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1. Introduction

The electromagnetic spectrum consists of different frequencies 
of radiation. Those frequencies which the human eye can sense are 
referred to as light. It is convenient to include frequencies some-
what below (infrared) or somewhat above (ultraviolet) the visible 
frequencies in this definition. Optics is the study of physical phe-
nomena involving light, including not only visible but also infrared 
and ultraviolet frequencies. It deals with the behavior of light and 
its interaction with matter. It also includes the technology built 
around our attempts to utilize light for various purposes.

Optical information processing is a branch of optics. It can 
mean two separate things: (i) the processing of optical informa-
tion; (ii) optical means of processing information. (The two will 
coincide if we optically process optical information.) Of these two 
interpretations, the second will be our main interest.

Light is electromagnetic radiation, which in general is a space-
and time-dependent vector field. The term optical information 
means the information carried in this light field. Light coming from 
a distant stellar object and captured by a telescope carries infor-
mation about the object to us. Light traveling through a medical 
endoscope carries information about the condition of a patients 
organs. We can express this information as functions such as f(t)
or f(x), or in the most general case f(x, y, z, t). Here t is time and 
x, y, z are spatial coordinates. f may represent the electric of mag-
netic field. In optics, a scalar treatment is often sufficient, in which 
case we deal with only one component of the vector field, so we 
deal with scalar functions f (x, y, z, t). Sometimes, especially with 
incoherent fields, it is preferable to work with the intensity, rather 
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than the amplitude as a function of space and time. Information 
may also be carried by the polarization or wavelength.

Images captured by our eyes or a camera are not the only form 
of optical information. An optical telecommunications fiber will 
carry optical signals which are functions of time. Spectroscopic 
methods provide us displays of the emission or absorption at dif-
ferent wavelengths.

We process optical information for many purposes. We may 
want to eliminate noise, correct distortions, or transform an image 
in a way that makes it easier to interpret, or simply more appeal-
ing. Given the flexibility and power of modern digital computers, 
most processing of optical information today is accomplished dig-
itally. If we are dealing with optical images, this is called digital 
image processing. We will not deal with digital processing here. 
Though rarer, analog optical systems are also used to process op-
tical information, often in specialized situations where speed or 
throughput justifies the implementation of a custom system.

Another way to contextualize the focus of this paper is to recall 
the four main areas of information technology: storage, commu-
nication, sensing, and processing of information. Optics plays an 
important role in information storage in the form of optical disks. 
Likewise, it plays an important role in communications in the form 
of optical fibers. Consumer product remote controls are examples 
of wireless optical communication. Optical sensors include both 
cameras (image sensors), as well as photodetectors (point sensors). 
The processing of information by optical means is far less estab-
lished compared to storage, communications, and sensing, but may 
hold the greatest promise.

Historically, over several decades, optics has replaced electri-
cal/electronic techniques in storage and communications to an in-
creasing degree. There is some reason to believe that optics will 
also replace electronic techniques of information processing as 
time progresses. This claim is far from being universally agreed 
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upon, but it is nevertheless widely agreed that optical techniques 
will have a greater role to play in the processing of information. 
A commonly voiced viewpoint is that optics will be used to com-
plement electronics, rather than replace it. Thus, rather than “op-
tical computing”, some prefer the term “optics in computing”.

To make it clear what we mean by “optical processing”, we 
should perhaps recall what other forms of processing are avail-
able. The information to be processed must first be represented 
in terms of a physical quantity. A certain number can be repre-
sented, for instance, by a voltage on a resistor, the rate of fluid 
flow through a pipe, the position of a wheel, the amplitude of a 
sound wave, or the intensity of a light beam. Once represented in a 
physical manner, information can be transmitted and interact with 
other pieces of information to achieve some desired result. The dis-
tinction between hydraulic, acoustical, mechanical, electronic, or 
optical processing lies in how we represent the information and 
through what kind of physical interactions it is processed.

Building optical computers has been a long-time endeavor, sup-
ported by a number of good reasons, such as the potential for 
speed and throughput arising from the high speed and frequency 
of light, and the relative freedom from various forms of resistance 
and dissipation that are substantial in many kinds of computing. 
Unfortunately, various obstacles have limited accomplishments in 
optical computing to select and special-purpose situations. Build-
ing an all-purpose general optical digital computer has remained a 
moving target, despite success in the areas of storage, communi-
cation, and sensing. It remains to be seen whether conditions that 
favor the huge potential of optical-electronic hybrid computers, or 
even an all-purpose digital optical computer will be realized as a 
result of advances in nanotechnology.

This paper will take a historical perspective. However, the sec-
tions do not correspond to historical epochs; rather, we will dis-
cuss different ways of using optics in each section. Section 2 will 
deal with analog optical information processing, and the following 
section will deal with digital optical computing. Section 4 will dis-
cuss optical interconnections and optoelectronic computers. Sec-
tion 5 will discuss the increasing diversity of approaches and try 
to briefly touch upon some recent trends.

2. Analog optical information processing

2.1. Analog processing

Since most processing systems today are digital, it is worth re-
calling what analog processing is. For instance, if we represent the 
number 3 with 3 ml of water in a graduated cylinder and add to it 
2 ml of water from another, we may read the result of the opera-
tion 2 + 3 from the graduated cylinder as 5. This is a consequence 
of the conservation of matter and the incompressibility of water. 
Likewise, analog optical information processing involves represen-
tation of information with either the amplitude or intensity of 
light. (In some cases, the polarization or wavelength can also be 
used.) To optically perform the addition operation, we may use two 
light sources with adjustable intensity and a device that can mea-
sure intensity. We adjust the sources to represent the numbers to 
be added and direct the light from both towards the measurement 
instrument, from which we can read the sum of the two numbers.

If the objective is multiplication, one of the numbers can be 
represented as the amplitude of a light beam. The other number 
can be represented as the transmittance factor of a partially trans-
parent material such that, if the number is 1 all of the light is 
transmitted, if the number is 0 none of the light is transmitted (an 
opaque material), and if the number is 0.5 half the amplitude is 
transmitted. When the light passes through this material, the re-
sult of the multiplication is proportional to the amplitude of the 
2

Fig. 1. Plane wave making angle θx with the z-axis.

exiting light. This seems to restrict the multiplier between 0 and 1 
but this is easily overcome through suitable scaling.

These operations are not limited to a single pair of numbers 
to be added or multiplied. Large arrays and high-resolution im-
ages can be similarly processed. With addition and multiplication 
in hand, any linear combination can be optically realized. This 
includes all linear systems and transformations, which can be re-
alized in the time it takes light to pass through the system and be 
registered by the detectors.

2.2. Fourier optics

Of central importance is the close connection between the 
propagation of light and frequency-domain concepts. In fact, these 
connections are so significant, the area of analog optical signal 
processing is also referred to as “Fourier optics” [1]. With refer-
ence to Fig. 1, consider a plane wave with wavelength λ whose 
propagation vector lies in the x-z plane, making angle θx with 
the z-axis. The parallel lines represent the side-view of the planar 
wavefronts. The peaks, when viewed along the x-axis, are spaced 
λ/ sin θx apart. Thus the profiles of plane waves making differ-
ent angles are harmonic functions (complex exponentials, sines, 
cosines) of different spatial frequency along the x-axis. Now, con-
sider an image f (x, y) in the x-y plane. It can be Fourier analyzed 
and represented as a sum of complex exponentials with differ-
ing frequencies. Each of these different frequencies correspond to 
plane waves making different angles with respect to the z-axis. 
Thus, using Fourier analysis to decompose an image into complex 
exponentials, directly corresponds to decomposing a propagating 
wave into plane waves making different angles. Just as complex 
exponentials are eigenfunctions of shift-invariant systems, plane 
waves are eigenfunctions of propagation through free space. If 
there is an aperture in the system, plane waves making large an-
gles (corresponding to high frequencies) will be blocked by this 
aperture. Thus the aperture acts like a low-pass filter. This is the 
physical basis through which the frequency resolution of optical 
instruments, such as microscopes and telescopes are determined. 
These close connections, realized over a century ago by Ernst Abbe 
working with Carl Zeiss, not only makes linear systems theory and 
Fourier analysis relevant to the study of optical propagation, it also 
makes optics a suitable medium in which to realize linear systems 
and transformations.

In particular, the Fourier transformation can be implemented 
with striking ease using a single convex lens (left half of Fig. 2). 
We situate a lens of certain focal length f , a distance f to the 
right of the original image. Then the Fourier transform is displayed 
another distance f further right from the lens. Being able to real-
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Fig. 2. The two-dimensional Fourier transform of the image on the plane A is observed on the plane B as a result of propagating through free space and passage through 
a convex lens. At plane B, the image is multiplied with a partially transparent mask to impart the desired frequency response. Then an inverse two-dimensional Fourier 
transform is performed (which is the same as a forward transform with inverted axes) to transform back to the original domain at plane C. f is the focal length of the 
convex lenses.
ize the Fourier transform, combined with the ability of multiplying 
an image with a partially transparent mask means that frequency-
domain filtering can be achieved with ease. (Notice that in the case 
of ideal filters, the filter can be realized simply by cutting holes 
in a piece of opaque material, with no issue of realizability as is 
the case with causal temporal systems; thus perfect lowpass filters 
can be readily achieved.) Large resolution images or arrays can be 
convolved with desired impulse responses, or filtered with desired 
frequency responses, in the time it takes light to pass from one 
end of the system to another. This has applications in image re-
covery, restoration, pattern recognition, and so forth.

While highly attractive, we must not forget that this is an ana-
log system. Therefore, if many repeated operations are performed, 
there will be an accumulation of noise that ultimately makes the 
result unreliable. Therefore, the number of steps to be performed 
must not be large. One way such systems can be useful is as an 
initial high-speed pre-processing stage of a system that will subse-
quently involve analog-digital conversion and digital processing.

The mathematics of the concepts outlined here may be found 
in texts such as [2–8]. These fundamentals have been known for 
a long time. Elementary operations based on the above-mentioned 
Fourier concepts have been experimented with in the fifties, but 
progress was hindered by the absence of coherent light sources. 
During the sixties, lasers became available and satisfied the need 
for high-quality light sources. This was accompanied by increas-
ing application of signal and communications theory concepts from 
electrical engineering to the study of optical systems. Optics was 
no longer of interest only to physicists.

2.3. Applications and architectures

The above mentioned developments led to rapid progress and 
led to the golden age of analog optical signal processing. A his-
torical account of the period up to around 1990 may be found 
in [9,10]. A crucial factor that enabled this development was the 
relatively less-developed state of digital computing during the six-
ties and seventies. This legitimized optical processing systems that 
could provide very high-speed processing of large arrays and im-
ages that was unthinkable with digital computers of the time. (To 
foreshadow later developments, we may note that while analog 
optical processing systems still offer very fast processing of large 
arrays and images, today digital computers have come to a point 
where the advantage of flexibility and the prevention of noise and 
error accumulation, often outweigh the advantages of optical pro-
cessing with some exceptions.)

The sixties witnessed the development of complex systems of 
increasing complexity. They were used to address problems that 
digital computers of the time were incapable of dealing with. One 
example was the processing of the huge amounts of synthetic-
3

Fig. 3. Acousto-optical signal processor. The high-bandwidth electrical signal is ap-
plied at the bottom to a transducer which launches it as an acoustical wave. This 
alters the optical properties and thus modulates the light coming from the left. The 
overall effect is to change an electrical temporal signal to a optical spatial signal 
which can then be processed like an image, perhaps by using the system shown in 
Figure 2.

aperture radar (SAR) data [11], for which some of the most com-
plex optical processing systems were devised. [9]

A very innovative approach to processing mostly one-dimen-
sional high-bandwidth signals was based on acousto-optical de-
vices. These were used to convert electrical signals to optical sig-
nals. The electrical signal to be processed was transduced into an 
acoustic wave and launched transversally into a material through 
which it propagated acoustically. The pressure wave through the 
material created changes in the material that ultimately locally al-
tered its optical characteristics and thus modulated the light pass-
ing through it. This was a means of converting high-bandwidth 
electrical temporal signals to optical spatial signals, which could 
then be processed with the means already outlined (Fig. 3). A re-
cent special issue on acousto-optics is [12].

Another remarkably inventive idea witnessed in the sixties 
was the use of holographic approaches to realize desired com-
plex frequency responses, not just ideal filters. They were utilized 
especially for pattern recognition applications based on complex 
matched filters. One notable scheme we will not be able to dis-
cuss in detail was the VanderLugt correlator [13]. A few notable 
and representative works might include [14,15]. Two compilations 
on optical pattern recognition are [16,17].

Moving into the seventies, approaches of the earlier decade 
were extended and further developed. Among the totally new de-
velopments we might mention matrix processing systems [18,19]. 
An important legacy of these was the example they set for dig-
ital computing architectures that would be proposed later (based 
on their treating spatial coordinates as discrete variables). A typical 
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Fig. 4. Matrix-vector product architecture.
matrix-vector product architecture is shown in Fig. 4. The source 
array on the left launches a vector, with each source representing 
one element of the vector. The emanating light is spread in the 
horizontal direction so that the light coming out of each source 
falls on all elements of a separate row of the matrix. As the light 
passes through the matrix, which consists of a partially transparent 
material, it is multiplied by the coefficients. Then, the emanat-
ing light is collected vertically onto a detector array, the collected 
light being effectively summed as a result of linear superposition. 
The overall operation precisely corresponds to matrix-vector mul-
tiplication. Again, the advantage is that very large arrays can be 
processed in the time it takes light to travel from one end of the 
system to the other, and the disadvantage lies with the analog na-
ture of the operation.

Another area that received increasing attention from the seven-
ties onward was the development of algorithms for the retrieval of 
phase information from intensity measurements. Traditionally, op-
tical measurement instruments can only measure optical intensity, 
and not phase, and utilizing multiple measurements or additional a 
priori information to recover the phase has remained a challenging 
problem that has often been addressed by iterative methods. This 
falls under a broader set of problems known as image recovery and 
reconstruction, which has received substantial attention during the 
seventies and beyond. [20,21]. A relatively recent approach is re-
ferred to as Fourier ptychography, where multiple-plane-wave illu-
mination is used with different angles to achieve a high-resolution 
and wide-field image [22,23]. An example of a speckle-based ap-
proach to high-resolution imaging is [24].

Again during this period, the concept of hybrid optical signal 
processing was developed. This involved the use of optical systems 
in conjunction with electronics, or with digital computers to com-
bine the benefits of both. The optical part would bring fast pro-
cessing of large arrays, high-resolution images, or high-bandwidth 
data, and the digital part would bring flexibility and control of er-
ror accumulation. Such systems might involve iterative or feedback 
loops. Examples of such systems may be found in [25,26]. A compi-
lation that gives a good idea of the state-of-the-art of optical signal 
processing in the mid eighties is [27].

Before we continue, we briefly talk about holography, which 
has always been an integral branch of analog optical information 
processing. In popular culture, the term holography is almost syn-
onymous with three-dimensional imaging, but more precisely it 
is the act of capturing and recording the whole information in a 
propagating wave, such that it can later be re-launched (“played 
back”) and continue to propagate. Ordinarily, if we capture an im-
age using conventional photography, be it chemical or digital, only 
the intensity and thus amplitude information is recorded and the 
phase information is lost. Thus, we do not have all the informa-
tion necessary to reconstruct the wave. Objects are perceived as 
a result of light waves bouncing off from them and finding their 
4

way to our eyes. Holography allows not only the amplitude but 
also the phase to be captured so that complete information of 
the propagating light is preserved. This is based on the princi-
ple of adding the complex field to a constant reference before 
intensity recording [3,13]. When the field is reconstructed, it is 
(ideally) the very same light wave that was coming to us from 
the original object so that out perception is also the same as 
with the original object, including depth cues, which is what al-
lows the sense of three-dimensional perception. Beyond recording 
of three-dimensional information, holography has important appli-
cations in optically realizing systems with complex transfer func-
tions, metrology, high-density information storage and the routing 
of light beams in complex patterns. Three-dimensional television, 
a long-time objective of holography, may be a reality within the 
foreseeable future. Computer-generated holography has been an al-
ternative means of creating holograms for a long time [28]. Today, 
digital holography is a well-developed area with close connections 
to three-dimensional imaging [29,30].

In some ways, the eighties could be viewed as a time of rela-
tive stagnation for analog optical information processing. The lack 
of large-scale commercial applications was disappointing, despite 
the success of certain specialized applications. Another reason why 
the level of novel activity was relatively low was because many 
researchers working in this area turned their attention to optical 
interconnections and digital optical computing, which we will dis-
cuss in section 3.

2.4. Space-frequency approaches and fractional Fourier and linear 
canonical transforms

An important body of work was that relating Fourier optics con-
cepts to the space-frequency plane or phase space. These extended 
the classical formulation of Fourier optics to space-frequency dis-
tributions such as the Wigner distribution and ambiguity function 
[31–33]. Coinciding with strong interest in time-frequency repre-
sentations in signal processing, this work solidified and provided 
mathematical precision to the concepts of the space-bandwidth 
product and the number of degrees of freedom of an optical signal 
that had already been in currency since the sixties [34,35]. These 
essentially refer to how many numbers are required to uniquely 
specify a signal and are closely related to the physics of wave 
propagation and the characteristics of optical components, as well 
as sampling theory. Recent work extending these ideas include 
[36–38].

Analog optical information processing saw a substantial revival 
in the early nineties following the introduction of the fractional 
Fourier transform (FRT) to the area [39–43]. In fact, in a study of 
the whole field of optics and photonics made by the ISI cover-
ing nearly 70,000 papers published over the nineties in nearly 50 
journals, the theory, application and implementation of fractional 
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Fig. 5. Magnitude of the fractional Fourier transform of the rectangle function (a) for the orders a = 0,0.2,0.4,0.6,0.8,1, (b) for orders a in the interval [0,1].
Fourier transforms in optics, was noted as the second leading re-
search theme in the field by the ISI [44]. Interest in the FRT later 
evolved to an interest in linear canonical transforms, which con-
tinues to this day.

The fractional Fourier transform (FRT) is defined by general-
izing the conventional Fourier transform by introducing an order 
parameter a. When a = 0, we have a zeroth-order transform of 
the function, which is the original function. When a = 1, we have 
a first-order transform, which is simply the conventional Fourier 
transform of the function. If we take a = 1/3, we have an opera-
tion, if repeated three times, that gives us the conventional Fourier 
transform. The 0.4th transform of the 0.3rd transform is the 0.7th 
Fourier transform. If we have negative orders, these correspond 
to inverse transforms. The transform with order −a is the in-
verse transform of the transform with order a. In particular, when 
a = −1 we have the inverse conventional Fourier transform.

Fig. 5 shows the magnitude of the various ordered fractional 
Fourier transforms of the rectangle function. We can clearly see 
how it evolves into a sinc function as the order a changes from 0
to 1.
5

The ath fractional Fourier transform fa(ua) of a function f (u)

can be defined in multiple ways, the simplest being as a linear 
integral transform:

fa(ua) =
∞∫

−∞
Ka(ua, u) f (u)du, (1)

Ka(ua, u) = Aα exp
[

iπ(cotα u2
a − 2 cscα uau + cotα u2)

]
,

where Aα = √
1 − i cotα and α = aπ

2 . When a �= 2 j and
Ka(ua, u) = δ(ua − u) when a = 4 j and Ka(ua, u) = δ(ua + u) when 
a = 4 j ± 2, where j is an integer. Here ua denotes the coordinate 
variable in the ath order fractional Fourier transform, as we will 
discuss below.

Just as conventional Fourier transformation corresponds to a 
π/2 rotation in the time-frequency (or space-frequency) plane, 
fractional Fourier transformation of order a corresponds to a aπ/2
rotation (Fig. 6). In fact, this is one of the alternative ways of defin-
ing the FRT. For instance, the Wigner distribution of the FRT of a 
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Fig. 6. Rotation in the space-frequency plane. The Wigner distribution W ga (t, f ) of the FRT ga of a function g (left) is a rotated version of the Wigner distribution of the 
original function g (right). The projections of the Wigner distribution onto any fractional Fourier domain give the squared magnitude of the representation of the function in 
that domain.
function is a aπ/2 rotated version of the Wigner distribution of 
the original [2,42,45].

Just as we can enact the operation of convolving with an im-
pulse response by first taking the Fourier transform of a signal, 
multiplying it with the frequency response, and then inverse trans-
forming back to the original domain, we can also undertake filter-
ing in fractional Fourier domains by taking the ath order fractional 
transform, applying a filter in the ath order fractional Fourier do-
main, and then inverse transforming to the original domain. This 
has led to concepts such as fractional convolution and fractional 
Fourier domain filtering. It has been shown that optimal filter-
ing in fractional Fourier domains can result in reduced mean-
square errors in the presence of time-varying distortions and/or 
non-stationary noise [46–48]. Likewise, correlation and matched 
filtering operations used for pattern recognition applications have 
been generalized with the FRT [49].

The concept of filtering in fractional Fourier domains can be 
further generalized to multistage and multichannel filtering, as il-
lustrated in Fig. 7. Going one step further, we can obtain gener-
alized filtering circuits as in Fig. 8. These configurations provide 
substantial generalizations of ordinary shift-invariant systems [50].

The ath order fractional Fourier domain is where the ath or-
der fractional Fourier transform of a function lives. It makes angle 
aπ/2 with the time (or space) coordinate axis in the time- (or 
space-) frequency plane, in accordance with the rotation theorem 
mentioned above [51].

An important result relating the FRT to optics is that the prop-
agation of light, as well as other waves satisfying similar wave 
equations, is a process of continual fractional Fourier transforma-
tion. Consider a transverse distribution of light at a certain plane 
parallel to the x-y plane, that propagates along the z-axis towards 
the right. The original light distribution is the 0th FRT. Slightly to 
the right, we will observe the ath order FRT for a small value 
of a. As we move along the z-axis to increasing values of z, the 
order a will increase such that as z goes to infinity, a will ap-
proach 1 according to an inverse tangent function, corresponding 
to the well-known result that the far-field diffraction pattern is the 
Fourier transform. [2,52–54]

This propagation result can be generalized to more general sys-
tems including arbitrary concatenations of thin lenses separated by 
arbitrary distances. The original function corresponds to the 0th 
fractional Fourier transform, presented at the input on the left. 
As we move towards the right, the fractional order will increase 
and the light distribution will undergo fractional transforms with 
monotonically increasing fractional orders [2,52].

It is possible to realize the fractional Fourier transform by using 
a convex lens, in a manner similar to the realization of the conven-
tional Fourier transform. Thus, optical signal processing systems 
6

based on the conventional Fourier transform can be easily gen-
eralized to fractional Fourier transforms, without any increase in 
hardware complexity or cost. In particular, optimal filtering in frac-
tional Fourier domains and fractional convolution can be realized 
optically. This is achieved by nothing more difficult than adjusting 
the distances between the lenses in Fig. 2 [2,52].

We also note that the fractional Fourier transform can be com-
puted in the order of N log N time, so that performance improve-
ments come without any additional computational cost [55]. Re-
cent reviews on the fractional Fourier transform include [56,57].

The fractional Fourier transform can be further generalized to 
the linear canonical transform (LCT), which has three parameters. 
LCTs can also be defined as linear integral transforms [2,58]:

fM(u′) =
∞∫

−∞
CM(u′, u) f (u)du, (2)

CM(u′, u) = AM exp
[

iπ(αu′2 − 2βu′u + γ u2)
]
,

where AM = √
β e−iπ/4. α, β , and γ are real parameters indepen-

dent of u′ and u.
Just as the FRT corresponds to rotation in the time- (or space-) 

frequency plane, the LCT corresponds to a parallelogram distortion, 
meaning that parallelogram regions are mapped to other paral-
lelogram regions, and other shapes are mapped accordingly. De-
pending on its three parameters, the family of LCTs includes chirp 
multiplication, chirp convolution, scaling, fractional and conven-
tional Fourier transformation among its special cases. The concept 
of filtering in FRT domains has also been extended to filtering in 
LCT domains, adding further flexibility and potential performance 
improvements.

Just like the FRT, the LCT can also be optically implemented 
with relative ease [59] and also can be computed in the order of 
N log N time [60], so that once again performance improvements 
with the LCT come without any additional computational cost.

2.5. Temporal processing

Most work in analog optical information processing deals with 
spatial signals although similar concepts are also relevant for ul-
trafast processing of temporal signals; for instance [61]. Many ap-
plications require control of optical waves in space and time, a 
problem referred to as “wavefront shaping”. [62] summarizes de-
velopments in this area where spatial, temporal and frequency 
degrees of freedom are used to control the propagation of light. 
Examples of work on engineering spatially complex light patterns 
with arbitrary statistical properties are [63,64].
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Fig. 7. Multistage (part a) and multichannel (part b) filtering in fractional Fourier domains. The basic building block is an ath order FRT followed by a FRT-domain filter 
followed by an −ath order (inverse) FRT. In part a, this building block is repeated in series with different orders. In part b, it is repeated in parallel.

Fig. 8. Generalized filtering configurations in fractional Fourier domains. The basic building block in Figure 7 is repeated in arbitrary series and parallel configurations.
3. Digital optical computing

3.1. Digital optical devices

Today, a computer essentially means a digital computer. The 
concept of an optical digital computer is far from new. What is 
the defining characteristic of an optical computer versus an elec-
tronic one? In earlier times, this was considered to be its use of 
optical switches, transistors or gates, instead of electronic ones. 
There are many ways of building nonlinear optical devices that can 
serve as transistors or gates. It would be fair to say that a very 
substantial effort has gone into the development of novel ideas, 
physical mechanisms, and means of manufacturing large arrays of 
such devices. Unlike electronic transistors or gates that operate 
with voltages or currents, optical transistors or gates work with 
light beams. The existence of light can represent a logic 1 and its 
nonexistence a logic 0. Logic operations rely on the principles of 
interaction of light and matter.
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3.2. Approaches and architectures

It was quickly realized that merely replacing electronic tran-
sistors with optical ones was not a smart way to create optical 
computers. Traditional computer architecture evolved in a man-
ner to benefit from the strengths of electronics and circumvent its 
weaknesses. The Von Neumann architecture is a primary example 
of this [65,66]. However, neither the strengths nor the weaknesses 
of optical switches or transistors are similar to that of electronic 
switches or transistors, so that one would not expect the same 
type of architecture to be an efficient means of creating optical 
computers.

As a consequence of this realization, many researchers have 
proposed a wide variety of architectures for optical computing 
[67,68]. Some proposed architectures are still based on Boolean 
logic, in the way most digital electronic computers are. Even then, 
alternatives have been proposed to the use of switches to construct 
gates. One creative example is optical logic by shadow casting [69], 
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Fig. 9. Optical computer architecture based on an array of optical or optoelectronic switches whose outputs (right of plane) are routed to its inputs (left of plane) with an 
optical system. This type of system has the general nature of a finite state machine.
where light and dark patterns and semi-transparent masks are 
used to realize Boolean logic functions. Other innovative alterna-
tives based on different mathematical systems, such as algebraic 
operations or the substitution of symbols according to predeter-
mined rules are only a few further examples [70].

Integrated optics usually refers to creating planar optical cir-
cuits on a substrate, in a manner analogous to integrated electron-
ics. Light signals travel along waveguides and interact either with 
electrical signals through electro-optic devices, or with other light 
signals through nonlinear optical interactions. It must be noted 
that traditionally waveguides cannot be much smaller than the 
wavelength of light, which limits miniaturization of integrated op-
tical circuits. Nevertheless, with the recent advance of silicon pho-
tonics [71], such systems are finding application in a wide variety 
of communications, sensing, and medical applications, to name a 
few.

However, why restrict optical circuits to be two-dimensional? 
One option could be to “wire” discrete optical devices with opti-
cal fibers, which is possible, but not being an integrated approach, 
bulky. This possibility aside, the most promising approach seems 
to be to use what is referred to as “free-space optics”, meaning 
light travels freely in space to carry signals between the transis-
tors or logic gates [72,73]. In a typical architecture, the transistors, 
gates, or switches are manufactured in the form of a regular array 
(Fig. 9). These arrays of devices are manufactured using techniques 
similar to already mature integrated circuit manufacturing tech-
niques. The devices on these arrays have optical inputs and optical 
outputs. Typically the inputs are on one side and the outputs are 
on the other side, although they can both be on the same side as 
well. Light beams representing logic 1 and logic 0 fall on them, 
are operated on, and emanate from them. The light beams ema-
nating from the outputs are then optically routed to their desired 
destination on another such optoelectronic device plane or to the 
input side of the same array using prisms, mirrors, micro lenses, 
holographic diffractive elements, etc. The main circuitry consists 
not of solid wires, but of optical signal paths where light travels 
through free space. An obvious advantage is that light beams can 
pass through each other, unlike electrical wires that would short 
circuit if they touched. Additionally, there is no restriction to two-
dimensional topologies. Complex, three-dimensional circuits can be 
realized. Thus, these architectures are especially suitable for the re-
alization of parallel algorithms.
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3.3. Future prospects

Along with the above mentioned advantages come certain dis-
advantages. Optical switches, transistors, logic gates, or other non-
linear devices, generally speaking, tend to have high energy con-
sumption. Linear operations will not require these and can be 
efficiently implemented, such as the computation of linear trans-
formations. However, more general systems will require nonlinear 
operations. The following argument has been set forth as the rea-
son for this higher energy consumption. Photons are boson and 
electrons are fermions. Electrons have strong interactions between 
them, allowing nonlinear switching operations to be more read-
ily realized. Photons, on the other hand, can only interact through 
a material medium, and those interactions usually require a cer-
tain level of energy to be involved. It is important to note that the 
very same bosonic and fermionic qualities make photons better for 
communicating information than electrons, as independent light 
signals do not interfere with each other in the way that electri-
cal ones do. Thus, this argument has been used to build the thesis 
that “Photons are better for communication but bad for nonlinear 
switching operations, and electrons are better for switching oper-
ations but bad for communication.” While this argument has been 
extremely catchy and does involve a considerable element of truth, 
in itself it should not be viewed as ultimate grounds for making 
decisions in favor of certain approaches over others.

One of the most popular arguments against purely optical com-
puting has its roots more than forty years ago. Since optical 
switches consume high amounts of power, there would be a large 
amount of heat that would be generated and that would have to be 
removed. Influenced by these arguments, many researchers, from 
the eighties onward, started concentrating on the use of optics for 
communication inside computers, which was referred to as opti-
cal interconnections, and frowned upon the prospect of all optical 
computers. It is most likely that to the extent that optics will have 
a role to play in computing systems, in the near term, this is more 
likely to be in the form of optical interconnections, rather than op-
tical switching.

It is our opinion that digital optical computing remains a vi-
able alternative, at least in principle. First of all, much lower en-
ergy consuming optical devices are becoming possible (although 
still not as low as purely electronic switching). But more impor-
tantly, since the eighties it is now realized that most of the en-
ergy dissipated in a computer comes from the interconnections, 
not the switches. This totally turns the table. Optical switches 



H.M. Ozaktas and M.A. Kutay Digital Signal Processing 119 (2021) 103248
Fig. 10. Multistage interconnection network. Each plane consists of a large array of 
optical or optoelectronic switches. The arrays are connected to each other through 
free-space optical interconnections according to a regular interconnection pattern. 
The number of stages is typically proportional to the logarithm of the number of 
channels to be switched. With this number of stages, it is possible to achieve de-
sired permutations of connections between the leftmost and rightmost planes.

still consume more energy than electronic switches. However, opti-
cal interconnections, especially longer distance ones, consume less 
energy than electrical interconnections. With switching consum-
ing only a fraction of the energy of a computing system overall, 
whether to use optics or electronics for switching will not be dic-
tated by energy considerations but by other considerations, which 
may favor optics.

What is an optical switch? As noted, photons interact with pho-
tons through the mediation of matter and often electronic effects. 
Thus, we can understand an optical switch, effectively, as the com-
bination of a light detecting device, an electrical switch, and a light 
emitting device. So, if all the interconnections are made optical, 
but the switches remain electronic, it seems that there is no sense 
not to replace the detector-switch-emitter combinations by optical 
switches as well.

Laboratory demonstrations of optical computers have been cre-
ated during the early nineties. Contemporaneously, optical commu-
nications switches were also demonstrated. Since high-throughput 
communications systems employ fiber optical cables, which are of-
ten bottlenecked by electronic switching stages and cannot achieve 
their potential, it is very attractive to use optical switching for this 
purpose (Fig. 10) [74,75]. Such systems may be viewed as spe-
cialized optical computers and the technology developed for them 
may pave the way for general-purpose optical digital computers. 
Optical architectures for several common networks have been de-
vised [76,77].

Despite considerable activity for many decades, the promise of 
optical computing has not yet been fulfilled. Our opinion about 
the reasons are as follows. First of all, the reason is not fundamen-
tal. It is not because of basic properties of photons or electrons. 
A case can be made against mechanical or hydraulic computing in 
that these systems simply cannot deliver the same computational 
efficiency when compared to electronics on an energy basis (al-
though nano-scale versions may change this conclusion). This is 
far from being so clearly established in the case of optics. There 
are two reasons which have actually contributed, in our opinion 
[78]. The first is that the information processing and computing 
industry is very heavily invested in the current technology of de-
signing and manufacturing electronics computers. This is not just 
about the huge cost of lithography machines and other equipment. 
Decades of research has solved countless problems and overcome 
an infinitude of obstacles that would otherwise have prevented the 
systems we have today from becoming reality. Had the same effort 
went into optical computers, they might also have been a reality. 
However at this point, it is not easy for sufficient incentive to build 
up to justify such massive research and risk-taking. This will only 
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be the case if it becomes clear that the use of optics will offer 
huge advantages that make it worth the undertaking.

Another reason is that, at this point, no one really knows 
the best way to make an optical or optoelectronic computer. As 
we already discussed earlier, optics and electronics have different 
strengths and weaknesses. Thus, traditional computer architecture 
on which the vast majority of modern systems are based on will 
clearly not be a viable, let alone optimal, path to follow. Moreover, 
it does not end with architecture. It is also about algorithms and 
the methodology with which we build computers, which are in-
separable. For instance, consider the architecture shown in Fig. 9, 
which can be used to implement a finite state machine, which 
can, in principal form the basis of a general-purpose computer. 
However, modern computers are based upon a co-hierarchy of 
hardware and software that has co-evolved along a particular his-
torical path, as a consequence of momentous effort and investment 
[78–80]. It is not realistic to expect anything on a par with that to 
emerge easily. The truth is, although there are many ideas, today 
no one really knows the best way to come up with an integrated 
architectural and algorithmic structure that would unleash the po-
tential of optical computing. Is there a way out of this deadlock? 
Perhaps. Stepping stones in the form of special-purpose proces-
sors, such as numerical processors, matrix processors, logic arrays, 
switching networks, with relatively simple structure and algorith-
mic complexity may pave the way for future progress.

Reviews and books on various aspects of optical computing in-
clude [81–92].

4. Optical interconnections and optoelectronic computers

4.1. The increasing importance of interconnections

As we swipe a screen, interacting with images and icons, it is 
easy to forget the physical basis of computing. Numerical or sym-
bolic entities are represented as physical quantities. Then, we use 
certain physical effects to operate on them. The entities to be op-
erated on must either come to the same place, or somehow make 
their state visible. Consider comparing two numbers, which is a 
simple operation that can be performed locally by bringing the 
two numbers next to each other. The result will also appear in 
the same locality. However, if the result is going to be compared 
with some other piece of information, either it must be transmit-
ted somewhere else or the other piece of information must be 
transmitted here. Since things take up space, everything cannot be 
in the same locality and must be spread out. Thus, to solve large 
and complex problems, not only is it necessary to perform many 
operations, it is also necessary to combine partial results with oth-
ers, and this requires constant transmission of information around. 
Thus the important thing is not only how we represent and op-
erate on information, but how information is percolated around a 
system. [93]

Prior to the eighties, fundamental consideration of the limits 
of computing systems was mostly based on the speed and energy 
consumption of the switches. The wires or cables connecting them, 
much as in an elementary circuit, were idealized and mostly not 
attached much importance to. However, as computing systems be-
came increasingly complex, communication inside computing sys-
tems became much more important. The interconnections started 
to become the main source of delay, the main consumer of space, 
and the main generator of power dissipation. There is a simple 
reason for this. If λ is the minimum feature size, the volume of a 
switch is ∼ λ3 while the volume of an interconnection is ∼ λ2L, 
with L being the length of the interconnection. As feature sizes 
shrink but circuit complexities increase, L does not fall as fast as λ
does and might even increase. Thus the space occupied by the in-
terconnections will claim a larger share of the total space occupied 
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by the circuit. Similar arguments can be made for delay and power 
dissipation. Several geometrical and scaling arguments also indi-
cate that electrical resistance, resistive-capacitive time constants 
and other factors scale unfavorably as we go to more complex 
systems. For instance, for a rise-time limited resistive-capacitive 
interconnection, ideal scaling does not change the time constant 
if the length is also scaled down with the minimum feature size. 
However, with more complex systems the length does not scale 
down so fast, so that the time constants increase.

4.2. Comparison of optical and electrical interconnections

Recall the comparison of photons (which are bosons), and elec-
trons (which are fermions) in the previous section. We noted that 
electrons can have stronger interactions, a fact consistent with the 
lower energy dissipated by electronic nonlinear devices. Electronic 
devices can also be smaller than optical devices since typically 
optical devices cannot be smaller than the optical wavelength. 
However, the same qualities of electrons result in resistance and 
capacitance effects that result in loss of speed and increased size 
and power consumption for longer interconnections. Why are there 
no resistive effects associated with optical interconnections? Since 
optical frequencies are quite high, confinement of optical radiation 
does not require the use of conductors, as is necessary at lower 
frequencies. (Optical waves will still be attenuated in insulators as 
they propagate, but this is usually much less of a concern.) Thus, 
while electrical interconnections can be faster, smaller, and less en-
ergy consuming for shorter connections, they often are slower, and 
consume more space and energy for longer connections. Generally 
speaking, optical connections win over in all of these respects for 
longer connections. Combined with the possibility of truly three-
dimensional circuit structures, this can translate into significantly 
smaller and faster systems. This has led to the concept of mak-
ing shorter connections electrical and longer connections optical. 
Thus it has been asked beyond what length of wire or stage of 
interconnection hierarchy should optical interconnections be pre-
ferred over optical ones? [94] Should interconnections at the gate 
level be made optically, or should optical interconnections be used 
only between chips, or only between larger units. The threshold 
distance calculated varies greatly depending on the models used, 
but some authors have suggested as small as centimeters or even 
millimeters [94,95].

The concluding sentence of the preceding paragraph is also 
consistent with the fact that, as time progresses, optical commu-
nication has been used over shorter and shorter distances. Long-
distance telecommunication has long since heavily relied on optical 
fibers. Following this, campus networks and local area networks 
also often rely on optical fibers. Penetration of optical communi-
cation to lower levels has been slower, such as connections within 
buildings, or connecting backplanes and boards. Connecting com-
puter chips, or even gates within chips would be the next step.

Electrical interconnects are also problematic in terms of routing 
since they must not touch each other, and they exhibit crosstalk 
and matching problems. Optical interconnections allow three-
dimensional circuits to be routed. (Superconducting wires, another 
important alternative to conventional electrical interconnections, 
eliminate some, but not all of the negatives of electrical inter-
connections. They eliminate problems associated with resistance, 
but do not offer the ability to route three-dimensional circuits in 
the way optical interconnections can.) As a consequence of these 
arguments, several researchers have suggested the idea of an opti-
cally interconnected electronic computer. The nonlinear operations 
would be realized by electronic switches (transistors, gates). The 
interconnections would be optical. It has been argued that such a 
conception allows the best of both worlds, giving them the oppor-
tunity to complement each others strengths and weaknesses.
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Fig. 11. Optically interconnected electronic computers. The integrated electronic cir-
cuits at the bottom have optical sources and detectors that can send and receive 
information. The optical elements above them can route the light in a manner that 
will realize the desired circuits.

As alluded to earlier, it is possible to bend some of these argu-
ments in support of all optical computing: If it is the interconnec-
tions and not the gates or switches that dominate measures such 
as space, delay, dissipation, and we have already made the inter-
connections optical, why not make the gates or switches optical 
we well (since their contribution to space, delay and dissipation 
is small anyway)? We must note, however, that this perspective is 
not broadly accepted.

4.3. Alternatives and architectures

We can provide a few examples of how to employ optical in-
terconnections in digital computing systems. Fig. 11 [96] shows an 
integrated electronic system which may be a single chip or several 
side-by-side chips. Normally, interconnections between chips are 
provided through a printed circuit board. These interconnections 
are often much more costly in terms of space, delay, and power 
compared to interconnections within a chip. If optical emitters and 
detectors are situated on or next to the chips, the light from the 
emitters can be routed to a detector near the desired destination 
using mirrors, prisms, micro lenses, holographic elements and so 
forth. A much larger number of connections can be realized than 
with a printed circuit board, with greater speed and lower energy 
consumption.

An alternative approach to providing optical interconnections 
is the so-called planar optics approach, illustrated in Fig. 12 [97]. 
Here both the emitters, detectors and optical elements are on the 
top plane and light is reflected off the bottom surface of an opti-
cally transparent material. It is called a folded optical system since 
the optical elements are designed in a manner that corresponds to 
a regular optical system where they would have been aligned along 
the optical axis. However, here the optical axis is folded in such a 
manner that all of the optical elements lie in the same plane. (It is 
worth noting that such a system can also be used for analog pro-
cessing, for instance the system in Fig. 2 can also be folded this 
way.)

Some recent developments in the area include graphene based 
optical interconnects [98], carbon nanotube based interconnections 
[99], unified inter- and intra-chip optical networks [100], micro-
electromechanical systems (MEMS) based interconnects [101]. Re-
views of optical interconnections in computing include [102–106].

5. Recent developments and the legacy of optical information 
processing as a view to the future

While traditional analog optical information processing as a 
self-contained field (often referred to as Fourier optics), has 
reached a certain level of maturity, the field has evolved and 
merged into other disciplines and its legacy continues to be felt 
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Fig. 12. Planar (folded) optical interconnection architecture. The bottom surface sim-
ply reflects the light. The connections are routed by the optical elements.

in many areas. Due to the diversity of forms this takes, it is not 
possible for us to even approach any level of comprehensiveness 
in reviewing these areas, and we will have to satisfy ourselves with 
an illustrative random sampling.

Some of the most important such areas are those involving 
the capture and display of images, video, and three-dimensional 
information. Although today most processing of this type of infor-
mation is performed digitally, optics is naturally involved since it 
is light emanated or reflected from objects, and ultimately landing 
on our retinas that creates perception. The traditional conception 
of a camera is a device that registers signals proportional to the 
light intensity as faithfully as possible, and a traditional display 
does the opposite. However, increasingly we see that the optical 
and computational processes are not seen as independent, but are 
designed in a mutually aware manner. This can both reduce un-
necessary computational burdens and relax requirements on the 
optical specifications.

Optical information considerations play a significant role in cer-
tain types of displays. For instance, there has been significant 
advances in laser-based displays and projectors. These have been 
made possible by advances in modulator, microelectromechanical 
systems (MEMS), and laser source technologies [107]. Near-eye dis-
plays [108,109], head-worn displays [110], and light field displays 
[111,112] have been receiving increasing attention for quite a time. 
References [113] and [114] are examples of work that particularly 
well illustrate the use of optical information processing techniques 
in these applications. These types of displays also find use in vir-
tual reality (VR) and extended reality (XR) [115,116], technologies 
that are also receiving much attention.

Before moving on we may also mention that the design of 
diffractive and holographic optical elements [117,118] used for 
these and other applications also involve principles of information 
optics. The use of so-called metalenses is an approach to improve 
over conventional, often bulky refractive or diffractive optical com-
ponents and to achieve wavefront shaping with nano-scale struc-
tures that have thicknesses of the order of the wavelength or be-
low. [119–121]

Another relevant area is three-dimensional video and television 
[122–124]. While a substantial part of this technology is digital, 
the image acquisition and display stages inevitably involve opti-
cal systems, whose design benefits from optical information pro-
cessing principles and diffraction theory [125]. Stereoscopic sys-
tems are very popular since they are the most straightforward and 
have a long history [126]. True holographic wavefront reconstruc-
tion type displays are the most elegant and definitive approach to 
recording and playback of three-dimensional images, but progress 
with this approach has been slow [127–129]. Many works now 
combine optical information processing principles with computa-
tional approaches, for instance [130]. The joint use of optical and 
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computational techniques may be considered representative of a 
trend that can be expected to increase in importance.

Computational imaging is a term that refers to approaches 
where computation plays a substantial role in the image forma-
tion process [131]. Unlike conventional imaging where we try to 
obtain a faithful image to begin with and then process it, in com-
putational imaging we are aware of the possibilities offered by 
possible post-processing and are therefore not constrained to phys-
ically form a conventional image. This might include situations 
where direct imaging is not possible and the information collected 
has to be solved for to reconstruct the image (as in computer-
ized tomography). It can also include situations where the physical 
measurement process is imperfect or insufficient, and additional 
knowledge is introduced to mathematically and/or computation-
ally reconstruct the image. Multidimensional optical imaging is an 
approach where multidimensional optical measurements includ-
ing spatial, spectral, temporal information is involved [132,133]. 
Generally speaking, in these approaches, the optical acquisition 
becomes integrated with the digital processing and thus physical 
considerations and optical information processing principles can 
play an important role [134–137].

Perhaps most intriguing and hard to generalize are situations 
where optical information processing principles come into play 
with device and materials principles, possibly involving systems 
engineered at the nanoscale. Some examples of optical information 
processing systems based on photonics structures are [138–142].

The way we structure computing systems may undergo sub-
stantial changes in the future, in a way that is very difficult to 
foresee or date (for instance, see [143]). Interest in computing sys-
tems that operate on the atomic-scale, based on biological and 
quantum effects, and depending on varying kinds of individual or 
collective behaviors of atoms, will likely increase. The qualities of 
these systems may be very different than those based on a col-
lection of interconnected nonlinear devices that we have today. 
However, electromagnetic waves remain one of the most funda-
mental means of information transmission. Since it is desirable 
to increase the density of information transfer, it seems unlikely 
that frequencies below the visible would be considered. Higher fre-
quencies can allow even higher densities, and their use would be 
feasible if suitable sources and detectors are engineered. In any 
event, these waves would be governed by optical principles over 
a wide range of frequencies. Thus, although such future computers 
may take many forms, there is a considerable likelihood that optics 
will be involved in the percolation of information within them.

It is possible to imagine various computational schemes where 
atoms or molecules, living or non-living, interact with each other, 
performing logic operations or otherwise. However, it is important 
to remember that most interesting computations require global 
transfer of information, since everything cannot be put next to 
each other. If information is restricted to interacting only with 
nearby information, it will take multiple steps for information to 
reach or affect other far away information it has to interact with. 
Mass transport is not likely to provide a sufficiently fast means 
of information transfer either. These considerations provide fur-
ther support to the preceding paragraph, where we argued it is 
likely that electromagnetic radiation of at least optical frequencies 
will be used in future computing systems. This is not to say it is 
inevitable. The mammalian brain is an example of a computing 
system that does not internally employ freely propagating electro-
magnetic radiation for communication.

Given that restricting interactions between parts of a comput-
ing system to be local does not seem to be optimal, it seems highly 
desirable to provide a means of high-speed global communication, 
which we have argued might best be realized optically. Thus, fu-
ture computing systems operating at an atomic-scale, based on 
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biological or quantum effects, may benefit from optical intercon-
nections [144].

Optical implementation of neural networks has received at-
tention from the eighties and nineties onward [145–148]. Neural 
networks are artificial systems inspired by the structure of an-
imal brains. They are very different than common digital com-
puters, which are based on very different principles than animal 
brains and therefore exhibit very different qualities. Neural net-
works have a complex network of connections and many opera-
tions are realized at once simultaneously. Optics is highly suitable 
to provide such a parallel and highly connected global network of 
connections, compared to electrical connections. However, neural 
networks also involve nonlinear operations that are less readily 
realized optically, compared to electronic approaches. This sug-
gests a hybrid implementation combining optical and electrical 
approaches. Thus, designs where the nonlinear part is realized 
electronically, and the interconnection network is realized optically 
have been proposed [25]. A notable example of work in this area 
is the optical implementation of the Hopfield model [149]. Recent 
notable and highly-cited works provide evidence that optical ap-
proaches to neural computation continue to be seen as promising 
[150–153].

There are many other areas where optical information process-
ing principles remain highly relevant, but which we were not able 
to cover or even mention. Some noteworthy omissions are optical 
or photonics systems for biological, medical, sensing, and commu-
nications applications (e.g. [154,155]). A very significant area we 
have totally left outside our scope is quantum optical information 
processing (e.g. [156,157]).

6. Conclusion

Analog optical information processing (Fourier optics) is a ma-
ture field with an established body of knowledge and techniques 
that is grounded firmly in the science of optics and electromag-
netic theory, as well as signal theory, analysis, and processing. 
Given the widespread availability of cost-effective digital comput-
ing, optical processing is likely to be preferred when it offers a 
unique advantage (such as speed or throughput), or in systems that 
are inherently optical, including those that are used to acquire or 
display information.

General-purpose all-optical digital computers may or may not 
become a reality. However, light may be increasingly used to com-
municate between the parts of computing systems, at lower and 
lower levels, making powerful computers possible. Thus we will 
see light play a greater role in the processing of information as 
well as its communications, storage, and sensing.
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[54] H.M. Ozaktas, S.Ö. Arık, T. Coşkun, Fundamental structure of Fresnel diffrac-
tion: longitudinal uniformity with respect to fractional Fourier order, Opt. 
Lett. 37 (2012) 103–105.

[55] H.M. Ozaktas, O. Arikan, M.A. Kutay, G. Bozdağı, Digital computation of the 
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