Wigner Distributions and Phase Space in Optics

 $\mathcal{O}_{\mathcal{O}}$

FEATURE EDITORS

Gregory William Forbes

Department of Physics Macquarie University North Ryde, Sydney NSW 2109, Australia

V. I. Man'ko

P. N. Lebedev Physical Institute of Russian Academy of Sciences 117924 Leninski Prospect 53 Moscow, Russia

Haldun M. Ozaktas

Department of Electrical Engineering Bilkent University TR-06533 Bilkent, Ankara, Turkey

R. Simon

Institute of Mathematical Sciences Tharamani, Chennai 600 113, India

Kurt Bernardo Wolf

Centro de Ciencias Fisicas Universidad Nacional Autonoma de Mexico/Cuernavaca Apartado Postal 48-3 Cuernavaca, Morelos 62551, Mexico

Wigner Distributions and Phase Space in Optics

INTRODUCTION

Our call for papers on Wigner distributions and phase space in optics received a hearty response. In this feature issue we have gathered papers that show, from quite different perspectives, the relevance and promise of phase space for optics. It was satisfying to receive such a range of viewpoints on the principal object of attention: quasiprobability distributions on phase space, i.e., Wigner functions. The phase-space function defined by Eugene Wigner on statistical grounds for quantum mechanics has proved to be a remarkably pliable tool in optics. In quantum optics, in fact, phase space is the canvas depicting the very nature of light. However, it is also clear that other, closely related, ideas play key roles in a variety of phase-space methods for optics.

Given the interdisciplinary character of this research, we somewhat arbitrarily have grouped papers from the abstract to the concrete, and we have further subdivided the latter. Within each group papers appear in alphabetical order. The reader will appreciate from the references of these papers how lines of disparate research have converged. In contrast to the melding of space and time in relativity theory, the fusing of coordinate and frequency domains to form optical phase space has been a slower, more incremental process. As becomes clear from this collection, this process has been spurred in part by studies of short pulses, of image and information processing, and of semiclassical issues related to the ray– wave connection in various domains of wave physics.

A number of fundamental issues arise in several of the papers. Localization, for example, is a central notion in phase space, together with the well-known uncertainty relation, which sets a lower bound on the products of the moments of the Wigner distribution. Generalized uncertainty relations are also discussed here, as is their connection to various types of nonclassical states of light (such as squeezed and correlated states) and to beam purity measures. Similarly, the fractional Fourier transformation has received considerable interest since the early nineties, especially in the signal processing and optics communities, and it arises repeatedly in these papers. The Wigner distribution of the fractional Fourier transform is a rotated version of the Wigner distribution of the original function. Furthermore, the integral projection of the Wigner distribution onto any oblique axis in phase space yields the squared magnitude of the associated fractional Fourier transform of the function. It is not surprising, therefore, that the fractional Fourier transform is so widely used here. For the analysis of discrete signals, several of the papers propose discrete analogs of this and other transforms that act on models of discrete phase spaces. Another unifying theme relates to the Gaussian profiles that couple coherent-state representations, Gabor transforms, and windowed Fourier transforms, among other spectrograms.

We hope that, given the breadth of this research, most of the readers of the *Journal of the Optical Society of America A* will find in these papers insights and gems that spark their own ideas and interests. The topic featured in this special issue is so evidently a rich field, and it continues to be enriched by the efforts of many researchers, including the authors of these papers. We are grateful for their contributions to this collection and to the staff at the OSA manuscript office, who were also essential to its creation.

> Gregory William Forbes V. I. Man'ko Haldun M. Ozaktas R. Simon Kurt Bernardo Wolf *Feature Editors* Wigner Distributions and Phase Space in Optics

WIGNER DISTRIBUTIONS AND PHASE SPACE IN OPTICS

Introduction		2274	
Mathematical Aspects			
Wigner functions from the two-dimensional wavelet group	S. Twareque Ali, A. E. Krasowska, and R. Murenzi	2277	
Phase-space distributions for high-frequency fields	M. A. Alonso and G. W. Forbes	2288	
Covariant discretization of axis-symmetric linear optical systems	Natig M. Atakishiyev, Shakir M. Nagiyev, Luis Edgar Vicent, and Kurt Bernardo Wolf	2301	
Quasi-probability distributions for the simplest dynamical groups	A. B. Klimov and S. M. Chumakov	2315	
Fractional Transforms			
Wigner distribution and fractional Fourier transform for two ^r dimensional symmetric optical beams	Tatiana Alieva and Martin J. Bastiaans	2319	
Phase-space distributions in quasi-polar coordinates and the fractional Fourier transform	Tatiana Alieva and Martin J. Bastiaans	2324	
Fractionalization of the linear cyclic transforms	T. Alieva and M. L. Calvo	2330	
Wigner-related phase spaces for signal processing and their optical implementation	David Mendlovic, Zeev Zalevsky, and Haldun M. Ozaktas	2339	
Simplified fractional Fourier transforms	Soo-Chang Pei and Jian-Jiun Ding	2355	
Fractional Fourier transforms in two dimensions	R. Simon and Kurt Bernardo Wolf	2368	
Perspective projections in the space-frequency plane and fractional Fourier transforms	İ. Şamil Yetik, Haldun M. Ozaktas, Billur Barshan, and Levent Onural	2382	
Wave Optics			
Uncertainty products for nonparaxial wave fields	M. A. Alonso and G. W. Forbes	2391	
Universal invariants of quantum-mechanical and optical systems	Victor V. Dodonov and Olga V. Man'ko	2403	
Canonical-covariant Wigner function in polar form	T. Hakioğlu	2411	1
Understanding superresolution in Wigner space	Zeev Zalevsky, David Mendlovic, and Adolf W. Lohmann	2422	
Wavelet operators for nonlinear optical pulse propagation	Iestyn Pierce, Paul Rees, and K. Alan Shore	2431	
Optical phase space, Wigner representation, and invariant quality parameters	R. Simon and N. Mukunda	2440	
Closed-form solution for the Wigner phase-space distribution function for diffuse reflection and small-angle scattering in a random medium	Harold T. Yura, Lars Thrane, and Peter E. Andersen	2464	

Wigner Distributions

	JOURNAL OF THE OPTICAL SOCIETY O	F AMERICA A VOL. 1	7, NO. 12,	DECEMBER 2001
	Gaussian States			- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10
)	Wigner distribution function applied to twisted Gaussian light propagating in first-order optical systems	Martin J. Bastiaans	2475	
1	Phase-space interferences as the source of negative values of the Wigner distribution function	Daniela Dragoman	2481	
°.	Generalized uncertainty relations and coherent and squeezed states	D. A. Trifonov	2486	
	Holography, Tomography, and Information	Processing		
	Reconstruction of fiber grating period profiles by use of Wigner–Ville distributions and spectrograms	José Azaña and Miguel A. Muriel	2496	Sund Sunda
	Charged-particle-beam propagator in wave-electron optics: phase-space and tomographic pictures	R. Fedele, M. A. Man'ko, and V. I. Man'ko	2506	
	Optical near-field data analysis through time- frequency distributions: application to the characterization and separation of the image spectral content by reassignment	Tijani Gharbi, Dominique Barchiesi, Olivier Bergossi, Hervé Wioland, and Cédric Richard	2513	
	Three-dimensional matching by use of phase-only holographic information and the Wigner distribution	Taegeun Kim and Ting-Chung Poon	2520	
	Toward a tomographic picture of a Bose–Einstein condensate	Stefano Mancini, Mauro Fortunato, Paolo Tombesi, and Giacomo Mauro D'Ariano	2529	Arta. Arta
	Analysis of the moiré effect by use of the Wigner distribution function	Markus Testorf	2536	

(Contents continued)