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ct of Fractional Fourier Transformation 
on Time-Frequency Distributions 

Belonging to the Cohen Class 
Haldun M. Ozaktas, Nilgun Erkaya, and M. Alper Kutay 

Abstract- We consider the Cohen class of time-frequency 
distributions, which can be obtained from the Wigner distribution 
by convolving it with a kernel characterizing that distribution. 
We show that the time-frequency distribution of the fractional 
Fourier transform of a function is a rotated version of the 
distribution of the original function, if the kernel is rotationally 
symmetric. Thus, the fractional Fourier transform corresponds 
to rotation of a relatively large class of time-frequency represen- 
tations (phase-space representations), confirming the important 
role this transform plays in the study of such representations. 

HE fractional Fourier transform El]-[3] has found many 
applications in quantum mechanics and optics [I], [2], 

[4]-[8], and signal processing [2], [3], [9]-[12], [23]. The frac- 
tional Fourier transform has been related to wavelet transforms 
[2], [13], neural networks [13], and is also related to various 
chirp-related operations [2], [14], [15]. It can be optically 
realized much like the usual Fourier transform [21, [41, [5],  171, 
and can be simulated with a fast digital algorithm [9], [161. 
Other applications which are currently under study, or which 
have been suggested, include phase retrieval, signal detection, 
radar, tomography, and data compression. 

The ath-order fractional Fourier transform xa(t)  of the 
function ~ ( t )  may be defined for 0 < la1 < 2 as 

00 

exp(-irsgn(sin4)/4+ iq5/2) 
lsin $1112 

. exp [ir(t2 cot 4 - 2tt’ csc 4 + t” cot 411 

B,(t, t’) = 
(1) 

where 4 5 a r / 2 .  The kernel approaches &(t, t’) 6 ( t  - t’) 
and B*z(t, t’) = 6(t+t’) for a = 0 and a = 412, respectively. 

The Wigner distribution W,(t, f )  of a signal 2 can be 
defined in terms of the time-domain representation of that 
signal x ( t )  as [19], [20] 

W,(t, f )  = Im x( t  + t / / 2 ) x * ( t  - t’/2)e-2Tift’ dt’. (2) 
00 
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Roughly speaking, W,(t, f )  is a function which gives the 
distribution of signal energy over time and frequency. It is 
possible to show that the Wigner distribution of x,(t) is a 
rotated version of that of ~ ( t ) ,  a result independently arrived 
at by different authors [2], [5], [6], [3]. Let R+ denote the 
operator which rotates a 2-D function counterclockwise by an 
angle 4, that is 

R 4 [ z ( t ,  f ) ]  =z(tcos$+fsin$,-tsin4+fcosq5).  (3) 

Then, the above-mentioned result may be stated as 

WZ,(t, f )  = R-+[Wz(t, f)l. (4) 

A similar relation holds for the ambiguity function [2], [3]. A 
corollary of (4) is the following [2], [17]: 

W4[WZ(t, f>lI(ta> = lxa(ta)12 (5 )  

where 724 is the Radon transform operator. 724 takes the 
integral projection of the 2-D function W,(t, f )  onto an axis 
making angle # = a7r/2 with the t axis. We refer to this axis as 
the t, axis, or the ath fractional Fourier domain. The concept 
of fractional Fourier domains is developed in [2] and [ 181. 

Ln 131, Almeida further showed that a relation similar to (4) 
holds for (a modified form of) the short-time Fourier transform 
and spectrogram. This leads one to inquire whether a similar 
relation is vahd for a more general class of time-frequency 
distributions. Here, we consider time-frequency distributions 
T,(t, f ) ,  which are members of the Cohen class. These 
distributions can be derived from the Wigner dstribution 
through the relation [21], [22], [19] 

%(t, P) = / / Q’& - t’, f - f’)W,(t’, f’) dt’ df’. (6) 

@ ~ ( t ,  f )  is a kemel uniquely corresponding to the distribution 
T,. We show below that T, will satisfy a relation similar to 
(4) if the kernel function is rotationally symmetric around the 
origin, that is, if ~ ( t ,  f )  is a function of (t2 + f2) l I2  only. 

(The same condition can also be stated in terms of the 
alternative kemel function @ ( e ,  7 ) .  which is also employed 
in the study of the Cohen class [20], [19]. Since @)(e,  7 )  

and *(t ,  f )  constitute a 2-D Fourier transform pair, rotational 
symmetry of either implies rotational symmetry of the other.) 

Thus, fractional Fourier transformation corresponds to rota- 
tion of not only the Wigner distribution, ambiguity function, 
and spectrogram, but a much larger class of time-frequency 
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representations (phase-space representations). This not only 
confirms the important role this transform plays in the study of 
such representations, but also supports the notion of referring 
to the axis making angle 4 = a r / 2  with the t axis as the ath 
fractional Fourier domain [2] ,  [18]. The many applications 
of the fractional Fourier transform have been predominantly 
posed in terms of the Wigner distribution of the signal. With 
this result, it will be possible to deal with other time-frequency 
distributions which might be more appropriate for particular 
applications. 

Theorem: Let the signal 2 have a time-frequency repre- 
sentation T,(t, f ) ,  which is a member of Cohen’s class with 
kernel function Q”T(t, f ) .  Then, 

for all 2 and 4 = a r / 2 ,  if q ~ ( t ,  f )  is rotationally symmetric 
around the origin. 

Proo) We only sketch the main features of the proof 
since the operations involved are elementary. First, apply R-4, 
as defined in (3), to both sides of (6) to obtain 

~ - 4 [ ~ , ( t ,  f ) ]  = // qT(tCOS4 - f s i n +  - u, t s in4  
2 1 2 1  

+ f c o s 4  - w)W,(u, w ) d u d v .  (8) 

Now, consider an instance of (6) for the function za(t ) ,  
rather than z(t) .  Use (4) and (3) to replace WZa(t’, f ’ )  by 
W, (t’ cos 4 - f’ sin 4, t’ sin 4 + f ’ cos 4). Finally, make the 
change of variables U = t’ cos 4 - f’ sin 4, w = t’ sin 4 + 
f ‘ cos 4, to obtain 

~ , ~ ( t ,  f )  = // q T ( t  - ucos4  - vsin4,  f 
1 1 2 )  

+ u s i n $ -  w c o s ~ ) W z ( u ,  w)dudv. (9) 

Equation (7) will be true if the right-hand sides of the last two 
equations are equal for all 2 and for all $ (or a). This will 
be the case if 

QT(tcos4 - f s i n d  - U,  t s in4  + f cosd  - w) 
=\IIT(t-ucos4-wsin4,  f +usinqb-wcos$) (IO) 

for all of the appearing variables. Now, it is not difficult to 
show, by the transformation t’ = t - U cos 4 - w sin 4, f’ = 
f + us in4  - wcosq5, that this condition is equivalent to 
9 ~ ( t ,  f )  being rotationally symmetric. This completes the 
proof. 
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