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Abstract. Certain solutions to Harper’s equation are discrete analogues of (and approximations
to) the Hermite–Gaussian functions. They are the energy eigenfunctions of a discrete algebraic
analogue of the harmonic oscillator, and they lead to a definition of a discrete fractional Fourier
transform (FT). The discrete fractional FT is essentially the time-evolution operator of the discrete
harmonic oscillator.

1. Introduction

The three topics in the title, apparently diverse, are linked by a common theme: they may
each be illuminated by focusing attention on certain functions, which we shall callHarper
functions. These real-valued periodic functions, defined on the integers, are particular solutions
to Harper’s equation. The Harper functions serve as discrete approximations to the Hermite–
Gaussian functions, and furthermore, in an algebraic sense that will be made clear in section 2,
they are natural analogues of the Hermite–Gaussian functions. In [6, 8–10], and Ozaktas
et al [24], the Harper functions were called thediscrete Hermite–Gaussian functions. We
have changed the name in recognition of the many other useful discrete approximations to
the Hermite–Gaussians. Nevertheless, we shall give some evidence that the Harper functions
deserve a special status among the various such discrete approximations.

In section 2, we give an algebraic treatment of the discrete fractional Fourier transform
(FT) that was initiated by Pei and Yeh in [26] (see also [23]), and consolidated in [8, 10].
The discrete FT has diverse applications, of which but one is the numerical calculation of the
continuum FT of a given function. The continuum fractional FT has a well-established role
in quantum physics and in signal processing; see, for instance, [1, 17, 20, 23, 24, 34]. Any
discrete version of the fractional FT surely ought to be of use in numerical calculation: the
discrete fractional FT we discuss does indeed perform this service; see [10]. On the other
hand, it is desirable that a discrete version of the fractional FT can also perform theoretical
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roles analogous to those of the continuum fractional FT. It is this theoretical aspect that is our
main concern below.

Atakishiyev and Suslov [2], Atakishiyev and Wolf [3], Grünbaum [13], Namias [21] and
many others have interpreted fractional FTs as time-evolution operators of harmonic oscillators.
As we shall see in section 3, the algebraic felicity of the discrete fractional FT, as we define it,
makes this discrete fractional FT especially amenable to such an interpretation.

The Harper functions have been studied mainly in the context of the Bloch electron
problem, also called (sometimes in greater generality) the Azbel–Hofstadter problem. A
brief discussion of this connection is given in section 4.

The numerical data in section 5 may be viewed in two ways: it indicates the accuracy of
the discrete fractional FT as an approximation to the continuum fractional FT; it indicates the
accuracy of the discrete harmonic oscillator as an approximation to the continuum harmonic
oscillator.

Wootters [35] suggested the termdiscrete quantum systemto refer to a quantum system
with a finite-dimensional state space. Such a state space may be regarded as a space of functions
whose argument admits only finitely many values. Some discrete quantum systems, such as
that of the Bloch electron problem discussed below, or the BI oscillator examined in [4] are not
directly related to continuum quantum systems. Nevertheless, discrete quantum mechanics
may also be employed as a technique in the study of continuum quantum systems: in [14,15],
phase and action-angle operators on continuum (infinite-dimensional) spaces were constructed
as limits of analogous unitary operators on discrete spaces.

We understand the theory ofphase spaceas being a general study with applications to
physics and signal processing. Such applications have been well established for the continuum
theory of phase space; see, for instance, [11,19,25,29,31,34]. A satisfactory discrete version
of the theory would also be expected to have such applications. In fact, a self-contained,
practicable discrete theory would be highly desirable in signal processing and other numerical
work—after all, an ensemble of numerical data is actually a discrete entity! Such a discrete
theory ought to be an analogue of the continuum theory, and ought to serve as an approximation
to the continuum theory in such a way that the continuum theory may be recovered via a
limiting process. The question of approximating (or recovering) the continuum theory is not
meaningful until a correspondence is established between discrete and continuum systems.
One approach to such a correspondence is given in Schwinger [30, ch 7]. Another approach is
introduced in [7]. However, a discrete theory encompassing Wigner functions, linear canonical
transformations, coherent states, and so forth is, at the time of writing, far from complete. One
achievement in this direction, thus far, has been in establishing a satisfactory definition of the
discrete fractional FT.

Let us begin by reviewing some properties of the continuum fractional FT. Recall that,
given an integerk > 0, then thekth Hermite–Gaussian is defined to be the (real-valued)
functionhk : R→ C such that

hk(x) = π−1/42−k/2(k!)−1/2e−x
2/2Hk(x)

whereHk denotes thekth Hermite polynomial. The continuum fractional FT of Namias [21]
is the unitary operatorF [t ]

∞ onL2(R), defined for allt ∈ R, such that

F [t ]
∞hk = e2π ikthk.

It has the property that

F [t+t ′]
∞ = F [t ]

∞F [t ′]
∞ .

The continuum FT, denotedF∞, is the special case

F∞ = F [1/4]
∞ .
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Turning now to the discrete scenario, let us consider an integern > 5. (For the four smallest
positive integers, our discussions would still hold, suitably interpreted with attention to some
bothersome trivia.) We write [X]n to denote the modulon residue class of a (rational) integerX.
The set of modulon residue classes of the integers, denotedZ/n = {[0]n, [1]n, . . . , [n− 1]n},
is a cyclic group with additive operation [X]n + [Y ]n = [X + Y ]n. LetL(n) denote the vector
space overC with basisZ/n. We viewL(n) as the space of functionsZ/n → C. Any
function f : Z → C with period dividingn may be regarded as an element ofL(n), and
may be identified with the vector

∑
X∈Z/n f (X)[X]n. We makeL(n) become an inner product

space such that the setZ/n is an orthonormal basis.
The discrete FTFn with degreen is the unitary linear mapL(n) → L(n), represented,

with respect to the orthonormal (ordered) basisZ/n = {[0]n, . . . , [n−1]n} by the matrix with
(X, Y )-entry e2π iXY/n. We shall define the discrete fractional FT to be a continuous function
from R to the group of unitary linear mapsL(n) → L(n). This function, writtent 7→ F [t ]

n ,
will satisfy the group homomorphism property

F [t ]
n F [t ′]

n = F [t+t ′]
n

for all t, t ′ ∈ R. Our strategy, following Pei and Yeh [26], will be to find an orthonormal basis
of L(n) consisting of eigenvectors ofFn, to insist that the discrete fractional FT has the same
eigenvectors, and to specify the eigenvalue ofF [t ]

n corresponding to each eigenvector. Since
(Fn)4 = 1, the eigenvalues ofFn are all fourth roots of unity. (The exact multiplicity of each
eigenvalue, as a function ofn, is given in [18]; the multiplicities always differ fromn/4 by
at most unity.) Evidently, there is considerable freedom for choice of an orthonormal basis
diagonalizingFn. The basis we shall choose consists of vectors which, regarded as functions
Z/n→ C, are solutions to Harper’s equation.

Harper’s equation is the condition

h(X − 1) + 2 cos(2πX/n)h(X) + h(X + 1) = λh(X)
on a functionh : Z/n→ C and a real numberλ. LettingGn be the linear mapL(n)→ L(n)

such that

Gn[X]n = [X − 1]n + 2 cos(2πX/n)[X]n + [X + 1]n
then the solutionshandλ to Harper’s equation are precisely the eigenvectors and eigenvalues of
Gn. SinceGn is Hermitian, there are preciselyn linearly independent solutions. The eigenvalues
of Gn are not always distinct; Dickinson–Steiglitz [12] conjecture that the eigenvalues are
distinct save that, when 4 dividesn, the eigenvalue 0 has multiplicity 2. However, as observed
in [12], there does exist, uniquely up to a choice of sign, an orthonormal basis of real unit
vectors simultaneously diagonalizingFn andGn. These vectors, with signs and an ordering
suitably chosen, are precisely the Harper functions.

In section 2 we shall define, for suitable integersk, a functionhn,k : Z/n → C (with
real values), called thekth Harper function of periodicityn. For givenn, then distinct values
allowed fork are such that, ifn is odd, then 06 k 6 n−1, while ifn is even, then 06 k 6 n−2
or k = n. For an integerX, we shall writehn,k([X]n) more briefly ashn,k(X), this notation
indicating that we sometimes regardhn,k as a functionZ → C with period dividingn. The
vector

∑
X∈Z/n hn,k(X)[X]n will also be denoted by the symbolhn,k. Thus we also regardhn,k

as a vector inL(n).
Proposition 3 below, asserts that, for fixedk and increasingn, the Harper functionhn,k

converges to thekth Hermite–Gaussian functionhk. The sense of the convergence may be
taken either to be in the empirical numerical sense discussed in section 5, or else in the formal
sense of [6,7]. In analogy with the definition in Namias [21, equation (2.6)] of the continuum
fractional FT, we define, for eacht ∈ R, a unitary linear mapF [t ]

n : L(n)→ L(n) such that

F [t ]
n hn,k := e2π ikthn,k
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for each indexk. We callF [t ]
n the discrete fractional FT with degreen and exponentt .

We shall also discuss another variant of the discrete fractional FT. This variant, denoted
F (t)n , will be constructed in section 2 using a different analogy with the continuum fractional
FT. AlthoughF [t ]

n andF (t)n are not the same, we shall see in section 5 that the discrepancy
diminishes quickly asn→∞.

Some rival candidates for the name ‘discrete fractional FT’ may be constructed in
the same way, but with the Harper functions replaced by other discrete versions of the
Hermite–Gaussians, for instance, the Kravchuk functions used by Atakishiyev and Suslov [2],
Atakishiyev and Wolf [3], or the eigenvectors ofFn discovered by Gr̈unbaum [13]. Some very
accurate discrete versions of the Hermite–Gaussians are given in [8, 27]. Another approach
to the discrete fractional FT, with a fast algorithm, appears in [22]. Our concern in this paper,
however, is to progress towards a natural and general theory of discrete phase space. An
advantage afforded by the Harper functions is that they arise in a simple and natural algebraic
way; the connection with the discrete harmonic oscillator underlines this point. At present, a
disadvantage of the Harper functions is that no closed formula for their solution is known.

2. Harper functions and the discrete fractional FT

An n-dimensional square matrixAwith entriesAi,j is said to be tridiagonal providedAi,j = 0
whenever|i − j | > 2. Here the indices arenot interpreted modulon. Tridiagonal matrices,
and matrices that are almost tridiagonal (with the possibility that the top right or bottom left
entries may be non-zero) arise from time to time in discrete quantum mechanics; see, for
instance, [5]. Before defining the Harper functions, it is worth making some observations
about a fairly general class of real symmetric tridiagonal matrices.

Let r be a positive integer. Consider a sequencev = (v0, . . . , vr) with eachvj ∈ R. We
say thatv has a crossing number providedv0 andvr are both non-zero, and furthermore, if
vj = 0 for some 16 j 6 r −1, thenvj−1vj+1 < 0. Whenv has a crossing number, we define
the crossing number ofv to be the number of integersj with 16 j 6 r such that eithervj = 0
or elsevj−1vj < 0. The point of these apparently awkward definitions is that ifv has crossing
numbert , thent is the minimum number of zeros of a continuous extension [0, r] → R of the
functionj 7→ vj .

Now let a0, . . . , ar be real numbers, letb1, . . . , br be strictly positive real numbers, and
let A be the tridiagonal(r + 1) × (r + 1) matrix whose(j, j) entry isaj for 0 6 j 6 r,
and whose(k − 1, k) and (k, k − 1) entries areAk−1,k = bk = Ak,k+1 for 1 6 k 6 r.
SinceA is a real symmetric matrix, it has real eigenvalues and real eigenvectors. By
Wilkinson [33, section 5.37],A has no repeated eigenvalues. Let us enumerate an independent
set of eigenvectorsv0, . . . , vr such that the corresponding eigenvaluesλ0 > · · · > λr are
monotonically decreasing. The following result, generalizing some arguments in [8] and [10]
may be well known: it arises from a fairly direct combination of results in Wilkinson’s classic
book [33].

Proposition 1. For the real symmetric tridiagonal matrixA as above, and an integerk with
06 k 6 r, the eigenvectorvk has crossing numberk.

Proof. Let λ = λk andv = vk. Write v = (v0, . . . , vr). Then

(a0 − λ)v0 + b1v1 = 0= brvr−1 + (ar − λ)vr
and, for 16 j 6 r − 1, we also have

bjvj−1 + (aj − λ)vj + bj+1vj+1 = 0.
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These recurrence relations, together with the condition thatv 6= 0, imply thatv has a crossing
number. We may assume thatv0 = 1. For 06 k 6 r, letAk be the leading(k + 1)× (k + 1)
submatrix ofA, and letχk be the characteristic polynomialχk(t) = det(Ak − t). Let χ−1

be the constant polynomialχ−1(t) = 1. It is shown in Wilkinson [33, section 5.38] that, for
16 k 6 r, the matricesAk−1 andAk have distinct eigenvalues. So ift is not an eigenvalue of
the matrixA = Ar , then the sequence(χ−1(t), χ0(t), . . . , χr(t)) has a crossing numberc(t) It
is also shown in [33] that, for sucht , the number of eigenvalues ofA strictly greater thant is
r +1− c(t). Sinceχr(λ) = 0, we havec(λ+ε) = 1+c(λ− ε) for smallε > 0, we deduce that
the sequence(χ−1(λ), χ0(λ), . . . , χr−1(λ)) has a crossing numberc(λ− ε), and furthermore,
k = r + 1− c(λ + ε) = r − c(λ− ε). By [33, section 5.38]

vk = (−1)kχk−1(λ)/b1 . . . bk

with the interpretation thatv0 = χ−1(λ). The assertion follows because the numbersb1, . . . , br
are strictly positive. �

Let us return to the discrete FTFn : L(n)→ L(n). For brevity, we shall often drop the
subscriptn. An easy calculation shows thatF2[X] = [−X] for all integersX. Let E+ and
E− denote the eigenspaces ofF2 corresponding to the eigenvalues 1 and−1, respectively.
For each integerX in the (open) interval 06 X 6 n/2, let e+(X) := [X] + [−X]. For each
integerX in the (closed) interval 0< X < n/2, let e−(X) := [X] − [−X]. ThenE+ has an
orthogonal basis consisting of the vectorse+(X), whileE− has an orthogonal basis consisting
of the vectorse−(X). Note thatE+ has dimension eithern/2 + 1 or(n + 1)/2 (whichever is an
integer), whileE− has dimension eithern/2− 1 or (n− 1)/2.

The linear mapG (defined in section 1) stabilizes the complementary subspacesE+ and
E− of L(n). Let G+ andG− denote the restrictions ofG to E+ andE−, respectively. With
respect to the bases ofE+ andE− mentioned above,G+ and G− are represented by real
symmetric tridiagonal matrices satisfying the hypothesis of proposition 1. Up to a non-zero
real factor, we definehn,0, hn,2, hn,4, . . . by insisting they be independent real eigenvectors
of G+ such that the corresponding sequence of eigenvectorsλn,0, λn,2, λn,4, . . . is strictly
monotonically decreasing. By proposition 1, eachhn,2j [0] 6= 0. We uniquely determine
the vectorshn,2j by insisting they be of unit modulus, andhn,2j [0] > 0. Similarly, we define
hn,1, hn,3, hn,5, . . . to be the independent real eigenvectors ofG− such that the corresponding
sequence of eigenvectorsλn,1, λn,3, λn,5, . . . is strictly monotonically decreasing; moreover,
eachhn,2j+1 is of unit modulus, andhn,2j+1[1] > 0. We have thus completed the definition of
the Harper functionshn,k, where the integer indexk satisfies 06 k 6 n, and is subject only
to the further conditions that, ifn is even thenk 6= n − 1, while if n is odd thenk 6= n. The
Harper functions form an orthonormal basis of solutions to Harper’s equation:

hn,k(X − 1) + 2 cos(2πX/n)hn,k(X) + hn,k(X + 1) = λn,khn,k(X).
We mention that our construction of the Harper functions, in effect, reduces Harper’s

equation to two independent systems of equations, each of which is the eigenvector problem for
a real symmetric tridiagonal matrix. As indicated in the proof of proposition 1, the eigenvectors
of such a matrix may easily be calculated by a recursive formula once the eigenvalues are
known; furthermore, Wilkinson [33, section 5.38] describes a straightforward process for
obtaining the characteristic polynomial. However, due to ill-conditioning, this is not an
effective method for calculating the Harper functions numerically.

Proposition 2. Up to multiplication by real factors, the vectorshn,k comprise the unique basis
ofL(n) simultaneously diagonalizingF2 andG. With respect to the basisE+, the coordinates
of hn,2j have crossing numberj . With respect to the basisE−, the coordinates ofhn,2j+1 have
crossing numberj . If λn,k = λn,k′ , then eitherk = k′ or elsek andk′ have opposite parity.
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Proof. Any basisB diagonalizingGmust be contained inE+∪E−. By considering, separately,
the actions ofG onE+ andE−, the assertion follows from proposition 1. �

To discuss the matter of convergence to functions on the continuum, let us consider a
square-integrable functionψ∞ : R → C, and a sequence of functionsψn : C(Z/n) → C
defined for infinitely many (but not necessarily all) positive integersn. Let

ν(n) := (n/2π)1/4.
Roughly speaking, we say that the sequence(ψn)n converges toψ provided, given an integer
X, then for sufficiently largen we have an approximate equality

ψn(X) ≈ ν(n)−1ψ(ν(n)−2X).

For a real numberx, let x(n) denote the largest integer not exceedingν(n)2x. The condition
that(ψn)n converges toψ may be rewritten as

ψ(x) ≈ ν(n)ψn(x(n)).
(Greater care over the definition of convergence is needed to ensure certain desirable properties,
for instance, the property that‖ψ‖2 = limn→∞ ‖ψn‖2. If the approximate equality symbol≈
were interpreted as indicating a limit asn→∞, then propositions 3, 5, 8 would still hold, but
propositions 4, 6, 7, 9 would be false. See [6] or [7] for a formal definition of convergence.)

The discrete Hermite–Gaussian functionshn,k converge to the Hermite–Gaussian
functions in the following sense, from [6, theorem 2.5].

Proposition 3. Consider an integerk > 0. For suitable infinite sequences of positive integers
n, the sequence(hn,k)n converges tohk.

Numerical evidence in [8, 10], Pei and Yeh [26], and below in section 5, indicates that
the word ‘suitable’ may be omitted from proposition 3. A further indication in support of
this conjecture is provided by the crossing number characterization of the Harper functions,
together with the fact thathk has preciselyk zeros.

A sense in which the discrete fractional FTF [t ]
n converges to the continuum fractional FT

F [t ]
∞ may already be gleaned from proposition 3. We can make this more precise by introducing

a notion of convergence of operators. Consider an operatorA∞ on the spaceL2(R) of square-
integrable functions. Consider also an infinite sequence(An)n, where eachAn is a linear
mapL(n)→ L(n). We say that the sequence(An)n converges toA∞ provided the sequence
(Anψn)n converges toA∞ψ∞, whereψ∞ is any function in the domain ofA∞, and(ψn)n is
any sequence withψn ∈ L(n) such that(ψn)n converges toψ∞. (Note that our definition of
convergence is precise, but it is in terms of the definition in [6,7] of convergence of vectors.)
The result is as follows [6, theorems 2.7, 2.8].

Proposition 4. For suitable infinite sequences of positive integersn, the discrete fractional FT
F [t ]
n converges to the continuum fractional FTF [t ]

∞ . Furthermore, the discrete FTFn converges
to the continuum FTF∞.

Proposition 4 tells us thatF [1/4]
n is approximately equal toFn for largen. It is an unresolved

question as to whether or notF [1/4]
n = Fn. The question is equivalent to asking whether or not

hn,k, as an eigenvalue ofFn, always has eigenvalue ik. We conjecture an affirmative answer.
Another version of a discrete fractional FT, denotedF (t)n , is very similar toF [t ]

n : the two
operators have the same eigenvectors but slightly different eigenvalues. Before definingF (t)n ,
it is convenient to record the following easy consequence of proposition 4.
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Proposition 5. Given an integerk > 0, and writingµ(n, k) for thek + 1th largest eigenvalue
of Gn, then for suitable infinite sequences of positive integersn, we haveµ(n, k)n =
4− 2π(2j + 1)/n + o(1/n).

Let η(n, k) be thek + 1th smallest eigenvector of the linear map

Kn := n

2π
(2− Gn/2)− 1

2

By proposition 5,η(n, k) = n(2−µ(n, k)/2)/2π − 1/2= k + o(1). Defining the linear map
F (t)n : L(n)→ L(n) by

F (t)n hn,k = e2π iη(n,k)thn,k

thenF (t)n may also be expressed by the formula

F (t)n := e2π iKnt .

Thus, the Harper functionshn,k are the eigenvectors ofF (t)n andF [t ]
n ; the corresponding

eigenvalues are the same up to o(1/n). The following result is immediate from propositions 4
and 5.

Proposition 6. For suitable infinite sequences of positive integersn, the operatorF (t)n
converges to the continuum fractional FTF [t ]

∞ .

3. The discrete harmonic oscillator

Let us begin with some general comments about discrete realizations of continuum quantum
systems. We examine only single-particle quantum systems with a time-invariant Hamiltonian.
In the case where the state space is a Hilbert space of countably infinite dimension, we say
that the quantum system is a continuum quantum system. In the case where the state space is
a finite-dimensional Hilbert space (a finite-dimensional inner product space), we say that the
system is discrete.

Consider a Hermitian operatorH on a Hilbert spaceV (such that the domain ofH is dense
in V ). We interpretH as the Hamiltonian of a quantum system. By a state vectorψ of the
system, we mean a differentiable functionR→ V satisfying the Schr̈odinger equation:

Hψ(t) = i
dψ(t)

dt
.

We insist that the initial stateψ(0) has norm‖ψ(0)‖2 = 1, whereupon, of course,‖ψ(t)‖2 = 1
for all t ∈ R. Let U(V ) denote the group of unitary operators onV (understood to have
domain and co-domainV ). The time evolutionS of the system is defined to be the group
homomorphismR→ U(V ) given by

S(t) := e−iHt .

(The right-hand expression extends uniquely to the domainV .) The Schr̈odinger equation
may be rewritten as

ψ(t) = S(t)ψ(0).
Consider now a Hermitian operatorH∞ onL2(R) (with a dense domain). Consider also,

for infinitely many positive integersn, Hermitian operatorsHn onL(n) (with domainL(n)).
Let ψ∞ = ψ∞(t) be a state vector of a quantum system with HamiltonianH∞. For eachn,
let ψn = ψn(t) be a state vector of a quantum system with HamiltonianHn. Our concern is
with the condition that, for allt ∈ R, the sequence(ψn(t))n (the sequence ofψn(t) indexed
by n) converges toψ∞(t). The following observation is immediate from the definition of
convergence of operators.
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Proposition 7. Let us fix a sequence of positive integersn. Then the following two conditions
are equivalent:

(a) The time evolutionsSn(t) converge to the time evolutionS∞(t) for all t .
(b) Given any initial statesφn(0) converging to an initial stateφ∞(0), thenφn(t) converges

to φ∞(t) for all t .

Note that, when the equivalent conditions (a) and (b) hold, it does not follow that the
HamiltoniansHn converge to the HamiltonianH∞. (The theory simply does not work with
the Hamiltonians in place of the time evolutions.) To indicate the applicability of proposition 7
in general, we record the following special case of a result in [7].

Proposition 8. Consider any infinite sequence of positive integersn. LetH∞ be any Hermitian
operator (with a dense domain) onL2(R). Then there exist Hermitian operatorsHn onL(n)
such that the equivalent conditions (a) and (b) in proposition 7 hold.

To illustrate propositions 7 and 8, let us now turn to the harmonic oscillator. A (single-
particle conservative) discrete quantum system is said to be a discrete harmonic oscillator
provided the Hamiltonian is of the form

H = 4(A +B)− A
2
(U + U−1)− B

2
(V + V−1)

whereA andB are positive real numbers, andU,V are unitary operators such that

VU = ζUV
for some complex numberζ of unit modulus.

As a special case, letU andV be, respectively, the unitary operatorsUn andVn onL(n)
given by

Un[X] = [X − 1] and Vn[X] = e2π iX/n[X]

for X ∈ Z. ThusUnVn = ζnVnUn whereζn = e2π i/n. PuttingA = B = ν(n)4 = n/2π , then
our HamiltonianH = Hn is the Hermitian operator onL(n) given by

Hn = n

2π
(4− Un − U−1

n − Vn − V−1
n ) = n

2π
(4− Gn) = 2Kn + 1.

More explicitly,

Hn[X] = n

2π
(−[X − 1] + (4− 2 cos(2π iX/n))[X] − [X + 1]).

The quantum system with HamiltonianHn is called a standard discrete harmonic oscillator.
The time evolution of this quantum system is

Sn(t) = e−iHnt = e−i(2Kn+1)t = e−itF (−t/π)n .

On the other hand, the standard continuum harmonic oscillator is defined to be the quantum
system whose Hamiltonian is

H∞ := − d2

dξ2
+ ξ2

as a Hermitian operator on functions inL2(R) with argumentξ ∈ R. Heuristically, one might
regard the operatorsn(2− Un − U−1

n )/2π andn(2− Vn − V−1
n )/2π as approximations to the

operators−d2/dξ2 andξ2, respectively. Thence, one might regardHn as an approximation to
H∞. Common sense might lead us to imagine thatHn converges toH∞. Alas, common sense
is, on this occasion, deceptive. The operatorsHn do not converge toH∞. We must shift our
attention from the Hamiltonians to the time evolutions.
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It is well known that the solutions to the Schrödinger equation of the standard continuum
harmonic oscillator are

H∞hk = (2k + 1)hk.

Therefore, the time evolution for this quantum system is

S∞(t) = eiH∞t = e−itF [−t/π ]
∞ .

Our comments on the time evolutions of standard harmonic oscillators, together with
proposition 6, imply the following result.

Proposition 9. The HamiltoniansHn andHof the standard harmonic oscillators are such that,
for suitable infinite sequences of positive integersn, the time evolutionSn(t) corresponding to
Hn converges to the time evolutionS∞(t) corresponding toH∞.

4. Connections with the Bloch electron problem

The Bloch electron problem models the behaviour of a charged particle constrained to a two-
dimensional square lattice and subject to a transverse time-invariant magnetic field. Let us
write the state function as a functionψ : Z × Z→ C. As explained in Harper [16], we can
impose a particular gauge, called the Landau gauge, such that the HamiltonianH is given by

(Hψ)(X, Y ) = ψ(X − 1, Y ) +ψ(X + 1, Y ) + e−2π iωXψ(X, Y − 1) + e2π iωXψ(X, Y + 1)

whereω is a real constant proportional to the magnetic flux. See also Rammal–Bellissard [28].
Assuming thatω is rational, let us write writeω = m/n wherem is an integer, andn is a
positive integer coprime tom. The energy eigenstatesψ with energy eigenvalueE are given
by

ψ(X, Y ) = e2π ikY/nφ(X)

wherek is an integer, andφ is a solution to

φ(X − 1) + φ(X + 1) + 2 cos(2π(mX + k)/n)φ(X) = Eφ(X).
ReplacingX with a variableW such thatmX + k = mW , then replacingφ with its imageθ
under a Galois automorphism such that e2π im/n 7→ e2π i/n, we recover Harper’s equation

θ(W − 1) + θ(W + 1) + 2 cos(2πW/n)θ(W) = Eθ(W).
Although no closed formula for the solution to Harper’s equation is known, Wiegmann and

Zabrodin [32] have obtained some deep algebraic properties of the solutions. We ask whether
the algebraic study of difference equations relating to the Bloch electron problem throws any
light on the discrete fractional FT. We also ask whether material in this paper throws any light
on the Bloch electron problem.

5. Comparison of the Harper functions and the Hermite–Gaussians

The techniques used in the arguments above appear to provide no information on the accuracy
of the Harper functions as approximations to the Hermite–Gaussians. In this last section, we
give some numerical information on the speed at which the Harper functions converge to the
Hermite–Gaussians.

In figure 1, withn = 16, the first six Harper functionsh16,0, . . . , h16,5 (indicated by
circles) are compared with the first six Hermite–Gaussians (indicated by the curves). The
periodn = 16 is usually too small for useful calculation; the point is that, for this small value
of n, and fork 6 3, the convergence already looks fairly good.
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Figure 1. Harper functionsh16,k compared with Hermite–Gaussianshk .
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Figure 2 shows, for 106 n 6 40 and 06 k 6 5, theL2-norm ‖hn,k − hk‖2 of the
difference between the Harper functionhn,k and the Hermite–Gaussianhk. The difference was
calculated by evaluatinghn at the sample points, normalizing, and comparing with the vector
hn,k. Again, the convergence looks fairly good.

In section 3, we found it convenient to replaceF [t ]
n with the slightly different version

F (t)n of the fractional FT. The former is a little easier to calculate with, and has the desirable
property thatF [1]

n = 1. The latter was defined quite algebraically as the exponential of
an imaginary multiple of a Hermitian operator. We take the view that, for many purposes
(numerical or theoretical) it matters little which version one chooses; they have the same
convergence properties because, for fixedk, the eigenvalues ofF [t ]

n andF (t)n associated with
their common eigenvectorhn,k are e2π ikt and e2π iη(n,k)t , respectively. We saw, in proposition 5,
that limn→∞ η(n, k) = k (at least, this is proven for suitable sequences of integersn). Empirical
confirmation thatη(n, k) converges tok is given by the graphs, in figure 3, of

ε(n, k) := 1− η(n, k)/k
againstn, where 256 n 6 100 and 06 k 6 9.

For any square-integrable functionf : R→ C, we can write

f (x) =
∞∑
k=0

ckhk(x)

where the complex coefficientsck satisfy
∑∞

k=0 |ck|2 <∞. Let us assume thatf is reasonably
well behaved (as it will be if, for instance, it is infinitely differentiable). Letfn denote the
vector inL(n) whose coordinates are the sample values off . For fixedf , if n is chosen large
enough to ensure that, for eachk, at least one of|ck| or ‖hn,k − hk‖2 is negligible, thenF [t ]

n fn
andF (t)n will be approximately equal to the vector of sample values ofF [t ]

∞f . Thus the discrete
fractional FT, as an approximation, is good for those functions whose coefficientsck converge
quickly to zero ask increases.

In conclusion, we have given evidence that the discrete fractional FT is a good numerical
approximation to the continuum fractional FT. This may be interpreted as saying that the
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discrete fractional FT provides a good numerical approximation to the time evolution of the
continuum harmonic oscillator. At least as importantly, the discrete fractional FT is also an
algebraic analogue of the continuum fractional FT, and provides an algebraic analogue of
the continuum harmonic oscillator. Furthermore, the continuum constructions are realized
as limits of the discrete constructions. These observations support the proposal that, from a
general theoretical point of view, the discrete fractional FT (as defined above) and the Harper
functions have particular merit as discrete versions of the continuum fractional FT and the
continuum Hermite–Gaussians.
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