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Repeated fractional Fourier domain filtering is equivalent to 
repeated time and frequency domain filtering 
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Abstract 

Any system consisting of a sequence of multiplicative filters inserted between several fractional Fourier transform 
stages, is equivalent to a system composed of an appropriately chosen sequence of multiplicative filters inserted between 
appropriately scaled ordinary Fourier transform stages. Thus every operation that can be accomplished by repeated 
filtering in fractional Fourier domains can also be accomplished by repeated filtering alternately in the ordinary time and 
frequency domains. 

Zusammenfassung 

Jedes System, bestehend aus einer Sequenz von multiplikativen Filtern, die zwischen mehrere fraktionale Fourier- 
Transformationsstufen eingehigt sind, ist Pquivalent zu einem System, das aus einer geeignet gewahlten Sequenz von 
multiplikativen Filtern zusammengesetzt ist, die zwischen passend skalierte normale Fourier-Transformationsstufen 
eingefiigt werden. Auf diese Weise kann jede Operation, die durch wiederholte Filterung im fraktionalen Fourier-Bereich 
erzielt werden kann, ebenso durch wiederholte Filterung abwechselnd im normalen Zeit- und Frequenzbereich erzielt 
werden. 

Rbumi! 

Tout systeme consistant en une sequence de filtres multiplicatifs ins&x entre plusieurs etages de transformation de 
Fourier fractionnaire est equivalent a un systeme compost dune sequence correctement choisie de filtres multiplicatifs 
insires entre des etages de transformation de Fourier echelonnb de man&e appropriee. De ce fait, toute operation qui 
peut etre accomplie par filtrage rep& dans le domaine de Fourier fractionnaire peut aussi &tre effectuee en repetant le 
filtrage alternativement dans les domaines temporel et frequentiel conventionnels. 
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Let x(t) denote the time, and X(f) the frequency 
domain representation of an input signal. Conven- 
tional Fourier domain filtering involves multiplica- 
tion of X(f) with a filter function H(j’) to obtain 
the Fourier transform Y(j) = H(f)X(f) of the fil- 
tered output signal. This type of filtering allows the 
realization of time-invariant (convolution type) lin- 
ear operations only: y(t) = h(t)*x(t). By defining 
the Fourier transform operator % and the multipli- 
cative filter operator /iH, the relation between the 
input and output of the system can be expressed as 

y = 9-l fl,%x. (1) 

By interpreting x, y as signal vectors, % as the DFT 
matrix, and & as a diagonal matrix, the above 
expression can also be interpreted in a discrete-time 
setting. 

So-called generalized filtering systems were pro- 
posed in previous work on the fractional Fourier 
transform [8,9]. These systems involve multiplica- 
tive filters inserted between several fractional 
Fourier transform stages (Fig. l(a)). Each fractional 
Fourier transform stage transforms from one frac- 
tional domain to another, where a multiplicative 
filter is applied. In other words, the signal is repeat- 
edly filtered in several consecutive fractional 
Fourier domains. It was shown that this allows the 

realization of certain time-variant operations. In 
operator notation, a system involving M stages can 
be expressed as 

where %’ is the ath order fractional Fourier trans- 
form operator. 

In its most general form, the fractional Fourier 
transform operation [6,9, l] has three parameters: 
the order a, the input scale parameter Sin, and the 
output scale parameter s,,~ [ 111. (When we set Sin 
and sout equal to unity, we recover the pure mathe- 
matical form of the transform.) The ath order frac- 
tional Fourier transform is denoted by x,(t) and is 
given by 

s cc 

x,(t) = h(t, t’)x(t’) dt’, (3) 
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Fig. 1. (a) A sequence of multiplicative filters inserted between fractional Fourier transform stages, each of which is characterized by its 
order a,. The scale parameter s is the same for all stages. (b) The system modeled as a sequence of multiplicative filters inserted between 
ordinary Fourier transform stages, each of which is characterized by its scale parameter sj. 
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where q5 = an/2, and C depends on a, sin and s,,~ in 
a manner that is not relevant for our purposes. 
When a is an even or odd multiple of 2, the kernel 
h(t, t’) approaches s(t - t’) or s(t + t’), respective- 
ly, The ordinary Fourier transform is obtained 
when we set a = 1. In this paper it will be sufficient 
to employ fractional transforms whose input and 
output scale parameters are equal (s = Sin = .s,,J. 
The ath fractional Fourier domain is defined by the 
axis which makes angle 4 = an/2 with the t axis in 
the time-frequency plane [12]. Fractional Fourier 
transforms can be realized optically [S, 8, 111, or 
digitally in O(N log N) time [3, 131. 

In this paper we show that any system of the 
form defined by Eq. (2) (Fig. l(a)) is equivalent to 
a system composed of filters inserted between ordi- 
nary Fourier transform stages, appropriately scaled 
(Fig. l(b)). Each time a Fourier transform is applied 
we alternate between the time and frequency do- 
mains, where multiplicative filters are applied. In 
operator notation, 

where %S is the scaled ordinary Fourier transform 
operator with associated kernel 

h(t, t’) = exp ( - i2Ktt’/s2). (6) 

The claim is that by appropriate choice of filters flj 
and scale factors Sj, this relation between x and 
y can be made the same as that given in Eq. (2). 

The proof is elementary. Upon examining the 
kernel of the fractional Fourier transform, we ob- 
serve that calculating the fractional transform x0(t) 
amounts to multiplying x(t) by a chirp function, 
taking its scaled ordinary Fourier transformation, 
and multiplying the result by another chirp func- 
tion. (It is important to note that whereas this 
approach serves the purpose of the present paper, it 
is not necessarily the best way of decomposing the 
transform for the purpose of digital computation 
[13].) The pre and post chirp multiplications can be 
absorbed into the multiplicative filters preceding 
and following the fractional transform stage, leav- 
ing us with a scaled ordinary Fourier transform. 

This result can be easily generalized. We just 
argued that a fractional Fourier transform of any 

order can be reduced to a scaled ordinary Fourier 
transform. The ordinary Fourier transform is no 
more privileged than fractional transforms of other 
orders (nor easier or cheaper to implement). 
A transform of any fractional order can be likewise 
reduced to an appropriately scaled fractional trans- 
form of any other desired order (as easily demon- 
strated by manipulating Eq. (4)). Thus, by appropri- 
ate choice of scale factors and multiplicative filters, 
repeated filtering in any given sequence of frac- 
tional domains can be made equivalent to repeated 
filtering in any other desired sequence of fractional 
domains. In particular, we can choose to alternate 
between any given two domains. That is, applying 
multiplicative filters alternately in any two prespeci- 
jied domains (provided their orders do not differ by 
an integer multiple of 2), allows us to do everything 
that can be done by any configuration of the form 
given in Fig. l(a). 

It is also possible to show that the scale factors sj 
appearing in Eq. (5) can be eliminated or made 
equal to each other. Since the Fourier transform of 
a scaled function is a scaled version of its Fourier 
transform, these scale factors can be migrated 
through the filters and transform stages and col- 
lected at either end of the system (by also replacing 
the filters with their appropriately scaled versions). 

Let us now reiterate our main result. Generalized 
filtering systems employing fractional transforms 
(as in Fig. l(a)) can be reduced to generalized filter- 
ing systems employing only the ordinary Fourier 
transform (as in Fig. l(b)). Applying multiplicative 
filters alternately in the time and frequency do- 
mains allows us to do everything that can be done 
by applying filters in fractional Fourier domains. 

This result does not compromise the conceptual 
and practical utility of the fractional Fourier trans- 
form. The fractional transform may be concep- 
tually indispensable in devising an algorithm or 
designing an effective filter, even if the system is 
then reduced to one which does not employ frac- 
tional Fourier transforms. (Convincing examples 
of the utility of the fractional Fourier transform in 
designing filtering systems may be found in [9,10, 
2,7,3,4].) Furthermore, one would not necessarily 
engage in such a reduction, since computation 
of the fractional transform - both optically and 
digitally - is not more difficult than computation of 
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the ordinary transform. The computation of ordi- 
nary and fractional transforms can both be reduced 
to each other. The implementation of Fig. l(a) is 
not more difficult than that of Fig. l(b). 

From a practical viewpoint, the implementation 
of the necessary filters may be much easier in cer- 
tain domains, as compared to other domains (in- 
cluding the ordinary Fourier domain) where the 
filters may be difficult to realize. For instance, in 
chirp elimination [lo, 21, the multiplicative filters 
necessary in fractional domains are simple binary 
pass/stop filters, whereas in the ordinary time and 
Fourier domains they would have to be complex 
functions. Furthermore, the accuracy needed to im- 
plement a filter in one domain may be less than in 
others. In conclusion, the equivalence results 
brought forward in this paper should be used to 
increase the number of alternative realizations 
which are nominally equivalent, not to reduce them 
to one. These alternative realizations provide addi- 
tional degrees of freedom which may allow us to 
deal effectively with certain practical and technical 
constraints arising from sampling and quantiz- 
ation. 
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