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Fourier transforms of fractional order a are defined in a manner such that the common Fourier transform is a special case with 

order a= 1. An optical interpretation is provided in terms of quadratic graded index media and discussed from both wave and ray 

viewpoints. Fractional Fourier transforms can extend the range of spatial filtering operations. 

The original definition of the derivatives of a func- 
tion makes sense only for integral orders, i.e. we can 
speak of the first or second derivative and so on. 
However, it is possible to extend the definition of the 
derivative to noninteger orders by using an elemen- 
tary property of Fourier transforms. Bracewell shows 
how fractional derivatives can be used to character- 
ize the discontinuities of certain functions [ 11. An 
example from the field of optics is related to the Tal- 
bot effect [ 2 1, in which self-images of an input ob- 
ject are observed at the 2D planes z=NzO for integer 
N (z is the axial coordinate and z0 a characteristic 
distance). Using a self-transformation technique [ 31, 
it was shown that N could also take on certain ra- 
tional values. 

In this letter we define fractional Fourier trans- 
formations in a similar spirit. The 0th Fourier 
transform of a function S(x, y) will be denoted as 
.P~(x, y)], or simply S”fwhen there is no room 
for confusion. We require that our definition satisfy 
two basic postulates. First, .9iIfshould be the usual 
first Fourier transform, defined as 

+cc +oo 

(S’f) (x’, y’) = 1s f(X> Y) 
--co -cc 

xexp[ -i2n(x’x+y’y)/s2] tidy, (1) 

where S, x, x’, y, y’ all have the dimensions of length. 
(The parentheses on the left hand side are to em- 
phasize that the variables x’, y’ belong to J’f and 
not&) In a conventional “2f” optical Fourier trans- 
forming configuration #’ [ 41, x, y would denote the 
coordinate of the input plane, x’, y’ those of the 
Fourier plane, and s2 =/lf (A= wavelength of light, 
f=focal length of lens). 

Our second postulate is to require that 

.FO[ .~bf]=.~=_~bf=sb.~"f=sa+bf. (2) 

Consistent with our two postulates, .9’lQ[ ] may be 
defined for integer Q as that operation which when 
applied Q times gives the first (conventional) Four- 
ier transform off: An optical system which performs 

xl By this we are referring to the common textbook configura- 

tion consisting of free-space propagation by a distancef; a lens 

of focal length J; and again free space propagation by a dis- 

tancef: 
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this operation may be realized by inserting a lens of 
appropriate focal length midway between the appro- 
priately spaced input and output planes. It is now 
possible to define Fourier transforms of rational or- 
der .F'/Qf by repeated application of the operator 
.‘5;“Q for P times. The definition can be generalized 

to real orders by a limiting process. 
Here we will not pursue this line of thought. In- 

stead, we recall that the optical Fourier transforming 
operation is a result of the joint action of the dual 
operations of free-space propagation and focusing 
[ 5,6 1. In a conventional “2s” system, the focusing 
action is concentrated at the lens location. The same 
operation can be performed by Q fractional Fourier 
transform stages in cascade each performing .P’/Q[. 1. 
In this latter system, the act of focusing is evenly dis- 
tributed through the act of propagation. In the limit 
that Q+co, focusing and propagation will be infin- 
itesimally and uniformly interspersed between each 
other. Of course, bulk systems with even moderately 
large Q would be quite impractical. Fortunately, sys- 
tems satisfying this property can be realized as qua- 
dratic graded index (GRIN) media. Such media can 
be thought to consist of infinitesimal layers in which 
focusing and propagation take place simultaneously. 
The refractive index distribution in such a medium 
is given by [ 7 ] 

n2(r)=n:[1-(n2/n,)r2], (3) 

where r2=X2+ y2 is the radial distance from the op- 
tical axis and n,, n, are the GRIN medium param- 
eters. By solving the ray equation, it was shown [ 71 
that a parallel bundle of rays will be focused a dis- 
tance L- (7r/2)m away from the input plane. 
If a function f (x, y) is presented at the input plane 
2~0, at the plane z= L we observe -9'f as given by 
eq. (1) [S]. (This confirms that z=L is the focal 
plane not only from the ray optics point of view but 
also from the physical optics point of view.) NOW, 
since the system is fully uniform in the axial direc- 
tion, .Ff can be physically defined as the functional 
form of the scalar light distribution at z=aL. 

Above, we have motivated and defined the frac- 
tional Fourier transform in physical terms. How- 
ever, it is important to note that fractional Fourier 
transforms can be defined purely mathematically and 
GRIN media introduced afterwards as a physical 
interpretation. We now present such as mathemati- 
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cal definition, also showing its relation to the phys- 

ical definition above. 
The self-modes of quadratic GRIN media are the 

2D Hermite-gaussian (HG) functions [ 71, which 
form an orthogonal and complete basis set. The (I, 

m )th member of this set is expressed as 

(4) 

where HL and H, are Hermite polynomials of orders 
1 and m, respectively, o= (2/k)“‘( n1/n2)“4 with 
k=21cn,/A, and J. is the wavelength. Each HG mode 
propagates through the GRIN medium with a dif- 
ferent propagation constant [ 71 

j3~,=k[l-(2/k)(n2/n,)‘~2(I+m+1)]”2 

=k- (n2/n,)“2(l+m+ I) (5) 

Any 2D function f (x, y) can be expressed in terms 

of the HG basis set as 

f(x, Y)' c c hn ~/*(X,Y) > (6) I m 

-02 

where h,,=2”+“)l!m!nw’/2. 
Now, the fractional Fourier transform off (x, y) 

of order a can be defined as 

.F[.f(x, 1:) I = T z 4, C,Ax, Y) exP(ihd) . 

(8) 

It was shown [8] that our two postulates are satis- 
fied by this definition, and that the scaling factor s 
appearing in eq. ( 1) is given by s= w&. In the same 
reference, we also discuss and prove some of the 
properties of fractional Fourier transforms, which are 
richer than those of the common Fourier trans- 
form #2, and generalize to complex values of the or- 
der a (which can be physically realized by attenuat- 
ing media). We also define fractional convolutions 
(or correlations) through the equation 

CONV”]f; g] = .P-“[ .Ff x Pg] (9) 

112 For a list of properties of the common Fourier transform, see 

ref. [I]. 
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In order to demonstrate the fractional Fourier 
transform operation, some computer simulations 
have been carried out for one-dimensional signals. 
Let us assume that the input function is the common 
rectangle function. Figure I shows this initial signal 
and the magnitude of its first order Fourier trans- 
form. The phase information of the first Fourier 
transform is shown in fig. 2. The coefficients A, for 
our specific example are shown in fig. 3. This figure 
demonstrates the fact that in this example harmon- 
its of higher orders ( > 15) contain very little of the 

total energy. Figure 4 shows the fractional Fourier 
transform of order 0.25, Note that this same distri- 

bution is also the fractional Fourier transform of or- 
ders 1.75, 2.25, . . . . Figures 5 and 6 show the frac- 
tional Fourier transforms of our input function for 
the orders 0.5, 1.5, . . . . and 0.75, 1.25, . . . . respectively. 

To gain some additional insight regarding frac- 
tional Fourier transforms and also show its relation 
to ray optics, we now provide a phase-space inter- 
pretation. Let a particular paraxial ray be character- 
ized by its radial distance r and slope S, both with 

respect to the optical axis at a particular axial po- 
sition z. Then, the effect of passing through any op- 
tical system on this ray can be described by a move- 
ment in r-s space. For instance, free-space prop- 
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Fig. 1. Solid curve: input signal, dashed curve; magnitude of its first order Fourier transform. 
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Fig. 2. Phase of the first order Fourier transform of the input signal in the previous figure. 
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Fig. 3. Energy distribution among the first 100 HG orders. 
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Fig. 4. Fractional Fourier transform of order a=0.25, (a) magnitude, (b) phase. 
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Fig. 5. Fractional Fourier transform of order ~~0.5, (a) magnitude, (b) phase 

agation corresponds to a horizontal displacement 
whereas focusing by a lens corresponds to a vertical 
displacement. Let us now consider a bundle of rays 
with a uniform spread of r and s (represented by the 
shaded rectangular region in fig. 7a) and consider 
how this ray bundle is transformed as it passes 
through a conventional “2f” Fourier transforming 
configuration (fig. 7 ). The overall effect of the “2f ’ 

system is to rotate the rectangular region by 90”, al- 
though the intermediate steps result in shearing of 
the rectangular region. 

How do things look like in phase space if we use 
quadratic GRIN media instead? It is known that r 
and s obey the following equations in such media [ 71: 

r(z+Az)=r(z) cos(nAz/2L)-s(z) sin(nAz/2L), 

s(z+Az)=r(z) sin(nAz/2L)+s(z) cos(7rAz/2L), 

(10) 

from which we can conclude that the region repre- 
senting any given bundle of rays in phase space is 
uniformly rotated as we go from z=O to z= L. This 
uniform behavior is to be contrasted with that of the 
bulk “2f” Fourier transformer in which the focusing 
is concentrated at the lens, instead of being uni- 
formly distributed throughout the system. This has 
discouraged us from basing the definition of frac- 
tional Fourier transforms on conventional bulk 
Fourier transformers. Although we cannot exclude 
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Fig. 6. Fractional Fourier transform of order a=0.75, (a) magnitude, (b) phase. 

the possibility of other definitions consistent with our 
two postulates, our particular definition is seen to be 
a natural and meaningful one, especially in an op- 
tical context. 

Fractional Fourier transforms can form the basis 
of generalized spatial filtering operations, extending 
the range of operations possible with optical infor- 
mation processing systems. Conventional Fourier 
plane filtering systems [ 41 are based on a spatial fil- 
ter introduced at the Fourier plane. This limits the 
operations achievable to linear space-invariant ones 
(i.e. operations which can be expressed as a con- 
volution of the input function with a space-invariant 
impulse response). By introducing several filters at 
different fractional Fourier planes, it may be possi- 
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ble to implement a wider class of operation. Note that 
full space-variant operations can be implemented us- 
ing approaches such as (or equivalent to) vector- 
matrix multiplier architectures [ 91 or multi-facet ar- 
chitectures [ lo], but these result in a heavy penalty 
in terms of space-bandwidth product utilization. A 
detailed treatment of how many filters are needed 
and how they should be synthesized to realize a given 
operation must be postponed for future research. 
Here we must satisfy ourselves by noting that this 
process, in its extreme, constitutes a generalization 
of conventional planar spatial filtering to volume 
spatial filtering. 

Despite the attractiveness of this concept, it is per- 
haps worth noting that there have been some related 
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Fig. 7. (a) Phase space representation of the original bundle of 

rays. (b) After free space propagation through a distance1: (c) 

After passage through a lens of focal length J: (d) After another 

free space propagation through a distancef: 

attempts (not based on the fractional Fourier trans- 

form in GRIN media as we have introduced it), 
which have been very difficult to implement with ac- 

curate results [ 11,121. Thus, we refrain from opti- 

mistic conclusions regarding the usefulness of gen- 
eralized spatial filtering before further results are 

developed. 
A detailed mathematical treatment of the frac- 

tional Fourier transform will be given in another 

publication [ 8 1. 

Some of the ideas in this letter were developed 
during intensive study sessions organized by Adolf 
W. Lohmann at the Applied Optics Group of the 
University of Erlangen-Ntirnberg during the sum- 
mer of 1992. David Mendlovic acknowledges a MI- 
NERVA fellowship and Haldun M. Ozaktas ac- 
knowledges an Alexander von Humboldt fellowship 
which made this cooperation possible. 
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