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Abstract. Certain solutions to Harper’s equation are discrete analogues of (and approximations
to) the Hermite—Gaussian functions. They are the energy eigenfunctions of a discrete algebraic
analogue of the harmonic oscillator, and they lead to a definition of a discrete fractional Fourier
transform (FT). The discrete fractional FT is essentially the time-evolution operator of the discrete
harmonic oscillator.

1. Introduction

The three topics in the title, apparently diverse, are linked by a common theme: they may
each be illuminated by focusing attention on certain functions, which we shalHagtler
functions These real-valued periodic functions, defined on the integers, are particular solutions
to Harper’s equation. The Harper functions serve as discrete approximations to the Hermite—
Gaussian functions, and furthermore, in an algebraic sense that will be made clear in section 2,
they are natural analogues of the Hermite—Gaussian functions. In [6, 8-10], and Ozaktas
et al [24], the Harper functions were called théscrete Hermite—Gaussian function§Ve

have changed the name in recognition of the many other useful discrete approximations to
the Hermite—Gaussians. Nevertheless, we shall give some evidence that the Harper functions
deserve a special status among the various such discrete approximations.

In section 2, we give an algebraic treatment of the discrete fractional Fourier transform
(FT) that was initiated by Pei and Yeh in [26] (see also [23]), and consolidated in [8, 10].
The discrete FT has diverse applications, of which but one is the numerical calculation of the
continuum FT of a given function. The continuum fractional FT has a well-established role
in quantum physics and in signal processing; see, for instance, [1, 17, 20, 23, 24, 34]. Any
discrete version of the fractional FT surely ought to be of use in numerical calculation: the
discrete fractional FT we discuss does indeed perform this service; see [10]. On the other
hand, it is desirable that a discrete version of the fractional FT can also perform theoretical
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roles analogous to those of the continuum fractional FT. It is this theoretical aspect that is our
main concern below.

Atakishiyev and Suslov [2], Atakishiyev and Wolf [3], Grbaum [13], Namias [21] and
many others have interpreted fractional FTs as time-evolution operators of harmonic oscillators.
As we shall see in section 3, the algebraic felicity of the discrete fractional FT, as we define it,
makes this discrete fractional FT especially amenable to such an interpretation.

The Harper functions have been studied mainly in the context of the Bloch electron
problem, also called (sometimes in greater generality) the Azbel-Hofstadter problem. A
brief discussion of this connection is given in section 4.

The numerical data in section 5 may be viewed in two ways: it indicates the accuracy of
the discrete fractional FT as an approximation to the continuum fractional FT; it indicates the
accuracy of the discrete harmonic oscillator as an approximation to the continuum harmonic
oscillator.

Wootters [35] suggested the tediscrete quantum systeto refer to a quantum system
with a finite-dimensional state space. Such a state space may be regarded as a space of functions
whose argument admits only finitely many values. Some discrete quantum systems, such as
that of the Bloch electron problem discussed below, or the Bl oscillator examined in [4] are not
directly related to continuum quantum systems. Nevertheless, discrete quantum mechanics
may also be employed as a technique in the study of continuum quantum systems: in [14, 15],
phase and action-angle operators on continuum (infinite-dimensional) spaces were constructed
as limits of analogous unitary operators on discrete spaces.

We understand the theory phase spacas being a general study with applications to
physics and signal processing. Such applications have been well established for the continuum
theory of phase space; see, for instance, [11,19, 25,29, 31, 34]. A satisfactory discrete version
of the theory would also be expected to have such applications. In fact, a self-contained,
practicable discrete theory would be highly desirable in signal processing and other numerical
work—after all, an ensemble of numerical data is actually a discrete entity! Such a discrete
theory ought to be an analogue of the continuum theory, and ought to serve as an approximation
to the continuum theory in such a way that the continuum theory may be recovered via a
limiting process. The question of approximating (or recovering) the continuum theory is not
meaningful until a correspondence is established between discrete and continuum systems.
One approach to such a correspondence is given in Schwinger [30, ch 7]. Another approach is
introduced in [7]. However, a discrete theory encompassing Wigner functions, linear canonical
transformations, coherent states, and so forth is, at the time of writing, far from complete. One
achievement in this direction, thus far, has been in establishing a satisfactory definition of the
discrete fractional FT.

Let us begin by reviewing some properties of the continuum fractional FT. Recall that,
given an integek > 0, then thekth Hermite—Gaussian is defined to be the (real-valued)
functionh; : R — C such that

i (x) = VA2 k2 (k1) Y22 1, ()

where H;, denotes théth Hermite polynomial. The continuum fractional FT of Namias [21]
is the unitary operatafFl] on L2(R), defined for alk € R, such that

Flpy = ey

It has the property that
F = FF,

The continuum FT, denotefl,,, is the special case
Foo = FIL4.
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Turning nowto the discrete scenario, letus consider anintegeb. (Forthe four smallest
positive integers, our discussions would still hold, suitably interpreted with attention to some
bothersome trivia.) We writeY],, to denote the moduloresidue class of a (rational) integér
The set of modula residue classes of the integers, dendgd = {[0],, [1]., ..., [7 — 1].},
is a cyclic group with additive operatioX], +[Y], = [X + Y],. Let L(n) denote the vector
space ovefrC with basisZ/n. We view L(n) as the space of functioris/n — C. Any
function f : Z — C with period dividingn may be regarded as an elementidaf:), and
may be identified with the vectcEXeZ/n F(X)[X],. We makeL (rn) become an inner product
space such that the sBfn is an orthonormal basis.

The discrete FTF, with degreen is the unitary linear ma@ (n) — L(n), represented,
with respect to the orthonormal (ordered) b&ia = {[0],, ..., [n — 1]} by the matrix with
(X, Y)-entry é7XY/n e shall define the discrete fractional FT to be a continuous function
from R to the group of unitary linear mags(n) — L(n). This function, writtery — J-',g’],
will satisfy the group homomorphism property

FUAFT = Flre]
forallz, ¢’ € R. Our strategy, following Pei and Yeh [26], will be to find an orthonormal basis
of L(n) consisting of eigenvectors df,, to insist that the discrete fractional FT has the same
eigenvectors, and to specify the eigenvalugmBf corresponding to each eigenvector. Since
(F)* = 1, the eigenvalues of;, are all fourth roots of unity. (The exact multiplicity of each
eigenvalue, as a function af is given in [18]; the multiplicities always differ from/4 by
at most unity.) Evidently, there is considerable freedom for choice of an orthonormal basis
diagonalizingF,,. The basis we shall choose consists of vectors which, regarded as functions
Z/n — C, are solutions to Harper's equation.
Harper’s equation is the condition

h(X —1)+2co82r X/n)h(X) +h(X +1) = Ar(X)
on afunctiom: : Z/n — C and a real numbex. Lettingg, be the linear mag.(n) — L(n)
such that

Gul X1y = [X — 1], + 2co427 X /n)[X],, + [X + 1],
then the solutions and to Harper’s equation are precisely the eigenvectors and eigenvalues of
G,. Sinceg, is Hermitian, there are preciselyinearly independent solutions. The eigenvalues
of G, are not always distinct; Dickinson—Steiglitz [12] conjecture that the eigenvalues are
distinct save that, when 4 dividesthe eigenvalue 0 has multiplicity 2. However, as observed
in [12], there does exist, uniquely up to a choice of sign, an orthonormal basis of real unit
vectors simultaneously diagonalizitfg andg,. These vectors, with signs and an ordering
suitably chosen, are precisely the Harper functions.

In section 2 we shall define, for suitable integérsa functionk,, ; : Z/n — C (with
real values), called theth Harper function of periodicityt. For givenn, then distinct values
allowed fork are such that, it isodd, then0< k < n—1, whileifniseven,then k < n—2
or k = n. For an integeiX, we shall writeh,, , ([ X],) more briefly agh, »(X), this notation
indicating that we sometimes regaigl; as a functiorZ — C with period dividingrn. The
vectorZXeZ/n ha 1 (X)[X], will also be denoted by the symb] ;. Thus we also regard, ;
as a vector irL(n).

Proposition 3 below, asserts that, for fixednd increasing, the Harper functiork,, ,
converges to théth Hermite—Gaussian functior,. The sense of the convergence may be
taken either to be in the empirical numerical sense discussed in section 5, or else in the formal
sense of [6, 7]. In analogy with the definition in Namias [21, equation (2.6)] of the continuum
fractional FT, we define, for eache R, a unitary linear maﬁf,[,’] : L(n) — L(n) such that

Filpy, g o= ¥ hy, y
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for each index. We call 711 the discrete fractional FT with degreeand exponent.

We shall also discuss another variant of the discrete fractional FT. This variant, denoted
F®, will be constructed in section 2 using a different analogy with the continuum fractional
FT. Although 711 and £ are not the same, we shall see in section 5 that the discrepancy
diminishes quickly aga — oo.

Some rival candidates for the name ‘discrete fractional FT' may be constructed in
the same way, but with the Harper functions replaced by other discrete versions of the
Hermite—Gaussians, for instance, the Kravchuk functions used by Atakishiyev and Suslov [2],
Atakishiyev and Wolf [3], or the eigenvectors 8f discovered by Ginbaum [13]. Some very
accurate discrete versions of the Hermite—Gaussians are given in [8, 27]. Another approach
to the discrete fractional FT, with a fast algorithm, appears in [22]. Our concern in this paper,
however, is to progress towards a natural and general theory of discrete phase space. An
advantage afforded by the Harper functions is that they arise in a simple and natural algebraic
way; the connection with the discrete harmonic oscillator underlines this point. At present, a
disadvantage of the Harper functions is that no closed formula for their solution is known.

2. Harper functions and the discrete fractional FT

An n-dimensional square matrik with entriesA; ; is said to be tridiagonal providet} ; = 0
wheneveli — j| > 2. Here the indices ameot interpreted modula. Tridiagonal matrices,
and matrices that are almost tridiagonal (with the possibility that the top right or bottom left
entries may be non-zero) arise from time to time in discrete quantum mechanics; see, for
instance, [5]. Before defining the Harper functions, it is worth making some observations
about a fairly general class of real symmetric tridiagonal matrices.

Letr be a positive integer. Consider a sequenee (vo, .. ., v,) with eachv; € R. We
say thatv has a crossing number providegland v, are both non-zero, and furthermore, if
v; = 0forsome 1< j < r —1, themv;_1v;+1 < 0. Whenv has a crossing number, we define
the crossing number afto be the number of integeyswith 1 < j < r such that eithes; = 0
orelsev;_1v; < 0. The point of these apparently awkward definitions is thatids crossing
numberz, thenr is the minimum number of zeros of a continuous extension][8> R of the
function j - v;.

Now letay, ..., a, be real numbers, lé1, ..., b, be strictly positive real numbers, and
let A be the tridiagonalr + 1) x (r + 1) matrix whose(j, j) entry isa; for 0 < j < r,
and whose(k — 1, k) and (k, k — 1) entries areA;_1;, = by = Agpsa for 1l < k < r.
Since A is a real symmetric matrix, it has real eigenvalues and real eigenvectors. By
Wilkinson [33, section 5.37]4 has no repeated eigenvalues. Let us enumerate an independent
set of eigenvectors,, ..., v, such that the corresponding eigenvalugs> --- > A, are
monotonically decreasing. The following result, generalizing some arguments in [8] and [10]
may be well known: it arises from a fairly direct combination of results in Wilkinson’s classic
book [33].

Proposition 1. For the real symmetric tridiagonal matriA as above, and an integérwith
0 < k < r, the eigenvector, has crossing numbeé.

Proof. Let A = A4 andv = v,. Writev = (v, ..., v,). Then
(ap — Mvg + b1vy =0=b,v,_1 + (a, — M,
and, for 1< j < r — 1, we also have

ijj_1+(aj —A)vj +bj+1vj+1 =0.
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These recurrence relations, together with the conditiomtba, imply thatv has a crossing
number. We may assume thgt= 1. For 0< k < r, let A; be the leadingk + 1) x (k +1)
submatrix ofA, and lety, be the characteristic polynomig) () = det(Ay — ). Let x_1
be the constant polynomigl_1(z) = 1. Itis shown in Wilkinson [33, section 5.38] that, for
1< k < r, the matricesA;_, andA; have distinct eigenvalues. Scifs not an eigenvalue of
the matrixA = A,, then the sequendg _1(¢), xo(?), ..., x-(¢)) has a crossing numbeg¢) It

is also shown in [33] that, for suahthe number of eigenvalues dfstrictly greater tham is
r+1—c(t). Sincey,(A) = 0, we haver(A +¢) = 1+c(A — ¢€) forsmalle > 0, we deduce that
the sequencéy_1(1), xo(A), ..., x,—1(1)) has a crossing numbe(x — ¢), and furthermore,
k=r+1—c(A+€)=r—c(h —¢€). By[33, section 5.38]

ve = (=D xu1(W) /b1 . . by

with the interpretation thaty = x_1(A). The assertion follows because the numbegrs. ., b,
are strictly positive. |

Let us return to the discrete FF, : L(n) — L(n). For brevity, we shall often drop the
subscriptz. An easy calculation shows th&?[X] = [—X] for all integersX. Let E. and
E_ denote the eigenspaces Bf corresponding to the eigenvalues 1 antl, respectively.
For each integek in the (open) interval X X < n/2, lete.(X) := [X] + [—X]. For each
integerX in the (closed) interval 6< X < n/2, lete_(X) := [X] — [-X]. ThenE, has an
orthogonal basis consisting of the vecteréX), while E_ has an orthogonal basis consisting
of the vectore_ (X). Note thatE, has dimension either/2 + 1 or(n + 1) /2 (whichever is an
integer), whileE_ has dimension either/2 — 1 or (n — 1)/2.

The linear mag (defined in section 1) stabilizes the complementary subspacesd
E_ of L(n). Let G, andG_ denote the restrictions @f to E. and E_, respectively. With
respect to the bases @&, and E_ mentioned aboveg, and G_ are represented by real
symmetric tridiagonal matrices satisfying the hypothesis of proposition 1. Up to a non-zero
real factor, we definé, o, h, 2, ki, 4, . .. Dy insisting they be independent real eigenvectors
of G+ such that the corresponding sequence of eigenveeéiossi, 2, A4, ... iS Strictly
monotonically decreasing. By proposition 1, edghy;[0] # 0. We uniquely determine
the vectorss, »; by insisting they be of unit modulus, ang >;[0] > 0. Similarly, we define
hna, hu3, hays, ... t0 be the independent real eigenvectorg ofsuch that the corresponding
sequence of eigenvectoks 1, An.3, Ans, - - . IS Strictly monotonically decreasing; moreover,
eachn, ;.1 is of unit modulus, and,, »;+1[1] > 0. We have thus completed the definition of
the Harper functiong, ,, where the integer indek satisfies 0< £ < n, and is subject only
to the further conditions that, if is even therk # n — 1, while if n is odd therk # n. The
Harper functions form an orthonormal basis of solutions to Harper’s equation:

hn,k(X - 1) +2 COSZnX/n)hn,k(X) + hn,k(X + 1) - )\n,khn,k(X)-

We mention that our construction of the Harper functions, in effect, reduces Harper's
equation to two independent systems of equations, each of which is the eigenvector problem for
areal symmetric tridiagonal matrix. Asindicated in the proof of proposition 1, the eigenvectors
of such a matrix may easily be calculated by a recursive formula once the eigenvalues are
known; furthermore, Wilkinson [33, section 5.38] describes a straightforward process for
obtaining the characteristic polynomial. However, due to ill-conditioning, this is not an
effective method for calculating the Harper functions numerically.

Proposition 2. Up to multiplication by real factors, the vectois , comprise the unique basis
of L(n) simultaneously diagonalizing? andgG. With respect to the basis., the coordinates
of 1, »; have crossing number. With respect to the basis_, the coordinates df, »;+1 have
crossing numbey. If &, = 1,1, then eitherk = k" or elsek andk’ have opposite parity.
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Proof. Any basisB diagonalizingg must be contained i+ U E_. By considering, separately,
the actions ofj on E, andE_, the assertion follows from proposition 1. O

To discuss the matter of convergence to functions on the continuum, let us consider a
square-integrable functiosi,, : R — C, and a sequence of functiong : C(Z/n) — C
defined for infinitely many (but not necessarily all) positive integerket

v(n) = (n/2m)Y4

Roughly speaking, we say that the sequefgg, converges tay provided, given an integer
X, then for sufficiently large we have an approximate equality

Y (X) & v(n) Y (v(n) 2X).

For a real number, let x(n) denote the largest integer not exceedirg)?x. The condition
that (y,,),, converges tay may be rewritten as

Y (x) = v(n)y, (x(n)).

(Greater care over the definition of convergence is needed to ensure certain desirable properties,

for instance, the property thétr |2 = lim,, .« ||V, l2. If the approximate equality symbed

were interpreted as indicating a limitas— oo, then propositions 3, 5, 8 would still hold, but

propositions 4, 6, 7, 9 would be false. See [6] or [7] for a formal definition of convergence.)
The discrete Hermite—Gaussian functiohg, converge to the Hermite—Gaussian

functions in the following sense, from [6, theorem 2.5].

Proposition 3. Consider an integet > 0. For suitable infinite sequences of positive integers
n, the sequencér, ;), converges tdiy.

Numerical evidence in [8, 10], Pei and Yeh [26], and below in section 5, indicates that
the word ‘suitable’ may be omitted from proposition 3. A further indication in support of
this conjecture is provided by the crossing number characterization of the Harper functions,
together with the fact thdt, has precisely zeros.

A sense in which the discrete fractional Ff"! converges to the continuum fractional FT
Fll may already be gleaned from proposition 3. We can make this more precise by introducing
a notion of convergence of operators. Consider an operatoon the spacé?(R) of square-
integrable functions. Consider also an infinite sequetg,, where eachd4, is a linear
mapL(n) — L(n). We say that the sequen¢d,,),, converges to4,, provided the sequence
(A, v,), converges tod Voo, Wherey, is any function in the domain ofl,, and(y,,),, is
any sequence witlf, € L(n) such that(y,), converges ta/,,. (Note that our definition of
convergence is precise, but it is in terms of the definition in [6, 7] of convergence of vectors.)
The result is as follows [6, theorems 2.7, 2.8].

Proposition 4. For suitable infinite sequences of positive integerhe discrete fractional FT
FLl1 converges to the continuum fractional FfZJ. Furthermore, the discrete FF, converges
to the continuum FTF..

Proposition 4 tells us thatl/Yis approximately equal t&,, for largen. Itis an unresolved
question as to whether or nﬁil/‘” = F,. The question is equivalent to asking whether or not
h., as an eigenvalue dof,, always has eigenvalu& iWe conjecture an affirmative answer.

Another version of a discrete fractional FT, denofed!, is very similar toF{1: the two
operators have the same eigenvectors but slightly different eigenvalues. Before d&fihing
it is convenient to record the following easy consequence of proposition 4.
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Proposition 5. Given an integek > 0, and writingu(n, k) for thek + 1th largest eigenvalue
of G,, then for suitable infinite sequences of positive integerave haveu(n, k), =
4 —27(2j +1)/n+0(1/n).

Letn(n, k) be thek + 1th smallest eigenvector of the linear map
n
Kpi=-—(2-G,/2)— 3
271( /2 = 3

By proposition 55(n, k) = n(2— u(n, k)/2)/2r — 1/2 = k + 0(1). Defining the linear map
FO : L(n) — L(n) by

FOhy =g,
thenZ" may also be expressed by the formula
FO = ik,
Thus, the Harper functions, , are the eigenvectors of” and Fl; the corresponding

eigenvalues are the same up td,01). The following result is immediate from propositions 4
and 5.

Proposition 6. For suitable infinite sequences of positive integersthe operator 7"
converges to the continuum fractional B/,

3. The discrete harmonic oscillator

Let us begin with some general comments about discrete realizations of continuum quantum
systems. We examine only single-particle quantum systems with a time-invariant Hamiltonian.
In the case where the state space is a Hilbert space of countably infinite dimension, we say
that the quantum system is a continuum quantum system. In the case where the state space is
a finite-dimensional Hilbert space (a finite-dimensional inner product space), we say that the
system is discrete.
Consider a Hermitian operatef on a Hilbert spac& (such that the domain @1 is dense
in V). We interpretH as the Hamiltonian of a quantum system. By a state veftof the
system, we mean a differentiable functiBn— V satisfying the Sclirdinger equation:
dyr (1)
Hy @) =1—4
We insist that the initial stat¢ (0) has normj| v (0)|2 = 1, whereupon, of courséy (¢)]2 = 1
forall + € R. Let U(V) denote the group of unitary operators Bn(understood to have
domain and co-domai). The time evolutionS of the system is defined to be the group
homomorphisnR — U (V) given by

S@t) =¢eM,

(The right-hand expression extends uniquely to the dorwa)n The Schédinger equation
may be rewritten as

v (1) = S(OY(0).

Consider now a Hermitian operataf,, on L2(R) (with a dense domain). Consider also,
for infinitely many positive integers, Hermitian operator{, on L(n) (with domainL (n)).
Let Vo = Y (t) be a state vector of a quantum system with Hamiltoriian For eachn,
lety,, = ¥, (¢) be a state vector of a quantum system with Hamiltortign Our concern is
with the condition that, for alt € R, the sequencéy, (¢)), (the sequence af, (t) indexed
by n) converges tay (). The following observation is immediate from the definition of
convergence of operators.
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Proposition 7. Let us fix a sequence of positive integerd hen the following two conditions
are equivalent:

(a) The time evolutions, () converge to the time evolutiah, (¢) for all 7.
(b) Given any initial stateg, (0) converging to an initial state..(0), theng, () converges
t0 ¢ (2) for all z.

Note that, when the equivalent conditions (a) and (b) hold, it does not follow that the
HamiltoniansH,, converge to the HamiltoniaK .. (The theory simply does not work with
the Hamiltonians in place of the time evolutions.) To indicate the applicability of proposition 7
in general, we record the following special case of a result in [7].

Proposition 8. Consider any infinite sequence of positive integeiisetH ., be any Hermitian
operator (with a dense domain) dif(R). Then there exist Hermitian operataks, on L (n)
such that the equivalent conditions (a) and (b) in proposition 7 hold.

To illustrate propositions 7 and 8, let us now turn to the harmonic oscillator. A (single-
particle conservative) discrete quantum system is said to be a discrete harmonic oscillator
provided the Hamiltonian is of the form

A .. B 1
H=4(A+B)—E(u+u )_E(V+V )
whereA andB are positive real numbers, atid V are unitary operators such that

VU = UV
for some complex number of unit modulus.
As a special case, lét andV be, respectively, the unitary operatéftsand), on L(n)
given by
U[X] =[x -1] and  V,[X] =¥/ [X]
for X € Z. Thusid,V, = ¢,V,U, where, = €7/". PuttingA = B = v(n)* = n/2x, then
our HamiltonianH = H, is the Hermitian operator oh(n) given by

n 1 1 n
an_(4_un_un _Vn_vn )=_(4_gn)=2Kn+l
2 2
More explicitly,
H,[X] = %(—[x — 1]+ (4 — 2 cog2niX/n)[X] — [X + 1].

The quantum system with Hamiltonidi, is called a standard discrete harmonic oscillator.
The time evolution of this quantum system is

S,,(t) — efiH,,t — e—i(2)€,,+l)t — efitféft/n).

Onthe other hand, the standard continuum harmonic oscillator is defined to be the quantum
system whose Hamiltonian is

d2
dg?
as a Hermitian operator on functionsfif(R) with argument e R. Heuristically, one might
regard the operators2 — U, — U, 1) /27 andn(2 — V, — V., 1) /2 as approximations to the
operators-d?/d&? and&?, respectively. Thence, one might regafgas an approximation to
Hs. Common sense might lead us to imagine tHatonverges td{.,. Alas, common sense

is, on this occasion, deceptive. The operafdrsdo not converge té{,,. We must shift our
attention from the Hamiltonians to the time evolutions.

Hoo = +&2
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It is well known that the solutions to the Séldinger equation of the standard continuum
harmonic oscillator are

Hoohi = 2k + Dhy.
Therefore, the time evolution for this quantum system is
Sooc(t) = Mt = g7 FLI1/,

Our comments on the time evolutions of standard harmonic oscillators, together with
proposition 6, imply the following result.

Proposition 9. The Hamiltoniang{,, and™ of the standard harmonic oscillators are such that,
for suitable infinite sequences of positive integerthe time evolutioks, () corresponding to
H,, converges to the time evolutidh, () corresponding tdH .

4. Connections with the Bloch electron problem

The Bloch electron problem models the behaviour of a charged particle constrained to a two-
dimensional square lattice and subject to a transverse time-invariant magnetic field. Let us
write the state function as a functian: Z x Z — C. As explained in Harper [16], we can
impose a particular gauge, called the Landau gauge, such that the Hamiftbrgaiven by

HYX, V) =y¢X —LY)+y(X+LY)+e Xy X,y — 1) +&"Xy (X, Y +1)
wherew is a real constant proportional to the magnetic flux. See also Rammal—Bellissard [28].
Assuming thatw is rational, let us write writev = m/n wherem is an integer, ana is a
positive integer coprime tm. The energy eigenstatgswith energy eigenvalu& are given
by

VX, Y) =M p(X)
wherek is an integer, ane is a solution to

(X =D +¢(X+1)+2c0o82n(mX +k)/n)¢p(X) = E¢(X).

ReplacingX with a variableW such thatnX +k = mW, then replacingy with its imageo
under a Galois automorphism such th&t®'" - e/ we recover Harper’s equation

O(W -1 +0(W+1)+2cos2nW/n)0(W) = EO(W).

Although no closed formula for the solution to Harper’s equation is known, Wiegmann and
Zabrodin [32] have obtained some deep algebraic properties of the solutions. We ask whether
the algebraic study of difference equations relating to the Bloch electron problem throws any
light on the discrete fractional FT. We also ask whether material in this paper throws any light
on the Bloch electron problem.

5. Comparison of the Harper functions and the Hermite—Gaussians

The techniques used in the arguments above appear to provide no information on the accuracy
of the Harper functions as approximations to the Hermite—Gaussians. In this last section, we
give some numerical information on the speed at which the Harper functions converge to the
Hermite—Gaussians.

In figure 1, withrn = 16, the first six Harper functionsseo, - .., h1s5 (indicated by
circles) are compared with the first six Hermite—Gaussians (indicated by the curves). The
periodn = 16 is usually too small for useful calculation; the point is that, for this small value
of n, and fork < 3, the convergence already looks fairly good.
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Figure 1. Harper functiongi1ex compared with Hermite—Gaussialg
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Figure 3. Weighted difference (n, k) between eigenvalues.

Figure 2 shows, for 16< n < 40 and 0< k < 5, the L?-norm ||h,x — k|2 of the
difference between the Harper functiby;, and the Hermite—Gaussiap. The difference was
calculated by evaluating, at the sample points, normalizing, and comparing with the vector
ha k. Again, the convergence looks fairly good.

In section 3, we found it convenient to replagé! with the slightly different version
F® of the fractional FT. The former is a little easier to calculate with, and has the desirable
property thatFl = 1. The latter was defined quite algebraically as the exponential of
an imaginary multiple of a Hermitian operator. We take the view that, for many purposes
(numerical or theoretical) it matters little which version one chooses; they have the same
convergence properties because, for fikgthe eigenvalues afl"l and 7" associated with
their common eigenvectar, , are ¥ and &0 respectively. We saw, in proposition 5,
thatlim,_. . n(n, k) = k (atleast, this is proven for suitable sequences of integeEmpirical
confirmation that (n, k) converges td is given by the graphs, in figure 3, of

en,k)y:=1—nn,k)/k

againstr, where 25< n < 100 and 0< k£ < 9.
For any square-integrable functigh: R — C, we can write

) =) exhlx)
k=0

where the complex coefficients satisfy ;= lcx|? < co. Let us assume thatis reasonably
well behaved (as it will be if, for instance, it is infinitely differentiable). Lgtdenote the
vector inL(n) whose coordinates are the sample valueg.dfor fixed f, if n is chosen large
enough to ensure that, for eachat least one ofcx| or ||, .« — k|2 is negligible, thenFl £,
andF" will be approximately equal to the vector of sample vaIue%‘fo. Thus the discrete
fractional FT, as an approximation, is good for those functions whose coefficjertaverge
quickly to zero a% increases.

In conclusion, we have given evidence that the discrete fractional FT is a good numerical
approximation to the continuum fractional FT. This may be interpreted as saying that the
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discrete fractional FT provides a good numerical approximation to the time evolution of the
continuum harmonic oscillator. At least as importantly, the discrete fractional FT is also an
algebraic analogue of the continuum fractional FT, and provides an algebraic analogue of
the continuum harmonic oscillator. Furthermore, the continuum constructions are realized
as limits of the discrete constructions. These observations support the proposal that, from a
general theoretical point of view, the discrete fractional FT (as defined above) and the Harper
functions have particular merit as discrete versions of the continuum fractional FT and the
continuum Hermite—Gaussians.
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