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We show that the entropy of the distinct connection patterns that are possible with multifacet optical intercon-
nection architectures is approximately equal to the space-bandwidth product of the optical system.

1. INTRODUCTION

The importance of the number of distinct connection pat-
terns that can be wired up between N input and N output
nodes was emphasized by Keyes.",2 In the context of mi-
croelectronic packaging, the input and output nodes may
be the terminals of logic gates on a chip or the pinouts of
chips on a multichip carrier. In the context of an optical
interconnection system, the input nodes may be optical
sources and the output nodes optical detectors on the sur-
face of electronic processing elements. The number Q of
different ways in which the input nodes can be connected
to the output nodes is a measure of the flexibility afforded
by that interconnection system. A designer confronted
with the task of implementing a particular connection
pattern or circuit diagram has a much greater chance of
success if Q is larger. Because Q can be extremely large,
it is more convenient to work with its logarithm, fl =
log2 Q, which can be interpreted as the information (en-
tropy) required to specify a particular connection pattern
out of all the possible patterns. For instance, for a full
crossbar interconnection network, where each input can
be tied to any set of outputs,

N N
Q 2 C(N, n) = (2N)N = 2N2,

into

N2 ,

since each of the N inputs has the choice of being con-
nected to 0 c n - N output nodes in C(N, n) distinct ways
{C(x,y) xV[y!(x - y)!]}. An alternative way of looking
at this is that there is a binary decision (to connect or not
to connect) between each of the N2 possible input-output
pairs.

Here we discuss the number of distinct connection pat-
terns that are possible with a quite general class of free-
space optical interconnection architectures, discussed
previously by several authors.3 " The generic form of the
architecture is depicted in Fig. 1, several other essentially

equivalent forms being possible. The light originating
from a particular input channel is made to fall on any
number of filter facets on the filter (Fourier) plane,
through the use of appropriate phase elements correspond-
ing to the desired positional shift in the Fourier plane.
(Figure 1 shows the use of prisms as phase elements; if the
light is intended to fall on more than one filter facet, mul-
tiple gratings should be used.) Each filter facet is as-
sumed to be a phase element corresponding to a single
distinct displacement between the input and output
planes. All input channels using the same filter facet will
be displaced by the same relative amount in the output
plane. If one's goal is to displace two input channels by
different magnitudes or directions in the output plane,
different filter facets must be used. Hence this architec-
ture allows partially space-variant mapping of the inputs
to the outputs. 13

The main result of the research presented in this paper
is that the value of fl for this architecture is approxi-
mately equal to the space-bandwidth product of the opti-
cal system. This result provides a new interpretation of
the space-bandwidth product, which is a measure of the
throughput and the cost of the system. In Section 2 we
derive this result in a simple manner by ignoring edge ef-
fects. In Section 3 we provide a more complicated deriva-
tion that takes edge effects into account, which results in
a slightly different but essentially identical result. Most
readers will prefer to disregard this section, which has
been included for mathematical completeness.

2. ANALYSIS

We assume that each of the M filter facets corresponds to
a distinct relative displacement between the input and
output planes and that at least one input channel employs
each filter facet. (If these conditions are not satisfied,
the number of filter facets could be reduced without de-
creasing the number of distinct connection patterns that
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Fig. 1. Multifacet, partially space-variant optical interconnection arcl
nels in the input and output planes, and there are M filter facets. F(
manner.

are possible. The use of more than one filter facet with
the same displacement, or leaving a filter facet unused, is
simply wasteful.) Since there are N output channels, at
most N distinct displacements are possible for each input
(directed toward each of the N outputs), so that if each
filter facet is to be distinct, M c N.

[In fact, the set of possible displacements for a particu-
lar input channel depends on its location in the input
plane. Although N distinct displacements are possible for
each input (directed toward each of the N outputs), a total
of =4N distinct displacements is possible when we con-
sider all input channels. In the present derivation, we are
assuming that all input and output channels can be
treated uniformly regardless of their location in the input
or output plane. A more exact analysis is presented in
Section 3.]

For simplicity, the area and shape of the numerous in-
put and output channels and those of the numerous filter
facets are assumed to be identical (as in Fig. 1). Let the
area of each input channel be denoted by a so that the area
of the input plane is Na (in square meters), and let the
area of each filter facet be denoted by a so that the area of
the filter plane is Ma (in reciprocal square meters). The
space-bandwidth product of the system (SB) is equal to
the product of the area of the input plane and the area of
the filter plane, SB = NMaa. Also, the area of the input
channels and the filter facets must satisfy aa - K, where
K is a coefficient of the order of unity, because the light
distribution at the input channel and that at the filter
facet form a Fourier-transform pair. Thus we have 3

NM s SB' SB/K. (1)

We assume that the space-bandwidth product of the sys-
tem is not underutilized, so that the above relation is sat-
isfied with equality. Since M ' N, it also follows that
M ' NS and N Ž VB.

We allow for arbitrary fan-out at the input plane and
arbitrary fan-in at the output plane as well as the possibil-
ity of some nodes not being involved in any connections.

Lens Output

hitecture. f is the focal length of the lenses. There are N chan-
'r simplicity we assume that these are arrayed in the Cartesian

(As mentioned above, for fan-out to be established, the
prisms in Fig. 1 must be replaced by multiple gratings.)

Between 1 and N input channels may utilize the same
filter facet. All these channels will receive the same dis-
placement in the output plane. i out of N channels may
utilize the same displacement in C(N, i) distinct ways.
Summing over i, we obtain

N

>C(N, i) = 2N _ 1.

Since the same multiplicity exists for each filter facet,
there are (2 N - 1)M- 2NM distinct ways in which the N
input channels can be mapped to the M displacements.

(In fact, all the N input channels cannot utilize a given
displacement. For instance, a channel at the rightmost
edge of the input plane cannot utilize displacement vec-
tors with positive components in the x direction because
this would result in its being imaged outside the output
plane. The greater the magnitude of the displacement,
the smaller the number of input channels that can utilize
it. As is mentioned above, we are ignoring such edge ef-
fects in the present derivation.)

Now we must determine the number of ways in which M
distinct displacements can be chosen out of N possible dis-
placements. This is simply C(N, M) since the particular
order in which the displacements are assigned to the filter
facets is not important. [If the displacements associated
with two filter facets are interchanged, this can be com-
pensated by adjusting the deflection components at the in-
put plane that select the filter facet(s) that each input
channel will use. Thus the two situations would not cor-
respond to distinct connection patterns.]

Therefore the number of distinct connection patterns
that can be implemented with M filter facets is given by

Q = C(N, M)2m, (2)

(1 = 10g 2 C(N, M) + NM = log2 C(N, M) + SB'. (3)

The function C(N, M) will be approximately at its maxi-
mum value when M N/2, rounded to the nearest in-
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teger. Using NM = SB', we find that M -/SB'12 and
N - V2SB. Since

N
2 C(NM) = 2N

M-O

and thus
N

log2 2 C(N,M) = N,
M-O

we have log2 C(N, M) - N \/2SB', which is <<SB'
because SB'>> 1. Since even the maximum value of
log2 C(N, M) << SB', we obtain

Q SB', (4)

which is our main result. In the simplest possible terms
this can be understood by noting that there is a binary
choice involved in whether we connect input channel i to
filter facet j, and since 1 i c N and 1 c j c M, there
are a total of NM = SB' binary decisions, which is noth-
ing but the definition of Ql. To arrive at relation (4), it
was only necessary to show that the additional multiplic-
ity contributed by the number of distinct ways in which a
subset of the possible displacements are assigned to the M
filter facets is insignificant.

It is also interesting to investigate what fraction q of the
total number of possible connection patterns 2N

2 (which
can all be realized with a full crossbar architecture) we
are able to realize with this architecture. Dividing Q by
2 , we obtain

2NC(N, M) 1, (5)

which is satisfied with equality when M = N. Taking
logarithms and remembering that the term involving
C(N, M) is negligible,

log2 = N(M-N) = SB' - N2 0 (6)

which is satisfied with equality when M = N. For a
given space-bandwidth product, the number of distinct
connection patterns that are possible with our architec-
ture is fixed and cannot be increased by increasing either
N or M. By increasing N, the number of potential connec-
tion patterns 2N

2 can be increased, but since the number
of connection patterns that can be implemented with our
architecture is fixed, the ratio -q will be decreased.

Since we assume that each filter facet corresponds to a
distinct displacement and is utilized for at least one con-
nection, Q(M) is the number of distinct connection pat-
terns that can be implemented with exactly M filter
facets; the connection patterns that can be implemented
with less than M filter facets are not included. For a
given value of N, the space-bandwidth product determines
the maximum number of filter facets M that we can af-
ford to have (SB/N). The total number of distinct connec-
tion patterns that can be implemented with at most M =

SB'/N filter facets is

M
E 2Ni 2 NM = 2SD'

The geometric series is dominated by and almost equal to
its largest term. This means that almost all the connec-

tion patterns that can be implemented with at most
M filter facets require exactly M filter facets. A corollary
is that almost all the 2N

2 connection patterns that are pos-
sible with a full crossbar require that M = N facets be
used to be implemented with the architecture under con-
sideration. The number of connection patterns for which
a smaller number of facets are sufficient is negligible in
comparison.

3. CONSIDERATION OF EDGE EFFECTS

In this section we repeat the above derivation, taking into
account edge effects.

Remember that we assume that the input and output
planes consist of Cartesian arrays of \N/ X VN channels.
As discussed above, there are at most N distinct displace-
ments that are possible for each input. However, when all
input channels are considered, the total number of dis-
tinct displacement vectors possible is (2VNN - 1)2 4N.
(This is the number of distinct vectors that can be drawn
between pairs of points in a X \N/- array.) A given
input cannot utilize =3N out of these =4N displacements
since they would image the input outside of the array
of \N/ X \N/i output channels.

First we establish an upper bound for l. We can choose
M displacements out of the =4N possible in C(4N, M) dis-
tinct ways. In Section 2 we calculated that the input
channels can be mapped to a particular set of M displace-
ments in 2 NM ways, assuming that any number of input
channels between 1 and N could utilize each displacement.
However, since in fact all N input channels cannot utilize
a given displacement, this was an overestimate. Thus we
are led to the upper bound

Q log2 C(4N,M) + NM = log2 C(4N,M) + SB' SB',
(8)

where in the last step a similar argument as used in arriv-
ing at relation (4) is invoked.

Now we derive a lower bound for l. Let (i, j) denote
the horizontal and vertical components of a particular dis-
placement vector, which must satisfy

-(NN-- 1) i s (N - 1) , (9)

-(VN - 1) 'j '(VN - 1) . (10)

Without loss of generality, assume for the moment that
i, j Ž 0. Let (k, 1) denote the coordinates of a particular
input channel such that 1 5 k _ \/N and 1 1 ' VN.
If the values of k or 1 are large, this input may not be able
to utilize the given displacement because doing so would
cause the displacement to be imaged outside the array
of output channels. More precisely, only those inputs
satisfying

1 k ' NlN - i, (11)

1 _ I N__ ' - j (12)

can utilize the displacement with components (i, j). The
maximum number of inputs that can utilize this particu-
lar displacement is (VN - IiI)(VN - Ill), which is exactly
the number of inputs contained in the rectangle bound by
relations (11) and (12), and the absolute values will also
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ensure validity for negative values of i andj. Any number
of inputs between 1 and (N - lil)(\N - il) may utilize
this particular displacement, in [2('V-Ni')(V'N-1j' - 1] dis-
tinct ways.

Now assume that we have chosen a particular set of M
distinct displacements out of the =4N possible displace-
ments. The total number of distinct ways in which the
inputs can be mapped to these M displacements is then

(13)

The right-hand side can be calculated as

_ _i = [ -2-1)2 2
E (VN - i1) = IMN - 2 

M41 2

Thus, using MN = SB', we obtain

Q -(/I - M/4 + 1/4)2.

where the product is taken over all the M displacements.
(This step corresponds to taking the Mth power of 2N - 1
in Section 2.) The total number of distinct connection
patterns is then

(14)Q = i - 1],

where the sum is over the C(4N, M) different possible sets
of M displacements. [This step corresponds to multiply-
ing by C(N, M) in Section 2.]

Because the last expression is difficult to evaluate, we
must satisfy ourselves with a lower bound. Any term in
the above summation is a lower bound for Q; hence we
choose a term that is both easy to evaluate and as large as
possible, one that corresponds to a set of displacements
that are symmetric and as short as possible {since a
greater number of inputs can utilize shorter displace-
ments [relations (11) and (12)]}. More specifically, we
choose the set of M displacement vectors with components
(i, J), satisfying

-(- 1)/2 ci c (MI-- 1)/2, (15)
-(VM - 1)/2 cj c (VM - 1)/2. (16)

Thus we can now explicitly express the product and write
a lower bound for Q,

Q ' H H [2 (v-ij)(V-ijj) - 1], (17)ji
where the ranges of the products are as given by relations
(15) and (16). Taking logarithms,

Li Ž > log2 [2(Vi)(VN J I) - 1]. (18)
j i

If we ignore the -1 in the square brackets, relation (18)
is clearly an excellent approximation unless Iii and 1ij
are close to lN/N. Iil and ill will attain their maximum
values \N/N - 1 only when M attains its maximum value
(2VN - 1)2 4N. Even in this case the overall error in-
curred by ignoring the -1 in the square brackets will be
quite small because the terms that are most affected are
few in number and small in magnitude compared with the
terms for which ignoring the -1 is an excellent approxi-
mation, which are many in number and large in magni-
tude. Thus

j (N - ij)(VN-il). (19)
j i

Since M c (2VN - 1)2 < 4N, we have N > M/4; hence
SB' = MN > M2/4 and M < 2S. Noting that the
right-hand side of relation (21) is a decreasing function
of M,

(V/IS _ M/4 + 1/4)2 > (IB - 2V;i-/4 + 1/4)2

> SBV/4, (22)

so that

a >SB'
4

(23)

Combining our lower and upper bounds, we have
SB74 5 Li • SB'. Hence, apart from a numerical factor
of the order of unity, Li - SB'.

4. CONCLUSION

We have shown that the value of Li for the quite general
class of multifacet partially space-variant free-space opti-
cal interconnection architectures described in this paper
is approximately equal to the space-bandwidth product of
the optical system. Thus we have provided a new inter-
pretation of the space-bandwidth product.

Li is a measure of the flexibility of a particular inter-
connection architecture in being able to accommodate a
given connection pattern or circuit diagram. The space-
bandwidth product is a measure of the throughput of an
optical system as limited by physical considerations and is
also closely related to the cost of the system. By showing
that these two quantities are essentially equivalent, we
have provided a bridge between physical concepts and
architectural-circuit concepts.

Finally we note that, although we have assumed that we
are dealing with a fixed connection pattern, the system
could be dynamically reconfigured if active deflectors are
employed at the inputs and outputs.
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