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Repeated Filtering in Consecutive Fractional Fourier
Domains and Its Application to Signal Restoration

M. Fatih Erden, M. Alper Kutay, and Haldun M. Ozaktas

Abstract—Filtering in a single time domain or in a single frequency
domain has recently been generalized to filtering in a single fractional
Fourier domain. In this correspondence, we further generalize this to
repeated filtering in consecutive fractional Fourier domains and discuss
its applications to signal restoration through an illustrative example.

I. INTRODUCTION

Fig. 1(a) shows multiplication of an input signalfin(u) with a
multiplicative filterh(u) to obtain the output signalfout(u). We call
this operationmultiplicative filtering in the time domain. Similarly,
we refer to the operation in Fig. 1(b) asmultiplicative filtering in the
frequency domain(note that we are using the same dummy variable
u in both the time and frequency domains). In Fig. 1(c), we show
multiplicative filtering in theath-order fractional Fourier transform
domain. In this configuration, first theath fractional Fourier transform
of the input is obtained, and then, a multiplicative filterh(u) is
applied in this domain. Finally, the resulting waveform is transformed
with order�a in order to obtain the output profile in the time domain
(the �ath transform is the inverse of the+ath transform). The
ath-order fractional Fourier transformation reduces to the identity
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Fig. 1. Configurations that correspond to (a) filtering in the time domain, (b)
filtering in the frequency domain, (c) filtering in a single fractional Fourier
domain, (d) repeated filtering in consecutive fractional Fourier domains.

operation fora = 0; therefore, Fig. 1(c) reduces to Fig. 1(a) for
a = 0. Likewise, it reduces to the ordinary Fourier transformation
for a = 1 so that in this case, Fig. 1(c) reduces to Fig. 1(b). In
[1]–[4] it is shown that the added degree of freedom offered by the
order parametera allows improved performance (e.g., smaller mean-
square error) in a variety of circumstances including restoration of
time-varying signals degraded by nonstationary noise. Furthermore,
since both the digital [5] and optical [6]–[8] implementations of the
fractional Fourier transformation do not imply extra work compared
with the ordinary Fourier transformation, these improvements are
achieved at no additional cost.

We can further generalize the concept of single fractional Fourier
domain filtering [Fig. 1(c)] to repeated filtering in consecutive frac-
tional Fourier domains [Fig. 1(d)]. Here, we apply the first filter
in the 0th fractional domain (the time domain), the second filter
in the a1st fractional domain, the third filter in the(a1 + a2)nd
fractional domain, and so on. This generalization was first mentioned
in [1] and [8]. However, in those papers, the problem of finding
the filter profiles for a specified application has not been addressed.
In this correspondence, we discuss the applications of this filtering
configuration to signal restoration. More specifically, we seek the
optimal filter profiles resulting in the minimum mean-square estimate
of the original signal.

II. FRACTIONAL FOURIER TRANSFORMATION

Theath-order fractional Fourier transformpa(u) of p(u) is defined
for 0 < jaj < 2 as

pa(u) = 1� j cot�
1

�1

exp[j�(cot�u2

� 2 csc�uu0 + cot�u02)]p(u0)du0 (1)

where� = a�=2. The kernel is defined separately fora = 0 and
a = �2 asB0(u; u

0) � �(u � u0) and B�2(u; u
0) � �(u + u0),

respectively [9]. The definition is easily extended outside the interval
[�2; 2] throughF4i+a q̂ = Faq̂ for any integeri.
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Fig. 2. Relationship between the Wigner distribution and the fractional
Fourier transformation of a signal.

Some essential properties of the transformation are the following.

1) It is linear.
2) The first order transformation(a = 1) corresponds to the

ordinary Fourier transformation.
3) It is additive in indexFa Fa q̂ = Fa +a q̂.

Others may be found in [1], [6], and [8]–[10].
There is a close relationship between the fractional Fourier trans-

formation and the Wigner distribution, which is defined as

Wp(u; �) = p(u+ u0=2)p�(u� u0=2) exp(�j2�u0�)du0: (2)

The Wigner distribution ofpa(�) is simply a rotated form of the
Wigner distribution ofp(�). Alternatively, we can also relateWp(�; �)
directly with pa(�) as [1]

jpa(u)j
2 = R�[Wp(u; �)] (3)

where� = a�=2, andR�[�] is the Radon transform evaluated at
angle�. Thus, from (3), we see that the integral projection of the
Wigner distribution ofp(�) on an axis making an angle� with theu
axis corresponds tojpa(�)j2 (see Fig. 2).

III. REPEATED FILTERING IN CONSECUTIVE DOMAINS

First, let us consider a signal with an additive distortion such that
their ordinary Fourier transforms do not overlap. Such a distortion
is easily eliminated in the frequency (a = 1st) domain by using
a suitable multiplicative filter. For the second example, consider a
signal and an additive distortion that do not overlap in the time
(a = 0th) domain. In this case, we can eliminate the distortion with
a suitable filter in thea = 0th domain.

Let us now consider the case illustrated in Fig. 3(a), where the
Wigner distributions of a desired signal, and undesired noise term,
is shown on the same plot. As the projections of these Wigner
distributions on both theu and � axes overlap, we cannot totally
eliminate the effect of the noise term by simply filtering in the
a = 0th anda = 1st domains. However, we can eliminate the noise
term completely by filtering in a rotated coordinate system. Thus,
we may improve the performance by filtering in a fractional domain,
compared with filtering in the time or frequency domains.

We will finally consider the case in Fig. 3(b). This time, the Wigner
distributions of the noise term and the desired signal are in such a
shape that we cannot find a single rotated coordinate system where
we can completely eliminate the noise term from the signal. However,
if we consecutively rotate the coordinate system by angles�1; �2;
and �3 and apply suitable multiplicative filters in these coordinate
systems, we can completely get rid of the noise term. Thus, for this

(a)

(b)

Fig. 3. Noise separation. (a) In a single fractional Fourier domain. (b) In
consecutive fractional Fourier domains.

Fig. 4. Canonical form.

specific example, we can completely eliminate the noise term from the
desired signal by repeated filtering in consecutive fractional Fourier
domains. Single domain filtering is not sufficient.

In Fig. 3(b), we considered the case where the Wigner distributions
of the noise and the signal do not overlap in the time–frequency plane.
In cases where the Wigner distributions overlap, the filters may be
chosen in order to minimize the mean-square error.

Fractional Fourier transformation is relatively easy to visualize by
virtue of the fact that theath fractional domain makes an angle� =

a�=2 with the u axis. However, fractional Fourier transformations
are in fact a subclass of linear canonical transformations [11]. Since
these transformations can also be implemented inO(N logN) time,
further generality and improvements may be obtained through the use
of these transformations. (A single-stage linear canonical transform
filtering was treated in [12].) In [15], we have formulated the repeated
filtering problem in terms of linear canonical transformations and
showed that it can be reduced into an equivalent but simpler form
involving only ordinary Fourier transforms (See Fig. 4 for the simple
canonical form of the configuration in Fig. 1(d). A weaker form of
this result was previously stated in [13] and [14]). There, the discrete
version of this problem has also been provided. Again, in [15], the
repeated filtering problem has been proposed to synthesize a desired
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Fig. 5. (a) Realization of the input process (dotted) and its corresponding
degraded output when there is no additive distortion (solid). (b) Estimate
obtained by the optimum filter in the ordinary Fourier domain (solid) cor-
responding to the realization in part (a) (dotted). (c) Estimate obtained by
the optimum filter in the optimum fractional Fourier domain (solid). (d)
Estimate obtained by repeated filtering in two consecutive domains (solid).
(e) Same input realization in part (a) (dotted) and its corresponding degraded
output in the presence of additive distortion (solid). (f) Estimate obtained
by repeated filtering in four consecutive domains (solid) corresponding to the
realization in part (e) (dotted). (g) Typical realization of a pulse train composed
of 16 pulses (dotted), and its corresponding degraded output when there is
no additive distortion (solid). (h) Estimate obtained by repeated filtering in
three consecutive domains (solid) corresponding to the realization in part (g)
(dotted).

linear transformation. In this correspondence, we will discuss this
problem in terms of signal restoration.

IV. SIGNAL RESTORATION

Sometimes, we may want to restore a desired signal that is
degraded by a known system and/or by a noise term. With this aim in
mind, we search for an appropriate operator that minimizes the effect
of degradation and noise. However, this operator strongly depends
on the observation model, the design criteria used, and the prior
knowledge available about the desired signal and noise. Here, we will
assume that we only know the correlation functions of the desired

signal and the noise, we will consider the frequently used mean-
square error (MSE) criteria, and we will use the observation model
expressed as�y = Ĥ�x + �n. Here,�y, �x, and�n are the column vectors
representing the output, input, and noise processes respectively, and
Ĥ is the matrix characterizing the degradation process. We can now
state the problem of finding the optimum linear estimation operator
Ĝopt, which is defined as

�xe = Ĝopt�y (4)

such that the estimate�xe of �x minimizes the mean-square error
(MSE).

For a time-invariant degradation modelĤ with stationary processes
�x and �n, the optimum linear estimation operator corresponds to the
classical optimum Wiener filter [16], which is an operation of the form
depicted in Fig. 1(b). However, for an arbitrary degradation model
or nonstationary processes, the optimum linear estimation operator
may not, in general, correspond to a single multiplicative filter in
the ordinary Fourier domain. In [2], the optimum Wiener filter is
generalized to fractional Fourier domains by using the configuration
in Fig. 1(c). In this correspondence, we further generalize by con-
sidering repeated filtering configurations. We show that satisfactory
results can be obtained in a variety of applications with a moderate
number of filters.

A. Mathematical Definition of the Problem

In this correspondence, input and output processes and noise are
considered to be finite-length random processes with sizeN , and
we assume that we know the correlation matricesR̂xx and R̂nn of
the desired input signal and the noise, respectively. We will further
assume that the noise is independent of the input�x, and it has zero
mean. Under these assumptions, for the known degradation model,
we can also calculate the correlation matricesR̂xy = E[�x�yH ] and
R̂yy = E[�y�yH ]. The problem is to obtain the best linear prediction�xe
of �x that minimizes the mean-square error (MSE), which is defined as

�
2 =

1

N
E[(�x� �xe)

H(�x� �xe)]: (5)

In [2], the form of the estimate has been restricted to a single
filter sandwiched between two fractional Fourier stages. Here, we
generalize its form to repeated filtering in consecutive fractional
Fourier domains. As we have shown, the equivalence of repeated
filtering in consecutive domains with repeated filtering in consecutive
ordinary time and frequency domains in [15], an estimate of the form

�xe = �̂M+1F̂ � � � F̂ �̂kF̂ � � � F̂ �̂1�y (6)

is general enough to consider all repeated filtering cases. In this
expression,�̂k is an N � N diagonal matrix with its diagonal
elements equal to that of�hk, and F̂ is an N � N discrete-
time Fourier transform matrix. Thus, the problem can be restated
to obtain the diagonal matriceŝ�M+1; �̂M ; . . . ; �̂2; �̂1 (or the
filters �hM+1; �hM ; . . . ; �h2; �h1) in (6) in order to minimize the error
expression in (5).

The form of (6) has(M + 1)�N degrees of freedom that is less
than theN2 degrees of freedom that̂Gopt has in (4). (Here, we are
restricting ourselves to moderate values ofM < N .) The estimator
Ĝopt is well known. However, applications of this estimator requires
O(N2) computation time. In contrast, the estimator given in (6)
requiresO(MN logN) time. If we can obtain satisfactory estimates
using (6), as we showed to be the case in a variety of applications, a
considerable savings in time of computation is achieved.
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(a) (b)

(c) (d)

Fig. 6. (a) Original image. (b) Distorted image obtained by degrading each row of the original image by nonconstant velocity motion blur. (c) Optimum
recovered image obtained by single fractional Fourier domain filtering. (d) Recovered image obtained by repeated filtering in four consecutive domains.

B. Solution of the Problem

We see from (6) that�xe depends on the filters in a highly nonlinear
manner. Thus, we cannot solve for the filters that minimize the error
in (5). For this reason, we try an iterative algorithm. In the iteration,
we first initialize all the filters. Then, starting with the first filter, we
assume that all the filter profiles apart from�hk are known, and we
calculate the optimum expression for thekth filter in terms of the
remaining filters. We then go on to(k + 1)th filter. When we reach
k =M +1 and obtain the optimum profile for�hM+1, we setk = 1
and start again with the first filter. We continue this until the iteration
converges.

An important step of the algorithm is to calculate the optimumkth
filter in terms of the other filters. DefininĝA and B̂ as

Â = �̂M+1F̂ � � � F̂ �̂k+1F̂ ; B̂ = F̂ �̂k�1F̂ � � � F̂ �̂1 (7)

we can express�xe to be �xe = Â�̂kB̂�y. We now show how to
find the filter �hk (whose elements are the diagonal elements of
�̂k) that minimizes the error defined in (5). We write themth
element of thekth filter in terms of its real and imaginary parts
ashkm = hrkm + jhikm. We want�2 to satisfy

��2

�hrkm
= 0

��2

�hikm
= 0; m = 1; 2; . . . ; N: (8)

Starting with the definition of�2 in (5), it is possible to show that

D̂�hk = �c: (9)

In this equation

D̂ = (ÂHÂ)
 (B̂R̂yyB̂
H)T (10)

where the operator
 corresponds to elementwise multiplication of
two matrices, and

�c = diag(ÂHR̂xyB̂
H) (11)

where diag(�) is the operator that forms a vector from the diagonal
elements of its input square matrix. Thus, as is evident from (9), we
haveN linear equations corresponding toN unknowns from which
we can solve for the coefficients of�hk.

The proposed iterative algorithm always converges to a minimum
point. However, because of the nonlinear nature of the problem, the
point to which the iteration converges may not and, in general, will
not be the global minimum point but rather will be one of the local
minima. We ran the algorithm with several initial starting points and
picked the one resulting in the smallest mean-square error. We did not
overly concern ourselves with determining the global minimum since
the values we obtained already represented satisfactory mean-square
errors.

C. An Illustrative Example

In this subsection, we will apply repeated filtering method to the
removal of space-variant blur. The kernel is given by

h(x; x0) =
1

�x + �0
rect

x� x0

�x+ �0
�

1

2
(12)

where � and �0 correspond to acceleration and initial velocity,
respectively.

We will first try the sinusoidal type input process with no additive
noise term [see Fig. 5(a)]. For this case, we calculate the MSE values
of the optimum filter in the ordinary Fourier domain, the optimum
filter profile as proposed in [2], and our repeated filtering method
with three filters(M = 3) to be 2.07, 1.80, and 0.12, respectively.
Thus, we observe a considerable decrease in MSE, where we can
also visualize this in Fig. 5(b) to Fig. 5(d). However, for this case,
the performance of the optimum linear estimator is much better than
the one corresponding to the repeated filtering method with three
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filters. Nevertheless, by increasing the number of filtersM , we can
increase the performance. For example, we obtain MSE around 0.04
whenM = 5.

We later considered the degradation system with an additive white
Gaussian noise whose energy corresponds to SNR= 5 [see Fig. 5(e)].
For this case, the MSE values were 2.68 for the optimum filter in the
ordinary Fourier domain, 2.17 for the optimum filter proposed in [2],
and 0.16 for our repeated filtering method withM = 5. The estimate
of our repeated filtering method is illustrated in Fig. 5(f). Moreover,
the MSE value we obtain with five filters is comparable with the one
that belongs to the optimum linear estimator, which is around 0.13.

Now, let us consider pulse-code modulator (PCM) like signals,
each of which consists of 16 pulses of value either 0 or 1. This
can also represent a common bar code. Here, we assume that there
is no additive distortion [see Fig. 5(g)]. The corresponding repeated
filtering output for a typical realization of the input is illustrated in
Fig. 5(h). Here,M = 4, and the corresponding MSE value is 0.05.
The performance of the optimum linear estimator again comes out
to be much better than the repeated filtering method withM = 4.
However, as we see in Fig. 5(h), the binary values of the pulses
can be determined with the help of a comparator, which compares
the values of the actual output with 0.5 (Thus, the repeated filtering
with M = 4 together with a comparator may be sufficient. If greater
accuracy is needed, we may increaseM to five, in which case, the
MSE turns out to be 4� 10�6.

Finally, we consider the effect of the nonconstant velocity motion
blur on the whole image in Fig. 6(a). The distorted image is shown in
Fig. 6(b). In Fig. 6(c), we showed the result of the optimal filtering
in a single domain. The MSE value for this case is 0.10. Finally,
the result obtained with five repeated filters is shown in Fig. 6(d),
where the MSE value is 0.03. We can also visualize the differences
in MSE values by looking at the corresponding images in Fig. 6.
For this specific input process, the MSE value of the optimum linear
estimator is 1.2� 10�5.

V. CONCLUSION

In this correspondence, we generalize the concept of single
fractional-Fourier-domain filtering to repeated filtering in consecutive
fractional Fourier domains. The repeated filtering problem has also
been considered in [15], and it has been applied to the synthesis
of desired linear transformations. Here, we consider the repeated
filtering configuration in conjunction with signal restoration, and
we give an illustrative example to compare its performance with
the existing methods. (More examples of the repeated filtering
method on signal restoration can be found in [17].) As a result
of this comparison, we see that the repeated filtering method we
proposed offers better performance than single domain filtering
methods with little increase in cost and much lower cost than general
linear estimation with performance, which may either be acceptable
in certain circumstances or even close to optimal. Thus, the method
lies between single domain filtering methods and the general linear
estimation method in terms of both cost and performance. Recently,
the concept of repeated filtering has been generalized to include more
general configurations (e.g., see [18]–[20]).
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