting interconnections so as to bring out the best in
both and may prove more promising than simple replacement of individual long wires
with optics. Optical interconnections are used to provide high density/bandwidth
multiplexed information transfer over long distances. Submicron scaled normal con-
ductors are used to provide communication at a density unachievable with optics over
shorter distances. This is also consistent with the energetic properties of the intercon-
nection media, as discussed in previous chapters. Optical interconnections consume
less energy per transmitted bit over longer distances compared to normal conductors.

Both the multiplexed global interconnection architecture and the fat tree archi-
tecture are especially suited for high density (i.e. f close to unity) free space optical
implementations because of the regular pattern of interconnections.

Needless to say, a multitude of issues must be considered in contemplating the
construction of a high performance computing system. We have focused our attention
on the limitations imposed by the area consuming long distance connections and
discussed how these limitations can be alleviated by exploiting the high bandwidth
potential offered by optical and superconducting interconnections.

Detailed quantitative analysis and simulation of these architectures are beyond

the scope of this thesis.

13.6 Related work

The problem of finding the optimal dimension v of a multidimensional mesh organi-

zation was discussed by Dally in the context of a message passing multiprocessor [30],
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based on rather different models and considerations. He shows that low dimensional
meshes exhibit minimum first-to-last bit delay for L bit messages. More akin o our

considerations is the work of Hartmann and Ullman, which we have already discussed.



Chapter 14

Comparison of Local and Global
Methods for the Simulation of

Physical Phenomena

In most of this work we took the communicative connection graph as our starting
point. Ideally, one would take the problem to be solved as a starting point and then
seek the optimal physical construct to solve that problem as quickly as possible. Since
this is a very difficult task in general, here we will concentrate on a particular problem,
that of simulating diffusion phenomena, so as to illustrate certain considerations. We
assume that an initial distribution of particles slowly diffuses throughout a given
array of cells. Although diffusion phenomena unfold via local interactions, given
enough time, the initial condition at any cell may potentially influence the state
of any other. Thus, the solution of this problem will eventually involve the global
transfer of information across the extent of the system. We consider 3 methods of
solving this problem. The first is isomorphic simulation on a locally connected grid,
where our processors mimic the physical process of diffusion via local averaging. The
second is to formulate the state of the system after a certain number of time steps
as a convolution and to perform this convolution on again a locally connected grid,
with what is known as a systolic method. The third is to evaluate this convolution

using Fourier transform methods on a globally connected array of processors.

208
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14.1 Locality, globality, physics and computation

Once the essential features of a physical phenomenon have been captured in a suc-
cessful abstraction and distilled down to a set of equations, mathematical methods
may be used to predict the outcome of previously unobserved instances of that phe-
nomenon. Since analytic (symbolic) methods have limited applicability, we must
usually resort to numerical methods to solve these equations. Numerical calculations
are'predomina.ntly carried out with the aid of artificial computing machines.

In general, the state of the system we observe may be characterized by several
quantities which are functions of the spatial and temporal coordinates (i.e. ‘fields’).
The many ways we can solve the equations relating these quantities form a broad

spectrum, of which we will concentrate on two extremes:

1. Methods which involve only local operations in temporal and/or spatial coordi-
nate space. The relaxation method for solving thermal boundary value problems
is a simple example of a local method. Such methods are often isomorphic to
the physical process they represent, in the sense that the calculation mimics
the actual physical process at a relatively primitive level. Of course, physical
phenomena themselves unfold in time through local interactions, since no influ-
ence may propagate faster than the finite speed of light (there is no ‘action at

a distance’).

2. Methods involving global operations. Fourier spectral methods are the most
widely used among such methods, because complex exponential functions are
eigensolutions of linear equations [18]. The Fourier transform operation is itself
global in the sense that the value of the Fourier transform of a function at any
spectral point depends on the value of the function at every coordinate point. If
we wait long enough, the state of any part of a physical system may potentially
influence the state of any other part. Thus although physical processes unfold
via local interactions, the field quantities at a given point may in general depend
on those at any other point. Notice that spatial globality always comes hand in

hand with temporal globality.
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Qur purpose is to find the optimal physical construct to solve a certain problem.
In general, our figure of merit may involve measures of time, space and energy con-
sumption. We will concentrate on solving the problem in the shortest possible time
7. Say we are given one local and one global algorithm to solve this problem. They
are mathematically equivalent in the sense that they will produce the same result.
The number of time steps {worst case or average over all possible initial states) re-
quired for the completion of the computation can then be determined. By their very
design, it is usually the case that global methods require fewer time steps. However,
this algorithmic comparison has little meaning, since the physical duration of a time
step may be different when we actually build the machines that will execute these
algorithms.

Just as the natural phenomena they are used to predict, computing systems must
also obey the laws of physics. The need for a physical theory of computation was
stressed by Hillis [69] [70]. The mathematical theory of algorithms is meaningful to
the extent that the underlying model computing system can be realized. Perhaps one
day we will have a theory of computation and cybernetics which is more physics-like.

Towards this end, it is necessary to characterize the information flow required for
the solution of a problem on a distributed computing system. This is in general an
intimidating task. There have been attempts to analyze the amount of information
that must be exchanged between two parties in order to compute a certain function
using combinatoric methods [176] [130]. A general extension to many parties which
also takes into account issues such as the communication delays among the elements,
‘loca,lity etc. seems exceedingly difficult. For this reason we will consider the simulation
of a simple physical process to illustrate certain principles. We will compare the time
it takes to solve the diffusion equation using local and global methods. Though

desirable, a more general treatment is beyond our scope.
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14.2 Implications to future nanoelectronic com-
puting systems

The direct implementation of global methods in parallel hardware requires a highly
connected physical connection graph among the participating processing elements.
Due to the space that must be allocated for communication, this results in large
system size and propagation delays. Based on this and related considerations, Hart-
mann and Ullman [63] and Dally [30] have argued (in the context of a general purpose
message passing parallel computer) that it is more beneficial to simulate such commu-
nication networks with a low dimensional mesh. Likewise, based on the intimidating
growth of wiring complexity of highly connected systems, Frazier has argued that it
would be beneficial to implement future nanoelectronic systems based on quantum-
coupled grid-connected cellular automata [48].

If it is indeed the case that in the limit of ultrafast devices and very large numbers
of elements, planar (or 3 dimensional) mesh architectures offer better performance
than highly connected ones (even with the optimal choice of interconnection medium),
then we can conclude that in this limit the choice of interconnection medium (normal
conductors, superconductors, optics) will be of little importance. We do not benefit
from global communication because we can no longer assume constant delay along
all connections. Ultimately, the transfer of information is limited by the speed of
light and does not depend on how ma,ny'hops the distance of travel is broken down
to. A shift register begins to resemble a transmission line. A grid connected cellular
automata can simulate any portion of the universe, and in particular any given com-
puting system. However, we are presently very far from the device speeds and system
sizes needed to reach this limit.

More importantly, we should note that the above arguments do not take into
account the effects of heat removal. Although there is general consensus that non-
dissipative computing does not contradict the laws of physics, we believe that for
quite a time most digital computing systems will make use of dissipative elements.
Assurning constant power dissipation per element, heat removal implies that the linear

extent of a system of N elements must grow as o« N /2 This is the worst case growth
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rate of wireability imposed lower bounds on system linear extent for bounded degree
graphs laid out in 3 dimensions. Thus, since system size and propagation delays
are set by heat removal, we might beneficially employ highly connected approaches
without further increase in system size. On the other hand, for some applications,
the amount of information emitted into the system (and thus the power dissipated)
by each element may decrease with increasing N, since the computational processes
become bottlenecked by increasing propagation delays, resulting in a heat removal
imposed bound on linear extent weaker than o< N/2.

To us it is not yet clear whether and when highly connected approaches (such
as neural networks) or locally connected approaches (such as cellular automata) or
something in between is to be preferred and how this is related to the problem we
wish to solve. We will merely try to illustrate certain considerations via example.

Extensions of such considerations will help us understand how future nanoelec-
tronic systems should be contemplated and how this is related to the application at
hand. Whether locally or globally connected systems are to be preferred will also

determine the role of optical communication in these future systems.

14.3 Solution of a problem of high information

content

It is well known that many problems such as sorting, convolﬁtion, discrete Fourier
transforms etc. have an information content proportional to N, where N is the prob-
lem size [7] [164]. Essentially, the information content is the amount of information
that must pass through an imaginary boundary dividing the system into two roughly
equal parts before the problem can be solved. |

For concreteness let us concentrate on a regular e dimensional cartesian array of
N very small processors, N'/¢ along a side. Each processor contains an L bit precision
number. Let it be necessary for N L bits of information to pass through the imaginary
boundary mentioned above and there be xH independent physical channels passing
through this boundary. Thus the total NL bits must form trains of (NL)/(xH)
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serial bits in passing through this boundary. If the minimum bit repetition interval
along each physical channel is T, this will take (NL)T,/(xH) time. If the extent of
a single physical channel is denoted by W, the linear extent of the system is then
(xxHYM(~DW. Letting c denote the propagation velocity, the total computation time

7 may be written as a sum of the propagation and serial contributions

a2 (W NLT,
T = (xH)& (=) + o (14.1)
The value of yH minimizing the above is found to be
el
YH = (%aiffm“ﬁ) x N (14.2)
With this value of xH we find
el
T ~ (NLT,) (%’_) « N2, (14.3)

The above expression for T is a lower bound. There may be many additional bounds
that must also be satisfied. In particular, the information may need to propagate
through several nodes, suffering additional delays.

One way of solving such problems is to use a highly connected graph, such as the
butterfly graph [164]. Such a graph would add only a few node delays on top of the
value of 7 discussed above. However, yH o N for such a graph, which is inconsistent
with the optimal value of xH o« N (e~1)/e,

A simple mesh architecture can be used to realize the optimal value of xH. A
constant number of channels will be used to transfer information among neighboring
processors. Information will have to traverse cc N /¢ nodes in the worst case, leading
to a similar growth rate of the device contribution to total computation time as given
by the above expression for 7. Thus the propagation, device and serial contributions
to the delay are all balanced in this architecture. Although this does not demonstrate
that the problem can be actually solved in ox N 1/¢ time in general, it serves as a general
indicator of the well balanced nature of this architecture.

The above simplistic derivation, which is closely related to the arguments of Hart-

mann and Ullman [63], suggests that when heat removal considerations are not taken
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into account, local methods may be superior to global methods. We will take a closer
look at each method in the context of solving a particular physical problem which is

described in the next section.

14.4 Quantum diffusion as a prototype physical

problem

Consider a regular cartesian e dimensional array of N > 1 cells with NV 1/e cells along
each side. We will speak of N as the problem size. Without loss of generality, we
assume N/ to be an integer. Initially, there is a certain number foft] of bosonic
particles in each cell, where ¢ is a vector of e integral indices which range from 0 to
N'e 1, For simplicity we assume that the array of cells and the initial distribution
of particles is replicated periodically through all space (toroidal boundary conditions).
Thus indice values outside the interval [0, N'/¢ — 1] may be interpreted modulo base
Nile,

At a certain average rate of say once every 1 pusec, each particle has an equal
probability of jumping into any one of its 2° nearest diagonal neighbors. We will
assume that the number of particles per cell M/N is very large so that we may
ignore the probabilistic aspects of the problem. Thus, we formulate the problem of
determining the number of particles in each cell at time ¢ as follows:

falt] = *_:21372 Frmal7] (14.4)

jed;
where A; denotes the set of 2° cells with all indices differing from cell 7 by unity and
n = t/{1 pusec). The total number of particles is of course conserved. Thus, given

fol2], we can calculate f,[1] recursively. This process may be expressed as

i) = aft] * fa-al] - (14)
fold} = hnfe] * fol7] (14.6)

where ‘+’ denotes the e dimensional discrete convolution operator. hy,[i] is the n-
fold self convolution of hyfi]. The value of hy[5] is 1/2° at the 2° nearest diago-

nal neighbors of the origin and zero elsewhere. For instance for e = 1, Iy[i] =
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(...,0,05,0,0.5,0,...). Notice that whereas convolving f._1[7} with h;[f] requires
only local communication, convolving fo[j] with k,[z] for large n requires global com-
munication.

Multidimensional impulse responses can be written as a product of the unidimen-
sional impulse responses. For instance, k[, ] = Ralilha[j], where hy[i] and h,[j]
should be interpreted as two dimensional functions while iaking their product. (It is
also interesting to note that these functions satisfy hnli, 5] = hys[i]6{7] * hn]5]6[¢].)

Our purpose is to calculate the state of the system at a particular final time ny.
As a special case, we will be interested in the steady state solution. Of course, in our
simple example, if the total number of particles M is known to us beforehand, the
steady state solution is also known to be a uniform distribution of M /N particles over
all cells. However, we must not forget that this information is not initially available
on the processors, which are only aware of the number of particles they contain.

In the following sections, we will consider several methods of constructing a ma-
chine that will calculate the state of the system at time ny.

Before continuing however, we should clarify a common misconception. The par-
allel implementation of finite element calculations on an array of processors is often
noted as an example of a case which requires only local communication among the
processors [107]. However, since the state of the system at any point can eventually
influence that at any other point, there are cases when it is beneficial for a processor
to ‘look ahead’ beyond its nearest neighbors. A boundary value problem requires
global communication since the resultant field distribution at any point depends on
the values of the boundary at every point. Although it may depend more weakly on
the value of more distant points, this doesn’t weaken our argument. Consider that the
voltage value at the boundary most distant from a given point is very large compared
to anywhere else. Clearly this value will lead to a much different result than when it
is a small value. Thus this information must somehow be conveyed to the other end.

Of course, there are examples of applications which are truly local. For instance,
the problem of independently adding a large number of pairs of numbers requires no

communication at all.
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14.5 Solution by isomorphic simulation on a lo-

cally connected array

We may compute the state of the system at any time step by using an array of sim-
ple processing elements, one for each cell, arrayed in identical fashion as the array
of cells. Each processing element is connected to its nearest diagonal neighbors via
x > 1 communication channels each of cross sectional area (or width) We~!. Let the
minimum pulse repetition interval and propagation velocity along these channels be
denoted by 7, and c respectively. Let each processor be a small cube (or square) of
linear dimension at least dg (it may have to be larger so that it can accommodate its
‘pinouts’). Each processor is capable of storing an L bit precision number correspond-
ing to the number of particles in the cell to which it corresponds and can update this
value by averaging the values stored in its 2° neighbors. Let this update take time 7.

The interelement spacing is given by d = max(dy, x*/¢~W, dg) where dg is the
interelement spacing required by heat removal considerations. In general, each itera-
tion will take! T;; = max(ra,d/c, LT,/x,T,) time. For simplicity, let us assume that
14 is defined inclusive of dg4/c and T, and that W and LT, are small enough that the
expression for 7;; reduces to 7;; = max(74,dg/c) with appropriate choice of x.

Let us now calculate dg. Let E; denote the energy dissipation associated with
each update on each processor, inclusive of the energy LE involved in transmitting L
bits at a cost of E each. As usual, ¢ will denote the amount of power we can remove
per unit cross section of our system. The total power dissipation is NE;/T;; so that

QLh = QUVvidg) » T2
Tie

where Lg is the systern linear extent required by heat removal considerations. Solving

(14.7)

for dg and substituting in T, = max(ry,dg/c) we obtain
T, = max (Td, TQN%'EZE) o (14.8)

where g = (Eq/Qc?*)¥/2. Now, the time its takes to compute the state of the system

at time step n may be expressed as T = n7;.

1 As usual, we will not make the distinction between the sum and maximum of a small number
of positive numbers and likewise ignore numerical factors of the order of unity.
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With increasing n, the state of the system will relax towards its steady state. Of
course, in general, the system will never ezactly reach steady state (except in special
cases where the solution falls in precisely to the steady state and stays there due to
the discrete nature of our model). We would not expect the system to reach steady
state before ~ N'¢ time steps, since this many steps are necessary for influences
to propagate across the extent of the system. Exactly how long we must wait also
depends on the error £ we are willing to tolerate. One way of determining the number
of time steps necessary for given £ would be to carry out simulations for a variety of
initial conditions. Instead, we will estimate the number of time steps n. it takes for
an impulse of strength M to diffuse into a steady state of M /N particles per cell
with fractional error €. '

For simplicity we consider the 1 dimensional case (i.e. e = 1). An impulse of unit

strength diffuses in the following Pascal’s triangle-like manner:

n=0  0.000 0.00¢ 0.000 0.000 1.000 0.00G 0.000 0.000 0.000 (14.9)
n=1  0.000 0.000 0.000 0.500 0.000 0.500 0.000 ©.000 0.000
n=2  0.000 0.000 0.250 0.000 0.500 0.000 0.250 0.000 0.000
n=3  0.000 0.125 0.000 0.375 0.000 0.375 0.000 0.125 0.000

and so on. Thus for an impulse of strength M located at the origin (i = 0) at n = 0,

the number of particles in location ¢ after n steps is

flil = % combination (n, : _; n) —n<i<n (14.10)

for even (n -+ ¢) and 0 for odd (n + ). Since N is large, n. will also be large. Thus,
using the DeMoivre-Laplace theorem [138] the above expression may be approximated

as

2
fali] = m\/;\-:;;ew (--2%) (14.11)

where we have included an additional factor of 1/2 so as to ensure proper normaliza-
tion over all values of 7, rather than just odd or even values depending on whether
n is even or odd. Now, remembering that we are employing cylindrical boundary

conditions, the number of particles at the midpoint between the origins at ¢ = 0 and
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i = N (which will be the latest to reach the steady state of M/N particles) is given
by

o0

> fulN/2+jN]. (14.12)

s
Using some algebra involving Fourier transform techniques [18], this summation may

be expressed in the equivalent form

14 22(_1).% exp (_, (” ;” )zjz)} . (14.13)

The second term in square brackets is simply the fractional error we do not want to

M
N

be greater than £. Since we are confronted with an alternating series, we can ensure

the error to be less than ¢ by ensuring that

2
n > N? (12’;2) ~ N? (0.035 + 0.117 log, é) : (14.14)

Because of the weak dependence on &, we are justified in writing n. ~ N2. In other
words, for almost all practical values of ¢, taking n ~ N? is as good as n = oo.

We could have guessed this result beforehand. The root mean square deviation of

a random walk in any dimensional space is proportional to n'/2.

1/2

Thus we might
consider that we have reached steady state when n'/? is comparable to the linear
exient N of our system. This result easily generalizes to e dimensions for which the

linear extent of the system is N'/¢, Thus in e dimensions
ne = N%, (14.15)

The total time it takes to find the state of the system at time step ny and at
steady state using isomorphic grid simulation are given in table 14.1.

Conventional VLSI complexity theory would predict the same growth rate of com-
putation time, apart from the fact that heat removal is often not considered. These
calculations would take o« nsN time steps on a single processor Von Neumann archi-

tecture.
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14.6 Solution by systolic grid convolution on a

locally connected array

We now discuss a method of directly performing the convolution of equation 14.6 on
a nearest neighbor connected array of processors, like the one used for isomorphic
simulation. For instance, consider the two dimensional case. The convolution is

written out explicitly as
fali gl = ;;f{!{k?llhn['é —k,j—1] (14.16)
Falis 3] = 2 hali = U3 folk, hali — k] (14.17)
! k

since hy i, j] is separable. This amounts to first computing g.[, ] = Tx folk, {]ha[i—K]
for every [ systolically in the i (also k) direction and then computing 3= ga [, []a[7 —{]
for every ¢ in the j (also I) direction. The systolic convolution can be performed
by rotating the values of fo[k,] (or gn[¢,[]) and accumulating the properly weighted
sums [98] [96] . We are assuming that the values of our impulse response can be easily
generated in each processor with little hardware, probably by evaluating its analytic
expression. The 2 dimensional convolution takes 2N Y27, time where 7, is the same
as that during isomorphic simulation. In e dimensions, this takes eN'/¢ ~ N*/¢ time
steps regardless of ny.

Once again, conventional VLSI complexity theory would yield the same predictions
for the computation time, apart from heat removal considerations. A single processor

machine would take N**%/¢ time steps.

14.7 Solution by Fourier techniques on a globally

connected array

Equation 14.6 may be evaluated conveniently using Fourier domain techniques, since
convolution in coordinate space corresponds to multiplication in Fourier space. We
assume the Fourier transform of the impulse response is pretabulated and piped in

in proper synchronicity. After multiplication with the Fourier transform of the initial
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Figure 14.1: Decomposition of an N = 16 point FFT,

distribution, we inverse transform to get the desired result. Thus the total time of
computation is about equal to the time it takes to evaluate the transform of the input
function fo{s, 7], which is in general not separable. (If it were separable, the problem
would reduce to a unidimensional problem.)

The relationship between N point 1 dimensional Fourier transforms and N1/2 x
N2 point 2 dimensional Fourier transforms is well known in the context of raster
scan-folded spectrum techniques [22], where the two dimensional Fourier transform-
ing capability of an optical lens is exploited for high time-bandwidth product spec-
tral analysis of one dimensional analog signals. The FFT decomposition shown in
figure 14.1 [97] may be interpreted either as a 16 point 1 dimensional transform or
a 4 x 4 point 2 dimensional transform. The reader is referred to {55} [129] and [22]
for analytic discussions. The essential idea is that regardless of its dimensionality,
the value of the transform at each spectral point depends on the value of the original
function at every coordinate point, so that both problems require the same pattern of
information flow. A construct for solving either problem can be used for the other with
often only trivial modification (such as the inclusion of additional phase shifts along
a few paths, as discussed in [55]). This discussion generalizes to N1/3 x N'/% x N*/3
point 3 dimensional transforms. Thus we may speak of the complexity of evaluating

an N point Fourier transform without reference to its dimensionality.
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An N point Fourier transform can be computed effectively in both 2 and 3 dimen-
sions by using a 1 or 2 dimensional lens respectively [56]. In 3 dimensions, one may
situate the elements on a N¥/2 x NV? array and use the third dimension for com-
munication. Such a setup implies a linear extent and propagation delay of ~ N1/2)
and =~ N'2)/c respectively, assuming an f* ~ 1 optical systemn. Here W = X is
the wavelength of light. In 2 dimensions, the same setup must be squashed onto the
plane. The N independent spatial channels now imply a linear extent o~ NA, since
they have only one dimension to pass through. Those familiar with the layout of the
butterfly graph [164] on which the FFT is performed will immediately recognize that
these results are analogous to results stating that the butterfly lays out in oc N 1/2
linear extent in 3 dimensions and o N linear extent in 2 dimensions, with identical
growth rate of longest wire length and propagation delay. (The VLSI implementation
of the butterfly graph also results in log, N node delays in addition to the propagation
delay. This is avoided in the optical implementation.)

In conclusion, the evaluation of an N ‘point Fourier transform on a globally
connected array of processors in the manner described requires propagation delay
~ NY(e-1r where 7, = M ec.

Notice that we are (by choice) concentrating on the evaluation of the Fourier
transform on a globally connected array in a particular manner. This does not exclude
the existence of other asymptotically superior methods. For instance, an N point
DFT can be evaluated on a nearest neighbor connected mesh in o« N/2 time [158].
This method of solution would be equivalent to the systolic method discussed in the
previous section.

Heat removal requires that the system linear extent be at least (N Eq/7 Q)'/?, as-
suming the total energy dissipation N Ej is spread over the total time of computation

T. (It is easy to show that any other choice is suboptimal.) Thus 7 is given by
T= max(rd,N?]:'fTo,N%'rQ) - (14.18)

where 7g is as defined before. Heat removal will have less and less importance as
N increases. (If the total energy dissipation cannot be spread over the total time

of computation, but only over a constant interval of time, the last term will become
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I (local) I, (local) S (local) F (global)
A NyTd N%Td N%Td (Td,N;}HTO)
B ng(rs,70) N(r4,7g) N%(Td,m) (Td,NTO,N%TQ)
C nf(Td,N%TQ) (NgTd,N%'TQ) (N?la'v‘d,Néfq) (Td,N%‘To,N%TQ)

Table 14.1: Comparison of total computation time T with the various methods for
calculating the state of the system at time step ny. I: isomorphic simulation, S: systolic
convolution and F: Fourier transforming. Line A gives 7 in e dimensions when heat
removal is ignored. Line B is for e = 2 dimensions and line C for e = 3 dimensions.
The steady state for the isomorphic simulation (/o) is obtained by setting ny = N 2,
The other methods calculate any final time step ny, as well as the steady state, equally
quickly. 7, = A e, 7g = (E4/Qc?)*®. The notation (z,y) is short for max(z,y).

o N2, requiring minor modification of our results when e = 3.)

The results are again summarized in the table.

Conventional VLSI complexity theory predicts a o« log N growth rate of delay for
parallel implementation of the FFT, since propagation delays are ignored. The single

processor implementation takes about Nlog, N ~ N time steps.

14.8 Comparison

The results are summarized in table 14.1. Let us ignore heat removal for the moment
(tq = 0). First consider the limit where device delays dominate (74 is large or N is
small). The global Fourier method is clearly superior in this case unless n; is very
small. Which of isomorphic simulation and systolic convolution is to be preferred
depends on the values of ny and N. When ny is small and N is large, the first
method is to be preferred. When n; is large however, systolic convolution is preferred.
In particular, consider the steady state which takes N?/er, time with isomorphic
simulation in contrast to N'/¢1, time with systolic convolution.

Now let us assume ultrafast devices and compare the growth rate of computation
time as a function of N and ny. Local systolic convolution exhibits a growth rate

better than global Fourier transform methods by a factor N*/ e(e~1) This result was
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anticipated in section 14.3 where we discussed the solution of problems of high in-
formation content. In practice 13 > 7,. Thus, systolic convolution will be preferred

over Fourier methods when N > (74/7,)(=%.

For instance, with 7; = 1psec and
1T, == W/c = Afc = 1fsec, the condition is approximately N > 10° in 2 dimensions
and N > 10’8 in 3 dimensions. We are not the first to speak of such a large number
of very simple processors, Hillis has speculated about what might happen when we
have a mole (~ 10%?) of processors {70].

Now let us consider the effects of heat removal. This has little or no effect on our
conclusions in 2 dimensions. In 3 dimensions, the leading terms will be N*/°rg for
systolic convolution versus N7, for Fourier transforming. Taking E; = 10fJ and
@ = 10 KW /cm? so that 79 ~~ 0.1 psec, we find that local systolic grid convolution is

0%, an unreasonably large

preferred over the global Fourier method only when N > 1
number by any standard.

To sum up, isomorphic simulation may be preferred when ny is small, or when we
want to track the whole evolution of the system up to ny, rather than just its final
state. (The problem of piping out this data from the system remains unsolved how-
ever.) Otherwise, especially when we want to calculate the steady state, this method
will not be preferred. This is because of the inefficient way in which the transfer of in-
formation occurs. The averaging at every step results in loss of information for which
communication resources have already been utilized, resulting in inefficient resource
utilization (much like exchanging a developed piece in a game of chess [166]). Local
systolic convolution may be preferred over global Fourier methods in 2 dimensions for
very large values of N. In 3 dimensions, the asymptotic superiority of local methods
over global methods is so slight as not to be of any significance so that the latter are
to be preferred.

Figure 14.2 illustrates 7 as a function of N for the three methods.

14.9 Discussion and extensions

Although it may seem that the diffusion process we have considered is a very special

example, we stress that diffusion phenomena underly many natural occurrences, of
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Figure 14.2: Computation time for the three methods with ny = N e for isomorphic
simulation. Ty = 1psec, 7, = lfsec, 7g = 0.1psec and dy = 1 um. The curves are
terminated when the system linear extent exceeds 10m.

which Brownian motion {47], spread of scientific innovation [61] and gossip are a few
examples. The diffusion and wave equations are often the starting point of a course in
partial differential equations. In their steady state both reduce to Laplace’s equation.
The wave equation is often associated with coberent, orderly transfer of information,
energy or particles; whereas the diffusion equation is associated with random trans-
fer. The diffusion process is redundant in the sense that the same information is
retransmitted several times only to be destroyed by the averaging process. We can
do better than the isomorphic simulation of diffusion by carrying out the calculations
in an orderly and efficient manner, rather than imitating the physical process itself.
Similar arguments may be possible against other numerical methods which involve
randomness and/or averaging, such as Monte Carlo or relaxation methods.

Convolution is one of the basic operations in signal and image processing. Thus,
we would expect extensions of our discussion to have implications in these areas. Of
course, some applications require convolution with only a finite ‘window’ function,
and would probably be implemented using local methods. For other applications
however, global methods may (or may not) be preferable.

Similar analysis as we have presented can be carried out in different contexts. For

instance, it is well known that the same logic function can be implemented with a
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fewer number of locally connected elements but with large overall logic depth, or with
a larger number of globally connected elements with less logic depth [6]. The optimal
implementation will lie somewhere in between.

Such studies may also be used to evaluate the usefulness of neural networks.
We would not be surprised if similar conclusions regarding the usefulness of highly
connected systems are reached.

We only concentrated on extreme locality and extreme globality. Intermediate
approaches are possible and may offer the optimum performance. For instance, given
a family of algorithms for solving the diffusion equation on multidimensional meshes
of every dimension, we may pick the optimum dimension. Also, we considered only
nearest neighbor communication in the grid method. In serial computation often a
bounded grid of higher order neighbors is used, leading to faster convergence. In
parallel hardware, this might lead to a small amount of dilation, leading to a trade-
off. In recent years, a number of (serial) numerical methods involving higher order
interpolation polynomials and combinations of spectral and finite element methods
have emerged [17], evidence of the fact that the optimum lies somewhere in between
the two extremes of global and local methods. There seems much that is unexplored

as far as the use of parallel hardware is concerned.

14.10 Conclusion

We discussed various methods of simulating a particular physical process, that of
particulate diffusion. We considered isomorphic simulation of the physical process,
local systolic convolution and global Fourier transform methods.

Systolic convolution is asymptotically superior to Fourier methods. However, in
3 dimensions the discrepancy in the growth rate of delay is very small because of
the effects of heat removal. Thus, Fourier methods result in smaller total time of
computation.

We have also emphasized the importance of orderliness in information transfer
and removal of redundancy. Isomorphic simulation of the diffusion process was found

to be inferior because it failed to satisfy this criteria.
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Summary and Conclusion

15.1 Summary and contributions

We began part I with a discussion of the motivation, philosophy and general frame-
work of this study. We then discussed wireability limitations and presented a con-
nectivity model and method of analysis mostly due to earlier authors.

Then we turned our attention to heat removal limitations. We derived a basic
result quantifying the limits to heat removal from 3 dimensional systems, showing
that ten kilowatts can be removed from a square centimeter.

We discussed how the physical considerations of this study can be related to
algorithmic considerations and how the choice of interconnection medium is related
to such considerations.

Finally, we derived what we termed tube models of interconnections for optical,
normally conducting, repeatered and superconducting interconnections. These mod-
els are simple enough to be incorporated in system level studies of a relatively high
degree of abstraction, but account for most major physical limiting mechanisms such
as the skin effect, superconducting penetration depth and critical current limitations.

In part II we concentrated on optical systems. We first presented a basic result
regarding the limitations of electromagnetic wave propagation in providing communi-
cation among an array of points, showing that optically communicating systems are

similar to those employing solid wires in the sense that the total volume that must
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be allocated for communication is proportional to the total interconnection length in
both cases.

We then derived and compared the system sizes for various specific optical inter-
connection architectures and proposed a new architecture which can approach the
best possible system size of any 2 dimensional optical system, and also discussed a 3
dimensional version of this architecture.

We discussed the role of optical frequencies in balancing information density and
heat removal imposed bounds in a dissipative computing system. We also derived
a relatively fundamental bound between signal delay, number of elements and bit
repetition rate for dissipative systems.

In part III, we first extensively investigated the tradeoffs between number of el-
ements, inverse delay, bandwidth and the cost of power and space for each inter-
connection medium. Not surprisingly, we found that optical and superconducting
interconnections have the best asymptotic behavior.

We then extensively discussed hybrid implementations for a variety of layout con-
straints and physical parameters and determined the conditions under which optical
interconnections might be useful. We found that optical interconnections have rela-
tively little to offer if the optical paths are constrained to lie on the plane (such asin a
guided wave network). However, if optical paths are allowed to leave the plane, they
may enable considerable increase in performance. In any event, the prize in terms of
performance is often accompanied by a penalty in terms of power and/or size.

Based on the considerations of this study, we speculated about the conditions
under which an all optical computer might be useful. We found that it might be
meaningful to consider the construction of an all optical computer when large bit
repetition rates are useful despite large propagation delays.

We discussed the importance of organizing information flow in a manner enabling
multiplexing of independent signal paths with distinct source and destination local-
ities, and discussed some architectures with this property. We showed that these

“architectures provide a natural environment for the joint use of optical and normally

conducting interconnections so as to bring out the best in both.
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Finally, we discussed the simulation of diffusion phenomena on locally and glob-
ally connected systems with very large numbers of elements and very fast devices,
concluding that globally connected systems are superior, mostly due to heat removal

considerations.

15.2 Conclusion

In conclusion, we have developed a physical approach to modeling and analyzing
communication limits in computation. We have stressed wireability and heat removal
requirements as the major limiting mechanisms and tried to explore the interplay be-
tween these considerations and the physical properties of the interconnections, which
we characterized by what we termed as tube models.

It is often noted that the academic study of the so-called systems physics of com-
puting systems has been neglected [161] [163]. On the one hand, considerable effort
is put into the detailed study of individual devices. On the other hand, considerable
effort is put into the study of systems aspects of computation, with little reference to
actual physical construction. In between, the field of microelectronic packaging has
mostly remained in the technological domain, perhaps since its interdisciplinary na-
ture makes it difficult to break it down into self-contained academic categories [163].
Perhaps future work in this area will result in the growth of the academic discipline
of systems physics.

From one viewpoint, this work can be seen as a study of the nature of computing
systems, much like the study of physical phenomena or biological organisms. We
have been mostly concerned with analyzing and understanding the nature of the
tradeoffs and limitations involved in the construction of computing systems, rather
than designing or inventing new systems. From a practical viewpoint, our approach
is of utility in identifying major roadblocks to approaching fundamental limits, and

determining areas in which it makes sense to invest human effort and resources.
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Appendices

16.1 The effect of scaling for CMOS VLSI circuits

In this appendix we will start from explicit expressions for the switching energy and
rise time for CMOS VLSI circuits and discuss the effects of scaling. This will serve as
an example of how the device contributions to the switching energy and delay quickly
lose importance compared to interconnect contributions.

We will use the scaling rules given by Gardner [54] and used in [40]. Following

this latter reference we write

Evisi = CiotaV? = (8Cou + Cop + Cin + Cralw + Crpl)V? (16.1)
tvrst = RiOpal® + RiCrl?fw + 2CmRel/w + [V/(s16)])(Crotat)- (16.2)

The various terms are summarized in table 16.1 along with how they are scaled. Here
£ is the length of the interconnection, w its width and s the ratio of the current
driving capability of the transistor used to that of a minimum sized one. One can
now substitute these in the above equations and obtain the switching energy and rise

time as functions of A:

Chotar = 0.72 SA2 431N +592+0.0997¢ +0.0614 (16.3)
Eyvisr = CiotaV? (16.4)

£2 -82 f Vctotal
rvast = 0.020 15 +0.012 — + 24 — + 3500 —2 (16.5)
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Parameter Symbol Value Units
Minimum linewidth Wnin 1.5 Him
Gate input capacitance Cin 170 Aéor ¥
Qutput capacitance Coa 0.72 A2 fF
Contact output capacitance Cog 3.1? il
Line capacitance Cra €0/ (0.35 Winin) F/pum?®
Fringing line capacitance Cre ~ 0.061 fF/pm
Line resistance Ry, p/(0.09}) 0/sq
Power supply voltage Vv 2.9 \1/2 A
Inverter saturation current Io 0.26 mA

Table 16.1: Integrated circuit process parameters expressed as functions of minimum
feature size A (um) for first level aluminum lines. €,, = the permittivity of silicon
dioxide = 3.9 x 8.85 x 1073 {F/um, p = the resistivity of aluminum = 0.0274 Q um.
(After [40].)

where r = w/wWni,. Capacitance is measured in fF, energy in f], time in fsec and all
lengths in pm. Inspection of the equation for Cjo reveals that for decreasing values
of A and a sufficiently high value of £ the gate contributions can be neglected leaving
only the last two terms,

Ciotar = 0.099rf + 0.061 4. (16.6)

Similarly, in the expression for Tvrsy, the first two terms will dwarf the third with
growing £/A. We can then write

2 e VCiota
TvLs1 = 0.020 5 +0.012 —5 + 3800 ---sf-‘-i (16.7)

where Cyoiat is now the simplified expression given above. Note that Evisr depends
on ) only through £. On the other hand the expression for 7v1s; depends on £/ and
is otherwise independent of A.

The ultimate scaling limits of MOS circuits have been extensively discussed [83]
[119]. The minimum voltage levels around room temperature are set by the require-
ment V > kT/q and also other factors such as the distribution of threshold voltages
during production [83] [152]. Usually ~ 1V is agreed upon as a reasonable minimum

value, although it is possible, especially with decreasing temperatures to further lower
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the voltage. According to our scaling rules the value of A corresponding to this voltage
is 0.12 pm. We will assume these figures to be roughly representative of the ultimate
scaling that can be achieved with MOS technology.

With this value of A\ we write numerical expressions for the switching energy and
delay. If s is kept within reasonable bounds (say s < 200), one can show that for all

interconnections longer than about 20 um the equations can be simplified as follows

0.11
Evisr = 0.55wf (1 + —?;—) (16.8)
TVELST = (1.432 + 2100 f“;ﬁ) (1 <+ %) . (169)

The rightmost parentheses contain a correction factor for the fringe term. This term

is bounded by 1.6 so we can further simplify to obtain

EVLSI ~ (.88 wl (16.10)
¢
Tvpst & 2.2 + 3400 -%"- (16.11)

These are equivalent to equation 1.1. When £ > 280r/s is satisfied the first term
will begin dominating the expression for Tvzs; so that for the longer interconnections
driven by strong transistors the square law term will dominate.

The specific value of X that we have chosen does not have as much significance as
the ratio £/X. If transistor sizes are bounded to reasonable values (s < 200) the line
contribution to the capacitance exceeds the gate contributions when £/A > 100. This

figure is consistent with breakeven values cited elsewhere [5].

16.2 Extension to fan-out and fan-in (chapter 2)

One can model the equivalent of a fan-out or fan-in situation using only pairwise links.
This is depicted in part b. of figure 16.1. The iayoﬁt minimizing connection length
is shown in part a. Notice that the inefficiency in using pairwise links is bounded
between 1 (when two target elements are located as in d.) and 1/F (when the target
elements are as in c.), where F' is the maximum fan-out or fan-in. Thus our analysis

based on the total interconnection length kN may be modified by the introduction
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Figure 16.1: Extension to fan-out and fan-in. Part a. shows optimal power splitting
which minimizes the total connection length. Part b. illustrates the same connections
wired using pairwise links only. Parts c. and d. show the two extreme cases illustrating
the bounds on the inefficiency incurred by using only pairwise links,

of an appropriate average factor 1/F < nr < 1, if specific characteristics of such
an architecture are specified. For a discussion of the effects of fan-out and fan-in on

energy, the reader is referred to [57] [40].

16.3 Coeflicients for the moments of g(r)

The coefficients appearing in equation 2.3 are given by

me
(m = Sy Py ey (16.12)
Go=>
" o_ 1
™ 1—mn/e’

The major approximation made in the derivation of equation 2.3 is to ignore 1
with respect to N™/*~1/" when e < mn and vice versa when e > mn. Thus, if
Nm/e=1/n s at least ~ 2 when e < mn (or at most ~ 1/2 when e > mn), our error
is less than about a factor of 2. If m/e — 1/n ~ 0, it is more appropriate to use the

logarithmic dependence. In this work only the first, second and third moments are
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used. Since we restrict ourselves to highly interconnected systems for which n > e,
the condition mn > ¢ is always satisfied.

As an example, let’s calculate the values of & = (3 for the special case n = oo
{p=1). We find 2/3 and 3/4 for e = 2 and e = 3 respectively. Assuming a cartesian
metric, the exact values of these coefficients for a square (or cubic) grid are 2/3 and
1.

[ima= g(r)dr = k gives the number of connections per element. In chapters 10
and 11, we will be interested in the number of connections of length r > r,, given
by [lme=g(r)dr. Using the definition of g(r), this is easily shown to evaluate to
flrs) = kroo/™(1 — r&/re.,). With r, o N3¢, this becomes > ENZ™'(1 — N./N),
which is o kNPt when N, < N/2 or so.

frme= rg(r)dr gives the total interconnection length per element (in grid units).
In chapters 10 and 11, we were also interested in the sum of the lengths of inter-
connections with length » < r,, given by [,Z, rg(r)dr. Provided p is not very close
to unity (the largest value we employ is 0.8), this integral approximately evaluates
to kxNL/e=1/" when n > e, k&'In N when n = e and k&"” when n < e, similar to
equation 2.4. In other words, if the upper limit of integration is sufficiently large
compared to unity, it does not matter whether it is less than or equal to rpeq.

In chapter 11, we apply our method of analysis hierarchically, first to groups of Ny
elements, and then to the N/N; groups. Thus both of these quantities must be large
in order for our approximations to hold. Since the optimal value of N; is never very
close to unity, our plots are least accurate over the limited range when N;/N ~ 1,

i.e. when N; breaks away from N.

16.4 Discussion of the validity of neglecting di-

electric losses

Throughout our discussion of conducting lines we used the approximation G = 0. It
is shown in [120] that for materials like fused quartz or polyimide the contribution of

dielectric loss to attenuation is indeed negligible for frequencies and lengths of at least
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10 GHz and 10-100 ¢cm. Conductor losses will readily dominate dielectric losses in all
but very wide lines, which will probably never be beneficial to use because of their low
packing density. In general the quantity of interest is the loss tangent 1/(wepgietectric),
which must be small compared to unity for our approximation to hold.

The situation is somewhat different for microstriplines on Si substrates, because
the losses are considerably higher than for those materials mentioned above. Detailed
analysis of striplines on the silicon system can be found in [64] [147]. In general it is
found that there exist three propagation modes. The quasi-TEM mode is what we
have analyzed. The substrate skin effect mode is also accounted for in our analysis,
if we interpret the substrate to act as the ground plane. However, the slow wave
mode can only be analyzed by taking into account the finite conductivity of the
substrate. We will not enter this region if either w > 1/poubstrate€substrate OF @ >
2psubstrate | BP pstrate 15 Satisfied, where hsupsirate is the thickness of the substrate [147).
In other words it is only a low frequency and intermediate resistivity regime that
cannot be made to fit into our analysis. For a micron wide line, (w/2m)pubstrate > 1
with (w/27) in GHz and psupstrate in §2 cm, is sufficient to ensure we are in the quasi-
TEM regime.

In the case of unterminated lines the above is subject to the condition that the line
is not very long, as delayed reflections will cause low frequency components. Again
from the same reference, we find that a psupsirase/f ratio of at least 10} must be
maintained to ensure that we are in the TEM region. For longer lines, we can ensure
that we are in the substrate skin effect region by keeping the resistivity sufficiently
low. The reader is referred to {147} for details.

16.5 Discussion of the validity of the quasi-TEM

approximation

In our analysis of transmission lines, we employed the quasi-TEM approximation, i.e.

we assumed low losses so that the longitudinal electric field could be neglected in



CHAPTER 16. APPENDICES 235

comparison with the transversal fields. It was shown by other workers that this ap-
proximation yields reasonable results for real microstrip lines [60]. The ratio between

the longitudinal electric field value and the transversal field value is [25]

Eon ituds

‘Etransversall

from which we see that this assumption will break down at sufficiently high values of
the frequency and/or resistivity. For metallic conductors, say aluminum, the quantity
inside the square root is around 10~? per GHz so that this approximation is valid for

all frequencies of interest for good conductors,

16.6 Signal delay for MOS VLSI circuits

In this work we have attempted to derive models of conducting interconnections
which represent the basic limitations of the wires and which are independent of device
technology. For an alternate approach, the reader is referred to [5] [6]. Essential to
our analysis is the assumption that T, the intrinsic delay of the switching devices
can be specified as a given constant independent of line length. In practice Ty may
be coupled to T; and/or may depend on whether the line is terminated or not.

As an example, let us consider the rise time 7 = T' of an unterminated VLSI line

driving a very high impedance load [168]
T o~ RyCy+ (Rg+ RECE = Rg(Cy+ CO + T (16.14)

where C; is the drive capacitance and we have replaced RC¢* = T;. Now, if we can
argue that the first term can be kept constant independent of line length, we may
define Ty = Ry(Cy + C¥f) and thus write the total delay in the form T' = Ty + T ~
max(Ty, T¢).

The term Ry(Cys+ C£) can be kept constant, as argued by Thompson. We simply
agree to increase the driver size in proportion to £, thus reducing Rs o< 1/¢ and
increasing Cy o< £. Since the area occupied by the wire also increases, the area of the

driver can always be absorbed in the area of its wire [158].
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Such arguments may not always be possible. However, remember that it is sub-
optimal to work with lines which satisfy Ty > T, and that in any case, we are mainly

interested in small values of T}.

16.7 Additional factors of 2 contributing to F

There are several factors of 2 which can be included in equation 6.1 and our major
results, such as equation 6.10. Since we have centered our discussions on scalar theory,
a factor of 2 may be augmented to account for the two independent polarization states.

The other factors of 2 are best understood in relation to the Nyquist sampling
theorem [129] [178] and can be interpreted as a consequence of the double sidedness
of the frequency domain representations. Two of these factors corresponding to the
two transverse dimensions are already inherent in our results. Two more factors are
associated with the longitudinal dimension and the time coordinate, i.e. both odd and
even versions of both forward and backward traveling waves can independently exist.
Hence, if one utilizes the channels bidirectionally a factor of 2 is added. The other
one can be added only if we employ a detection scheme sensitive to the temporal
phase of the optical carrier. We included neither with the understanding that they

may be easily reintroduced whenever appropriate.

16.8 Calculation of x(P) for circular and square

apertures

So as to gain some insight regarding the accessible Fourier area x, we discuss its
calculation for the special cases of axially centered circular and square apertures
(figure 16.2). The accessible Fourier area at a given point is determined by the
image of the aperture stop observed from that point. Assume that this image is at
a distance L from the point in question and has a diameter D. Define the half cone
angle 6 = tan~*(D/2L) and f#* = L/D.

For circular apertures, we then obtain the solid angle as a function of the half
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Figure 16.2: Projection of a solid angle.

cone angle as
= 27(1 — cos §). (16.15)

If 2, is the projection of this solid angle on a plane perpendicular to the axis of the
cone at a radius of unity, the accessible Fourier area is then given by
Q, wsin?0 1 Q
=m.—_m=———ﬂ(1m——). 16.16
AT T TN TR ir (16.16)
Similar relations exist for square apertures. If we call the direction of propagation
the 2 direction and use z and y to denote the transverse coordinates, the surfaces

bounding the pyramid of allowed wave vectors are defined for o, > 0 by the equations

loz| = (tan §) o, (16.17)
loy] = (tan 8) o, (16.18)

where (0,,0y,0,) denotes the wave vector. To find the accessible Fourier area we

need to find the area of the projection of the solid angle defined by these surfaces.

The curves enclosing this area can be found by substituting the above in the equation
1 |

oitoltol= ¥ (16.19)

We then find that the accessible Fourier area is the area of intersection of the two

ellipses shown in figure 16.3. We will not require the exact relation for this area;

however we make the following observations:
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Figure 16.3: Accessible Fourier area for a square aperture, as given by the intersection
of two ellipses, The shaded area gives x, the accessible Fourier area. This area
approaches a square for small values of ¢ and a circle for large values of 6.

1. For smaller values of ) and § the accessible Fourier area can be expressed as

4sin’ @
~

X~ =5 (16.20)

i.e. a square of diameter 2sin@/X =~ 1/f#). The minimum resolvable dimen-
sion becomes f#), consistent with what is encountered in analyzing paraxial
problems in cartesian coordinates [56] and also the Nyquist sampling theorem
(appendix 16.7).

2. As § approaches 2x and 6 approaches /2, the accessible Fourier area ap-
proaches a circle of area ¥ = w/A%. This is a consequence of the spherical

nature of the governing physical equation (number 16.19).

3. For all values of 0 < Q < 27, we have (I, = A%y < ), where equality holds only
for {1 = 0. If we write

Q=) (16.21)

then ¥(0) = 0, ¥(27) = 7 and ¥(Q) =~ Q for small . These relations are in

fact true for any aperture shape.
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£3

Figure 16.4: A fan-out situation. The signal is transmitted from the left hand node
and is destined to reach the right hand nodes. The point at which power is split is
chosen so as to minimize the total connection length.

16.9 Extension to fan-out and fan-in (chapter 6)

The extension of the results of chapter 6 to fan-in and fan-out is straightforward.
Consider for instance the fan-out situation symbolically depicted in figure 16.4. Given
the locations of the source and detectors, one arranges power division to occur at
such points so that the total distance required, £; + {3 -+ £3, is minimum. Then the
contribution of this fan-out link to the total volume required is just A*(£y +4;+43)/2x.

16.10 System size for the reflective multi-facet

architecture

We refer to part a. of figure 7.1. Assume we want to form interconnections between
pairs of transducers which, in the worst case, may be separated from each other by
a distance comparable to the total extent £ of the devices, which are laid out on a
planar surface. We also assume that the total area of the holographic optical element

is about equal to the total area occupied by these devices. Since ' = kN connections
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are being formed between A pairs of transducers, we write
2Nd;, ~ Nd} (16.22)

where d;, and d; denote the width of a transducer and a reflective facet respectively.
Letting H denote the height of the system, we also have

dz ~H2

22
" ) (16.23)

since H/d; corresponds to the f#. There also exists a limit to how large £/H can
be. Referring the reader to [93] [91] for a detailed analysis of this issue, we will satisfy

ourselves with the approximation

L <M. (16.24)
Since £2 o~ 2N'd%., combining the above we find that the minimum values of d%, and
L satisfy
.
~N (16.25)
L~ N (16.26)

within numerical factors of the order of unity. Similar relations can be shown to
hold for variations of this architecture [19]. The reader is referred to [41] for detailed

analysis of such configurations.

16.11 3 dimensional optical layouts with elements

confined to a plane

Here we consider layouts where the elements are constrained to lie on a planar N/? x
N1/2 grid, as in the fully 2 dimensional case, but the communication paths are allowed
to leave the plane. Let the system be confined to a square prism of volume N*/2d x
NY2d x M(2)). That is, we are measuring the height of the system in units of
(2)) and denoting it by M. If a sandwich of planar waveguides is used, M may be

interpreted as the number of layers. Unlike in the fully 2 dimensional case, where M
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was specified as a constant, here we will be free to choose M as large as we wish. The
contributions of the vertical runs will be taken into consideration.

Due to finite element size d; and heat removal considerations, d must satisfy the
conditions d > dy and & > kEB/Q.

The horizontal contribution to the total interconnection length is just ANx7d
as before. For the vertical contribution, let us first consider the worst case, that
all signals must travel up and down a total length of 2M(2X). This would be the
case (within factors like v/2 etc.) if communication is established by a hologram
or other reflective imaging system located M{2)) above the device plane. Thus by
multiplying the total connection length by (2)? we find the total volume needed for
communication to be kN (#d(2))* + 2M(2))®). Requiring that the total available

communication volume Nd>M(2)) exceed this, we obtain, in addition to previous

requirements,
&> ﬁ%?l(m +2M(2)) (16.27)
d> -’f-’%%ix—-)-f + (2kx)7(2)). (16.28)

We immediately notice that the second term may be ignored, if the transducers are
restricted to a single planar layer on the surface of the elements, as would almost
always be the case in practice. We cannot expect the transducers to be packed
denser than one per (2))? so that d* > d% > kx(2X)%. Thus, the condition d > d4
already covers this requirement (within a factor of v/2). Now, we remember that we
had assumed the worst case for the contribution of the vertical runs. The vertical
contribution, which we saw can be ignored even in the worst case, may actually be
much less.

Thus including all considerations, the minimum value of d is given by

KEB\? kx#(2\)
(Q ) R ,dd]. (16.29)

d = max

In passing, we notice that it is of no utility to choose M to be any greater than

kx7(2A)/ max{(kEB/Q)'?, d4).
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Assuming the propagation delay T, > T, the signal delay 7 = T, may now be
expressed as

- % [Nd+2M(2))], (16.30)

again assuming worst case contribution of the vertical runs. For the moment assuming
that d is given by d = kx7(2A)/M, the optimum value of M minimizing the delay is
found as M = (NY2kx7/2)'/%. Of course, we never need set M to a value greater
than that mentioned in our passing remark above. We then find, within a factor of

two, that the resulting delay is given by (for p > 1/2)

i

1
-é; r= -i—ma,x [N (%E) (kxr)d N3 (22), N3d, (16.31)
where y = max(1, BT,) and d2 > kxdZ. where d;. denotes the extent of a transducer.
The reader will notice that apa,rt from the last term, this equation is identical to
equation 10.12.

Unless p = 1, the second term falls behind with increasing N. Let us consider the
case p = 1 and rewrite the above equation for BT, > 1 as

1 1 E H 1 1
5= -~(kNB)“i [(6) N A,Tﬁdw] (16.32)
where we ignored all numerical factors and assumed that d3 = kxd?,, i.e. the element
size is transducer limited. Of course, the second term is redundant since dy, > A.
Thus we conclude that, given that the elements are to be arrayed on a planar surface,
circuits with p = 1 do not lead to greater delay than those with smaller p. Another
conclusion is that, when p = 1, only a constant increase in delay is incurred by
constraining the elements to lie on a plane, instead of a 3 dimensional grid.

As noted earlier, our results are valid for a system employing optical switching if

one interprets F as the switching energy.
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16.12 Average signal delay for normally conduct-
ing layouts

In the main text we concentrated on the worst case signal delay . It is an easy
exercise to show that when all linewidths are kept equal, the wireability imposed
average signal delay 7,.. is given by

2

Tave = (16p€) <""1§7"2"> o (1spe)(r2)% = (16p€)Ca (k)™ NRET (16.33)

What if all linewidths are not kept equal? For simplicity, we assume that T; and
Wonin are very small, that M = 1 and that the system can be downscaled sufficiently
so that propagation effects need not be considered. Then, assuming a linewidth

distribution W(r), the average delay is given by

Tave = %f‘?‘(?’)g(?") dr (1634)
with 7(r) = (16p¢)(rd/W(r))? where d satisfies
& = [W(ryrdg(r) dr (16.35)

since W(r)*'rd is the volume (or area} occupied by each line. Upon substitution we
find that the average delay is given by

2

Tave = (16p€)—1£ [/ W%%;g(r) dr] [f rW(r)etg(r) dr] = (16.36)

Using the standard techniques of the calculus of variations [68], we find that the

optimal distribution of linewidths is

W(r) o reFe (16.37)

where the constant of proportionality is arbitrary (scale invariance). It is also easy
to show that the resulting expression for 7., has a growth rate identical to equa-
tion 16.33. Only a constant factor improvement is possible.

In practice, it would probably not be feasible to continuocusly contour the linewidth

as a function of line length, so that a staircase approximation to equation 16.37 might
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be used instead. Real computing systems are built out of a hierarchy of different
technologies, each higher level employing wider lines. Thus, apart from its theoret-
ical interest, the result presented may be useful as a guideline in contemplating the
interconnection hierarchy when minimization of average signal delay is an objective.

QOvur scaling rules cannot be applied to the lines of present day VLSI chips because
h and t are fixed for all lines in the same layer. This is not optimal. However,
many-layer technologies are becoming available. Thus the upper layers which are
reserved for the longer and wider wires may be constructed with larger values of
h and ¢ in accordance with our scaling rules. Then, a staircase approximation to
equation 16.37 is possible. Thus, the result presented may also be used as a guideline

in the construction of future many-layer ULSI, WSI or hybrid WSI circuits.
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