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We report a fast and accurate algorithm for numerical computation of two-dimensional non-separable linear
canonical transforms (2D-NS-LCTs). Also known as quadratic-phase integrals, this class of integral transforms
represents a broad class of optical systems including Fresnel propagation in free space, propagation in graded-
index media, passage through thin lenses, and arbitrary concatenations of any number of these, including
anamorphic/astigmatic/non-orthogonal cases. The general two-dimensional non-separable case poses several
challenges which do not exist in the one-dimensional case and the separable two-dimensional case. The algo-

rithm takes ~N log N time, where N is the two-dimensional space-bandwidth product of the signal. Our
method properly tracks and controls the space-bandwidth products in two dimensions, in order to achieve in-
formation theoretically sufficient, but not wastefully redundant, sampling required for the reconstruction of
the underlying continuous functions at any stage of the algorithm. Additionally, we provide an alternative defi-
nition of general 2D-NS-LCTs that shows its kernel explicitly in terms of its ten parameters, and relate these
parameters bidirectionally to conventional ABCD matrix parameters. © 2010 Optical Society of America

OCIS codes: 070.2580, 350.6980, 070.2590.

1. INTRODUCTION

The class of two-dimensional non-separable linear canoni-
cal transforms (2D-NS-LCTs) is the class of linear inte-
gral transforms [1-3] that includes among its several spe-
cial cases non-separable two-dimensional (2D) fractional
Fourier transforms (FRTs) [4], two-dimensional chirp
multiplication (2D-CM) and 2D chirp convolution opera-
tions, the two-dimensional Fourier transform (2D-FT),
and generalized astigmatic scaling (magnification) opera-
tions, as well as their separable special cases. These
transform integrals can represent a broad class of optical
systems including Fresnel propagation in free space,
propagation in graded-index media, passage through thin
lenses, and arbitrary concatenations of any number of
these. The class of non-separable transforms is signifi-
cantly more general than two-dimensional separable lin-
ear canonical transforms (2D-S-LCTs) since it can rep-
resent a wide variety of anamorphic/astigmatic/non-
orthogonal systems as well. The systems these integrals
represent are also known as ABCD systems, which are
also known as lossless first-order optical systems [5-12].
The classification of first-order optical systems and their
representation through linear canonical transforms are
studied in [13,9,14-16] for one-dimensional (1D) and 2D
cases, respectively.

Linear canonical transforms (LCTs), which are com-
monly referred to as quadratic-phase integrals or
quadratic-phase systems in optics [3], have also been re-
ferred to by different names such as generalized Huygens
integrals [17], generalized Fresnel transforms [18,19],
special affine Fourier transforms (FTs) [20,21], extended
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FRTs [22], and Moshinsky—Quesne transforms [8], among
other names.

2D separable LCTs or symmetrical transforms that do
not include the general non-separable case are addressed
in [6,8,23-27]. The most special case possible is the iso-
tropic two-dimensional linear canonical transforms (2D-
LCTs) in which the system is fully symmetric, orthogonal,
and the parameters for both of the dimensions are identi-
cal. This case can be represented by only three param-
eters as in a one-dimensional linear canonical transform
(1D-LCT) [16]. When the system is still orthogonal but
the parameters for the orthogonal dimensions differ, the
system becomes a 2D-S-LCT, which is represented by six
parameters [16]. This case is also termed as axially sym-
metric [15]. The separable 2D transforms do not pose
much difficulty because the separable transform is essen-
tially two independent 1D transforms along the two di-
mensions and the dimensions can be treated indepen-
dently. However, the non-separable transform (2D-NS-
LCT) is the most general case of this class of integrals
where the two dimensions are coupled to each other by
four additional cross-parameters, increasing the total
number of parameters to ten. This general case is non-
separable, non-axially symmetric, non-orthogonal, and
anamorphic/astigmatic [11,15-17]. 2D-NS-LCTs are able
to represent not only systems involving anamorphic/
astigmatic components and reference surfaces, but also
other interesting systems such as optical mode converters
and resonators since they can represent the coupling be-
tween the dimensions [16,28,29]. Another prominent fea-
ture of 2D-NS-LCTs is their ability to represent systems
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with rotations between any arbitrary planes in phase-
space, like rotations and gyrations [15,16]. These systems
are collected under the general name of gyrators and are
useful in 2D image processing, signal processing, mode
transformation, etc. [15,30-33]. As a result, the efficient
and accurate digital computation of 2D-NS-LCTs is of im-
portance in many areas of optics, optical signal process-
ing, and general digital image processing.

Given an algorithm for efficiently computing 1D-LCTs
[34-36], the efficient computation of separable 2D trans-
forms is straightforward because the kernel can be sepa-
rated and the 2D transform can be reduced to two succes-
sive 1D-LCTs. Much work has been done on 1D and 2D
separable LCTs in terms of sampling issues and fast algo-
rithms for their digital computation [37—40]. On the other
hand, in the non-separable case, the two dimensions are
coupled. Handling this case requires special attention and
to the best of our knowledge has not been addressed be-
fore. The current established LCT computation algo-
rithms [34—-36] are not able to compute 2D-NS-LCTs.

An alternative representation of LCTs is presented and
studied in [41]. This decomposition is based on the well-
known Iwasawa decomposition [42]. In [41], the authors
further decomposed the first matrix of the Iwasawa de-
composition into a 2D separable FRT that is sandwiched
between two coordinate rotators. We had earlier employed
a 1D Iwasawa decomposition to develop a fast and effi-
cient algorithm for 1D-LCTs [34,35]. In the present paper,
we use the 2D version of this Iwasawa-type decomposition
to derive our efficient algorithm. As in the 1D case, the
distinguishing feature of our approach is the way our al-
gorithm carefully addresses sampling and space-
bandwidth product issues from an information-theoretical
perspective. Special care is taken to ensure that the out-
put samples represent the continuous transform in the
Nyquist—-Shannon sense during every stage of the algo-
rithm so that the continuous transform can be fully recov-
ered from the samples.

To our knowledge, there is no algorithm in the litera-
ture that efficiently calculates 2D-NS-LCTs. Despite the
highly oscillatory nature of the integral kernel, we care-
fully manage the sampling rate so as to ensure that the
number of samples used is sufficient, but not much larger
than the space-bandwidth product of the input signal so
that the algorithms are as efficient as possible. The
straightforward method of sampling the input field and
the kernel, and then calculating the output field, is not
suitable for several reasons. First of all, due to the highly
oscillatory nature of the integral kernel, a naive applica-
tion of the Nyquist sampling theorem to determine the
sampling rate would result in an excessively large num-
ber of samples and inefficient computation. On the other
hand, ignoring the oscillations of the kernel and deter-
mining the sampling rate according to the input field
alone may cause an under-representation of the output
field in the Nyquist—Shannon sense. This unacceptable
situation arises due to the fact that the particular 2D-
LCT that we are calculating may increase the space-
bandwidth product in one or both of the dimensions. If we
do not increase the number of samples that we are work-
ing with so as to compensate for this increase, there will
be information loss and we will not be able to recover the
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true transformed output from our computed samples.
Thirdly, such a straightforward sampled integral compu-

tation takes N2 time, where N=MN for a 2D signal
sampled on a M XN grid. In contrast, the complexity of

our algorithm is ~N log N. This efficiency is even more
crucial in the 2D case than in the 1D case since the num-
ber of points is much larger. By choosing the number of

samples N equal to the 2D space-bandwidth product of
the signals, we ensure that the efficiency is near the best
that is theoretically possible. More generally, through
each stage of the algorithm, we carefully manage the
sampling rate to maintain the information theoretically
sufficient, but not wastefully redundant, sampling re-
quired for the reconstruction of the underlying continuous
functions at any stage of the algorithm.

In Section 2, the definition of 2D-NS-LCTs is given. An
explicit-kernel definition with the least possible number
of independent variables is provided and the forward
and backward relations between the parameters of this
definition and the parameters of conventional
ABCD-matrices are derived. Section 3 provides the pre-
liminary mathematical background and the tools that we
use in the algorithm. In Section 4, our algorithm is pre-
sented. Section 5 addresses the issue of the sampling rate
and space-bandwidth product control in order to ensure
the necessary sampling rates sufficient for the proper re-
construction in the Nyquist—-Shannon sense at each step
of the algorithm. Next, numerical results are reported in
Section 6. We conclude in Section 7.

2. DEFINITION OF 2D-NS-LCTs

The 2D-NS-LCT with parameter matrix M, of an input
function f(u), can be denoted and defined as [41,43]

g(w) =fy(u) = (Cpf)(w)

f f explim(u'"B'Au’ - 2u’"Blu
'det B

+uDBlu)]f(u’)du’, (1)
where u=[uxuy]T, u’ =[u;uy’]T, with T denoting the trans-
pose operation. A,B,C,D are 2X 2 submatrices defining
the transformation matrix M of the system that repre-
sents the 2D-LCT, with B being non-singular. The matrix
M, which is given as

A B

cD/| @

is real and symplectic so that the following hold (I stands
for the 2 X 2 identity matrix) [14,41]:

ABT=BAT, CD"=DCT, ADT-BCT=1,

ACc=CTA, B™=D"™B, ATD-C™B=1. (3)

From a group-theoretical point of view, 2D-NS-LCTs form
the ten-parameter symplectic group Sp(4,R). (M has 16
parameters with six constraints leaving ten independent
parameters.) More on group-theoretical properties of
LCTs can be found in [8,26].
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We will write the integral relationship between the in-
put function f(u,,u,) and the output function g(u,,u,)
more explicitly as

g(ux?uy) = e_iﬂ'/z \‘"ﬂxﬁy = Ty

Xf f K(u,uy,ug,u)flu,u)dudu,,

ror . 2 ’ ’
K(uy,uy,uy,u,) = explimau, - 2Buu, + 20,1,
12 2 ’
Pyl + Villy” + Uy — 2B u
’ ror 12
+ 27U Uy + LI+ VU], (4)

where a,, By, i, @y, Bys Vy» N> T My» 7y are the ten inde-
pendent parameters defining the 2D-NS-LCT (we will re-
fer to them as the “scalar parameters”). These parameters
also uniquely define the LCT. We will use this set of pa-
rameters for two reasons. First, although the definition
using matrices gives us a compact and streamlined repre-
sentation, the kernel and coefficients are not seen easily
and explicitly in this case. When one needs to restrict the
parameters to obtain the kernel of any desired particular
subclass of 2D-LCTs, it is not easy to derive the elements
of the ABCD matrices directly, whereas this is straight-
forward with Eq. (4). Secondly, and more importantly,
when the ABCD submatrices are used directly, we need to
manipulate 16 parameters (four 2 X 2 matrices with four
elements each), despite the fact that only ten of them are
independent. However, with the explicit definition we use
the least number of required parameters, namely, ten,
and match the corresponding ten-parameter symplectic
group with exactly these ten parameters.

It is easy to convert from one set of parameters to the
other. The ten scalar parameters are given in terms of the
elements of A, B, D as follows (only three of the subma-
trices are independent):

_ DllB22 - D12B21

=, 5
“ det B ®
P )
" det B’
By,
e = , 7
= det B @
~ D15B11 + D91Bgy — D11B13 — D9sByy ®
e = det B ’
_ BgsA11 — B1oAg ©
Y= det B ’
~ Dy5B11—Dg1B1s 10)
o= det B ’
By
o 11
Ay det B (11)
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_ B, (12)
W= det B’
_Alen +A 1By —A11Bo1 - B1oAgy (13)
= det B ’
BllA22 _AIZBZI
e (14)

det B

If we wish to obtain the submatrices A, B, D in terms of
the scalar parameters, we can use the following reverse
formulas:

1 Ny + 2By 7By + 27,
A |:y"y Yy ix Y=y yy’(15)

T 2BBy = memy) | mBe+ 2me My + 2By,

=;[By "y] (16)
IBx:By_ x My M IBx ’

D 1 [ T+ 2Byt NalB+ 277y“x:|
2(B.By = memy) | By + 270ty Myt 2Bty |
(17)

As noted earlier, the submatrix C is not independent and
can be expressed in terms of A, B, D as follows:

C11=(A11D11Bggo + A19D19Bos — Bog = B1oA o1 D1y
- B19AgD15)/det B,

Co1=(A19Dg9 + A11Ds1 = B15C59)/B1y,
Cio=(Ag91D11 +AgsD15— B21C11)/Bos,

C122 = (A22D22311 +A21D21311 - Bll - BZIA12D22
_BZIAIIDZI)/det B (18)

Equations (18), along with the corresponding entries in
Eqgs. (15)—(17), define C in terms of the scalar parameters.
(Because the final expressions for C are cumbersome we
do not write them here explicitly.) Note that when we set
the “cross” parameters 7,, 7., 7,, 7, to zero, the general-
ized 2D non-separable transformation matrix M will re-
duce to the transformation matrix of the 2D separable
case studied in [23]. Also note that A, B, C, and D as
given in Eqs. (15)—(18) satisfy the required properties
given in Eq. (3).

3. PRELIMINARIES

A. Wigner Distributions

We will review the relationship between LCTs and the
Wigner distribution (WD), which will aid us in under-
standing the effects of the elementary blocks used in our
decompositions. The WD Wu,,u,, u,,u,) of a 2D signal
fluy,u,) can be defined as follows [3]:
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Wf(ux’uy’ﬂxaﬂy) = f f f(ux + uglc/27uy + u;'/z)fk(ux

—ud2,u, - u;,/2)e‘2”i(“xualc+”y“;;)du;du;.
(19)

Roughly speaking, W(u,,u,, s, i,) is a function that gives
the distribution of the signal energy over both space vari-
ables and their corresponding frequency variables. We
call this four-dimensional (4D) WD the “4D Wigner distri-
bution,” whereas the usual 2D WD used for 1D functions
will be referred to as the “2D Wigner distribution.” Let f
denote a function and fy be its 2D-LCT with parameter
matrix M. Then, the relation between the WD of fj; and
the WD of f can be expressed as [3]

Wy (Ms) = W(s), (20)

where the vector s=[u, u, wu, ,uy]T is used for the sake of
notational simplicity. An example of the use of the WD in
sampling issues from another perspective can be found in
[44].

B. Fractional Fourier Transformation

The FRT plays an important role in our algorithm. There-
fore, here we briefly give its definition. The ath order 1D
FRT [26,45-51] of a function f(u), denoted f,(«), can be de-
fined as

Ffw) =fo(u) =f K, (u,u")f(u)du’,

K, (u,u')=A,explim(cot 0 u? -2 csc G uu' +cot Hu'?)],

am
Ay=1-icot6, 6:7 (21)
when a#2j, K,(u,u’)=6(u-u') when a=4j, and
K,(u,u')=8u+u’) when a=4j+2, where j is an integer.
The square root is defined such that the argument of the
result lies in the interval (-#/2,7/2]. For 0<l|a|<2 (0
<|6|<m), Ay can be rewritten without ambiguity as

il sgn(0)/4-012)

Ay= —_—, (22)
\|sin 6|

where sgn( ) is the sign function. When « is outside the
interval 0=<|a|=2, we simply need to replace a with its
modulo 4 equivalence lying in this interval and use this
value in Eq. (22).

C. A 3-Sphere for Space-Bandwidth Control for 2D
Functions and Dimensional Normalization

When we study 1D input functions and 1D-LCTs, the cor-
responding WD is 2D. One dimension represents the
space extent and the other represents the spatial-
frequency extent of the signal. However, for 2D signals,
there exist two space extents and two corresponding
spatial-frequency extents resulting in a 4D Wigner distri-
bution. In [34,35] we used 2D Wigner distributions for
tracking and control of the space-bandwidth products of
signals through the stages of our algorithms. 2D Wigner
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distributions are easy to visualize and therefore easy to
understand. However, for 2D signals we cannot graphi-
cally show the WD because it is a 4D function. Therefore
we will develop and use a more abstract and rigorous ap-
proach to space-bandwidth tracking and control in order
to achieve the information-theoretical minimum sampling
rate for the lossless reconstruction of the continuous out-
put function from the output samples.

First, we need to recall the geometrical object known as
a “3-sphere.” In general, for a natural number n, an
“n-sphere” is the generalization of the ordinary “2-sphere”
in common three-dimensional Euclidian space to any di-
mension. Explicitly, an n-sphere, denoted as S™ and cen-
tered at the origin, is the analog of a sphere in
(n+1)-dimensional Euclidian space and is defined as

S ={x e R x| =7}, (23)

where the positive real number r is the radius of the
n-sphere and R”*! is an (n+1)-dimensional vector space
over R. More on n-spheres can be found in [52,53]. Then,
we can provide the generic definition of the 3-sphere, S3,
centered at the origin explicitly as

82 = {(x1,%9,%5,%4) € R‘l:x% + x% + xg + xi =rf.  (24)

Now, let us turn our attention to our 2D input functions.
It is well known that a non-zero function and its FT can-
not both be confined to finite regions. However, in prac-
tice, we always work with samples of finite extent func-
tions by assuming that the energy of the signal falling
outside of some region is negligible. In general, the signal
will exhibit some distribution of energy in the 2D space-
frequency hypervolume (which is four dimensional). We
will assume that a finite hyperellipsoidal boundary in R*
is chosen so as to confine most of the energy of the signal.
This hyperellipsoidal boundary will imply finite extents
in the two space dimensions and the two spatial-
frequency dimensions. The intervals of the confinement
thus defined will be denoted by [-AS,/2,AS,/2] and
[-AS,/2,AS,/2] in the space dimensions, and [-AB,/
2,AB,/2] and [-AB,/2,AB,/2] in the spatial-frequency
dimensions. The space and spatial-frequency representa-
tions of the signal will be approximately confined within
these intervals. Given these, it also follows that both
space-domain extents are confined within the worst-case
interval [AS hax/2,AS 1ax/ 2], where AS ax
=max{AS,,AS,}, and both frequency-domain extents are
confined within the interval [-AB,,,./2,AB,../2], where
ABx=max{AB,,AB,}. Under these conditions, the WD
of the function is confined within the boundary O in R*
(note that this is not defining a 3-sphere yet),
52 bZ

X

: +
(AS1ax/2)®  (ABpa/2)?
s} by
+ + =17,
(AS,ax/2)?  (AB,,./2)?

0= (sx’sy’bx7by) e R*

(25)

where s, and s, are temporary space variables and b, and
b, are temporary spatial-frequency variables of the WD of
the signal.

Let us now introduce the scaling parameter P and
scaled dimensionless coordinates
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u,=s,/P,
u,=s,/P,
My =b,P,

#y=b,P, (26)

such that the two space-domain and two frequency-
domain representations are confined to intervals of length
AS,a/P and  AB_ P, respectively. Let P
=VAS hax/ ABax S0 that the lengths of all the four inter-
vals become equal to the dimensionless quantity
VAS axABmax, Which we denote by Au. Expressed in di-
mensionless coordinates, the boundary O defined in Eq.

(25) reduces to the desired 3-sphere, denoted by O,

_ 4.2, .2, 2 2
Ogp = (U, p, ty) € Rty + 1y + py +

VAS 1axB By | * [ Au\?
— = (27)

2 2
To summarize, after the dimensional normalization pro-
cedure given above has been performed, the 4D Wigner
distribution of our 2D input function can be assumed to
be confined within a 3-sphere Og, of diameter Au.

4. ALGORITHM

As noted before, one of the most important features of our
method is to control the sampling rate of the function
with the goal of having enough samples to be able to re-
construct the continuous function without information
loss, and at the same time without needlessly increasing
the number of samples to maintain the efficiency. In this
section, we present our algorithm, discuss the stages in
the decomposition, and derive the parameters of each
stage from the parameters of the 2D-NS-LCT that is be-
ing computed. The effects of each stage of the decomposi-
tion on the WD of our function (thus on the space-
bandwidth products) and associated sampling rate issues
will be addressed in Section 5.

The Iwasawa decomposition is the core of our algo-
rithm. After the dimensional normalization explained in
Subsection 3.C, any transformation matrix M can be writ-
ten in the following Iwasawa form [42,41]:

w3 2R

where

G=-(CAT+DBT)(AAT + BBT) !, (29)
S=(AAT+ BBT)2, (30)
X =(AAT + BBT) 127 (31)
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Y =(AAT + BBT)" 2B, (32)

Given the 4 X 4 matrix M, we can determine the 2 X 2 ma-
trices G, S, X, Y by using Eqgs. (29)—(32). If we are able to
develop a fast algorithm to compute the three stages in

~N log N time, the overall transform can also be calcu-

lated in ~N log N time. In this decomposition, the first
operation is an orthosymplectic system, followed by a
scaling (magnification) system, and finally followed by a
2D-CM. (Note that each of the stages of the algorithm is a
special case of 2D-NS-LCTs.)

We begin with the first and the most sophisticated
stage of the decomposition, the orthosymplectic system.
This stage of the decomposition can be further decom-
posed into a two-dimensional separable fractional Fourier
transform (2D-S-FRT) that is sandwiched between two co-
ordinate rotators [41],

X Y
_Y X = erFax,aerl’ (33)
where the 4 X4 matrices R, , Fax,ay’ R,, are defined as
[ cos(ry) sin(ry) 0 0
—sin(ry) cos(ry) 0 0
R, = s N G
1 0 0 cos(ry) sin(ry)
| 0 0 —sin(ry) cos(ry) |
i cos(ry)  sin(ry) 0 0
R —sin(rg) cos(ry) 0 0 a5
ry < 0 0 cos(rg) sin(ry) |’ (85)
| 0 0 —sin(ry) cos(r2)_
FaX ay
cos(a,m/2) 0 sin(a,7/2) 0
0 cos(a,m/2) 0 sin(a,7/2)
" | - sin(a,7/2) 0 cos(a,m/2) 0 ’
0 - sin(a,7/2) 0 cos(a,m/2)

(36)

where er and er are rotation matrices that impose ro-
tations of angles r{ and rq, respectively, through the spa-
tial variables (u,,u,) and through their frequency vari-
ables (u,,u,). Unlike these traditional rotators which
rotate within space and spatial-frequency separately, the
FRT rotates within the space-frequency planes of each di-
mension. F, , stands for a 2D-S-FRT that makes sepa-
rable rotations of angle a,7/2 over the variables (u,, u,)
and of angle a,7/2 over the variables (u,, u,). Since this
2D FRT operation is separable, it corresponds to two 1D
FRT operations performed over each of the dimensions.
Explicitly, this means first performing 1D-FRTs with the
fractional order a, for each of the rows (or columns) and
then performing 1D-FRTs with the fractional order a, for
each of the columns (or rows) of the sampling grid. It is
this observation that enables us to implement this stage

of the decomposition efficiently in O(N log N) time. There
are fast and established algorithms to compute 1D-FRTs
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[34,35,54,55] so that this stage can be calculated in
O(N log N) time easily.

The interpretation of the coordinate rotators requires
care. When we are working with sampled functions, we
know the value and coordinates (the location where the
particular sample is taken) of all the samples we have. A
coordinate rotation can be interpreted in this situation as
a rotation of the locations of the samples, resulting in a
new sampling grid, rather than a change in the sample
values. If we assume that we start with a regular rectan-
gular grid, after the coordinate rotation, the grid would no
longer coincide with the original grid unless the rotation
is an integer multiple of 7/2. Unfortunately, in order to
perform FRT operations along the horizontal and vertical
directions, we need the samples to be on a regular rectan-
gular grid in order to employ available fast algorithms.
Therefore, we must carry out an interpolation operation
to determine the values of the function on a regular rect-
angular grid. There are several techniques and algo-
rithms to perform this interpolation efficiently. We have
chosen to use in our numerical simulations fast and stan-
dard implementations of nearest neighbor, bilinear, and
cubic interpolations [56,57], but any other efficient
method may also be used. This interpolation step and its
performance can be a major source of error in our algo-
rithm, as we will further discuss later.

We now turn our attention to determining the coordi-
nate rotation angles r; and ry, and the FRT fractional or-
ders a, and a,. When we plug Egs. (34)-(36) in Eq. (33),
carry out the matrix multiplications, and equate the en-
tries of both sides of Eq. (33), we get the following equa-
tions in the four unknowns ry, r9, a,, and a,:

X1y =cos ry cos ry cos(a,m/2) - sin 7y sin ry cos(a,m/2),
X9 =sinry cos ry cos(a,m/2) + cos ry sin ry cos(a,w/2),
Xy1 = - cos 1y sin ry cos(a,7/2) — sin rq cos ry cos(a,m/2),
Xy9 == sin rq sin ry cos(a,m/2) + cos rq cos ry cos(a,m/2),
Y11 =cos r; cos ry sin(a,7/2) — sin r; sin ry sin(a,7/2),
Y19 =sin ry cos ry sin(a,7/2) + cos r; sin ry sin(a,7/2),
Yy = - cos ry sin ry sin(a,m/2) - sin ry cos ry sin(a,m/2),

Yy9 =—sin ry sin ry sin(a,/2) + cos ry cos ry sin(a,7/2).
(37)

These equations are sufficient to solve for and unambigu-
ously determine the rotation and fractional Fourier
angles of the decomposition in a straightforward manner,
provided one pays proper attention to sign considerations
when inverting the trigonometric functions.

To summarize, the first stage of our algorithm involves
determining the angles from the above equations, per-
forming the first coordinate rotation, following this by two
1D-FRTs over each of the dimensions, and then finishing
with the second coordinate rotation. All these steps can be

calculated in O(N log N) time.
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The second stage is the scaling operation and it seems
to be the simplest of the three stages. It is not, however,
as trivial as in the 1D case [35]. In one dimension, it cor-
responds to only a reinterpretation of the spacing be-
tween the samples. The sampling interval scales with the
scaling parameter. Intuitively, it squeezes in or stretches
out the total number of samples as the word scaling im-
plies. This means that there is no change in the total
number of samples and thus no need to oversample the
input samples. The analog of the 1D scalar scaling param-
eter in the 2D case is the matrix S. When S is diagonal,
which means that there is no coupling between the two
dimensions of the function for scaling purposes, the scal-
ing is separable. Due to this separability, this situation
does not impose an increase in the space-bandwidth prod-
ucts and thus does not require oversampling, just as in
the 1D case. But when the off-diagonal elements of S are
non-zero, the scaling operation is no longer so trivial. Al-
though the total number of degrees of freedom of the sig-
nal remains the same, the space-bandwidth products may
increase and an oversampling to match this increase may
be necessary. Readers wishing to better understand how
the space-bandwidth product may increase despite the
fact that the number of degrees of freedom remains the
same are referred to [35], where these issues are studied
graphically for the 1D case. An analogous, although not
visually demonstrable, situation exists for 2D signals.
The sampling rate control mechanism for such 2D scaling
operations will be developed in detail in Section 5. At this
point, we note that in those cases where the number of
samples needs to be increased, the oversampling should
be performed first, prior to the scaling. Afterward, the
scaling is achieved by the mere reinterpretation of the lo-
cations of the samples without changing the samples
themselves (other than a constant multiplicative factor).
Computationally, such a scaling operation amounts to
modifying the information that tells us which coordinates
the samples belong to. Since it requires only the reinter-
pretation of the coordinates of the samples plus a possible
oversampling, it does not impose much computational
load. Equation (30) gives us the scaling parameters. The
matrix S can be easily used to determine the output
samples by using the input-output relation of the scaling
operation,

1
= S~lu), 38
fsc(@) \mf( u) (38)

/

where f is the function to be scaled, f;, is the scaled func-
tion, and u=[u, wu,]".

The last stage of our main Iwasawa decomposition is
the 2D-CM operation whose parameters are given by the
matrix G as defined in Eq. (29). The input-output relation
of this 2D-CM is given as

fch(u) — e—i‘n’(G11x2+(G12+G21)xy+622y2)f(u), (39)

where f., stands for the chirp-multiplied function. The
2D-CM operation is the stage that is mainly burdened
with any shears inherent in the 2D-NS-LCT to be com-
puted. Such shears may considerably increase the space-
bandwidth products of the function. Thus, before the
2D-CM operation, the space-bandwidth products of the
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function should be calculated carefully and any necessary
oversampling should be performed. This CM operation
may turn out to be non-separable or separable for particu-
lar 2D-NS-LCTs but, regardless, it requires only one mul-

tiplication for each sample, resulting in O(N) time compu-
tation. As a result, we see that we can perform all of the

stages of the decomposition in ON logJV) time or faster,
which makes the computational complexity (cost) of our

overall algorithm O(N log N).

5. SPACE-BANDWIDTH AND SAMPLING
RATE CONTROL

In this section, we develop a method to track the space-
bandwidth products of our functions as we perform the
consecutive operations in our decomposition and focus on
how to control the number of samples efficiently. We need
to calculate the necessary sampling intervals and sam-
pling rates for both dimensions that are necessary to rep-
resent the continuous signal without information loss for
each of the stages. Oversampling should be undertaken
prior to any stage that increases either of the space-
bandwidth products.

As given in Subsection 3.C, the WD of the input signal
is assumed to be confined within a 3-sphere with radius
Au/2, which also means that the signal is assumed to be
almost space- and band-limited in both dimensions. The
4D Wigner representation gives us two space extents, two
spatial-frequency extents and two space-bandwidth prod-
ucts, one for each dimension of the function. Let us denote
the space-bandwidth product along the u, direction by N,
and that along the u, direction by N,. These extents de-
fine the minimum required number of samples along the
corresponding direction, with the total number of samples
being N, X N,. Since the WD is confined within a 3-sphere
of diameter Au, all the extents of the function (space and
spatial-frequency) are equal to Au at the beginning. Thus,
the function should be sampled on a N, XN, grid, where
the u,-coordinate of the function spans the interval u, =
(-Au/2,Au/2) and the u,-coordinate spans the interval
uy=(-Au/2,Au/2). The distance between two adjacent

cos(ry) sin(ry)
Au| -sin(ry) cos(ry)
2] o 0

0 0

Sout = ersin =
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samples is equal to Az~! along both dimensions. As a re-
sult,2the space-bandwidth products are initially N,=N,
=Au“.

We will track the effects of each stage in our algorithm
to the WD boundary to which the original function is con-
fined, and calculate the extents and the two space-
bandwidth products and eventually the required struc-
ture of the sampling grid before each stage is performed.
We will address each of the three stages (the first with
three steps) given in Section 4 in sequence.

To start, we first write down the 3-sphere boundary in
hyperspherical coordinates. The 3-sphere O, given in Eq.
(27) can be transformed to the equivalent hyperspherical
coordinates with the following coordinate transformation:

U, cos ¢y
u Au sin ¢, cos ¢y
Op=| “|== . ° . 0)
Moy 2 | sin ¢ sin ¢y cos ¢
My sin ¢; sin ¢y sin ¢g

where the angular hyperspherical coordinates ¢; and ¢y
range over [0, 7], and the angular hyperspherical coordi-
nate ¢ ranges over [0,27]. (Note that this coordinate
system transformation is not unique.) The sum of the
squares of the elements of the vector on the right-hand
side of Eq. (40) again equals (Au/2)? as expected. Equa-
tion (20) allows us to calculate the new boundary s,,; of
the WD after any operation from the boundary s;, before
the operation. Just as the old boundary confined most of
the energy of the signal represented by the WD, so does
the new boundary. This is because the mapping in Eq.
(20) merely maps values of the WD to new space-
frequency points, and values which were confined within
the old boundary remain confined within the new bound-
ary.

A. First Coordinate Rotator

At the very beginning of the algorithm, we start with the
boundary vector s;,=Og,. In other words, the input
boundary vector s;, before the first coordinate rotator is
given by Eq. (40). Then s, is found by multiplying s;,
with the transformation matrix of the coordinate rotator
as

0 0 cos ¢
0 0 sin ¢, cos ¢y
sin(ry) || sin ¢4 sin ¢, cos ¢

cos(r;)

—sin(ry) cos(ry)

sin ¢ sin ¢y sin ¢

cos(r1)cos ¢ + sin(rq)sin ¢ cos ¢y

Au

" 2| cos(ry)sin ¢; sin ¢y cos @3 + sin(ry)sin ¢; sin ¢, sin Gg

— sin(rq)cos ¢ + cos(rq)sin ¢y cos ¢q

(41)

— sin(ry)sin ¢; sin ¢, cos @5 + cos(ry)sin ¢y sin ¢, sin ¢

with ¢; and ¢, ranging over [0,7], ¢35 ranging over
[0,27], and s, represents the boundary of the output

[
WD. We can show that this boundary remains a 3-sphere
of radius Au/2 by writing
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WPl b4 g
Au\?
=\3 [(cos(ry)cos ¢ + sin(ry)sin ¢, cos ¢,)?

+ (- sin(r)cos ¢ + cos(ry)sin ¢ cos ¢y)?
+ (cos(ry)sin ¢; sin ¢y cos ¢y
+sin(ry)sin ¢; sin ¢ sin ¢;)”

+ (- sin(ry)sin ¢ sin ¢y cos ¢

Au\?
+cos(r1)sin ¢ sin ¢y sin ¢g)?] = (;) , (42)

as can be verified after some algebra with trigonometric

cos(a,m/2) 0
Au 0 cos(a,m/2)
SoutzFa a Sin= .
oy 2 | - sin(a,7/2) 0
0 - sin(a,7/2)
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functions. This result means that the coordinate rotation
operation does not change the 3-sphere nature of the con-
fining boundary of the WD, and since rotating an
n-sphere (just like an ordinary sphere) does not change its
extent along any direction, it does not have any effect on
the space-bandwidth products. Therefore, no matter what
the angles are, the coordinate rotation operation does not
require a change in the number of samples and the sam-

pling grid.

B. 2D-S-FRT

Since the previous rotation operation left the WD con-
fined within the original 3-sphere, and since we are inter-
ested only in the worst-case boundary, s;, (s,,; of the pre-
ceding operation) can still be expressed as in Eq. (40).
Then, the new s, is found as

sin(a,7/2) 0 cos ¢,
0 sin(a,n/2) sin ¢, cos ¢y
cos(a,m/2) 0 sin ¢ sin ¢y coS ¢
0 cos(a,m/2) || sin ¢; sin ¢, sin ¢

cos(a,m/2)cos ¢, + sin(a,7/2)sin ¢, sin ¢y cos ¢s

Au| cos(a,7/2)sin ¢, cos ¢y + sin(a,m2)sin ¢p; sin ¢, sin ¢pg

2 — sin(a,/2)cos ¢ + cos(a,7/2)sin ¢ sin Py cos ¢g

(43)

- sin(a,7/2)sin ¢; cos ¢y + cos(a,n/2)sin ¢; sin ¢y sin ¢y

As in the coordinate rotator step, s,,; again defines the
boundary of the output WD. Once again it defines a
3-sphere since uf+u§+,u§+,u§=(Au/2)2. This too can be
easily shown by using simple algebra and trigonometric
function properties. This is an expected result since the
FRT corresponds to rotation in the joint space-frequency;
if the original confinement region is an n-sphere, it re-
mains an n-sphere after a 2D-S-FRT. Therefore, we again
need not change the number of samples and sampling
grid before the FRT step.

C. Second Coordinate Rotator

Similar considerations as with the first coordinate rota-
tion apply so that an increase in the number of samples or
a change in the sampling grid is not needed.

D. 2D Scaling Operation

Up to the scaling stage, we do not have to worry at all
about the sampling rate. The three steps which constitute
the first stage have the effect of rotating the original
3-sphere, and the extent of the 4D Wigner distribution re-
mains unchanged in all directions. We are able to track
the confinement boundary through the steps precisely
since we are able to write down the entire boundary para-
metrically by using hyperspherical coordinates and since
after each step, the transformed points still form a
3-sphere. In fact, the WD of the signal is confined within
the same 3-sphere as at the beginning. However, the scal-

[
ing operation does not preserve the 3-sphere and thus it is
very difficult to track all the points on the boundary since
they may not constitute an easily trackable geometrical
object by analytical and parametric means. Therefore, in-
stead of tracking the infinite number of boundary points
of our 3-sphere, we will use a tesseract (a 4-cube), which
is basically the counterpart of an ordinary cube in R%, just
as the 3-sphere is the counterpart of the ordinary sphere
[52]. The unit tesseract is defined as

{(x1,29,203,%4) € R:-1=x; =1} (44)

It has 16 vertices and we will use these 16 points to track
the WD after the scaling operation. We take the smallest
tesseract that contains the 3-sphere within itself and use
its 16 vertices to find the 16 vertices of the output. These
16 vertices define the maximum extents of the distribu-
tion, and by employing them we can safely define the
worst-case boundary confining the WD after the opera-
tion. Then the two space-bandwidth products can be cal-
culated by finding, separately for each of the four coordi-
nates, the maximum distances between the corresponding
coordinates of the 16 vertices. Readers wishing to find a
simpler example of such a streamlined procedure in a 1D
setting can refer to [55].

Let us represent, in R%, the coordinates of the 16 verti-
ces of the tesseract of edge length Au (which is the small-
est one confining the 3-sphere with diameter Au) with col-
umns of the matrix V,
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11 1 1 1 1 1

Aull 1 1 1 -1 -1 -1
"9l1 1 -1 -1 1 1 -1
1-11 -1 1 -1 1

After the scaling operation is performed, these coordi-
nates of the 16 input vertices are mapped to 16 new ver-

tices, which we will hold in the columns of V as follows:

S 0}
V, (46)

V:[VI Vg Vg ... Vij5 V16]=|:0 S_l

where v; (i=1,2,...,16) are vectors in R* that hold the co-
ordinates of the scaled vertices. Then, we need to find the
coordinate-wise distances for every possible combination
of pairs of vertices, for each of the four coordinates sepa-
rately. There are 120 possible combinations of pairs out of
16 vectors. We calculate the distances between their coor-
dinates and denote this with d;; as

Ivi(1) - v;(1)]
[vi(2) - v;(2)|

87 i) - i) | “o
[vi(4) - vj(4)|
and then construct the 4 X 120 distance matrix D,
D
= [d1,2 dig ... dyge dag day ... dge ... d15,16]
(48)

where i=1,2,...,15 and j=i+1,...,16. By using D, we
can define the sampling grid and sampling rates that are
necessary to represent the function without any informa-
tion loss. The extent of the function along u, and u,
should be max(D;1,Dq9,D13,...,D1,120) and max(Dy,
Dy 9,Dy3,...,Dg19), respectively. On the intervals along
u, and u, given above, the samples should be taken
with intersample spacings of (max(Ds;,D39,D33,...,
D5 190)7" and (max(Dy,1,D42,D43, ... ,D4120) 7", respec-
tively. The corresponding space-bandwidth products are
then equal to

Ng,.= maX(D1,1,D1,2,D1,3, e ,D1,120)

xmax(Dg 1,D39,D33, ... ,D3 190), (49)
NSy = maX(DZ,l,DZ,Q,D2,37 e ,D2,120)

Xmax(Dy 1,D49,D43, ... ,D4120), (50)

and the total necessary number of samples after the scal-
ing is given by N=Ng,N, sy- Remember that the number of

samples should be increased to this number N=Ng,N; Sy
before the scaling operation is performed (the minimum
appropriate integer number of samples greater than the
calculated values may be used for simplicity). The deter-
mined number of samples should be uniformly spread so
as to snugly fit the original extents (thus they will be
spaced closer than the original samples). After the scaling

1
-1
-1
-1
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-1 -1-1-1-1 -1 -1 -1
1 1 1 1 -1 -1 -1 -1
1 1 -1 -1 1 1 -1 -1 (45)
1 -1 1 -1 1 -1 1 -1

[
operation is performed by using the matrix S, these
samples are transformed to new and extended positions
as predicted by the above calculations. Finally, although
not a necessity, a similar simple interpolation may be em-
ployed (as done after the coordinate rotations) to carry the
samples from these transformed locations to the regular
grid within the predicted extents. This may facilitate the
implementation of the next operation.

E. 2D-CM

The 2D-CM operation is the stage that is mainly bur-
dened with any shears which may be inherent in the 2D-
NS-LCT to be computed. Such shears may considerably
increase the space-bandwidth products of the function.
These increases are unavoidable if these elongating dis-
tortions in the space-frequency are part of the 2D-NS-
LCT which we wish to compute. This will in turn require
an increase in the number of samples if we wish to be able
to reconstruct the continuous output function without any
information loss. Therefore, as in the previous subsection,
we must increase the number of samples prior to the
chirp multiplication operation. The vertices obtained as a
result of the scaling operation are taken as the starting
vertices for the 2D-CM operation. We begin with the coor-

dinates of these vertices, denoted by V, determine what
happens to them as a result of the 2D-CM operation, and
calculate the new difference matrix D by using the follow-
ing equation along with Eqs. (47)—(50):

- I 0|_
V:[Vl Vg V3 ... Vjj5 Vu;]: -G I V. (51)

Finally, the sampling extents, rates, and locations can be
determined similarly as in the scaling stage. After the
number of samples has been increased, the 2D-CM stage
can be safely performed to complete the entire transfor-
mation.

F. Summary of the Algorithm

Having explained all the stages in detail, we summarize
the entire algorithm stage by stage. The algorithm can be
compactly stated in operator notation as follows:

CM = QGKGM SKSRrZ]:ax,ayJer’ (52)

where the operators Qg, Msg, Ry, fax,ay’ and R,,, respec-
tively, represent the 2D-CM with parameter matrix G,
the 2D scaling with parameter matrix S, the coordinate
rotation with angle ry, the 2D-S-FRT with orders a, and
a,, and the coordinate rotation with angle r,. J stands for
a simple interpolation without oversampling that is per-
formed to obtain the function on a regular rectangular
grid from the rotated samples. Kg and K; stand for the
interpolation operations before the scaling and chirp mul-
tiplication operations, respectively. Beyond the task of ¢,
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these also increase the number of samples as explained in
Subsections 5.D and 5.E.

The algorithm can be summarized as follows:

1. Normalize the input field (function) as explained in
Subsection 3.C and obtain the input samples.

2. Given the transform matrix M, obtain the chirp mul-
tiplication (G) and scaling (S) matrices, the coordinate ro-
tation angles (rq and ry), and FRT orders (a, and a,) by
using Egs. (28)—(37).

3. Perform the first coordinate rotation and obtain the
samples on a regular grid by simple interpolation.

4. Use the fast algorithm for 1D-FRTs to implement the
2D-S-FRT by successively applying 1D-FRTs along the
two dimensions.

5. Perform the second coordinate rotation and obtain
the samples on a regular grid by simple interpolation.

6. Use the method given in Subsection 5.D to obtain the
necessary number of samples before the 2D scaling opera-
tion, perform the oversampling, and then apply the scal-
ing operation. Optionally, go back to a regular rectangular
grid by simple interpolation after the scaling has changed
the locations of the samples to a non-rectangular grid.

7. Use the method given in Subsection 5.E to obtain the
necessary number of samples before the 2D chirp multi-
plication operation, perform the oversampling, and then
apply the chirp multiplication operation.

6. NUMERICAL RESULTS

Here we report numerical results for some example func-

tions and transforms in order to demonstrate the perfor-
Re of T1 of F1 — Our Algorithm
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0
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mance and accuracy of our algorithm. We also discuss
sources of error in our algorithm and the effect of interpo-
lation methods on the error. As example input functions,
we consider the 2D Gaussian field exp(—m(x2+y2)) and de-
note it with F1, the 2D chirped-Gaussian field exp(—m(x2
+y?))exp(-im(x2+y2)) and denote it with F2, and a 2D
non-symmetric chirped Gaussian field exp(—m(3x2
+y?2))exp(—im(x2+2y?)) and denote it with F3. All these
first three input fields are sampled on a 64 X 64 grid. Ad-
ditionally, we also consider a more challenging function
exhibiting discontinuities and larger frequency extents
depicted in Fig. 1. This S-shaped function is denoted with
F4 and is sampled on a 256 X 256 grid. We consider two
different arbitrarily chosen 2D-NS-LCTs: the first one

-8 -6 -4 -2 0 2 4 6

Fig. 1. Example function F4.

Re of T1 of F1 — Reference

(a) Real part (fast algorithm)

Im of T1 of F1 — Our Algorithm

(¢) Imaginary part (fast algorithm))

(b) Real part (reference)

Im of T1 of F1 - Reference

(d) Imaginary part (reference)

Fig. 2. T1 of F1 (our algorithm and reference).
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Re of T1 of F2 - Our Algorithm

(a) Real part (fast algorithm)

Im of T1 of F2 — Our Algorithm

4

/
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X

(c) Imaginary part (fast algorithm)
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Re of T1 of F2 - Reference

(b) Real part (reference)

Im of T1 of F2 - Reference

-3 i i 15

(d) Imaginary part (reference)

Fig. 3. T1 of F2 (our algorithm and reference).

(T1) has a parameter set (ay,Bx, x> @,By, %y Ms 7y,
Na> 1) =(-3,-2,-1,2,3,4,0.1,0.2,1,-0.1) and the second
one (T2) has a parameter set (1, 2, 3, —2, —1, —0.8, 0.6,
—0.5, 0.3, —0.4). As a result of the space-bandwidth and
sampling rate control procedure presented in Section 5
and for the given number of initial samples, the output
fields are obtained by the algorithm on 141X166 and
740 % 211 sampling grids for T'1 and T2, respectively, for
the input functions F'1, F2, and F3. For the input function
F4, the output grids are 563 X 663 and 2958 X 842 for T'1
and T2, respectively. T'1 is of such a nature that it re-
quires a relatively small amount of oversampling,
whereas T2 is of such a nature that it requires a rela-
tively large amount of oversampling. These oversam-
plings are necessary to be able to recover the continuous
output from the output samples produced by the algo-
rithm.

The 2D-NS-LCTs (T1 and T2) of the functions F'1, F2,
F3, F4 have been calculated both by the presented fast al-
gorithm and by an extremely finely tuned and inefficient
brute force numerical approach based on the 2D Simp-
son’s method [58] which we use as an accurate reference.
The results for 7'1 of (F'1, F2, F4) and T2 of (F3, F'4) along
with the corresponding brute force reference results are
plotted in Figs. 2-6. The error percentages for all func-
tions (F1, F2, F3, F4) are tabulated in Table 1, for both
transforms 71 and 72. There are no visible differences for
F1, F2, F3 and very small visible difference for F4. We de-
fine the error as the energy of the difference of the two re-

sults normalized by the energy of the reference, expressed
as a percentage. The tabulated error percentages show
that the presented fast algorithm is very accurate. An-
other important observation from Table 1 is that the error
does not depend so much on the transform parameter set
as is does on the transformed function; the error percent-
ages for 71 and T2 are close to each other. In general, our
algorithm maintains approximately the same perfor-
mance over different transforms. A similar conclusion was
reached for the 1D case [34,35]. To the best of our knowl-
edge the presented algorithm is the first fast and accurate
algorithm that is capable of computing the very general
class of 2D-NS-LCTs and the first generalization of the 1D
fast algorithms for LCTs to two dimensions. Moreover, it
also deals with the space-bandwidth and sampling rate is-
sues very carefully so that the output samples—indeed
the samples at any stage—are sufficient to accurately re-
construct the underlying continuous function, but are not
wastefully redundant either. Therefore our algorithm is
able to effectively obtain a continuous transform from a
continuous input function.

In Table 1, we also show the errors that arise when the
discrete Fourier transform (DFT) is used to approxi-
mately compute the ordinary 2D-FT of the same func-
tions. [The DFT would most likely be implemented with
the fast Fourier transform (FFT) algorithm but how the
DFT is implemented does not affect the error compari-
son.] The same reference method that we use in calculat-
ing the error percentages for our algorithm is used to nu-
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Re of T2 of F3 - Our Algorithm
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Re of T2 of F3 - Reference

(a) Real part (fast algorithm)

Im of T2 of F3 = Our Algorithm

(b) Real part (reference)

Im of T2 of F3 - Reference

(c) Imaginary part (fast algorithm)

(d) Imaginary part (reference)

Fig. 4. T2 of F3 (our algorithm and reference).

merically calculate “exact” continuous FTs of the example
functions. The DFT serves as an ultimate benchmark for
comparing our results. Theoretically, our algorithm can-
not reduce the error below that value which results from
computing a FT with the DFT because they share the
same inevitable source of error that arises from the fun-
damental fact that a signal and its transform cannot both
be of finite extent. In the 1D version of our algorithm, as

Abs of T1 of F4 - Our Algorithm Abs of T1 of F4 - Reference

10

-5 0 5 -5

X

(a) Magnitude (fast algorithm)

Phase of T1 of F4 - Our Algorithm

(c) Phase (fast algorithm)
Fig. 5. T1 of F4 (our

0
X

(b) Magnitude (reference)

Phase of T1 of F4 - Reference

(d) Phase (reference)

algorithm and reference).

well as the separable 2D case, it is possible to achieve er-
rors which approach that for the DFT, and which are thus
the best which one may ever hope to obtain [34,35]. Un-
fortunately, the necessity of interpolation in the 2D case
does not allow this, but still it is possible to achieve very
low errors that would be acceptable in most applications.

The key observations that can be made from Table 1
are as follows. The resulting errors depend strongly on

Abs of T2 of F4 - Our Algorithm Abs of T2 of F4 - Reference

15 15 15 15

10

-10 -5 -10 -5 [ 5 10

[ 5 10
X X

(a) Magnitude (fast algorithm) (b) Magnitude (reference)

Phase of T2 of F4 - Reference

Phase of T2 of F4 - Our Algorithm
15

3

-10 -5 [ 10
X

(c) Phase (fast algorithm) (d) Phase (reference)

Fig. 6. T2 of F4 (our algorithm and reference).
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Table 1. Percentage Errors for Different Functions
F and Transforms T

T1 T2 DFT
F1 2.25%x 1073 3.82x10™ 2.12x 10723
F2 1.12x 1072 1.09x 1073 2.02x 10721
F3 7.17% 1072 3.21x1073 2.58 X 1078
F4 2.07 1.92 1.05

Table 2. Percentage Errors for Different Interpola-
tion Methods and Functions F for T1

F1 F2 F3 F4
Nearest 3.4x1073 1.75x10°!  6.18x10°!  11.3
Bilinear 1.02x102  5.04x102 2.66x107! 4.33
Cubic 2.25%X 1073 1.12x 1072 7.17x102 2.07

Table 3. Percentage Errors for Different Interpola-
tion Methods and Functions F for T2

F1 F2 F3 F4
Nearest 1.72x10°1  3.28x10' 459x10°!  11.24
Bilinear 1.78x102 558X 1072 8.4%x1072 6.24
Cubic 3.82x10™ 1.09x 1073 3.21x1073 1.92

the function and the assumed space and spatial-frequency
extents. Indeed, this is the main determinant of the error
for a given interpolation method. Different functions have
differing degrees of decay rates of their tails and, for
given assumed extents, different amounts of energy left
out of the extents. Since a function cannot be made to con-
tain 100% of its energy in both the space and spatial-
frequency domains, a compromise between error and com-
putational complexity is necessary. If we choose the
extents within which we assume the function and its FT
to be mostly contained in a conservative manner, the ex-
tents will be relatively large and the number of samples
will be relatively large. If we economize on the extents
and the number of samples, a relatively large fraction of
the energy will be left outside and the resulting error will
be large. Among our examples, F'4 is an example where
the space-bandwidth product has been chosen less conser-
vatively than the other examples, and therefore the error
is relatively large around 2%. The error can be reduced by
increasing the number of samples taken.

From a fundamental perspective, our algorithm is sup-
posed to compute 2D-NS-LCTs with a performance simi-
lar to the DFT in computing the FT. As noted, this is
achieved for separable transforms which reduce to 1D
transforms. However, in the general non-separable case,
although our algorithm is quite accurate, for the first
three functions, its accuracy is quite below that for the
DFT. This degradation is due to the complex and chal-
lenging nature of non-separable LCTs which forces us to
employ interpolation operations from irregular grids to
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regular grids. This is an important source of error. For F4,
our algorithm has a comparable accuracy with the DFT.
This is due to the fact that, in this case, the error is a re-
sult of the significant amount of signal energy that lies
outside the assumed space and spatial-frequency extents.
This source of error, which affects both our algorithm and
the DFT in the same way, dominates the error arising
from the interpolation (which affects only the non-
separable LCT computation) so that the results are simi-
lar. On the other hand, for the other functions, the inter-
polation error (which does not affect the DFT) results in
higher errors for the LCT computations as compared to
the DFT.

To be more confident in the above claims, we also stud-
ied the effects of the method of interpolation on our algo-
rithm and studied how they change the accuracy of the al-
gorithm. We employed in our algorithm nearest neighbor,
bilinear, and cubic interpolation methods because they
are among the most standard, mainstream, and efficient
methods [56,57]. Different versions of the algorithm have
been implemented by using each of the above methods.
The error percentages resulting from the use of different
interpolation methods are tabulated in Tables 2 and 3 for
T1 and T2, respectively. As can be seen from the tabu-
lated data, the error values are affected considerably by
the interpolation method chosen. The best results are ob-
tained when we use the cubic interpolation method,
which is the most advanced among the three. Since there
are essentially two sources of error, the one that is funda-
mental equally affecting LCTs and the DFT, we are not
surprised to observe that as the quality of the interpola-
tion is increased, the accuracy of the algorithm improves
and approaches the DFT benchmark.

The results of our fast algorithm were obtained within
a couple of seconds by using Matlab code running on a
standard personal computer. The calculation of the brute
force reference results took several days.

7. CONCLUSIONS

We presented an algorithm for the fast digital computa-
tion of the most general family of two-dimensional non-
separable linear canonical transforms (2D-NS-LCTs).
This family of transform integrals represents a quite gen-
eral class of two-dimensional (2D) quadratic-phase sys-
tems in optics. Our approach is based on concepts from
the signal analysis and processing rather than the con-
ventional numerical analysis. With careful consideration
of sampling issues, the number of samples M XN of the
sampling grid can be chosen very close to the space-
bandwidth product of the functions. A naive approach
based on the examination of the frequency content of the
integral kernels would, on the other hand, result in an
unnecessarily high number of samples being taken due to
the highly oscillatory nature of the kernels, which would
not only be representationally inefficient but also increase
the computation time and storage requirements. The
transform output may have a higher space-bandwidth
product than the input due to the nature of the transform
family. Through careful space-bandwidth tracking and
control, we can assure that the output samples obtained
are accurate approximations to the true ones and that
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they are sufficient (but not unnecessarily redundant) in
the Nyquist—Shannon sense, allowing the full reconstruc-
tion of the underlying continuous function.

The algorithm takes the samples of the input function
and maps them to the samples of the continuous 2D-NS-
LCT of this function in the same sense that the FFT
implementation of the DFT computes the samples of the
continuous FT of a function. The presented algorithm can
be used for the fast and efficient realization of filtering in
linear canonical transform (LCT) domains [59].

The only inevitable source of deviation from exactness
in our algorithm arises from the fundamental fact that a
function and its Fourier transform (F'T) cannot both be of
finite extent. This limitation affects not only the sepa-
rable and one-dimensional (1D) versions of the algorithm
reported earlier, but also the computation of FTs using
the DFT. Thus this is a source of error we cannot hope to
overcome.

A second source of error which was not of substantial
impact in the 1D case or the separable 2D case but which
is significant in the non-separable 2D case arises from the
necessity to carry out interpolations to revert samples on
rotated grids to the original rectangular grid. This error
depends on how accurately the interpolation operation is
handled. We have used well-established and standard
methods for interpolation that are readily available, since
advancing methods of interpolation is beyond the scope of
this paper. While we believe that the levels of accuracy at-
tained with these interpolation methods will be sufficient
for most applications, in those cases where they are not,
more efficient and customized interpolation methods for
non-rectangular grids can be utilized to further improve
the accuracy. We have also developed the link between the
compact matrix-based 16-parameter definition of 2D-NS-
LCTs and the ten-parameter explicit-kernel definition.
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